
Ludwig-Maximilians-Universität
München

Department of Statistics
Master’s Thesis

Chiara Wiedemann

On the multiplicity of analysis strategies and the
resulting biased interpretations of a large-scale

benchmark study

Supervisor : Prof. Dr. Anne-Laure Boulesteix
Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie

(IBE)

Munich, July 15, 2020

Abstract

In this study, different degrees of freedom that every researcher has to con-
front are presented and their influence on the study results is analyzed. The
aim is to demonstrate how simple it is to cause biased interpretations and
how a procedure can lead to a situation where reproducibility is no longer
guaranteed.
This work is based on the benchmark study by Herrmann et al. (2020), which
compared 13 different statistical methods on several datasets for the predic-
tion of survival time. A major question was whether the use of multi-omics
data outperforms the simple Cox model, which considers only clinical covari-
ates, and which statistical method is most appropriate for the given setting.
In this thesis, various analysis strategies to compare the performance of dif-
ferent methods are presented. The results showed that diverse procedures
for imputing missing values, which occurred in the results of the benchmark
study, strongly influence the later comparison of the statistical methods. The
selection of the datasets used to evaluate the methods also played an impor-
tant role. If the datasets are filtered according to certain properties, a method
that previously showed high performance can perform poorly and vice versa.
The probably greatest influence on the study results has the performance
measure. It is shown that individual measures evaluate different properties
of the methods and thus lead to unequal results. This becomes problematic
if a researcher only presents the findings of the performance measure that
provides the desired result.

Contents

Contents
1 Introduction 9

2 Background 11
2.1 Datasets . 11

2.1.1 Cancer Types . 11
2.1.2 Results of the benchmark study 12

2.2 Prediction methods . 13
2.2.1 Penalised regression . 13
2.2.2 Statistical boosting . 17
2.2.3 Random forest . 20
2.2.4 Reference methods . 21
2.2.5 Overview . 22

2.3 Evaluation measures . 23
2.3.1 Integrated Brier-Score . 24
2.3.2 C-Index . 24
2.3.3 Best learner environment . 25

3 Failure imputation 28
3.1 Imputation difficulty . 28
3.2 Imputation methods . 30

3.2.1 Naive methods . 30
3.2.2 Differentiating methods . 31

3.3 Results . 32
3.3.1 Comparison of different methods 32
3.3.2 Comparison of different thresholds 37
3.3.3 Zero values as missing values 39

4 Multiplicity of analysis strategies 44
4.1 Analysis across all datasets . 44
4.2 Analysis based on dataset characteristics 47
4.3 Analysis based on learner characteristics 52

4.3.1 Analysis of different modeling approaches 52
4.3.2 Analysis of different group structure handlings 55

4.4 Detailed Analysis . 58
4.5 Testing for significance . 67

5 Sampling 70
5.1 Random sampling . 70
5.2 Sampling by dataset characteristics 74

5

Contents

5.3 Sampling within groups of learners 80

6 Case Studies 84
6.1 Possible degrees of freedom . 84
6.2 Study 1: Lasso vs. random forest . 85
6.3 Study 2: Considering group structure vs. simple Cox model 87
6.4 Study 3: CoxBoost within Boosting approaches 88
6.5 Study 4: Cox model as best possible predictor 91
6.6 Study 5: Ipflasso as best possible predictor 93

7 Discussion and Conclusion 96

Bibliography 99

A Figures 104

B Tables 108

C Electronic appendix 110

D Declaration of Authorship 111

6

List of Figures

List of Figures
1 Illustration of the 0.05 environment calculation for cindex 26
2 Performance comparison for different imputation methods - ibrier . . 33
3 Performance comparison for different imputation methods - cindex . . 34
4 Performance comparison for different imputation methods - UCEC . . 35
5 Zero values as missing values - Performance changes for CoxBoost . . 41
6 Distribution for different dataset groups - cindex 48
7 Comparison of modeling approaches 53
8 Comparison of group structure handlings 55
9 Performance for individual datasets - cindex 59
10 Performance for individual datasets - ibrier 60
11 Standard deviation and mean value according to the number of effec-

tive cases . 63
12 Best performing learners for random samples 71
13 Detailed view of the best performing learners for random samples . . 72
14 Best performing learners for sampling by dataset size 75
15 Best performing learners for sampling by effective cases 76
16 Detailed view of the best performing learners for sampling by dataset

size . 78
17 Detailed view of the best performing learners for sampling by effective

cases . 79
18 Best performing learners within the general modeling approaches for

random samples . 81
19 Best performing learners within different group structure handling for

random samples . 82
20 Distribution for different dataset groups - ibrier 104
21 Comparison of imputation methods for treating zero values as missing

values . 105
22 Best performing learners for sampling by number of clinical features . 106
23 Best performing learners for sampling by number of total features . . 107

