
Performance and Interpretability of
Machine Learning Algorithms for

Credit Risk Modelling

Leonhard Kampfer

Munich 2018

Performance and Interpretability of
Machine Learning Algorithms for

Credit Risk Modelling

Leonhard Kampfer

Master Thesis
at the Department of Statistics

of the Faculty for Mathematics, Informatics and Statistics
at the Ludwig-Maximilians-University Munich

Author:
Tassilo Leonhard Kampfer

Supervisors:
Prof. Dr. Stefan Mittnik

Christoph Berninger

Munich, 7th November 2018

Erklärung

Hiermit versichere ich, dass ich meine Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Munich, 7th November 2018 .
Leonhard Kampfer

2

Abstract

Machine learning algorithms became increasingly important and available in the
last years. They learn automatically from past experiences to do better in the
future.

The paper at hand applies seven classification models to credit card data in
order to predict defaults. The performance of the machine learning algorithms out-
performs the benchmark logistic regression model by far, thus, provides promising
results for application in credit risk modelling.

One major issue of machine learning is the lack of interpretability: the decision-
making process is often considered as a black box. We present some model-agnostic
methods which make models more interpretable and help to build trust in their
prediction, although they cannot break up the black box completely.

3

Contents

1 Introduction 5

2 Credit Risk Modelling 7
2.1 Credit Risk . 7
2.2 Binary Classification . 8
2.3 Machine Learning . 9

3 Methodology 11
3.1 Data Set . 11
3.2 Tuning . 14
3.3 Resampling . 16
3.4 Performance Measurements . 18

4 Black Box and Interpretability 23
4.1 The Black Box Problem . 23
4.2 Properties of Interpretable Algorithms . 24
4.3 Model-Agnostic Interpretability . 26

5 Application 30
5.1 Generalized Linear Model (GLM) . 30
5.2 k -Nearest Neighbours (kNN) . 34
5.3 Classification and Regression Tree (CART) . 38
5.4 Random Forest . 41
5.5 Gradient Boosting Machine (GBM) . 44
5.6 Artificial Neural Networks (ANN) . 48
5.7 Stacking . 51

6 Performance 56

7 Interpretability 60

8 Summary and Outlook 62

Bibliography 66

Appendix 70

4

Chapter 1

Introduction

According to Ben Bernake, the then Chairman of the Federal Reserve System (USA),

the reasons for the “worst financial crisis in global history, including the Great Depres-

sion” are to be found in failures in the lending business (The Financial Crisis Inquiry

Commission 2011). The possible impact of bad risk management not only for the fi-

nancial industry but also for the economy as a whole has been drastically revealed.

Additionally, in the aftermath, the crucial role of consumer behaviour at every stage of

the recent financial crisis has been exhibited (Khandani, Kim & Lo 2010). In 2016, con-

sumer spending contributed 53.5% or AC5,592 bn to the GDP of the euro area1, while the

outstanding debts of housholds added up to AC 6,264 bn2. This clearly shows the major

role of consumer behaviour and the vital importance of consumer credit risk evaluation.

Therefore, banks and insurance companies invest significant resources and develop

sophisticated programs to manage their risk. Financial risk assessment is an area of great

interest for academics, politics, regulators, and financial intermediaries. The measure of

their customers’ credit risk as accurately as possible and establishing a comprehensive

and reliable risk management are of major significance for institutes and crucial for their

financial success. Even small improvements in the prediction quality of the borrowers’

repay ability can have a major impact on stability and profitability of lenders.

Common approaches like CreditMetrics or CreditRisk+ (JP Morgan 1997, Credit

Suisse 1997) use classical statistics to forecast defaults. Current credit-bureau analytics

such as credit scores are based on slowly varying consumer characteristics, thus they are

not feasible for tactical risk management decisions by chief risk officers and policymakers.

1http://ec.europa.eu/eurostat/statistics-explained/index.php/National accounts and GDP
(20.05.2018)

2https://www.ecb.europa.eu/press/pdf/ffi/eaefd 4q2016 early.pdf?aba27c2713b960657b8582dc992ea581
(20.05.2018)

5

The rapid increase in data availability and computational power makes a new group

of methods available: Machine learning techniques become more and more important in

finance in general and in risk management in particular. They are considerably more

adaptive to dynamics of changing credit cycles and are able to capture complex non-

linear, non-monotonic relationships (Khandani et al. 2010).

In this thesis, we want to have a look at different machine learning approaches for

predicting consumers’ defaults and examine interpretability and transparency of the

methods since regulators often have requirements as to that. The aim is to produce an

extensive review of possible machine learning approaches for consumer credit risk evalu-

ation, to show and explain advantages and disadvantages of these techniques, to compare

their accuracy and prediction quality, and to assess and improve their interpretability.

6

Chapter 2

Credit Risk Modelling

We want to assess the performance of several machine learning algorithms for credit risk

modelling. In this chapter, we give a overview of the topic, provide some definitions, and

explain basic concepts. Interpretability of machine learning will be discussed in chapter

4 and following.

2.1 Credit Risk

According to the Basel Committee on Banking Supervision and Bank for International

Settlements (2000), credit risk, also known as counterparty or default risk, is “the poten-

tial that a bank borrower or counterparty will fail to meet its obligations in accordance

with agreed terms”. It describes the risk that a customer fails willingly or unwillingly to

make a required payment – such as a mortgage, overdraft, or credit card debt – duly, and

defaults. A default is defined as a delinquency by a determined timeframe, for example,

by 90 or more days.

In this paper, we will assess our customers’ credit risk by predicting the probability

that a customer will pay his credit card debts duly next month (see section 3.1.1 for

details on the data).

Credit risk management tries to retain the lender’s credit risk exposure within accept-

able boundaries and thereby to maximise the profit rate (Basel Committee on Banking

Supervision and Bank for International Settlements 2000). It is an essential component

of a comprehensive enterprise risk management and critical for long-term success. The

business perspective would go beyond the scope of this paper, the focus lies on risk

modelling. Based on the financial risk assessment, the lender may introduce appropri-

ate strategies to control its risk exposure. It can hedge some of its risks by purchasing

7

credit insurance or credit derivatives, or reduce its exposure by selling credit portfolios

to investors. Another approach is called tightening, which describes the risk reduction

by lowering the risk exposure by, for example, cutting the line of credit for a portfolio

of customers or truncating the number of newly sold credits (Khandani et al. 2010).

Most major companies deploy significant resources and develop sophisticated pro-

grams to analyse and manage their risk. One common approach is credit scoring which

tries to attribute a number (i.e. the score) to a customer based on its predicted de-

fault probability. The score is usually calculated using a range of data sources such as

application forms, credit agencies, or existing products of the customer with the lender

(Fahrmeir, Kneib, Lang & Marx 2013). Based on the score, the bank may apply different

strategies as adjust the line of credit, ask for more collateral, or charge borrowers with

bad scores higher interest rates, i.e. price risk-based.

2.2 Binary Classification

Customer credit risk evaluation can be described as a supervised binary classification.

The prediction of default is a binary classification problem since we want to identify

to which category a new customer belongs: to the class with “good” customers to whom

the bank wants to give a loan (since he has a high probability of paying back his credit

duly), or to the class of “bad” customers to whom the bank does not want to lend money.

According to James, Witten, Hastie & Tibshirani (2013), there are mainly two cate-

gories of learning problems: supervised and unsupervised. While in the former category

the algorithm is provided with a response associated with each observation of the predic-

tor, in the latter the associated response is absent. We formulate a supervised learning

problem with customers’ default as the associated response. We try to forecast if a

specific customer is likely to default or not given the input data. One possible approach

seems to be to “memorise” the input-output pairs (Khandani et al. 2010). This would

perfectly map the pairs in the dataset used for training the algorithm but it is unlikely to

be successful in predicting outputs for new data. So, we need to find a mapping function

that fits both the dataset used for training and any new customer data3.

Therefore, we create a classifier which learns underlying relationships between input

and output (Tsai & Chen 2010). Then, it assigns a certain default probability to each

instance. If the predicted probability is higher than a defined threshold, we predict

default, otherwise non-default. Since a bank will certainly refuse customers which are

flagged as default, classification is in effect a decision based on calculated probabilities.

3This challenge is often referred to as the “bias-variance tradeoff” (cf. James et al. 2013).

8

(a) Data modelling culture (b) Algorithm modelling culture

Figure 2.1: The two cultures of statistical modelling (Breiman 2001b).

2.3 Machine Learning

According to Breiman (2001b), there are two cultures in the use of statistical modelling

to reach conclusions from data and, hence, to solve a binary classification problem.

Nature forms from input x the output y. The complex and unknown transformation

is seen as a black box (see top figure in figure 2.1a). Statisticians aim to get information

about the underlying data mechanisms and to predict, for example, defaults of customers.

There are two main approaches to achieve this.

One assumes that the the output y is generated by a given stochastic data model.

This approach tries to emulate the transformation of the input data by finding the model

which is most similar to nature (see bottom figure in figure 2.1a).

The other treats the data transformation mechanism as unknown and uses algorith-

mic models to map input and output data (see figure 2.1b). This concept focuses on the

data and the problem instead of asking what model creates the same output as nature

does. These data-driven methods have arisen rapidly by increasing availability (and de-

creasing prices) of large storage capacity, high computational power, and big data sets

over the last decades, and become more and more important in many areas (cf. Chen &

Guestrin 2016). This master thesis will focus on the latter approach, which is known as

machine learning.

Machine learning is about, simply said, learning automatically from past experiences

to do better in the future. It is a hypernym for several methods which teach computers

to analyse data, learn from it, and make predictions regarding new data (cf. Simon 1983).

The aim is to develop and apply learning algorithms that do the learning and predict-

ing automatically, without human intervention or assistance. We do not programme

the computer to solve the task directly. In fact, we implement techniques to allow the

computer to come up with its own programme based solely on provided examples in

9

Statistics Machine Learning

Covariate Feature/ Attribute
Maximising likelihood Minimising loss
Fitting/Estimation Learning
Parameter/Coefficient Weights
Intercept Bias term
Model Hypothesis
Observation Example/Instance
Regression/Classification Supervised learning
Response Label
Log. regr. as regression Log. regr. as classification

Table 2.1: Different notations in statistics and machine learning.

order to capture complex data dependencies (Chen & Guestrin 2016). Machine learn-

ing, a subarea of artificial intelligence, intersects broadly with other scientific fields like

statistics, mathematics, and theoretical computer science. It is used in Apple’s Siri, in

Netflix’ movie recommendations, translation programmes, or image analyses. All these

applications use massive input data and have the ability to learn from the datasets.

Classical statistics and machine learning often use different technical terms for the

same matter. Table 2.1 gives an overview of how to link different notations used in

statistics and machine learning. Furthermore, we use the terms model and algorithm

synonymously for machine learning (and classical statistical) methods in the paper at

hand. In combination with a threshold in order to assign the instances to certain classes

based on their predicted probabilities, we also call it a classifier. A learner is an algorithm

with a certain parametrisation, so there can be several learners of the same algorithm.

10

Chapter 3

Methodology

The aim of the paper is to conduct a comparative study of machine learning algorithms

in credit risk modelling and to assess their interpretability. In this chapter, we will define

and exhibit our general setting for the study.

The computational part of the project is done in the programming language R (R

Core Team 2018). It offers a great number of packages and functions for modelling and

machine learning. We use the package mlr (Bischl, Lang, Kotthoff, Schiffner, Richter,

Studerus, Casalicchio & Jones 2016) as a framework for data preprocessing, tuning,

resampling, application of algorithms, and evaluation. It provides a consistent interface

to a great number of prediction algorithms via additional packages and several analysis

tools. The applied algorithms and the therefore used packages will be described in

chapter 5. Furthermore, we deploy package iml (Molnar, Bischl & Casalicchio 2018) to

visualise our results and make the algorithms more interpretable.

3.1 Data Set

3.1.1 Data Description

The models and algorithms are applied to a data set of a major bank in Taiwan (cf. Yeh

& Lien 2009). It contains the data of 30,000 credit card customers, 24 features with no

missing values, and one response label. There are features with personal information like

age and sex, and financial information like credit card billing or usage in the previous six

months. The binary response DEFAULT indicates if a customer paid back all her credit

card debt in October 2005 and its characteristic is tried to be predicted by the applied

models and algorithms.