7

List of Tables

List of Tables
1 Overview of datasets used for the benchmark study 12
2 Modeling approaches and handling of group structure information . . 23
3 Applied learners and CV iteration failures 29
4 Best learner per dataset - ibrier . 36
5 Differences for various thresholds . 38
6 Total number and proportion of zero values 40
7 Learner performances across all datasets - cindex 45
8 Learner performances across all datasets - ibrier 46
9 Performance per dataset group - cindex 50
10 Performance per dataset group - ibrier 51
11 Comparison of modeling approaches 54
12 Comparison of group structure handlings 57
13 Detailed analysis of individual datasets 61
14 Detailed analysis of specific learners 66
15 Analysis of variance - group design 68
16 Significance of pairwise t-tests . 69
17 Number of random samples as best performing learner for different

imputation methods . 74
18 Results of study 1 . 86
19 Results of study 2 . 88
20 Results of study 3 - cindex . 89
21 Results of study 3 - ibrier . 90
22 Results of study 4 . 92
23 Results of study 5 . 94
24 Cancer types - abbreviations . 108
25 Number of datasets as best performing learner or in the 0.05 environ-

ment . 109

8

1 Introduction

1 Introduction

In recent years, statisticians have been faced with the so-called "replication cri-
sis". The trigger of this crisis was the numerous attempts to reproduce published
statistics. A large number of these attempts failed to reproduce the results or re-
ceived much weaker results than in the original study, see for example Aarts and
Lin (2015). There was broad agreement among many statisticians that part of the
problem, apart from poor documentation and possibly fraud, was due to the variety
of possible analytical strategies (Goodman et al. (2016), Klau et al. (2020)). In or-
der to make future results more easily reproducible for third parties, several papers
have already been published that show the effects of different degrees of freedom
and provide a guideline to counteract this problem like Hoffmann et al. (2020) and
Simmons et al. (2011).

The aim of this thesis is to discuss possible degrees of freedom and different
analysis strategies within a benchmark study and to show how these degrees of
freedom and strategies can lead to different study results in order to make further
researchers aware of the problem of the replication crisis and to counteract it in the
future. We refer to the benchmark study by Herrmann et al. (2020). The goal of
his study was to compare different methods from different modeling approaches for
the prediction of survival time using multi-omics data. In total, the methods were
applied to 18 datasets, i.e. 18 different cancer types. The reference models were
Kaplan-Meier estimation and a Cox model, which only considers clinical features.
Despite the large benchmark study, it was not possible to define one best method
overall or to clearly determine whether the use of multi-omics data in general leads
to better results than the simple Cox model. Therefore, the question arises how
different degrees of freedom and possible analysis strategies influence the choice of
the best method.

The structure of this work is as follows: in the Background section, the underlying
data structure, the applied methods, and the evaluation measures are described. In
the chapter Failure Imputation different methods are presented how missing values
can be replaced and their effect on the performance of the individual methods is
discussed. The chapter Multiplicity of analysis strategies covers different analysis
strategies and compares the performance of the individual methods. This is followed

9

1 Introduction

by the chapter Sampling. This section is divided into random sampling, structured
sampling, and sampling within certain groups of learners. Here different datasets
are drawn, and the performance of the methods is compared. The goal of this
procedure is to examine whether there are certain methods that perform best for
given samples more often than other methods. In the section Case Studies, different
approaches are presented to highlight certain methods and present them better than
they actually are. The aim of this section is to show how small changes in analysis
can lead to great changes in results. Finally, the drawn conclusions are outlined in
the chapter Discussion and Conclusion.

10

2.1 Datasets 2 Background

2 Background

2.1 Datasets

The benchmark study by Herrmann et al. (2020) is based on 18 different datasets
and this thesis is based on the results of the benchmark study. So, first the datasets
used in Herrmann et al. (2020) are described and then the dataset on which this
work is based on.

2.1.1 Cancer Types

The 18 datasets used for the benchmark study by Herrmann et al. (2020)
represent 18 different cancer types collected by the TCGA Research Network:
http://cancergenome.nih.gov/. Table 24 in the appendix gives an overview of the
abbreviations used for the individual datasets. Each dataset was joined from five
raw datasets. One of these datasets includes the clinical features, which comprises
information such as gender or age. The other four raw datasets are molecular data
comprising DNA or protein sequences. The datasets under consideration thus con-
tain multi-omics data since several different omics types are analysed. The use of
multi-omics data results in high dimensional datasets, which in this case means that
each dataset has approximately 80,000 to 100,000 molecular features. The clinical
features are usually low-dimensional and thus the smallest group of variables by
far. For the considered cancer types the four molecular data copy number varia-
tion (cnv), gene expression (rna), miRNA expression (mirna) and mutation were
analysed.

Table 1 gives an overview of the different datasets with further important key
figures such as total number of features (p), number of observations (N), number of
effective cases (i.e. events) (neff) and the ratio neff/N (reff).

11

2 Background 2.1 Datasets

dataset cnv mirna mutation rna clin. p N neff reff
BLCA 57964 825 18650 23081 5 100525 382 103 0.27
BRCA 57964 835 18847 22694 8 100348 735 72 0.10
COAD 57964 802 19786 22210 7 100769 191 17 0.09
ESCA 57964 763 15162 25494 6 99389 106 37 0.35
HNSC 57964 793 17840 21520 11 98128 443 152 0.34
KIRC 57964 725 12017 22972 9 93687 249 62 0.25
KIRP 57964 593 11610 32525 6 102698 167 20 0.12
LAML 57964 882 6575 29132 7 94560 35 14 0.40
LGG 57964 645 13389 22297 10 94305 149 77 0.18
LIHC 57964 776 15924 20994 11 95669 159 35 0.22
LUAD 57964 799 18966 23681 9 101419 426 101 0.24
LUSC 57964 895 18832 23524 9 101224 418 132 0.32
OV 57447 975 16837 24508 6 99773 219 109 0.50
PAAD 57964 612 12882 22348 10 93816 124 52 0.42
SARC 57964 778 12478 22842 11 94073 126 38 0.30
SKCM 57964 1002 19488 22248 9 100711 249 87 0.35
STAD 57967 787 19141 26027 7 103929 295 62 0.21
UCEC 57447 866 21226 23978 11 103528 405 38 0.09

Table 1: Overview of datasets used for the benchmark study Herrmann et al. (2020) with
corresponding key figures

The columns "cnv", "mirna", "mutation", "rna" and "clin." indicate the number of
features in the respective group. As it can be seen the group of cnv is the one that
contains the most features while mirna is the smallest group of omics data.

2.1.2 Results of the benchmark study

The analyses of this work are based on the results of the benchmark study by
Herrmann et al. (2020). The benchmark experiment was implemented by using the
R package mlr (Bischl et al. (2016)). To evaluate the performance of the learners,
a repeated k-fold cross-validation (CV), see Vanwinckelen and Blockeel (2012) and
Bischl et al. (2012) was applied. For this purpose, one dataset is split into k random
subsets, where k − 1 subsets are used for training and one of the k subsets is used
for testing. Finally, the performance is averaged over all k testing folds. For the
repeated CV, this procedure is repeated multiple times. For smaller datasets, a 10
x 5-fold CV was used and for larger datasets 5 x 5-fold CV to ensure computation

12

2.2 Prediction methods 2 Background

time was kept viable. In total there were 7 large and 11 small datasets and 13
applied learners. Thus, the dataset on which this work is based on contains a total
of (7 · 25 + 11 · 50) · 13 = 9425 rows. Interesting for this work are especially the
results of the ibrier and cindex, which were used to evaluate the performance of
the learners. For some CV iterations, however, there were missing values for the
performance measures, for example due to numerical problems. How these missing
values were treated is described in the chapter 3.

2.2 Prediction methods

In this section 13 different statistical methods and their theoretical background
are presented. For the analysis of the different cancer types, these methods should
fulfil certain properties. For example, it must be possible to deal with the fact
that the number of features far exceeds the number of observations. Furthermore,
the molecular features are high dimensional while the clinical features have low
dimensionality. Since it is known that the informational content of the clinical
features is large, a prediction method should not neglect these features. In addition,
the sparsity and interpretability of the method is often required. In the following,
13 different methods which belong to the modeling approaches penalised regression,
boosting, random forest and reference methods are presented. The description of
the methods is related to the description of Herrmann et al. (2020), since in this
section not only the theoretical background of the methods but also their application
at Herrmann et al. (2020) is to be described.

2.2.1 Penalised regression

The methods of this section include four Lasso methods and one ridge-based
method. First, the Lasso methods are presented, which lead to sparse models by
subset selection and regularization. Then the ridge-based method is introduced,
which uses group specific co-data.

13

2 Background 2.2 Prediction methods

Standard Lasso
The basic idea of standard Lasso is to combine classical regression analysis with
variable selection and regularization (Tibshirani (1997)). The estimation of the
coefficients β̂ is obtained by maximizing the penalized log partial likelihood. Since
the Cox model assumes λ(t∗|xi) = λ0(t∗)exp(xTi β) the partial likelihood is obtained
by

L(β) =
∏
r∈E

exp(xTirβ)
{∑l∈Rr exp(xTl β)} , (1)

with E as the set of event indices, Rr the set of indices of individuals at risk at time
tr and ir is the index of the failure at time tr. As described in Simon et al. (2011)
the estimator is obtained by

β̂ = argmax
β
{log(L(β))− λ

p∑
j=1
|β|}, (2)

where λ controls the size of the penalization. If, for example, λ is set to 0, this leads
to a standard regression estimation. Herrmann et al. (2020) chose the parameter
λ by 10-fold CV. A disadvantage of this method is that if several features are
correlated, only one of them will be selected and it is also not possible to include
the group structure information of the multi-omics data. Herrmann et al. (2020)
used the package glmnet (Friedman et al. (2010)) for implementation. In the
further course of this thesis we will refer to this method as Lasso.

Integrative Lasso with Penalty Factors (IPF-Lasso)
Boulesteix et al. (2017) introduced an extension of the standard Lasso. The basic
idea is to use different penalties for different groups according to their relevance.
This method is specifically designed to take into account the group structure of the
different omics data and to apply different penalties. So, if M modalities (in this
case omics groups) are given with x(m)

.1 , ..., x(m)
.pm features of modalitym (m = 1, ...,M)

and let pm be the number of features within modality m, then the coefficients are

14

2.2 Prediction methods 2 Background

estimated by minimizing

n∑
i=1

(yi −
M∑
m=1

pm∑
j=1

x
(m)
ij β

(m)
j)2 +

M∑
m=1

λm||β(m)||1, (3)

with βmj the coefficient of the feature xm.j , ||.||1 the L1 norm, λm > 0 the penalty
on modality m and β(m) = (β(m)