There are about 78% non-default and 22% default customers in the data. This is

11

Feature name Scale Description

ID metric Customer ID
LIMIT BAL metric Credit line in thousand TWD granted to customer
SEX nominal Gender of customer
EDUCATION nominal Education (graduate school, university, high school, etc.)
MARRIAGE nominal Martial status (married, singel, divorced, other)
AGE metric Age in years
PAY x nominal Repayment status (no consumption, paid in full, revolving

credit, payment delay for 1, 2, ..., 8 months) in month x
BILL AMTx metric Amount of bill statement in month x
PAY AMTx metric Amount of payment in month x
DEFAULT nominal Default in October 2005, response

Table 3.1: Overview of all features and the response in the data set about Taiwanese
credit card customers. x = 1, . . . , 6 denotes months April to September.

remarkable since the portion of defaults is usually much smaller in such data sets, i.e.

they are often more imbalanced. We refrain from introducing and applying imbalanced

data correction at this point for two reasons: First, it would go beyond the scope of

the paper, and second, at this extent of imbalance a correction is not critical (cf. Bischl

et al. 2016).

As seen in table 3.1, there are 14 metric features4 in the data set. Table 3.2 de-

scribes their minimum and maximum values, as well as their medians and means. For

BILL AMTx , the table summarises the six separate features for the months April to

September and treats them as one – the same procedure is done for PAY AMTx . Nega-

tive values for BILL AMTx indicate that more money was transferred to the credit card

account than used for payments (in the previous month) by the customer. In an ideal sit-

uation, the amount of the bill statement BILL AMTi in one month is equal to the amount

of payment PAY AMT(i+1) of the next month, which means that the full amount was

paid duly.

Table 3.3 gives an overview of all nominal features and their modes. Features PAY x

denote the status of the past payments with “no consumption”, “paid in full”, “revolving

credit”5, or the number of months a payment is delayed. There are in total 180,000

months recorded for PAY x in the data (see also table 3.3):

4Without customer ID.
5A revolving credit is defined as a payment of the minimum due amount while the credit card

account has still a positive balance (i.e. the customer is still in debt) at the end of the period due to
recent transactions for which payment has not yet come due.

12

Feature name Minimum Median Mean Maximum

LIMIT BAL 10 140 167 1,000
AGE 21 34 35.5 79

BILL AMTx -339,600 19,720 44,980 1,664,000
PAY AMTx 0 1,900 5,275 1,684,000

Table 3.2: Overview of metric features, their minimum, median, mean, and maximum
values. BILL AMTx and PAY AMTx are each summarised for all x = 1, . . . , 6 months and
treated as one feature.

Feature name Mode Other classes and their probabilities

SEX Women (60%) Men (40%)
EDUCATION University (47%) Graduate School (35%), High school (16 %)6

MARRIAGE Single (53%) Married (46%), Divorced and Other (1%)
PAY x Revolving credit (53%) Paid in full (19%), Delay (for one or more

months) (14%), Inactive (14%)
DEFAULT Non-default (78%) Default (22%)

Table 3.3: Overview of all nominal features, their mode and the portions for their classes.
PAY x is summarised for all x = 1, . . . , 6 months and treated as one feature.

• Customers were inactive in 24,415 months,

• The full amount was paid in 34,640,

• A revolving credit was used in 95,919, and

• In 25,026 months, the payment was delayed for one or more months.

Thus, features PAY x indicate two things: first, if the customer is delinquent with

her payments or paid in due time. And second, if she delayed a payment, for how long

the payment is delayed.

One has to keep in mind that our data set only contains customers whose applica-

tion have been accepted. So, there is no payment or default information about rejected

customers. This problem of censorship in the data is often referred to as reject inference

(Kruppa, Schwarz, Arminger & Ziegler 2013). Nevertheless, this issue cannot be cor-

rected or resolved ex ante, and the comparison of different machine learning algorithms

for credit risk modelling and its results are still reasonable.

6There are four more classes, indicated as “Others” or “Unknown”, with together about 2%.

13

3.1.2 Data Preprocessing

Data preprocessing refers to any transformation of the data done before applying a

learning algorithm. This comprises, for example, finding and resolving inconsistencies,

imputation of missing values, identifying, removing or replacing outliers, discretising

numerical data, or generating numerical dummy features for categorical data.

No feature engineering is applied to the data set for this study. Feature engineering

is about generating or creating new features based on existing information in the data

set, for example by introducing certain indicators, combining several features into one

or splitting up one into multiple. Feature engineering can be very time consuming but

also rewarding in terms of improvements of prediction quality. Since it needs to be done

individual for different algorithms, it would reduce the comparability between them.

Furthermore, it is not the aim of the paper and would exceed the scope, so it is omitted

at his point.

One exception is the class level merge of PAY x , which is applied to some learners

of each algorithm. We join the classes with delayed payment (“delay for one month”,

“delay for two months”, ...) into one class “delay”. This will be mentioned explicitly if

applicable.

For algorithms like k-nearest neighbour (see section 5.2), the data needs to be nor-

malised, i.e. scaled to mean= 0 and standard deviation= 1, in order to produce mean-

ingful results. This is done by using the standard score zn:

zn =
X − µ
σ

, (3.1)

where µ denotes the mean and σ the standard deviation.

Furthermore, we remove any constant features and the customer IDs before applying

any algorithms. Constant features can lead to errors in some algorithms like generalised

linear models (Bischl et al. 2016), and IDs could lead to spurious results if the data is,

for example, ordered by a specific logic.

3.2 Hyperparameter and Threshold Tuning

Most machine learning algorithms have characteristic variables, called hyperparameters,

which steer several aspects of the prediction process. Different settings for theses hyper-

parameters may lead to different results, and a diligent search for the optimal setting is

essential in order to obtain best possible prediction results. The problem of selecting the

optimal set of characteristic parameters for a learning problem is called hyperparameter

14

Figure 3.1: Performance measured as false positive rate, true positive rate and mean
misclassification error subject to different thresholds.

tuning (Friedman, Hastie & Tibshirani 2001b).

We apply several hyperparameter sets and different search spaces (the range where

the hyperparameters lie) to the algorithms, producing various learners. For reasons of

clarity, we only present four learners for each algorithm. For example, we tune the num-

ber of neighbours k we look at for the kNN approach, or the number of hidden layers

for artificial neural networks.

In addition to the hyperparameters, we also tune the threshold for all learners. We

assign a number between 0 and 1 to each customer representing his probability of default,

also called score. We search for the optimal cut-off point of this score to distinguish the

classification of a customer as default or non-default (cf. Khandani et al. 2010).

Figure 3.1 shows on the right the prediction power of a algorithm, measured by the

mean misclassification error (mmce, see section 3.4 for details), as a function of different

threshold values. One can see clearly the tremendous effect of the chosen cut-off point

on the performance and that, other than one might have expected, 0.5 is not the optimal

value for the threshold. The plots on the left and in the middle display the performance

measured by false positive rate (FPR) and true positive rate (TPR) (see section 3.4 for

details), respectively. One can see that the trade-off between those two measures is not

linear, i.e. a decrease in the FPR is not always accompanied by a decrease in TPR. This

offers optimisation opportunities by finding an optimal threshold with a low FPR while

the TPR is still high (Lobo, Jiménez-Valverde & Real 2008). This can also be applied in

15

(a) Splitting the data in training and test set.

(b) Splitting the data in training, validation and test set.

Figure 3.2: Different data set splits for resampling.

order to manage risk in combination with cost-benefit-analysis (Khandani et al. 2010).

3.3 Resampling

We split our data set into a training and a test subset in order to measure the performance

of our learners (see figure 3.2a): First, we train our model on the training subset. Then,

we predict the labels for the instances in the test subset and evaluate our prediction

performance by comparing the actual labels with the predicted ones. The issue of this

approach is that our performance estimation relies highly on the specific samples used

for training and testing7. To avoid this downside, we repeat the procedure above several

times with different splits each time and summarise the results. This approach is called

resampling.

We apply 10-fold cross-validation as resampling strategy. Therefore, we split our

data set randomly into 10 equal subsets. We use 9 subsets to train the model, predict

the labels for the 10th subset, and assess the performance. We repeat this procedure

10 times, predicting at each iteration the label for another subset, and summarise all

results as an estimate for the overall performance of the learner. Hereby, we reduce the

dependence on the specific sample, and produce an unbiased estimator of the prediction

power (Tsai & Chen 2010).

Like described in section 3.2, tuning is essential for good prediction results. In order

to find the optimal hyperparamter sets and thresholds, we introduce a further split to

our data set and a second resampling loop: We split into training, validation and test

subset (see figure 3.2b) and resample in an inner and outer loop.

We tune our hyperparameters and threshold on the training subset in the inner

7See http://www.cs.uwyo.edu/ larsko/ml-fac/04-resampling-exercises.Rmd (23.07.2018) for an ex-
ample on good, bad, and ugly splits.

16

Figure 3.3: Concept of nested resampling with fourfold cross-validation in the inner and
threefold cross-validation in the outer loop (Bischl et al. 2016).

loop. The tuning is done via 10-fold cross-validation, i.e. train our model with different

hyperparameter settings on the training set, assess the results on the validation set in

order to find the optimal set, and repeat this procedure for all 10 validation sets.

In the outer loop, we evaluate the prediction performance of the learner with the

optimal hyperparameters for this subset learnt in the inner loop. The predictive power

is then assessed via 10-fold cross-validation by several performance measurements intro-

duced in section 3.4.

The split in three subsets is necessary to get honest and stable estimations of predic-

tion power. The inner loop is necessary to find the optimal hyperparameter set, where

resampling is needed to compare the results for different settings. The evaluation of the

prediction power of a learner has to be done on unseen data to get reliable, unbiased

results. Thus, resampling with two loops, called nested resampling, is necessary. Figure

3.3 illustrates nested resampling for parameter tuning with four-fold cross-validation in

the inner and three-fold cross-validation in the outer loop.

Nested resampling is computationally very expensive. For example, if we tune one

single hyperparamter, which can attain three values, using 10-fold cross-validation in

both the inner and the outer loop, we have to train and test our model 3 × 10 × 10 =

300 times. The huge computational burden reduces the number of hyperparameters to

17

Predicted
outcome

Actual outcome

0 1

0
True negative

(TN)
False negative

(FN)

1
False positive

(FP)
True positive

(TP)

True negative rate (TNR) True positive rate (TPR)

= Specificity = |TN |
|TN |+|FP | = Sensitivity = |TP |

|FN |+|TP |

Figure 3.4: Model of a confusion matrix. In this paper, 0 or negative indicate non-
default, 1 or positive default.

be tuned and shrink their search spaces in order to obtain a feasible runtime of the

nested resampling. The package parallelMap (Bischl & Lang 2015) is used to perform

parallelisation of the resampling process and speed up the runtime.

There is some discussion about how to split the data set into training, validation

and test set, and how big each proportion should be (cf. Guyon 1997). It is a trade-off

between having more data to train the model – which lead to a better trained model –

and having more data to validate the model – which lead to a more precise evaluation

of the model’s performance. We choose to have 10% as the test set. From the remaining

data set we sample 10% as the validation set. This enables us to perform a 10-fold cross-

validation in both the outer and the inner loop to tune and validate our algorithms.

3.4 Performance Measurements

In order to evaluate if an algorithm or learner is better than another, we have to define

what “better” means. Therefore, we introduce several performance measures to quantify

the prediction power of our learners (cf. James et al. 2013).

Confusion Matrix

Confusion matrices are among the most common performance measurements for machine

learning problems (cf. Khandani et al. 2010). Figure 3.4 displays a model of a confusion

18

matrix and specifies the most important numbers. Confusion matrices reveal several

important insights of a learner at a glance.

Each instance, for which a prediction is made, falls into one of the four cells. The

left column gathers all instances with actual 0, while the right column contains instances

with 1. The rows correspond to the predicted outcome: the first row contains instances

who are classified as 0, instances with predicted 1 go into the second row.

True negative (TN) indicates the number of instances which are predicted as 0 and

are actual 0 (in this paper non-default), while true positive (TP) indicates the amount

of instances correctly predicted as 1 (i.e. default). False negative (FN) and false positive

(FP) state the instances wrongly classified as negative or positive, respectively. Following

the Neyman-Pearson hypothesis-testing framework, FP can be considered as Type-I

error, and FN as Type II-error (Tsai & Chen 2010). The true positive rate (TPR)

defines how many correct positive predictions occur among all positive instances in

the test subset. The false positive rate (FPR), on the other hand, defines how many

incorrect positive predictions occur among all negative instances in the test subset and

can be calculated by

FPR = 1− Specificity = 1− |TN |
|TN |+ |FP |

, (3.2)

with | · | the cardinality.

Receiver Operating Characteristic (ROC) Curve

The receiver operating characteristic curve (see figure 3.5 for example ROCs) is a popular

graphic for comparing classification algorithms and summarises TPR and FPR for all

possible thresholds (cf. James et al. 2013).