1 , ..., β(m)
pm)T . A penalty vector (1, λ2/λ1, ..., λM/λ1)

results, since the first group is set as reference. The hyperparameter λ must be set
in advance. To keep the computational time feasible, a two-step IPF-Lasso was
introduced by Schulze (2017). The first step is to define a single candidate vector
for the penalty factor by applying a regression model to the data and calculating
the mean of the coefficients in each group. In the second step these means are
inverted and used as penalty factors for the IPF-Lasso method. In the benchmark
study of Herrmann et al. (2020), the penalty factors were calculated in the first step
by a ridge regression, for each feature group. For the inner resampling, a 5-fold CV
was used in the first step and a 10-fold CV in the second step. For implementation,
the package ipflasso (Boulesteix and Fuchs (2015)) was used. In the further course
of this work we will refer to this method as ipflasso.

Priority-Lasso
In many cases, clinical researchers already have prior knowledge of the data used.
For example, researchers may already know that one particular omics group con-
tains more useful information than another. In order not to lose such knowledge
and include it in the estimate, the priority-lasso (Klau et al. (2018)) method was
developed. Here the priority order of the different groups is determined by the re-
searcher. Afterwards, regression models are fitted using the features in the order
of the group’s priority. The linear predictor created in each step is used for the
regression model with the next higher priority as offset to explain the variation that
could not be explained by the features of the higher priority. Let in the following G
be the number of groups, π = (π1, ..., πG) the permutation of the groups (1, ..., G),
which represents the priority order, β(πg)

j the coefficient of the feature j of the group
πg and pπg the number of features of the group πg. The coefficients of the first

15

2 Background 2.2 Prediction methods

step are obtained by applying standard Lasso to the features of the group with the
highest priority in order to explain the greatest possible part of the variability of
the outcome. The coefficients are therefore obtained by minimizing

n∑
i=1

(yi −
pπ1∑
j=1

x
(π1)
ij β

(π1)
j)2 + λ(π1)

pπ1∑
j=1
|β(π1)
j |. (4)

This results in the linear predictor η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + ... + β̂(π1)

pπ1
x

(π1)
ipπ1

which is
used as offset for the Lasso model for the next group of features. This procedure is
repeated until all groups are considered and a new offset term is used in each step.
Klau et al. (2018) recommends estimating the offset terms by cross-validation,
but this was avoided in the benchmark study of Herrmann et al. (2020) to keep
the computational time viable. For missing prior knowledge Klau et al. (2018)
describes a method to define the priority by cross-validation. Since such a procedure
resulted in infeasible computational times for the extensive data of Herrmann
et al. (2020), a two-step procedure was applied here. As with the two-step
IPF-Lasso, the first step was to define a vector of coefficient means for each group
by ridge regression. By inverting and ordering this means by size, the first element
of the vector corresponds to the most important group and so on. Thus, the
missing prior knowledge can be replaced, and the high computational time can be
avoided. To set the parameter λ a 10-fold CV was performed in each step. For
the implementation, the package prioritylasso (Klau and Hornung (2017)) was used.

Priority-Lasso favoring clinical features
For the priority-lasso method, clinical features can be easily favored by giving them
the highest priority and are used as an offset for the next step of the fit. In the
benchmark study of Herrmann et al. (2020), the priority is therefore only defined
for the molecular groups in the first step. For the determination of the parameter λ
a 10-fold CV was again performed in each step and the package prioritylasso (Klau
and Hornung (2017)) was used. In the following we will refer to this method as
prioritylasso favoring.

16

2.2 Prediction methods 2 Background

Adaptive group-regularized ridge regression
Van De Wiel et al. (2015), introduced an extension of ridge regression, which allows
the use of additional information from features. The features are grouped according
to this additional information and a L2-based penalty term is used. However, this
method was not originally intended for the use with multi-omics groups but was pro-
vided by a special routine by the package author in personal communication. The
large differences in the group-specific penalties of the ridge allow a post-hoc variable
selection, which was used in the benchmark study of Herrmann et al. (2020) and
the maximum number of selected variables was set to 1000. The penalty parame-
ter λ was determined by a 10-fold CV and the package GRridge was used for the
implementation. In the further course of this work we will refer to this method as
grridge.

2.2.2 Statistical boosting

Statistical boosting is an iterative approach in which weak models are fitted in
each step and the estimates are updated accordingly. The basic idea is to find a
function f which minimizes a certain loss function ρ. The function f can therefore
be described as

f ∗(.) = argmin
f(.)

E[ρ(Y, f(X))], (5)

with Y as target variable and X as matrix of independent variables (Bühlmann
et al. (2007)). For the application of statistical boosting methods, three important
steps are always followed (De Bin (2016)): (1) computation of the negative gradient
with respect to f ; (2) fitting the base learner and update the estimate; (3) control
learning through a learning rate v. For computing a boosting algorithm, the two
parameters mstop, i.e. the number of boosting steps and v, i.e. the learning rate are
steered by the creator.
The use of boosting methods is suitable in the case of multi-omics data, since it
is possible to use data for which the number of features exceeds the number of
observations and still an interpretable variable selection is given. In the benchmark
study of Herrmann et al. (2020) three different boosting methods were presented and
compared with each other. These are model-based boosting, likelihood-based boosting,
and likelihood-based boosting with favoring clinical features.

17

2 Background 2.2 Prediction methods

Model-based boosting
This method uses univariate linear models as base learners and a component-wise
boosting algorithm, which considers each feature individually and only updates
the one that reduces the loss the most (Hofner et al. (2014)). Therefore, there are
p possible updates that must be computed and the feature, which minimizes the
loss the most is chosen. For censored survival times, the loss function is set to the
negative partial log-likelihood.
The following algorithm is computed (De Bin (2016)):

1. initialize β̂ = (0, ..., 0)

2. compute the gradient as u[m]
i = δi −

∑
l∈Ri

δl
exp(xTl β̂

[m−1])∑
k∈Rl

exp(xT
k
β̂[m−1]) , with Ri as risk set

at time ti and δi as indicator whether the i-th observed survival time ti is
censored or not

3. compute the possible updates β̂[m]
j = (xT.jx.j)−1xT.jû

[m]

4. choose the feature which minimizes the squared error loss the most

For implementation, the function glmboost of the package mboost was used (Hothorn
et al. (2018)). Herrmann et al. (2020) determined the number of boosting steps
mstop by 10-fold CV and set the maximum mstop to 100. The learning rate v was
set to the default value 0.1. In the following we will refer to this method as glmboost.

Likelihood-based boosting
This boosting method uses in contrast to model-based boosting a penalised version
of the partial likelihood as a loss function (De Bin (2016)), which is calculated by

plpen(β) = pl(β)− 0.5λβTPβ, (6)

with P as p× p matrix, usually the identity matrix. Furthermore, the learning rate
v is not fix, it is applied via a penalty parameter λ, that is directly applied in the

18

2.2 Prediction methods 2 Background

coefficient estimation. To save the iterative updates of the parameter estimate, the
offset term η̂

[m−1]
i = xTi β̂

[m−1] is added to the penalised log-likelihood, resulting in
the function

plpen(β|β̂[m−1]) =
n∑
i=1

δi[η̂[m−1]
i +xTi β− log(

∑
l∈Ri

exp(η̂[m−1]
l +xTl β))]−0.5λβTPβ, (7)

where Ri is again the risk set at time ti and δi indicates whether the i-th observed
survival time ti is censored or not. To obtain the iterative updates, this function is
maximized in every boosting iteration. For implementation, the package CoxBoost
(Binder (2013)) is used. For the benchmark study of Herrmann et al. (2020) the
actual mstop was again calculated by 10-fold CV and the maximum number of
boosting steps was set to 100. The penalty λ was computed according to the
number of events (default setting).

Likelihood-based boosting favoring clinical features
The procedure is the same as for simple likelihood-based boosting, with the difference
that clinical features are favored. Since the iterations of the previous steps are
included as an offset and a penalty has been applied to the coefficients, one can
define features that must be included in the mandatory by setting the corresponding
diagonal elements of the matrix P to zero. It should be noted that only the clinical
features are favored, any further group structure information is not used. Again,
the package CoxBoost and the corresponding function (Binder (2013)) was used
for implementation. The settings of boosting steps mstop and penalty λ are the
same as for the simple likelihood-based boosting. In the further course of this work
we will refer to the simple likelihood-based boosting method as CoxBoost and to
the likelihood-based boosting method which favors clinical features as CoxBoost
favoring.

19

2 Background 2.2 Prediction methods

2.2.3 Random forest

Random forests are ensembles of decision trees and represent one of the most
successful Machine Learning algorithms for both classification and regression
(Breiman (2001)). Decision trees predict based on hierarchical decisions and
are structured as a binary tree. Bootstrapped aggregation, where T decision
trees are constructed that are trained on T bootstrapped training datasets, can
be referred to as Bagging. Random Forests combine many decision trees with
bagging to reduce the risk of overfitting and thus the induced high generalization
error (Kho (2018)). Additionally, the high variance of the decision trees can be
reduced by Bagging. Random Forest is a modified form of Bagging for trees where
bootstrapped decorrelated trees are constructed through randomized splits (Hastie
et al. (2009)). The following algorithm is defined by Hastie et al. (2009) in order to
construct a Random Forest:

1. For b = 1 to B:

(a) Draw a bootstrap sample of size n from training data

(b) Fit a random forest tree Tb to the bootstrapped data by recursively re-
peating the following steps for each terminal node of the tree, until the
predefined minimum node size

i. Select mrty numbers of features randomly
ii. Choose the best feature and split-point combination
iii. Split the node into two daughter nodes

2. Output the ensemble of trees {Tb}B1

The predictions for new data are then calculated using f̂Brf (x) = 1
B

B∑
b=1

Tb(x).