The vertical axis displays the TPR, the horizontal the FPR. We calculate the two

measures for all possible thresholds (i.e. n − 1 thresholds for n instances) and draw

points on the ROC space. Alternatively, one can see the ROC curve as the result of

plotting the cumulative distribution function (CDF) of TPR on the vertical axis against

the CDF of FPR on the horizontal axis for all thresholds.

An ideal ROC curve would go through the point (0,1), i.e. through the top left

corner, and would imply the existence of a threshold where all defaults have predicted

probabilities above this value, and the non-defaults below, respectively. A random guess

would follow the diagonal. The ROC describes only how well models rank defaults

and non-defaults, for example, and does not evaluate the actual predicted probabilities

19

(a) ROC curve of Random Forest 3 with AUC =
0.7671

(b) ROC curve of kNN 1 with AUC = 0.6671

Figure 3.5: ROC curves for two algorithms with different AUCs.

(Cook 2007). An algorithm calculating a default probability of 0.20 for all defaults and

0.18 for all non-defaults would have perfect discrimination power, hence an optimal ROC

curve, but the assigned probabilities are not reasonable.

Area Under The ROC Curve (AUC)

The area under the receiver operating characteristic curve (AUC) is a widely used

measure to evaluate classification performance, particularly in retail banking (Hand &

Anagnostopoulos 2013). The AUC tries to compile the information of the ROC into

one number and states the integral of the ROC curve as mentioned above. It takes 1

for a perfect classifier and 0.5 for a random chance classifier. Values between 0 and 0.5

indicate classifiers that perform worse than chance and can be improved by inverting

the predicted class (in the binary classification case).

Like the ROC curve, AUC does not evaluate the predicted probabilities (Kruppa

et al. 2013).

Classification Accuracy (ACC)

The classification accuracy is the proportion of the correctly classified over all observa-

tions:

ACC =
|TP |+ |TN |

n
= 1−MCE, (3.3)

20

with MCE = |FP |+|FN |
n the misclassification error and n the total number of instances.

A perfect prediction would result in an ACC of 1, the worst possible score is 0.

Balanced Accuracy (BAC)

The balanced accuracy is defined as the mean of true positive rate and true negative

rate, hence

BAC =
1

2
· (TPR+ TNR) =

1

2
·
(

|TP |
|TP |+ |FN |

+
|TN |

|TN |+ |FP |

)
. (3.4)

The measure is bounded between 0 and 1 with higher values indicating better perfor-

mance.

Brier Score (Brier)

Introduced by Brier (1950), the Brier score measures the accuracy of the probabilistic

prediction. In the original formulation, the score can take on values between two and

zero. We apply an alternative formulation, which takes on values between zero and one,

and is calculated as

Brier =
1

n

n∑
i=1

(fi − yi)2, (3.5)

where fi ∈ [0, 1] is the predicted probability and yi ∈ {0, 1} the actual outcome. The

lower the score, the more accurate the predicted probabilities.

Kolmogorov-Smirnov statistic (KS)

The Kolmogorov-Smirnov statistic (Kolmogorov 1933, Smirnov 1939) quantifies the

maximum absolute distance between two empirical cumulative distribution functions

(ECDFs) (see figure 3.6). The distance D between two ECDFs F1,m(x) and F2,l(x),

with m and l instances each, can be calculated as

D1,2 = sup
x
|F1,m(x)− F2,l(x)|, (3.6)

with sup the supremum function (cf. Anderson 2007). A high KS statistic indicates a

good discriminatory power, hence a good predictive power of the classifier.

21

Figure 3.6: Kolmogorov-Smirnov statistic with marked maximum absolute distance be-
tween the two ECDFs for non-default in cyan and default in red.

AUC ACC BAC Brier KS

0.5 0.7788 0.5 0.2212 0

Table 3.4: Performance results of a trivial classifier which predicts a default probability
of 0 for all instances.

Application

The introduced measures answer different questions and are calculated differently. Thus,

we might have the case where one measure suggests that learner A is the best whereas

another measure suggests learner B. We choose AUC to be our main measurement to

compare the prediction performance of different learners and algorithms because of its

popularity in credit risk (cf. Hand & Anagnostopoulos 2013).

The runtime will be measured in minutes. It not only depends on the method but

also on the concrete implementation in the R package. Furthermore, a main driver in

runtime is the number of hyperparameters to be tuned and their search space (cf. section

3.3). Hence, the displayed runtimes should be considered as rough indications and not

as exact runtime predictions.

Table 3.4 shows the measures for a trivial classifier which predicts a default prob-

ability of 0 for all customers, i.e. classifies all instances as safe non-default customers.

These values can be seen as an actual lower boundary of prediction performance.

22

Chapter 4

Black Box and Interpretability

In this chapter, we investigate interpretability of machine learning algorithms, see why

their back boxes might cause problems, and try to find solutions to break them up.

4.1 The Black Box Problem

Most machine learning algorithms are considered as black boxes (cf. Ribeiro, Singh &

Guestrin 2016). They create non-linear, non-monotonic models which are typically less

transparent (Hall, Gill, Kurka & Phan 2017). The reasons, why an algorithm connects

inputs to specific outputs or results in concrete predictions, remain often untold.

However, machine learning methods enter increasingly critical areas like the criminal

justice system, medicine, and financial markets (Lipton 2016). If humans are not able

to understand the decision-making processes and cannot assess when these are likely to

fail, they might not trust in the predictions and stop deploying these algorithms.

Another important issue is that black boxes open the way to fraud and hostile at-

tacks. Papernot, McDaniel, Goodfellow, Jha, Celik & Swami (2017) describe methods to

corrupt an artificial neural network. They fuel models with malicious inputs which are

imperceptible modified but appear legitimate to humans. These changes force the model

to erroneous predictions and classifications, while humans would still classify correctly.

The attacks can be used to plant malware or to control vehicle behaviour of autonomous

cars.

Ribeiro et al. (2016) denote interpretability as the most important factor in order

to create trust in algorithms which is essential if one takes actions based on model

predictions. Trusting an individual prediction is as important as trusting the whole

model to behave reasonable if deployed. Users need to understand decisions and be

23

confident that there will be good performance on unseen data, before they apply complex

models to the real world. Furthermore, debugging and auditing is only possible if there

is an understanding of the models’ prediction processes.

Especially in credit scoring, interpretability and explicability are important for the

acceptance of models. Logistic regression models are often considered as more inter-

pretable than, for example, neural networks. Furthermore, the customers right of ex-

planation of algorithm-based decisions is seen as a blocker for further propagation of

complex machine learning models (cf. European Parliament 2016). This might be a rea-

son why machine learning methods are not widespread in credit risk for retail banks –

despite their promising performance results.

Arguably, there are scenarios where interpretability is not needed or wanted, for

example if the algorithm has no significant impact or if interpretability would enable

gambling the system. Nevertheless, developing interpretable models still allows the

model owner to cover the decision-making process if necessary.

4.2 Properties of Interpretable Algorithms

A classical statistician8 might answer the question about interpretability with “the pos-

sibility to write down the model equation”. For most machine learning algorithms, it

is not possible to set up an equation like for linear models. But is a model equation

the ideal in respect of making algorithm-based decisions more interpretable? It may

not be feasible to present a model equation if there are hundreds of significant features

in genomic studies, for example. What are general idea and desired properties of in-

terpretability? How can we represent algorithms and their way of making a prediction

more interpretable for users?

First, the bad news: There is no passe-partout, no one-fits-all method which can be

applied to all models and algorithms and offers perfect and comprehensive interpretabil-

ity for all purposes. Furthermore, we have to realise that accuracy and simplicity are

in conflict in prediction (Breiman 2001b). And less simplicity means in most cases less

interpretability.

The definition of interpretability is not uniform in literature. Sometimes, it is equated

with transparency or understandability, i.e. one can see and understand how the model

works (cf. Lipton 2016). The more interpretable a model is the easier it is to understand.

Others try to explain the prediction by visual or textual figures or give qualitative

8However one might define classic statistics, probably as “the frequentistic statistics one learns in
the basic studies in Statistics at LMU Munich”.

24

understanding of the relationship between inputs and outputs or the model’s prediction-

making process (cf. Ribeiro et al. 2016).

Lipton (2016) summarises different aspects and situations when interpretability is

desired:

• Trust: Users want to trust predictions and models’ behaviour in unexpected situ-

ations. Additionally, trust is essential for the willingness to deploy such models.

• Causality: Researchers often use models in order to generate hypotheses or make

inference about the real world. Machine learning algorithms may not reflect those

causal relationships accurately.

• Transferability: We want to transfer prior knowledge and additional information

into the decision-making process of the algorithm.

• Informativeness: Models are also used to provide information to human decision

makers. Interpretable models provide additional information about the diagnosis

and delivers useful support to the user.

• Fair and Ethical Decision-Making: Decisions produced by algorithms must be

conform with legal and ethical standards – and this must be verifiable.

We want results to be explainable to and understandable for users. There are two

main approaches to make models and their decisions interpretable to humans (Hall

et al. 2017).

One refers to transparency, i.e. directly interpretable models. These are model-

specific methods that are only applicable to a specific type of algorithm and try to

elucidate how the model works by giving insights in the mechanisms of the algorithm.

The other is post-hoc or model-agnostic interpretability. These methods can be

applied to various types of algorithms and give an understanding of the relationship be-

tween inputs and outputs without knowledge about the actual functionality of the model.

They provide information about the model’s decision by textual or visual representations

or by explanations via example.

We distinguish between interpretability on a global, modular, and instance level.

Global interpretability allows us to understand the entire relationship modelled and

gives insights into each step in the decision-making process. Interpretability on a local

or modular level provides understanding of parts of the model, of parameters, or of

regions of the input data. If we can explain the predictions for concrete instances or in

relation to other instances, interpretability on instance level is possible.

25

(a) Customer no. 1, default (b) Customer no. 42, non-
default

(c) Customer no. 123, default

Figure 4.1: Local surrogate model. Displays the effect of six features on the prediction
of three selected customer.

4.3 Model-Agnostic Interpretability

We introduce three general approaches to make models and algorithms more inter-

pretable. All three are model-agnostic approaches, hence, applicable to different machine

learning algorithms.

Local Surrogate Model

Ribeiro et al. (2016) introduce Local Interpretable Model-agnostic Explanations (LIME),

a local surrogate model. It explains a prediction for a single instance by creating a in-

terpretable linear model that approximates the classifier locally. Molnar et al. (2018)

slightly modify the LIME model in the package iml by using a different distance mea-

surements.

We fit a weighted logistic regression model where the weights are calculated by

Gower’s similarity Sij (Gower 1971)9. It measures the proximity of two data points

i, j and is calculated as

Sij =

∑n
k=1 sijk∑n
k=1 δijk

, (4.1)

where sijk denotes the contribution of the kth feature10, and δijk an indicator with

δijk = 1 if i and j can be compared for k and δijk = 0 otherwise.

9LIME uses the Euclidean distance instead.
10See Gower (1971) for details on the calculation.

26

Figure 4.1 gives examples of local surrogate models for different customers. The

figure 4.1a displays the six weighted features for customer with ID = 1 that explains the

response the best according to the fitted linear model, and their effects on the prediction.

One can see that PAY 1 = 2, which denotes that the customer is in delay in September

for credit card use two months ago, has a highly positive effect on DEFAULT probability.

The same but to minor extent applies to PAY 2 = 2, which denotes a two months delay

in August11. PAY 3 = −1 indicates that the customer paid all his due payments in July,

which has a slightly negative effect on DEFAULT. The other variables have only a minor

impact on the prediction according the local surrogate model. The interpretation of

figures 4.1b and 4.1c goes accordingly.

Feature Importance

Feature or variable importance quantifies the impact of input features on the model’s

prediction (Friedman 2001a, Friedman et al. 2001b). The measure is calculated by

shuffling each feature and measuring the performance drops in AUC. It assesses the

decrease in impurity of the classification and measures the relative contribution to the

calculated algorithm. However, the exact calculation varies for different algorithms,

thus, for different methods, the feature importance numbers have different ranges and

are not directly comparable (Liaw & Wiener 2002). Furthermore, importance does not

imply significance.

Figure 4.2 shows the feature importance of a random forest12. One can see the huge

importance of feature PAY 1, i.e. its huge impact on the prediction. The next important

features are LIMIT BAL and BILL AMT1, while the other PAY i features have only minor

importance.

Partial Dependence Plots

Partial dependence plots (PDP) display the average effect of changing one feature on

model prediction (Friedman 2001a, Friedman et al. 2001b). They can only show one

feature at a time but take all instances into account.

Figure 4.3 reveals the PDP of three features. The PDP for PAY 1 reveals how the

probability of default would change for one (average) customer if the payment behaviour

of the last month would change. One can see that for customers with PAY 1> 2, the

11Again, it denotes more precisely that the credit card was used two months ago, i.e. in June, and
the bills have not been paid yet although they became due.