In the benchmark study of Herrmann et al. (2020) three different implementa-
tions of random forests were used. These are ranger, RandomForestSRC and Block
Forest. The rfsrc package (Ishwaran and Kogalur (2018)) stands for fast parallel
computing for survival, competing risks, regression, and classification. The number

20

2.2 Prediction methods 2 Background

of trees is 1000, the parameter mrty is set to [
√

(p)] and the minimal node size is
3. The package ranger is known as well suited for high dimensional data (Wright
and Ziegler (2017)), which is very useful in the context of multi-omics data. The
number of trees is 500, the parameter mrty is again set to [

√
(p)] with a minimal

node size of 3. The package blockForest creates different subsets of data containing
the individual data types referred to as "blocks" as described in Hornung and Wright
(2019). For blockForest the number of trees is set to 2000 and the parameter mtry
is set to ∑M

m=1

√
(pm). The minimal node size is again 3. A disadvantage of the ran-

dom forest methods is that the resulting models are difficult to interpret, although
this is often required in the medical context.

2.2.4 Reference methods

In order to assess the performance of the different methods presented above,
they are compared with two reference models. These are Kaplan-Meier estimate
and Cox proportional hazard model.

Kaplan-Meier estimate
Kaplan-Meier estimates the survival probability without using any information from
features as described in Goel et al. (2010). The estimator of the probability P (t >
t∗), that an event has not occurred until time t∗, is given by

Ŝ(t) =
∏
i:ti≤t

(1− di
ni

), (8)

with ti a time when at least one event has occurred, di number of events (i.e.
deaths) which have occurred at time ti and ni number of individuals for which
no event has occurred at time ti. Since the Kaplan-Meier estimate does not use
information from the features, any other prediction method should exceed the
accuracy of the Kaplan-Meier. The Kaplan-Meier estimate was created using the
function survt from the package survival Therneau (2015).

21

2 Background 2.2 Prediction methods

Cox proportional hazard model
The second reference model is the Cox proportional hazard model, as described in
Cox (1972). This model uses clinical variables to predict the survival probability
P (t > t∗), that an event has not occurred until time t∗. The model is given by

S(t∗) = S0(t∗)exp(xTi β), (9)

until time t∗, with S0(t∗) = exp(−Λ0(t∗)) as baseline survival and xi as clinical
covariates for observation i. The baseline survival can be calculated by applying the
Breslow estimate

Λ̂0(t∗) =
∑
ti≤t∗

1∑
l∈Ri

exp(xTl β) , (10)

with Ri as risk at time ti. Since the Cox model only considers clinical variables, the
comparison with this model can be useful to assess whether the use of multi-omics
data can lead to better prediction performance for survival time. To apply this
method, the function coxph from the package Survival (Therneau (2015)) is used.

2.2.5 Overview

In the description of the different methods it could be seen that these methods
often consider the group structure of clinical and molecular features differently.
Table 2 gives an overview how these methods can be classified. In chapter 4.3 the
different groupings of the methods are described in more detail and it is analyzed
whether certain handlings of the group structure information or whether certain
modeling approaches perform better than others.

22

2.3 Evaluation measures 2 Background

Penalised Regression Boosting Random Forest
Not using group
structure

Lasso Cox Boost rfsrc
glmboost ranger

Favoring clinical prioritylasso fav Cox Boost fav
features
Group structure
without favoring
clinical features

ipflasso blockForest
prioritylasso
grridge

Table 2: Modeling approaches and handling of group structure information

It should also be mentioned that in the benchmark study by Herrmann et al.
(2020) another method was applied, which will not be considered further in the
following. This is Sparse Group Lasso (Simon et al. (2013)), another extension
of the usual Lasso estimate. This method led to fatal error messages in R under
windows and to extremely long computation times using Ubuntu. Therefore, this
method could only be applied to the four smallest datasets and will not be considered
in the study at hand.
Moreover, in the further course of the study at hand we will uniformly refer to the
statistical method as learner.

2.3 Evaluation measures

The properties discrimination and calibration are often used to evaluate the
performance of a method. For survival prediction, discrimination, as described in
De Bin et al. (2014), indicates how well a method predicts the right order of survival
times. The calibration describes how accurately a model’s prediction of survival
represent the survival in the observed data, see Royston and Altman (2013). The
benchmark study of Herrmann et al. (2020) considered the measures c-index and
integrated Brier-score for the evaluation of these properties for the learners. The
integrated Brier-score measures both, discrimination, and calibration whereas the c-
index only concentrates on the validation of the discrimination. These measures are
described below, and an additional method is presented. The goal of this additional
validation method is not only to determine one best method, but also to determine

23

2 Background 2.3 Evaluation measures

which methods perform similarly well using a measure such as integrated Brier-score
or c-index. The following definitions of integrated Brier-score and cindex refer to
Graf et al. (1999), Uno et al. (2011) and Gerds et al. (2013).

2.3.1 Integrated Brier-Score

The aim of the integrated Brier-Score in context of survival time, is to assess
whether the probability P (ti > t∗|xi), that an individual i survives until a certain
time t∗, given the prognostic features xi, is well estimated by the predictor π̂M(t∗|xi),
whereM is a method obtained by using the training data D\D, where D is the set
of observations used for testing. Let in the following apply |D| = nT and |D\D| = n.
Then the integrated Brier-score is calculated by

ˆIBS(t0) =
∫ t0

0
[n−1
T

nT∑
i=1

(I(ti > t∗)− π̂Mi (t∗|xi))2]dW (t∗). (11)

The mean squared error I(ti > t∗)− π̂Mi (t∗|xi) indicates whether π̂Mi (t∗|xi) is a
good estimator for the probability P (ti > t∗|xi). Here I is the indicator function,
which gives 1 if ti > t∗ and 0 otherwise. To consider all times up to t0 the integrated
Brier-score integrates the expected mean squared error up to the time t0, where
W is a weighting function. The smaller the integrated Brier-score, the better the
prediction performance. A value of 0.25 means that the prediction has not taken
any information into account and is therefore called the data independent value in
the following. For the integrated Brier-score we will further use the abbreviation
ibrier.

2.3.2 C-Index

The c-index evaluates the discrimination of a model M. Again D is the set
of observations used for testing with |D| = nT and I is the indicator function.
Furthermore π̂Mi (t∗|xi) is the estimate for the probability P (ti > t∗|xi) and Ni(t∗i)
is defined by Ni(t∗i) = I[ti ≤ t∗, δi = 1]. Then the c-index can be calculated by

Ĉ(t) =
1
n2
T

∑nT
i=1

∑nT
k=1 I[π̂M(t∗|xi) > π̂M(t∗|xk)]I[ti < tk]Ni(t∗)

1
n2
T

∑nT
i=1

∑nT
k=1 I[ti < tk]Ni(t∗)

. (12)

24

2.3 Evaluation measures 2 Background

The c-index thus describes the ratio of concordant pairs among all concordant
or discordant pairs. To consider not only those pairs of which the status concordant
and discordant is known, Herrmann et al. (2020) uses a special case of inverse
probability-of-censoring weighting (IPCW) based concordance statistics as described
in Uno et al. (2011). A value of 0.5 corresponds to a random prediction without
using any information from covariates, which in the survival context corresponds
to the Kaplan-Meier estimator. A learner which takes certain features into account
should therefore at least perform better than the baseline method which does not
use covariates. For the c-index, the higher the value, the better the prediction, so
a learner should at least have a value above 0.5. For the c-index we will use the
expression cindex in the following.

2.3.3 Best learner environment

Inspired by Westphal and Brannath (2020), which compares different selection
rules within a benchmark study, an indicator was introduced for this work, which
not only considers the best performing learner of a dataset and thus further infor-
mation might be lost, but also indicates which learner performs similarly well as the
learner with the best performance. Therefore, a learner i is defined as in the 0.05
environment of the best performing learner if

|ϑi − ϑbest|
ϑbest

< 0.05, (13)

with ϑi as performance measure (cindex or ibrier) for any learner i and ϑbest as per-
formance measure for the learner with the best average performance. The procedure
is exemplified in figure 1.

25

2 Background 2.3 Evaluation measures

Figure 1: Illustration of the 0.05 environment calculation for cindex. Colors indicate the
learner’s performance - best performing learner measured on the mean cindex (orange),
in the 0.05 environment of the best performing learner (blue), not within the 0.05 envi-
ronment (gray).

The orange dot represents the best performing learner for each dataset and
the blue dots are learners that are in the 0.05 environment of the best performing
learner. All other learners are indicated as gray dots. For example, the dataset
ESCA has one best performing learner and two learners that perform nearly as well
as the best one. For the dataset COAD instead, the best learner has a cindex much
higher than the other learners. Therefore, only the best learner itself is taken into
account. However, it should be mentioned that the threshold of 0.05 for the best
learner environment is a degree of freedom by the researcher. When comparing
different learners in the following analysis, not only the mean performance of the
learners is often considered but also the number of datasets for which the learners
were in the 0.05 environment of the best learner. The goal of this approach is to
compare different learners and to identify not only the learner that has the best
mean performance across all datasets, but also those which often perform very
well. For example, if a learner does not have the best average mean cindex but was
in the environment of the best learner for most datasets, then one can conclude

26

2.3 Evaluation measures 2 Background

that this learner is not the best possible learner, but a very good learner for the
given setting. It is possible that such a learner could be preferred if it has desired
properties such as interpretability of the resulting model, but the best performing
learner has not.

27

3 Failure imputation 3.1 Imputation difficulty

3 Failure imputation

In the following chapter, the problem of algorithm failures is explained in more
detail. Different methods to replace algorithm failures are presented and their re-
sults are compared. The aim is to analyse the influence of the choice of a specific
imputation method on the study result.

3.1 Imputation difficulty

When running an algorithm on large amounts of data, it is possible that it fails
and an error message appears, for example due to numerical problems. Since in our
case each learner has run on a dataset more often due to cross-validation iterations,
there are datasets for which the learner has only failed for a part of the iterations
but was successful for the other part. The question now arises how to replace these
missing values of the individual CV iterations so that a learner with missing values
can be compared fairly with a learner without missing values. Simply ignoring the
missing values would unfairly favor the learner with the missing values, since it is
likely to exclude the very values for which estimation is difficult and thus the other
learners without missing values may not perform as well. Therefore, the results
would be biased and a fair comparison between the learners would no longer be
possible. Various imputation methods have been developed to counter this problem,
but the choice of the imputation method is a degree of freedom by the author.