12See section 5.4 for details on random forest.

27

Figure 4.2: Feature importance of Random Forest 3.

Figure 4.3: The partial dependence plots reveal the average impact of various values for
PAY 1, LIMIT BAL and BILL AMT1 on the default prediction.

28

predicted default probability soars. The graphs for both LIMIT BAL and BILL AMT1 be-

have in a similar way with LIMIT BAL being more smooth. Both decline rapidly to their

minimum before their predicted probability slowly increases.

We focus on PDP and feature importance in the study if there are no other algorithm-

specific interpretation methods available.

29

Chapter 5

Application

In this chapter, we apply seven different models and algorithms for credit risk modelling.

For each algorithm, we first introduce the method, give a definition, and elaborate our

tuning approach. The aim is to create several learners of each method with different

hyperparameter, apply them to the data set and evaluate their performance locally13.

Finally, we assess the interpretability of the algorithm and interpret a learner. In chapter

6, we compare the best learners of each algorithm to find the globally best classification

method.

We only assume that the data is independent and identically distributed drawn from

an unknown multivariate distribution (Breiman 2001b).

5.1 Generalized Linear Model (GLM)

We consider generalized linear models as benchmark models for our study since they are

still most commonly used for consumer credit risk evaluation in retail banking (Bischl

et al. 2016).

5.1.1 Definition

GLMs group various regression approaches which assume that the effect of weights can

be modelled through a linear predictor ηi, i = 1, . . . , n, while the response does not

necessarily have to follow a normal distribution (Fahrmeir et al. 2013). A classical linear

model calculates the response directly by yi = x′iβ + εi, whereas GLMs apply a link

function g(·), thus g(yi) = x′iβ + εi. For binary regression, the sigmoid link function

13We display the results of four learners. The selection of learners to be displayed is based on their
performance, potential abnormalities, and comparability considerations.

30

Figure 5.1: Logistic function, the response function h(·) of the logistic regression model.

relates the linear predictor ηi = x′iβ, with features xi = (1, xi1, . . . , xik)
′ and weights

β = (β0, β1, . . . , βk)
′, to the label yi ∈ {0, 1} (McCullagh 1984).

We are interested in the probability of Y = 1, e.g. the default of a customer,

P (Y = 1|X = xi) = E(yi) =: πi, (5.1)

with πi ∈ [0, 1]. To ensure this constraint without imposing restrictions on the parame-

ters β, we introduce a cumulative distribution function (CDF)

πi = h(ηi) = h(β0 + β1xi1 + · · ·+ βkxik), (5.2)

where h(·) is called the response or inverse link function and h = g−1. Hence

ηi = g(πi), (5.3)

with g(·) the link function.

Logistic and probit are the most widely used binary regression models and will be ex-

amined in the following sections. By introducing a threshold, we can use these regression

models for binary classification problems (see section 3.2).

Logistic Regression

The logistic regression was introduced by Berkson (1944) and is widely used for credit

scoring. It is easy to implement, stable against outliers and simple to explain (Fahrmeir

et al. 2013).

The link function g(·) of the logistic regression is the logit function logit(x) = ln x
1−x ,

31

the quantile function of the logistic function, hence

g(πi) = logit(πi) = ln
π

1− π
= ηi, (5.4)

where ln(·) is the natural logarithm. The response function h(·) is the logistic function

(see figure 5.1) and denoted by

h(ηi) =
exp(ηi)

1 + exp(ηi)
=

1

1 + exp(−ηi)
= πi. (5.5)

Probit

The probit model was originally proposed by Bliss (1934) and further developed by

Finney & Tattersfield (1952). It is similar to logit models but preferred if data is normally

distributed.

The link function g(·) is the inverse cumulative distribution function (CDF) of the

standard normal distribution, the probit function Φ−1(·). Thus, we have

g(πi) = Φ−1(πi) = ηi (5.6)

for the link function, and

h(ηi) = Φ(ηi) =
1√
2π

∫ ηi

−∞
exp(−1

2
t2)dt = πi (5.7)

for the response function h(·).

5.1.2 Tuning

Tuning as defined here is different for GLMs than for machine learning algorithms in

one crucial point: GLMs have no hyperparameters. However, threshold tuning works

like for machine learning and is conducted for each learner.

Additionally, we conduct feature selection in order to find the most important fea-

tures for the model calculation. This is done by sequential backwards search with AUC

as performance measure, i.e. starting from a model with all features we remove in each

step the feature which reduces the AUC the least. We stop when the AUC decrease is

less than α = 0.01.

This results in four GLM learners to be compared to each other: logistic regres-

sion, logistic regression with feature selection based on AUC, probit, probit with feature

selection based on AUC.

32

Learner AUC ACC BAC Brier KS Runtime Threshold

LogReg 0.7233 0.8174 0.6566 0.1449 0.3759 1 0.4056
LogReg AUC 0.7218 0.8108 0.6055 0.1458 0.3850 132 0.4263
Probit 0.7224 0.8171 0.6553 0.1462 0.3725 1 0.4022
Probit AUC 0.7217 0.8017 0.5755 0.1473 0.3820 131 0.5935

Table 5.1: Overview of performance of generalized linear models. The first two models
apply the logit function as link function, the last two the probit function. For each
model, the results without and with feature selection via AUC are displayed.

5.1.3 Performance

Table 5.1 gives an overview of the performance of GLMs. GLM with logit as link func-

tion and no features selection (LogReg) produces the best results – for all performance

measurements except KS. The best discriminative power according to KS has the logistic

regression with feature selection.

Feature selection produces for both models inferior performance than the respec-

tive model without according to all measures but KS: The discriminative power can

be improved by applying feature selection. The selection process comes with a rise in

runtime: While the models without feature selection are calculated within one minute,

the application and evaluation of feature selection takes more than two hours.

5.1.4 Interpretability

GLMs are commonly known as highly interpretable on a modular level (cf. Fahrmeir

et al. 2013). The weights and the distribution of the features explain how parts of the

model influence the prediction. One can write down a formula with the estimated weights

which can be used to make predictions for new instances. This enables the interpretation

of a sparse linear model on a global level, albeit the impact of a single feature can only

be interpreted under the premise that all other features stay constant.

Table 5.2 presents weights14 (β-coefficients), standard errors, z values, the Wald

statistic15, and the results of the significance test for the logistic regression model. We

have to take all features into account to get an accurate and legitimate interpretation.

14The displayed weights are log odds (see equation (5.4)). In order to obtain odds, one needs to
take the exponential. The predicted probability for a specific instance is calculated by equation (5.5).
Therefore, all feature values and weights are taken into account.

15The Wald statistic tests the hypotheses H0 : β = 0 vs. H1 : β 6= 0 and is calculated by 2 ×
Φ
(
−|β̂|
se(β̂)

)
≤ α, with Φ(·) the CDF of the normal distribution, β̂ the estimated weights (β-coefficients),

se(·) the standard error, and α the confidence level.

33

Feature Weight Std. Error z Value Pr(| > z|) Significance

Bias term -2.150e+00 5.227e-01 -4.114 3.89e-05 ***
AGE 6.284e-03 1.835e-03 3.424 0.000616 ***
BILL AMT1 -5.520e-06 1.137e-06 -4.857 1.19e-06 ***
BILL AMT2 2.389e-06 1.505e-06 1.587 0.112545
PAY 1 5.770e-01 1.770e-02 32.605 < 2e-16 ***

...

Table 5.2: Weights, standard errors, z values, and Walt statistics of some features of
the logistic regression model. The three asterisks (***) indicate a significant feature
according to the Wald statistic with α = 0.001

However, to get an idea of the approach and for greater clarity, we only present some

selected features (see table A.1 in appendix A for are complete list of features). We see,

for example, that the older the customer the higher the predicted probability of default

(with all other features unchanged): for every year older the odds for default increase in

average by factor e0.0063 = 1.0063. Furthermore, for each additional month the customer

is in default (PAY 1), we expect the default odds to increase by factor 01.7807.

The interpretation of the formula is only possible if the number of features is small.

For hundreds or thousands of features, the approach is not longer feasible, and other

interpretation techniques might be preferred. Therefore, feature importance of the logis-

tic regression model (figure A.1) and the partial dependence plots for PAY 1, BILL AMT1,

and PAY AMT1 (figure A.2) can be found in appendix A.

5.2 k-Nearest Neighbours (kNN)

As a second algorithm, we introduce k-nearest neighbour, a pattern recognition approach

for classification.

5.2.1 Definition

The k-nearest neighbours (kNN) algorithm uses the average response of the closest k

observations in the training set to predict the outcome of new instances. Figure 5.2

shows graphically for the two-feature-case how the kNN splits the feature space into

different regions according to the five or 20 closest instances. Friedman et al. (2001b)

34

(a) Plot for k = 5 with mmcetrain =
0.1100 and mmcetest = 0.2650.

(b) Plot for k = 20 with mmcetrain =
0.2200 and mmcetest = 0.2450.

Figure 5.2: k-nearest neighbours plots for two features (AGE and LIMIT BAL) with differ-
ent values for hyperparameter k.

calculate the predicted outcome Ŷ by

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi , (5.8)

where Nk(x) denotes the neighbourhood of x defined by its k closest points xi in the

training sample. The input data needs to be normalised in order to achieve good pre-

diction quality (cf. section 3.1.2). To define closeness, we need a metric to measure

distance. We use the Minkowski distance with p = 2 (Schliep & Hechenbichler 2016),

which is the Euclidean distance, thus

d(x(l), x(m)) =

√√√√ k∑
j=1

(
x
(l)
j − x

(m)
j

)2
. (5.9)

If the metric determines several observations simultaneously as the ith nearest neigh-

bours, the tie will be broken randomly.

We deploy the k-nearest neighbours implementation of the kknn package (Schliep &

Hechenbichler 2016).

35

Learner AUC ACC BAC Brier KS Runtime Threshold

kNN 1 0.6671 0.7794 0.5227 0.1619 0.2415 14 0.5071
kNN 2 0.7009 0.7958 0.5832 0.1695 0.2984 2 0.7353
kNN 3 0.7569 0.8119 0.6523 0.1399 0.3935 23 0.4465
kNN 4 0.7455 0.8033 0.6244 0.1440 0.3695 24 0.5134

Table 5.3: Overview of performance of k-nearest neighbours. kNN 1’s data is not scaled,
kNN 2 is without hyperparameter tuning, kNN 3 performs tuning on scaled data, some
class levels are joint for kNN 4.

5.2.2 Tuning

k-nearest neighbours has one hyperparameter to be tuned: k. It determines the number

of neighbours used for prediction (Schliep & Hechenbichler 2016). The optimal hyper-

parameter prevents the algorithm from over- or underfitting like illustrated in figure 5.2.

Although, the training error mmcetrain of figure 5.2b is larger than of 5.2a, the test error

mmcetest – which is the error on unseen data – is smaller, hence, 5.2b generalises better

and performs better on unseen data. The large difference between training and test error

of 5.2a is an indicator overfitting. I.e. k too small (figure 5.2a) leads to overfitting and

reduction in generalisation, hence, reduction in prediction ability. k too large leads to

underfitting, i.e. too much generalisation, hence, to reduction in prediction ability as

well. The search for the optimal k is essential for the prediction quality.

The vital search range was learnt by exhaustive search, the step range is a compromise

on runtime. We will present the results for a learner item without normalisation and

k ∈ {90, 93, . . . , 118} (kNN 1), and a learner without tuning (kNN 2) which adopts the

default settings k = 7 of the kknn package. For kNN 3, we tune k on {90, 93, . . . , 118},
and for kNN 4, we conduct tuning like for kNN 3 with joint class levels for PAY x .

5.2.3 Performance

Table 5.3 reveals the tremendous performance enhancement achieved by scaling the data

before applying algorithms: kNN 1 uses data without normalisation and produces the

worst prediction results. Furthermore, the impact of the optimal hyperparameter k for

the performance is clearly visible. kNN 2 does not allow hyperparameter tuning and

looks always at the seven nearest neighbours for prediction, while kNN 3 searches for

the optimal k for each training subset and uses it for prediction in the test subset. The

tremendous improvement of kNN 3 clarifies the major impact of tuning in performance.

kNN 4 shows that the loss of information by joining class levels of PAY x results in less

36

ID LIM. SEX EDU. MAR. AGE PY1 PY2 PY3 PY4 . . . DEF.

42 70000 1 1 3 25 0 0 0 0 . . . 0

29268 70000 0 2 2 26 0 0 0 0 . . . 0
12185 70000 1 2 2 32 0 0 0 0 . . . 0
21833 70000 1 1 3 27 0 0 0 0 . . . 0
14231 70000 1 3 2 47 0 0 0 0 . . . 1
27163 70000 0 2 3 31 0 0 0 0 . . . 0

Table 5.4: Features for the five nearest neighbours of customer number 42. For the dis-
tance calculation, the values have been normalised, the displayed values are the original
ones.

accurate predictions and less discriminatory power for the given data set.

kNN 3 outperforms the other learners in all performance measures except runtime:

The time needed for tuning and normalisation is clearly visible in table 5.3.

5.2.4 Interpretability

Since no global model or parameters are created, k-nearest neighbours is not inter-

pretable on a global or modular level, respectively. It produces example-based predic-

tions, thus, we can explain the prediction only for a particular instance.

It is possible to display the k nearest neighbours of any customer. These can help to

understand, why the algorithm comes up with a certain prediction. For example, the five

nearest neighbours of customer with ID = 42 are displayed for several features in table

5.4. These are the customers which have the smallest distance (in a n = 23 dimensional

space), hence, are the most similar to customer number 42. Based on them, we would

predict “non-default” (indicated by 0) as response which is also the true response of the

customer.

This method makes the decisions of the algorithm transparent and easy to under-

stand. Nevertheless, if there are many features it is not easy to see the proximity of two

instances or to represent the neighbourhood. Furthermore, it is hardly possible to see

at a glance what one needs to change in order to alter the predicted response, i.e. what

a customer has to do to get a credit, for example.

There are feature importance (figure A.3) and partial dependence plots of PAY 1,

LIMIT BAL, and SEX (figure A.4) in appendix A.

37

5.3 Classification and Regression Tree (CART)

In this section, we introduce decision trees which can function as basis for more sophis-

ticated approaches discussed in the subsequent sections. Simple tree-based methods are

easy to interpret yet powerful prediction tools.

5.3.1 Definition

Classification and Regression Trees (CART) were introduced by Breiman, Friedman,

Stone & Olshen (1984). They split the feature space into sets of rectangles and then fit

constant models to each of them (Friedman et al. 2001b).

Decision trees like CART are usually drawn upside down (see figure 5.3 for examples):

the leaves – also referred to as terminal nodes – are at the bottom of the tree while the

(parent) node representing the full data set is at the top. At each node, instances

satisfying the condition are assigned to the left branch, the others to the right one.

The connection between two nodes is called branch. The terminal nodes of the tree

correspond to the rectangle regions of the feature space (Kruppa et al. 2013).

With each split, we want to reduce the node impurity as much as possible. We use

the rpart package (Therneau & Atkinson 2018), which measures the impurity of node

m with K classes by the Gini index16:

G =
K∑
k=1

p̂mk(1− p̂mk) (5.10)

with

p̂mk =
1

nm

∑
xi∈Rm

I{yi = k}, (5.11)

where Rm is the region represented by the node m with nm instances, I is the indicator

function for class k. p̂mk can be interpreted as the proportion of observations from class

k in node m, thus, small values for the Gini index indicate pure splits.

If new splits would not decrease the impurity of a node by a stopping criterion α, no

further splits are attempted. The final prediction is then defined by the most frequent

class in a terminal node. The resulting trees have a high variance, i.e. small changes in

the training data lead to extremely different trees ??.

So, CARTs tend to overfit. The best strategy to prevent overfitting is to grow large

16The AUC can be converted into the Gini index by: Gini = 2 ·AUC − 1.

38

Learner AUC ACC BAC Brier KS Runtime Threshold

CART 1 0.6436 0.8196 0.6436 0.1461 0.2873 1 0.3819
CART 2 0.6936 0.8195 0.6504 0.1408 0.3728 64 0.4232
CART 3 0.6937 0.8201 0.6557 0.1406 0.3728 9 0.5095
CART 4 0.6999 0.8148 0.6559 0.1424 0.3726 9 0.4994

Table 5.5: Overview of performance of classification and regression trees (CART). CART
1 is without tuning, CART 2 and 3 differ in their search spaces, and CART 4 merge
class levels.

trees at first, and then prune in order to find the optimal tree size ??. Pruning removes

branches that cause only minimal changes (cf. stopping criterion α) in the error function

when removed.

5.3.2 Tuning

CART offers several hyperparameters to control the tree. Since it tends to overfit,

finding the optimal hyperparameter set is essential for good prediction quality (Friedman

et al. 2001b). According to Therneau & Atkinson (2018), the main tuning parameters

are:

• minsplit: the minimal number of instances needed in a node to attempt a split

• cp: each split must decrease the error by cost complexity parameter α

• maxdepth: the maximum depth of any node of the final tree

All described hyperparameters are tuned (when applicable). We will present the

results for the following four learners: CART 1 without any hyperparameter tuning,

CART 2 with all hyperparameter tuned on large search spaces, while CART 3 is tuned

like CART 2 but on tighter search spaces, and CART 4 joins class levels for PAY x and

is tuned like CART 3.

5.3.3 Performance

The impact of tuning on the performance of CART is clearly visible: CART 1, which

is built without hyperparameter tuning, computes the results much faster but with

considerable less prediction power than the other learners (see table 5.6) – except based

on MMCE where it achieves the second best results. Overfitting is likely to be the

reason why the more flexible CART 2 is outperformed by CART 3, which has smaller

39

(a) CART 1 (b) CART 2

Figure 5.3: Decision trees of CART algorithm with different hyperparameter settings for
maximal depth and number of nodes.

search grids and less tuned hyperparameters. The different size of the search space is

also reflected in the runtime: CART 3 is seven times faster than CART 2. The best

learner is CART 4, which combines the hyperparameter search space of CART 3 with

merging class levels of the features PAY x (see section 3.1.2).

The results of CART learners are not very distinct. The question of the best leaner

is answered according to which performance measurement is chosen: Based on AUC and

BAC, CART 4 is doing best, but CART 3 exceeds in the other measures.

5.3.4 Interpretability

A sparse classification and regression tree is directly interpretable for humans on a

global and on a local level. It is possible to visualise the entire model and its decision-

making process by a simple two-dimensional graphic. The concept of CART is easy to

understand, even to laymen, and one can see at a glance why the algorithm predicts a

certain output. Furthermore, it is straightforward to see what needs to be changed in

order to obtain a different classification.

Figure 5.3 shows the decision trees of CART 1 and 2 (see figure A.5 in appendix A

for plots of CART 3 and 4). The sparse tree on the left (figure 5.3a) has only one node

and a depth of zero, thus, it is very easy to interpret: For all customers with a value

40

for PAY 1 smaller than 1.5 – i.e. customers which are one month due, inactive, use a

revolving credit, or paid in full – we predict non-default, while we expect all others to

default. The tree in figure 5.3b has eight nodes and a maximal depth of four, and is

already more complicated to interpret, but still, interpretation is possible in a convenient

way. It is obvious that the more nodes a decision tree has the harder it is to interpret it.

Figures A.6 and A.7 in appendix A display feature importance and partial depen-

dence for the best performing learner CART 4.

5.4 Random Forest

The ensemble method random forest overcomes the high variance of CART by building

many decision trees simultaneously.

5.4.1 Definition

Ho’s (1995) idea of bootstrap aggregation – or bagging – creates several bootstrap17 sam-

ples of the training set, fits a separate decision tree to each sample, and then aggregate

the trees’ prediction by majority vote to get a single predictive model (Breiman 1996).

The idea is to reduce the variance of many noisy but nearly unbiased learners by com-

bining independent trees.

Breiman’s (2001a) random forest further lowers the variance of bagging by introduc-

ing a second layer of randomness: At every split, we randomly select m features and

consider only these m features as splitting criteria (Breiman 2001a). This eventuates in

independent and identically distributed trees and further reduces the correlation between

them.

We use the randomForest package (Liaw & Wiener 2002), which provides an R

interface to Breiman’s (2001a) original Fortran programme code. The algorithm can be

summarised as follows:

1. Draw n bootstrap samples from the data set

2. Grow an unpruned CART for each bootstrap sample where, chose at each node

the best split among a random sample of m features

3. By aggregating the predictions of the n trees via majority vote, predict on new

data

17Bootstrap denotes drawing randomly with replacement a sample with the same size as the original
set.

41

Learner AUC ACC BAC Brier KS Runtime Threshold

Random Forest 1 0.7237 0.8210 0.6544 0.1600 0.3964 66 0.4734
Random Forest 2 0.7230 0.8208 0.6551 0.1615 0.3991 288 0.4713
Random Forest 3 0.7671 0.8179 0.6513 0.1369 0.4066 284 0.5274
Random Forest 4 0.7256 0.8211 0.6545 0.1602 0.3959 1035 0.4794

Table 5.6: Overview of performance of random forest. Random Forest 1 and 2 are
applied on different search spaces, for Random Forest 3 more trees are grown, and
Random Forest 4 combines the tuning settings of Random Forest 1 and 3.

5.4.2 Tuning

According to Breiman (2001a), random forest is robust against overfitting when the

number of trees is sufficiently large enough. There are a lot of theoretical considerations

about “sufficiently large enough”, which may depend on the concrete data situation.

Furthermore, James et al. (2013) suggest for the optimal number of features drawn at

each split m ≈ √p, with p the total number of features.

We want to follow Breiman’s (2001b) idea and “let the data speak”, thus we try

to find the optimal hyperparameters for our data set by tuning. We will examine the

following hyperparameters (Liaw & Wiener 2002):

• ntree: the number of trees that are grown

• mtry: the number of randomly selected variables at each node

• maxnodes: the maximal number of terminal nodes of each tree

Several hyperparameter sets are trained and assessed as well as joint class levels for

PAY x . Since the joint class levels lead to inferior results, we omit their results and

present the following learners: mtry and maxnodes are tuned for Random Forest 1, then

the same are tuned on a larger search space, for Random Forest 3 ntree is tuned, Random

Forest 4 tunes all three parameters.

5.4.3 Performance

The prediction performance of Random Forest 1, 2 and 4 are quite similar. The expansion

of the search space of learner 2 compared to 1 are reflected in higher BAC and KS but lead

to worse performance according to AUC, ACC, Brier and runtime. The increase of the

number of trees grown (Random Forest 3) has a tremendous impact on the performance:

while ACC and BAC get worse, AUC and Brier improve dramatically, thus Random

42

Figure 5.4: Feature importance of Random Forest 3.

Forest 3 is the best learner. Obviously, the combination of tuning mtry and maxnodes

and increasing the number of tress ntree for learner 4 does not lead to better results.

With default settings, i.e. no hyperparameter but threshold tuning, and 10-fold

cross-validation in both the inner and the outer resampling loop, 50,000 trees needs to

be grown with randomly sampling instances and features. For example, Random Forest

4 grows 5, 040, 000 trees and needs therefore more than 17 hours. The larger search space

for learner 2 compared with 1 results in a 10 times longer runtime. This empahsises the

huge computationally burden of random forest.

5.4.4 Interpretability

Random forest improves the prediction accuracy of CART at the expense of interpretabil-

ity. The algorithm is more complex and consists of hundred or even thousands of trees.

Although it might theoretically be possible to draw these trees on a piece of paper,

the interpretability for humans suffers tremendously. Since the trees are not based on

the same data set but on different bootstrapp samples, and each splits considers only

a random selection of features as splitting criteria, the decision-making process is very

complex. Thus, gaining a full understanding is not possible for humans and random

forest is treated as a black box (James et al. 2013).

There are no feasible methods to make the decision making process directly transpar-

43

Figure 5.5: Partial dependence plots of the three most important features (according to
figure 5.4) of Random Forest 3.

ent. Nevertheless, model-agnostic approaches can help to understand why the algorithm

comes up with a certain classification, and give insights which features contribute to the

prediction. Figure 5.4 displays the feature importance of Random Forest 3. Similarly

to previously analysed algorithms, PAY 1 impacts the prediction the most. Moreover,

LIMIT BAL and BILL AMT1 reveal a large importance.

Feature importance does not reveal the direction and extent of the impact. We

further examine the three most important features by looking at their partial dependence

plot in figure 5.5. The jump in predicted default probability for customers with PAY 1 ≥ 2

is tremendous. The predicted probability increases from about 0.20 to more than 0.50.

The change in probability when altering the values for LIMIT BAL and BILL AMT1, is not

as distinct. Nevertheless, one can clearly see a decline at the beginning, then a rising

score.

5.5 Gradient Boosting Machine (GBM)

While random forest grows many trees simultaneously, gradient boosting machines grow

them successively.

5.5.1 Definition

Gradient boosting machines (GBM) were introduced by Breiman (1997) as powerful

learning ideas for classification problems, and later extended by Friedman (2001a) to

regression as well. A slightly different and quite famous approach of GBM is the adaptive

44

boosting (AdaBoost) by Freund & Schapire (1997), which will not be considered in this

paper. GBM is also called gradient tree boosting or gradient boosted regression tree.

The basic idea is to combine many “weak” classifiers to produce a powerful predic-

tion algorithm (James et al. 2013). We start with a sparse decision tree fitted to all

observations and analyse the misclassification. Then, we fit sequentially new trees to

improve our prediction in areas where the previous tree does not perform well. Thus, the

trees depend strongly on the trees grown in the iterations before. In boosting, successive

trees give extra weight to points incorrectly predicted by earlier predictors.

In this paper, we deploy the gradient boosting algorithm implemented in Chen &

Guestrin’s (2016) xgboost package.

Xgboost fits sequentially K additive functions to predict the label:

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F , (5.12)

with F the space of CART defined as

F = {f(x) = wq(x)}, (5.13)

where q : Rm → S the decision rule, S the number of leaves in the tree, and ws ∈ RS

the weight of the sth leaf. The decision rule q describes the tree structure which maps

an instance to the corresponding leaf. The algorithm uses the decision rule qk of the

kth tree to classify the instance and calculates the final prediction by summing up the

S weights ws.

The algorithm adds greedily the fk which improves the model most, based the first

k − 1 trees built.

The optimal weight w∗s of leaf s is calculated by

w∗ = −
∑

i∈Is gi∑
i∈Is hi + λ

, (5.14)

where gi = ∂ŷ(t−1) l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ(t−1) l
(
yi, ŷ

(t−1)
i

)
the first and second order

gradient statistics of a loss function l.

5.5.2 Tuning

Gradient boosting machines tend to overfit but xgboost has implemented several pro-

tective measures to prevent overfitting (Chen & Guestrin 2016). Due to computational

45

Learner AUC ACC BAC Brier KS Runtime Threshold

GBM 1 0.6436 0.8195 0.6436 0.1976 0.2873 1 0.5567
GBM 2 0.7439 0.8196 0.6496 0.1934 0.4022 21 0.4969
GBM 3 0.7781 0.8212 0.6571 0.1347 0.4292 33 0.4954
GBM 4 0.7748 0.8139 0.6561 0.1371 0.4212 32 0.4972

Table 5.7: Overview of performance of gradient boosting machine. GBM 1 applies only
trees with one single node (additive model). 2 and 3 tune different hyperparameters,
while GBM 4 combines 3 with merged class levels for PAY x.

considerations, we focus on the following hyperparameters:

• max depth: the maximum depth of a single tree

• min child weight: the minimum sum of instance weight in each node

• gamma: minimum loss reduction required by splits

• nrounds: maximum number of iterations of the data set

We train several learners and present the performance results of four. The first

learner (GBM 1) consists of trees with only one node each, which results in a generalised

additive model. GBM 2 tunes maximum depth, minimum sum of weights, and minimum

loss reduction, whereas max depth, gamma and nrounds are tuned for GBM 4. The last

displayed learner combines the hyperparameter set and search space of 3 with merged

class levels formPAY x.

5.5.3 Performance

Table 5.7 shows the performance of gradient boosting machine. The results reveal that

the additive model performs poor according to AUC and KS, but astonishing well ac-

cording to ACC and BAC, Brier – and it is very fast. The impact of hyperparameter

tuning is clearly visible: GBM 2 outperforms the additive model in every measure, the

improvements according to AUC and KS are tremendous. The enhancement by tuning

nrounds boosts the performance of GBM 3 and 4 compared to 2: GBM 3 is the best

gradient boosting machine learner. Due to the information loss by joining class levels,

GBM 4 obtains the second place.

46

Figure 5.6: Feature importance of GBM 3.

5.5.4 Interpretability

GBM offers great prediction performance. This is achieved by boosting, hence, many

decision trees are build depending on the previous ones. The knowledge learned by the

algorithm is difficult to understand, since the final prediction is calculated by weighted

classification based on previous trees. Due to this high dependence between the trees a

direct interpretation is not possible.

As described in section 5.5.3, one can restrict the trees to have only one split. The

resulting additive models are easier to interpret but their performance suffers from the

restriction (see GBM 1 in table 5.7). Additive models can be explained by a model

equation similarly to generalized linear models.

Model-agnostic methods, however, provide some interpretability. Figure 5.6 reveals

the feature importance of GBM 3. The major importance of PAY 1 is clearly visible,

followed by LIMIT BAL and PAY 2. The margin between PAY 1 and the next important

features is remarkable. Substantially, it might be obvious that the payment history of

the last month is very important for the question if the customer pays his credit duly

this month. Technically, it is interesting that the ensemble method gradient boosting

machine has such a unilateral dependence on one feature.

The partial dependence plots in figure 5.7 reveal similar graphics for PAY 1 and

LIMIT BAL as for random forest in figure 5.5. Customers who are delayed for two or

47

Figure 5.7: Partial dependence plots of the three most important features (according to
figure 5.6) of GBM 3.

more months face a tremendously increasing default probability. The impact of PAY 2

is related to PAY 1 but to a lower extent.

5.6 Artificial Neural Networks (ANN)

Artificial neural networks, also called artificial neural nets, are probably the most famous

machine learning method.

5.6.1 Definition

First introduced by McCulloch & Pitts (1943), an artificial neural network is a learning

algorithm inspired by biological neuronal networks working in human brains. Nowadays

there are several slightly different ideas of artificial neural networks available. Schmid-

huber (2015) provides a comprehensive overview of different settings and approaches.

The units or neurons receive signals and process it via connections (like the biological

synapses) to other neurons. The artificial neurons are typically arranged in layers (see

figure 5.8). We use the H2O (LeDell, Gill, Aiello, Fu, Candel, Click, Kraljevic, Nykodym,

Aboyoun, Kurka & Malohlava 2018) package since it offers a very fast and accurate

implementation of neural networks in R. It is a multi-layer feedforward artificial neural

network – also known as deep neural network – with stochastic gradient descent using

back-propagation. The central idea is to extract linear combinations of the inputs as

18https://en.wikipedia.org/wiki/Artificial neural network (20.09.2018)

48

Figure 5.8: Concept of an artificial neural network for binary classification with three
input neurons and one hidden layer with four neurons.18

derived features, and then model the target as a non-linear function of these features

(Friedman et al. 2001b).

There are K units in the output layer on the right for K-classification with the kth

unit modelling the probability of class k (Friedman et al. 2001b). The response proba-

bility is denoted by Yk, k = 1, . . . ,K, which is calculated by a non-linear transformation

(for example, by a sigmoid function σ(v) = 1/(1 + ev)) form Tk, k = 1, . . . ,K. Tk is

derived from the Zm in the hidden layer with m units as follows:

Zm = σ(α0m + αTmXl), (5.15)

Tk = β0k + βTk Z, (5.16)

fk(X) = gk(T), (5.17)

where Xl, l = 1, . . . , L denotes the input layer for a training set with L features, and

gk(T) = eTk∑K
l=1 e

Tk
the softmax output function which allows a final transformation of the

output. The weights αm and βk are set randomly at the beginning and then updated in

each iteration according to error minimisation.

5.6.2 Tuning

Artificial neural networks are highly flexible algorithms and are able to capture com-

plex non-linear and non-monotonic structures. Nevertheless, they are prone to overfit

(Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdinov 2014). We apply tuning to

49

Learner AUC ACC BAC Brier KS Runtime Threshold

Net 1 0.7682 0.8167 0.6395 0.1374 0.4125 7 0.5766
Net 2 0.7610 0.8181 0.6422 0.1371 0.4121 116 0.5141
Net 3 0.7668 0.8173 0.6418 0.1376 0.4111 240 0.5362
Net 4 0.7635 0.8067 0.6360 0.1404 0.4031 23 0.5226

Table 5.8: Overview of performance of artificial neural networks. Net 1 uses two hidden
layers, 2 and 3 allow up to five hidden layers. Net 4 applies two hidden layers to a data
set with merged class levels for PAY x.

find optimal hyperparameter sets and focus on the following two (LeDell et al. 2018):

• hidden: the number and size of the hidden layers

• epochs: iterations of the data set

There are additional hyperparameters that can be tuned but it would exceed the

scope of the work and the computational resources to tune more. We display the perfor-

mance results of four learners. They have two hidden layers (Net 1) or up to five (Net

2), with each up to 100 units. For Net 3, the hidden layers (up to five) and epochs are

tuned, while Net 4 is like Net 1 with joint class levels for PAY x .

5.6.3 Performance

Net 1, which uses two hidden layers, delivers the best performance: it has the highest

AUC and the shortest runtime. Table 5.8 reveals that increasing the number of hidden

layers for Net 2 and 3 does lead to better performance according to ACC and BAC,

but not according to the main measure AUC. More hidden layers with more units make

the algorithm more flexible but also increases the risk of overfitting. Furthermore, the

runtime increases rapidly. Merging the class levels for PAY x reduces the amount of

information in the data set and deteriorates the prediction performance of the learner.

5.6.4 Interpretability

An artificial neural network with multiple hidden layers is very flexible but also very

complex. It processes inputs in a non-linear fashion, and stores information in weights

and connections that are not easily accessible (cf. Friedman et al. 2001b).

In order to make the relationship between inputs and outputs visible, Tzeng & Ma

(2005) suggest visualising weights in a Neural Interpretation Diagram (NID). NIDs dis-

play a neural network similar to figure 5.8. The width of the connections in the NID

50

Figure 5.9: Feature importance of Net 1.

are defined by the relative magnitude of the connection weights, the line shading by

the direction of the weight. It is obvious that this approach is not feasible for multiple

hidden layers with 23 input features and up to 100 neurons per layer.

In the following, we focus on model-agnostic methods. Figure 5.9 gives the feature

importance of Net 1. Also for this algorithm, PAY 1 is the most important feature,

followed by BILL AMT and PAY 2.

The partial dependence plots (figure 5.10) reveal the direction of their impact. The

predicted default probability decreases for PAY 1 between −2 and 0.5, then soars to the

maximum at PAY 1= 3, before it declines again. The reason for the decline between −2

and 0.5 could be explained by the fact that −2 indicates “no consumption”, which ob-

viously leads to a higher predicted default probability than “revolving credit” or “paid

duly”. Furthermore, the figure reveals the high predicted default probability for cus-

tomers with PAY 2 > 3. The other two features show monotonic behaviour: The higher

BILL AMT the smaller the default probability, whereas for PAY 2, the higher the value the

higher the predicted probability.

5.7 Stacking

In this section, we introduce a ensemble method which uses the results achieved so far

as inputs.

51

Figure 5.10: Partial dependence plots of the three most important features (according
to figure 5.9) of Net 1.

5.7.1 Definition

In the previous sections, we applied several different learning algorithms to the data set

and each algorithm calculated a score for each instance. Stacking takes these algorithms

as “meta learners”, use their outputs as inputs and aggregates them using another

learning algorithm which is called “super learner” (Van der Laan, Polley & Hubbard

2007).

Stacking, together with boosting and bagging, can be summarised as ensemble meth-

ods (Liaw & Wiener 2002). Ensemble methods aggregate the results of many classifiers.

While boosting (see section 5.5) is deployed to reduce bias and bagging (see section 5.4)

to reduce variance, the intention to use stacking is to directly improve prediction accu-

racy. We apply the first two techniques to many classifiers of the same algorithm (in the

paper at hand, to CART). Stacking, however, based on classifiers of different algorithms.

Van der Laan et al. (2007) postulates a theorem to justify theoretically the application

of super learners and prove their superior performance under certain conditions. The

super learner itself is a prediction algorithm which deploys several learners to the data

set and choose the optimal learner – or the optimal combination of learners. Since it is

impossible to know a priori which type of classifier performs best for a given real-world

problem, the advantages of being able to choose between a set learners are clear and can

lead to better performance results (Breiman 2001b).

52

Learner AUC ACC BAC Brier KS Runtime Threshold

Stacking 1 0.7820 0.8209 0.6515 0.1344 0.4309 358 0.5374
Stacking 2 0.7823 0.8208 0.6544 0.1344 0.4149 358 0.5903
Stacking 3 0.7821 0.8196 0.6513 0.1346 0.4255 634 0.5313
Stacking 4 0.7829 0.8214 0.6546 0.1340 0.4312 634 0.5368

Table 5.9: Overview of stacking results for LogReg (1 and 2) and Net 1 (3 and 4) as
super learners

5.7.2 Tuning

We tune the threshold for stacking. Wang, Hao, Ma & Jiang (2011) suggests that en-

semble methods need accuracy and diversity in order to produce good results. There

are no hyperparameters in the strict sense, nevertheless, we apply every previously in-

troduced algorithm as a super learner and present the results of the two best: Logit

without feature selection (Stacking 1 and 2) and Net 1 (Stacking 3 and 4). Further-

more, we generate two input data sets: One is built of the output of the best learner of

each algorithm (Stacking 1 and 3). The other is built of the outputs of the six globally

best learners19, which are kNN 3, Random Forest 3, GBM 3 and 4, and Nets 1 and 3

(Stacking 2 and 4).

5.7.3 Performance

Table 5.9 shows the performance of the super learners. The best result is achieved

by stacking with an artificial neural network as super learner and the sic globally best

learners as meta learners: Stacking 4 is the best learner according to all prediction

measures.

The results are quite similar for all learners. The runtime displayed is the total

runtime and takes also the runtimes of the meta learners into account. ANN as super

learner is twice as time consuming as LogReg.

5.7.4 Interpretability

Stacking adds an extra layer of complexity to the classifier. We have not only the super

learner – a neural network – to interpret but also six other learners which deliver the

inputs for the super learner. For a comprehensive approach to make the learner more

interpretable, we have to take all knowledge and insights about the base learners into

19With the constraint, that not more than two learners of the same algorithm are selected.

53

Figure 5.11: Feature importance of Stacking 4.

Figure 5.12: Partial dependence plots of the three most important features (according
to figure 5.11) of Stacking 4.

account which we created in the previous sections. We focus on model-agnostic methods

in order to analyse the impact of the base learners to the super learner’s prediction.

The feature importance in figure 5.11 reveals the importance of the base learners.

The major importance of random forest (RF3) might be surprising, since the best single

base learner is GBM 3 (here denoted as XGB3) followed by Net 1 (see chapter 6). The

reason could be the fact that for random forest, there is only one learner considered

for this stacking algorithm, whereas there are two gradient boosting machine learners

as base learners. Both GBM learners are similar in their decision-making process, so

there is some information stored in both learners, and the single learner is no longer that

important.

54

The partial dependence plots give as more information. The plot for Random Forest

3 looks like expected: the higher the predicted score of the base learner, the higher

the predicted score of the super learner. For GBM 3, the graphic is similar, although

the impact declines for higher input scores. The PDP for GBM 4 gives a different

picture: for higher input probabilities the predicted default probabilities of the super

learner decrease. The downwards movement of the graph may indicate a correction of

(by GBM 4) systematically wrong classified instances. This error correction is a possible

explanation for the superior performance of stacking.

55

Chapter 6

Performance

In this chapter, we present the best learners of each algorithm and compare their results.

Table 6.1 lists the performance results of the algorithms introduced in chapter 5.

Stacking with ANN as super learner is the best classifier according to AUC, best non-

stacked or single algorithm is GBM. The table reveals that all machine learning algo-

rithms (except for CART) classify better than the benchmark model logistic regression.

CART performs very poor compared to the other algorithms but the decision tree idea

can be improved tremendously by bagging or boosting. These ensemble methods use

the poor performing CART and create powerful prediction tools. Boosting with gradient

boosting machine yields better results than bagging in order to create an random forest,

while stacking, which combines not only decision trees but different methods, produces

the best AUC.

Figure 6.1 shows the ROC curves of the algorithms stated in table 6.1. One can see

that stacking is superior to all learners for almost all possible thresholds.

The results also reveal that a higher AUC does not automatically come with higher

Algorithm AUC ACC BAC Brier KS Runtime

Stacking 0.7829 0.8214 0.6546 0.1340 0.4312 372
GBM 0.7781 0.8212 0.6571 0.1347 0.4292 33
Neural Net 0.7682 0.8167 0.6395 0.1374 0.4125 7
Random Forest 0.7671 0.8179 0.6513 0.1369 0.4066 284
kNN 0.7569 0.8119 0.6523 0.1399 0.3935 23
GLM 0.7233 0.8174 0.6546 0.1449 0.3759 1
CART 0.6999 0.8148 0.6559 0.1424 0.3726 9

Table 6.1: Overview of performance results for each algorithm.

56

Figure 6.1: ROC curves of the best learner of each algorithm

ACC (see chapter 3.4 for details). If ACC is the main performance measurement, the

outcome order would be different. For example, GLM would be ranked higher, whereas

Neural Net would lose its third place.

Similar to ACC, BAC is based on the confusion matrix, so the results are similar to

each other. The highest BAC achieves GBM, which is also the second best predictor

according to AUC. The third best AUC achieves neural net, but the lowest BAC. Both

BAC and ACC measure the classification results of the learner.

The Brier score assesses the sufficiency of the predicted probabilities. It gives a simi-

lar picture of the achieved performance as AUC. Kolmogorov-Smirnov statistic evaluates

the discriminatory power like the AUC. The order of the results would be exactly the

same as in table 6.1. Figure 6.2 shows the ECDFs for both Stacking and the benchmark

model GLM. For each algorithm, the upper curve is the ECDF of the predicted prob-

abilities of non-default, the lower of default. The largest distance between both curves

is marked with a black dotted line. The Kolmogorov-Smirnov statistic measures this

distance.

Performance measured as runtime eventuates in a totally different order of the results.

Obviously, the runtime of stacked learners is by far the highest. It is calculated as the

sum of all underlying meta learners, i.e. every learner except stacking displayed in

57

Figure 6.2: Kolmogorov-Sminrov statistic for Stacking and GLM. For both algorithms,
the ECDFs for the probabilities of predicted non-defaults (superior) and defaults (infe-
rior).

table 6.1, and additionally the time to aggregate their outputs via ANN. Furthermore,

random forest grows many complex trees after newly resampling data and features for

each tree, which is very time consuming. On the other hand, the neural net of h2o

package delivers very fast – despite its complexity – and precise results. One have to

keep in mind, that the runtime of the different algorithm are not regardlessly comparable.

It heavily depends on search space and number of hyperparameters to be tuned, and

the specific implementation of the method. The author did not compare the runtime

of different algorithm implementations or different R packages in detail, this would go

beyond the scope of the work.

Figure 6.3 shows the AUC of each algorithm subject to their runtimes. The figure

reveals the two groups of learners: the fast performing ones with runtimes below 25 min-

utes, and the slow learners which run for more than four hours. The red labelled learners

could be considered as efficient learners (cf. the efficient frontier in portfolio analysis

(Sharpe 1963)): there are no learners with higher AUC for same or faster runtime or,

respectively, there are no faster learners with at least as good predictive ability.

Taken together, stacking achieves the highest AUC, hence can be considered as the

best learner, while GLM is the fastest algorithm. The application of machine learning

algorithms highly improves the classification performance compared to the benchmark

58

Figure 6.3: Learners’ AUC subject to their runtimes. The efficient learners are red
labelled.

model GLM. Different performance measures would lead to different “best” algorithms.

59

Chapter 7

Interpretability

As mentioned before, interpretability of prediction algorithms is a key driver for building

trust in the models and for deploying them widely in credit risk. We have seen some

methods like feature importance and partial dependence plots that try to make machine

learning more interpretable. They bring some light into the black box by providing

possible explanations and identifying important features and their influence, and can

be applied to all learners described in the paper at hand. Nevertheless, these methods

are model-agnostic, hence, they are not suited to give clear insights into the models

and do not make the decision-making process traceable. For some algorithms, there are

special techniques to get a deeper understanding of “how the model works”. We want

to summarise the lessons learned in the following.

Classification and regression trees can be considered as highly interpretable. One

can draw the exact model with pen and paper as a two-dimensional graphic. The

visualisation is fast and easy to understand, even to non-statisticians. Only trees with

many branches suffer a loss of interpretability.

Generalized linear models offer weights in order to quantify the impact of single

features on the prediction. The exact model can be described by an equation. This is

suitable as long as there are not too many features.

For k-nearest neighbour, we can actually display the nearest neighbours of a customer

of interest. This can be used as an explanation for a certain prediction. The idea of the

algorithm is easy to understand and by printing the neighbours one easily understand

the decision-making process for single customers.

Bagging with random forest improves the predictive performance of CART but cre-

ates more complex algorithms and reduces the interpretability. Theoretically, it is pos-

sible to draw the 500 or 1000 trees of random forest on a piece of paper – but the

60

interpretability for humans might be questionable. Furthermore, the fact, that not ev-

ery tree is based on the same sample, and not every split on the same feature subset,

makes the decision-making process very complex. Thus, direct (feasible) interpretability

of the model can be denied. Model-agnostic methods provide possible explanations and

give insights into which features contribute to the prediction more than other.

Due to boosting, the trees of GBM highly depend on previously built trees. Since

the prediction takes weighted residuals into account, it is not possible (or at least not

feasible) to display the model by drawing decision-trees. Although direct interpretation

of the model is not possible, model-agnostic models provide some kind of interpretability.

A special case of gradient boosting machine is a learner with only one-split-trees. Then,

we have an additive model, which can be represented, similarly to generalized linear

models, by using a model equation.

Artificial neural networks can indeed be compared to a bunch of generalized linear

models. Since they are arranged in several hidden layers and transformed in a non-linear

manner, these are very flexible and highly complex, hence, interpretation on model level

is not possible. The model-agnostic methods described previously help to build some

understanding of the decisions and deliver possible explanations.

Since stacking combine all algorithms described above, interpretability suffers from

every black box model which provides input for the stacked model. Model-agnostic

models provide (in the setting as used in this paper) information only about which

algorithm is more important for a certain prediction, but does not deliver information

about the importance of features (of the base learners), for example.

To answer the question if a machine learning algorithm is interpretable, one have

to specify the question. The model-agnostic methods, which can be applied to all algo-

rithms, give some information about the data and some underlying relationships. One

can give a possible explanation why one customer does not get a credit, but another

does. Nevertheless, these methods do not provide a deep and presentable understanding

of the algorithm’s decision-making process, they do not make the model itself transpar-

ent. Whether the model-agnostic methods are sufficient to build trust in the predictions,

one has to answer individually.

61

Chapter 8

Summary and Outlook

In the previous chapters, we have seen promising results of machine learning algorithms

for credit risk modelling. The improvements in prediction performance are tremendous.

All machine learning algorithms, except for CART, achieve higher AUC measures than

the benchmark logistic regression model. The best single learner is a gradient boosting

machine which results in an AUC of 0.7781, compared to 0.7233 of logistic regression.

The performance can be enhanced further by combining the predicted probabilities of

different algorithms via logistic regression as a super learner. This is called stacking and

achieves an AUC of 0.7829.

The improvements mean a better prediction of default probabilities and default

events. This can lead to less defaults in loan portfolios, thus, to more stable incomes for

banks and lower interest rates for customers. Furthermore, better default prediction can

reduce the number and extent of personal insolvency. The macroeconomic influences of

a stronger and more liquid consumer credit sector are not to deny.

The paper at hand could not totally break up the black box which covers most ma-

chine learning algorithms. Some approaches and ideas are introduced but the challenge

is not solved comprehensively. For extensive and area-wide adoption of machine learn-

ing algorithms, particularly in the financial services sector, the author thinks the black

box prevents further expansion. Due to requirements of regulators and higher man-

agement the argument of better performance might fade away as long as no satisfying

interpretability is established. Data protection laws and the customers’ vital interest in

transparent decision making processes makes it essential to put more effort in enhancing

the interpretability of machine learning algorithms. In general, banks can be considered

as careful when it comes to changes of systems, in particular to changes of sensitive

and running systems like scorecards. Similarly, regulators and legislators need to be

62

convinced that machine learning algorithms – despite it downsides in interpretability –

can lead to a more stable financial system and brings improvements for the customers.

In the analyses at hand, we assess the customer’s probability of default at one point

in time. However, this might unrealistically oversimplify the situation. The probability

of default of customers will vary over time. For example, reducing the line of credit

could lower the probability of default. This can be modelled with time varying models

or reinforcement learning. Although these are very interesting and promising areas, they

would extend the scope of the work but are open for further research.

63

List of Figures

2.1 Two Cultures of Statistical Modelling . 9
3.1 Performance vs. threshold . 15
3.2 Different data set splits for resampling. 16
3.3 Nested Resampling . 17
3.4 Confusion Matrix . 18
3.5 ROC curves for two algorithms with different AUCs. 20
3.6 Kolmogorov-Smirnov statistic . 22
4.1 Local surrogate model example . 26
4.2 Feature importance example . 28
4.3 Partial dependence plot example . 28
5.1 Logistic function . 31
5.2 kNN plots with different values for k . 35
5.3 Decision trees of CART algorithm . 40
5.4 Feature importance of random forest . 43
5.5 Partial dependence plots of random forest 44
5.6 Feature importance of GBM . 47
5.7 Partial dependence plots of GBM . 48
5.8 Artificial Neural Network . 49
5.9 Feature importance of ANN. 51
5.10 Partial dependence plots of Net 1 . 52
5.11 Feature importance of stacking . 54
5.12 Partial dependence plots of Stacking 4. 54
6.1 Best ROCS of each algorithm . 57
6.2 KS statistic for Stacking and GLM . 58
6.3 AUC vs. runtime . 59
A.1 Feature importance GLM 1 . 70
A.2 Partial dependence plots of GLM 1 . 71
A.3 Feature importance kNN 4 . 71
A.4 Partial dependence plots of kNN 4 . 73
A.5 CART plots . 73
A.6 Feature importance CART 4 . 74
A.7 Partial dependence plots of CART 4 . 74

64

List of Tables

2.1 Statistics and machine learning notation 10
3.1 Data set overview . 12
3.2 Metric features overview . 13
3.3 Nominal features overview . 13
3.4 Results of trivial classifier . 22
5.1 Overview of GLM results . 33
5.2 Weights of logistic regression model . 34
5.3 Overview of kNN results . 36
5.4 Nearest neighbours of customer 42 . 37
5.5 Overview of CART results . 39
5.6 Overview of Random Forest results . 42
5.7 Overview of Gradient Boosting Machine results 46
5.8 Overview of Artificial Neural Networks results 50
5.9 Overview of Stacking results . 53
6.1 Overview of results . 56
A.1 All weights of logistic regression model . 72

65

Bibliography

Anderson, R. (2007), The credit scoring toolkit: theory and practice for retail credit risk
management and decision automation, Oxford University Press.

Basel Committee on Banking Supervision and Bank for International Settlements (2000),
Principles for the management of credit risk, Bank for International Settlements.

Berkson, J. (1944), ‘Application of the logistic function to bio-assay’, Journal of the
American Statistical Association 39(227), 357–365.

Bischl, B. & Lang, M. (2015), parallelMap: Unified Interface to Parallelization Back-
Ends. R package version 1.3.
URL: https://CRAN.R-project.org/package=parallelMap

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G.
& Jones, Z. M. (2016), ‘mlr: Machine learning in r’, Journal of Machine Learning
Research 17(170), 1–5.
URL: http://jmlr.org/papers/v17/15-066.html

Bliss, C. I. (1934), ‘The method of probits’, Science 79(2037), 38–39.

Breiman, L. (1996), ‘Bagging predictors’, Machine learning 24(2), 123–140.

Breiman, L. (1997), Arcing the edge, Technical report, Technical Report 486, Statistics
Department, University of California at Berkeley.

Breiman, L. (2001a), ‘Random forests’, Machine learning 45(1), 5–32.

Breiman, L. (2001b), ‘Statistical modeling: The two cultures’, Statistical science
16(3), 199–231.

Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. (1984), Classification and
regression trees, CRC press.

Brier, G. W. (1950), ‘Verification of forecasts expressed in terms of probability’, Monthly
Weather Review 78(1), 1–3.

Chen, T. & Guestrin, C. (2016), Xgboost: A scalable tree boosting system, in ‘Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining’, ACM, pp. 785–794.

66

Cook, N. R. (2007), ‘Use and misuse of the receiver operating characteristic curve in risk
prediction’, Circulation 115(7), 928–935.

Credit Suisse (1997), ‘Creditrisk+: A credit risk management framework’, Credit Suisse
Financial Products pp. 18–53.

European Parliament (2016), ‘Regulation (eu) 2016/679 of the european parliament and
of the coucil of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46/ec (general data protection regulation)(2016)’, Official Journal of
the European Union L 119, 1–88.

Fahrmeir, L., Kneib, T., Lang, S. & Marx, B. (2013), Regression: models, methods and
applications, Springer Science & Business Media.

Finney, D. J. & Tattersfield, F. (1952), Probit analysis, Cambridge University Press;
Cambridge.

Freund, Y. & Schapire, R. E. (1997), ‘A decision-theoretic generalization of on-line
learning and an application to boosting’, Journal of computer and system sciences
55(1), 119–139.

Friedman, J. H. (2001a), ‘Greedy function approximation: a gradient boosting machine’,
Annals of statistics pp. 1189–1232.

Friedman, J., Hastie, T. & Tibshirani, R. (2001b), The elements of statistical learning,
Vol. 1, Springer series in statistics New York.

Gower, J. C. (1971), ‘A general coefficient of similarity and some of its properties’,
Biometrics pp. 857–871.

Guyon, I. (1997), ‘A scaling law for the validation-set training-set size ratio’, AT&T Bell
Laboratories pp. 1–11.

Hall, P., Gill, N., Kurka, M. & Phan, W. (2017), ‘Machine learning interpretability with
h2o driverless ai’, h20 documentation .

Hand, D. J. & Anagnostopoulos, C. (2013), ‘When is the area under the receiver operat-
ing characteristic curve an appropriate measure of classifier performance?’, Pattern
Recognition Letters 34(5), 492–495.

Ho, T. K. (1995), Random decision forests, in ‘Document analysis and recognition, 1995.,
proceedings of the third international conference on’, Vol. 1, IEEE, pp. 278–282.

James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013), An introduction to statistical
learning, Vol. 112, Springer.

JP Morgan (1997), ‘Creditmetrics - technical document’, JP Morgan, New York .

67

Khandani, A. E., Kim, A. J. & Lo, A. W. (2010), ‘Consumer credit-risk models via
machine-learning algorithms’, Journal of Banking & Finance 34(11), 2767–2787.

Kolmogorov, A. (1933), ‘Sulla determinazione empirica di una lgge di distribuzione’,
Inst. Ital. Attuari, Giorn. 4, 83–91.

Kruppa, J., Schwarz, A., Arminger, G. & Ziegler, A. (2013), ‘Consumer credit risk:
Individual probability estimates using machine learning’, Expert Systems with Ap-
plications 40(13), 5125–5131.

LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kraljevic, T., Nykodym,
T., Aboyoun, P., Kurka, M. & Malohlava, M. (2018), h2o: R Interface for ’H2O’.
R package version 3.20.0.2.
URL: https://CRAN.R-project.org/package=h2o

Liaw, A. & Wiener, M. (2002), ‘Classification and regression by randomforest’, R News
2(3), 18–22.
URL: http://CRAN.R-project.org/doc/Rnews/

Lipton, Z. C. (2016), ‘The mythos of model interpretability’, arXiv preprint
arXiv:1606.03490 .

Lobo, J. M., Jiménez-Valverde, A. & Real, R. (2008), ‘Auc: a misleading measure of
the performance of predictive distribution models’, Global ecology and Biogeography
17(2), 145–151.

McCullagh, P. (1984), ‘Generalized linear models’, European Journal of Operational
Research 16(3), 285–292.

McCulloch, W. S. & Pitts, W. (1943), ‘A logical calculus of the ideas immanent in
nervous activity’, The bulletin of mathematical biophysics 5(4), 115–133.

Molnar, C., Bischl, B. & Casalicchio, G. (2018), ‘iml: An r package for interpretable
machine learning’, JOSS 3(26), 786.
URL: http://joss.theoj.org/papers/10.21105/joss.00786

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B. & Swami, A. (2017),
Practical black-box attacks against machine learning, in ‘Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security’, ACM,
pp. 506–519.

R Core Team (2018), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria.
URL: https://www.R-project.org/

Ribeiro, M. T., Singh, S. & Guestrin, C. (2016), Why should i trust you?: Explaining
the predictions of any classifier, in ‘Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining’, ACM, pp. 1135–1144.

68

Schliep, K. & Hechenbichler, K. (2016), kknn: Weighted k-Nearest Neighbors. R package
version 1.3.1.
URL: https://CRAN.R-project.org/package=kknn

Schmidhuber, J. (2015), ‘Deep learning in neural networks: An overview’, Neural net-
works 61, 85–117.

Sharpe, W. F. (1963), ‘A simplified model for portfolio analysis’, Management science
9(2), 277–293.

Simon, H. A. (1983), Why should machines learn?, in ‘Machine learning’, Springer,
pp. 25–37.

Smirnov, N. V. (1939), ‘On the estimation of the discrepancy between empirical curves
of distribution for two independent samples’, Bull. Math. Univ. Moscou 2(2), 3–14.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014),
‘Dropout: a simple way to prevent neural networks from overfitting’, The Journal
of Machine Learning Research 15(1), 1929–1958.

The Financial Crisis Inquiry Commission (2011), The financial crisis: inquiry report,
Superintendent of Documents, U.S. Government Printing Office, Washington.

Therneau, T. & Atkinson, B. (2018), rpart: Recursive Partitioning and Regression Trees.
R package version 4.1-13.
URL: https://CRAN.R-project.org/package=rpart

Tsai, C.-F. & Chen, M.-L. (2010), ‘Credit rating by hybrid machine learning techniques’,
Applied soft computing 10(2), 374–380.

Tzeng, F.-Y. & Ma, K.-L. (2005), Opening the black box-data driven visualization of
neural networks, in ‘Visualization, 2005. VIS 05. IEEE’, IEEE, pp. 383–390.

Van der Laan, M. J., Polley, E. C. & Hubbard, A. E. (2007), ‘Super learner’, Statistical
applications in genetics and molecular biology 6(1).

Wang, G., Hao, J., Ma, J. & Jiang, H. (2011), ‘A comparative assessment of ensemble
learning for credit scoring’, Expert systems with applications 38(1), 223–230.

Yeh, I.-C. & Lien, C.-h. (2009), ‘The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients’, Expert Systems
with Applications 36(2), 2473–2480.

69

Appendix A

Feature Importance and Partial
Dependence Plots

GLM

Figure A.1: Feature importance GLM 1.

kNN

CART

70

Figure A.2: Partial dependence plots of GLM 1.

Figure A.3: Feature importance kNN 4

71

Feature Weight Std. Error z Value Pr(| > z|) Significance

Bias term -2.150e+00 5.227e-01 -4.114 3.89e-05 ***
LIMIT BAL -7.582e-07 1.569e-07 -4.831 1.36e-06 ***
SEX2 -1.111e-01 3.072e-02 -3.618 0.000297 ***
EDUCATION -1.018e-01 2.102e-02 -4.845 1.26e-06 ***
MARRIAGE1 1.262e+00 5.154e-01 2.449 0.014332 *
MARRIAGE2 1.070e+00 5.157e-01 2.074 0.038066 *
MARRIAGE3 1.182e+00 5.324e-01 2.221 0.026361 *
AGE 6.284e-03 1.835e-03 3.424 0.000616 ***
PAY 1 5.770e-01 1.770e-02 32.605 < 2e-16 ***
PAY 2 8.330e-02 2.019e-02 4.126 3.68e-05 ***
PAY 3 7.254e-02 2.261e-02 3.208 0.001336 **
PAY 4 2.350e-02 2.501e-02 0.940 0.347410
PAY 5 3.418e-02 2.688e-02 1.271 0.203615
PAY 6 7.774e-03 2.214e-02 0.351 0.725464
BILL AMT1 -5.520e-06 1.137e-06 -4.857 1.19e-06 ***
BILL AMT2 2.389e-06 1.505e-06 1.587 0.112545
BILL AMT3 1.330e-06 1.323e-06 1.005 0.314963
BILL AMT4 -1.728e-07 1.349e-06 -0.128 0.898079
BILL AMT5 6.320e-07 1.519e-06 0.416 0.677408
BILL AMT6 3.951e-07 1.195e-06 0.331 0.741011
PAY AMT1 -1.360e-05 2.305e-06 -5.899 3.65e-09 ***
PAY AMT2 -9.600e-06 2.095e-06 -4.582 4.60e-06 ***
PAY AMT3 -2.750e-06 1.722e-06 -1.597 0.110264
PAY AMT4 -4.038e-06 1.785e-06 -2.262 0.023677 *
PAY AMT5 -3.321e-06 1.776e-06 -1.870 0.061452 .
PAY AMT6 -2.060e-06 1.295e-06 -1.590 0.111808

Table A.1: All weights of logistic regression model.

72

Figure A.4: Partial dependence plots of kNN 4.

(a) plotCart3 (b) plotCart4

Figure A.5: CART plots

73

Figure A.6: Feature importance CART 4

Figure A.7: Partial dependence plots of CART 4.

74

	Introduction
	Credit Risk Modelling
	Credit Risk
	Binary Classification
	Machine Learning

	Methodology
	Data Set
	Tuning
	Resampling
	Performance Measurements

	Black Box and Interpretability
	The Black Box Problem
	Properties of Interpretable Algorithms
	Model-Agnostic Interpretability

	Application
	Generalized Linear Model (GLM)
	k-Nearest Neighbours (kNN)
	Classification and Regression Tree (CART)
	Random Forest
	Gradient Boosting Machine (GBM)
	Artificial Neural Networks (ANN)
	Stacking

	Performance
	Interpretability
	Summary and Outlook
	Bibliography
	Appendix
	Feature Importance and Partial Dependence Plots