In the benchmark experiment of Herrmann et al. (2020) 13 different learners are
compared with each other. Of these learners, six have at least one failure, while the
other seven have not failed once. Furthermore, among the six learners that failed
there are a few for which the proportion of failures is very high, and others for which
the proportion is very low.
Table 3 shows the applied learners with at least one missing value and the number
and percentage of CV iteration failures for each dataset. Lasso and glmboost are
the learners with the most missing values. However, if we look at the individual
datasets, we can see that there are some datasets for which the learners do not have
any missing values at all, but also those for which they have an extremely high

28

3.1 Imputation difficulty 3 Failure imputation

percentage of missing values. In the case of BRCA, Lasso fails in 100% of the CV
iterations. Prioritylasso fails in only 1% of total cases, but for UCEC in almost a
third.

Lasso glmboost ipflasso prioritylasso fav grridge prioritylasso
BLCA 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
BRCA 25 (100%) 13 (52%) 2 (8%) 0 (0%) 0 (0%) 0 (0%)
COAD 21 (42%) 17 (34%) 15 (30%) 0 (0%) 0 (0%) 1 (2%)
ESCA 34 (68%) 24 (48%) 5 (10%) 0 (0%) 4 (8%) 0 (0%)
HNSC 2 (8%) 0 (0%) 1 (4%) 0 (0%) 1 (4%) 0 (0%)
KIRC 0 (0%) 0 (0%) 0 (0%) 10 (20%) 0 (0%) 0 (0%)
KIRP 12 (24%) 10 (20%) 3 (6%) 0 (0%) 1 (2%) 0 (0%)
LAML 23 (46%) 12 (24%) 10 (20%) 0 (0%) 0 (0%) 0 (0%)
LGG 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
LIHC 12 (24%) 13 (26%) 28 (56%) 0 (0%) 0 (0%) 0 (0%)
LUAD 3 (12%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
LUSC 17 (68%) 9 (36%) 6 (24%) 0 (0%) 0 (0%) 1 (4%)
OV 31 (62%) 12 (24%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
PAAD 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
SARC 3 (6%) 2 (4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
SKCM 19 (38%) 16 (32%) 1 (2%) 0 (0%) 0 (0%) 0 (0%)
STAD 12 (24%) 9 (18%) 0 (0%) 0 (0%) 4 (8%) 0 (0%)
UCEC 11 (44%) 5 (20%) 0 (0%) 4 (16%) 0 (0%) 7 (28%)
total 226 (31%) 143 (20%) 71 (10%) 14 (2%) 10 (1%) 9 (1%)

Table 3: Applied learners with the total number and proportion of CV iteration failures
per dataset. Only the learners with at least one missing value are shown.

On the one hand, the difficulty of imputation lies in not presenting the learner
better or worse than it actually is and on the other hand one would like to take
into account the proportion of missing values. For example, if for a specific dataset
Learner A has the same mean value (without taking NA values into account) as
Learner B, but Learner A fails in only 2% of CV iterations and Learner B fails in
30% of CV iterations, it seems unfair to replace the NAs of both Learners with the
same value. In the following chapter the different imputation methods are presented
and it is shown how the missing values are replaced and how or if the proportion of
missing values is included.

29

3 Failure imputation 3.2 Imputation methods

3.2 Imputation methods

Four different imputation methods are compared. Two naive methods which
ignore the proportion of failures and two differentiating methods which take the
proportion into account. Since the goal of this section is to compare the performance
of the learners for the different imputation methods, only the missing values for ibrier
and cindex are replaced.

3.2.1 Naive methods

The first method, which we will call the mean value method in the following,
simply replaces the missing values with the mean value of the CV iterations for
which the learner did not fail. LetM be the set of indices of not failed CV iterations,
then the missing values for cindex and ibrier are replaced by

IMcindex,ibrier =
∑
m∈M xm
|M |

, (14)

with xm cindex resp. ibrier for the CV iteration m. However, this ap-
proach can lead to the learner being presented in a better way than it actually is,
since the missing values are simply replaced by the values that are easier to estimate.

Another naive method is the data independent method. Here every CV iteration
failure is replaced by the data independent value (0.5 for cindex and 0.25 for ibrier).
So, the imputation values for cindex and ibrier are determined by

IDcindex = 0.5 IDibrier = 0.25. (15)

However, replacing the missing values with the data independent values may result in
the learner being presented worse than it is. If, for example, a learner performs well
but fails for some CV iterations, this imputation method can cause its performance
to decrease considerably.

30

3.2 Imputation methods 3 Failure imputation

3.2.2 Differentiating methods

The first differentiating method considers the proportion of missing values by
setting a threshold. This means that if the proportion of missing values is below
the set threshold, the missing values are replaced by the mean value of the CV
iterations that did not fail. If the proportion of missing values is higher than the
defined threshold, the missing values are replaced by the data-independent values
(0.5 for cindex and 0.25 for ibrier). This method is therefore a combination of the
mean value and data independent method. In the following r is the proportion of
the missing values, T the set threshold, M is the set of indices of the not failed
CV iterations and xm the cindex or ibrier value of the CV iteration m. Then the
imputation values are calculated by:

ITcindex =


∑

m∈M xm

|M | , r < T

0.5, r > T
ITibrier =


∑

m∈M xm

|M | , r < T

0.25, r > T.
(16)

A common value for the threshold is 20% as defined in Probst et al. (2019)
and Bischl et al. (2013). This threshold was also applied in the paper by Her-
rmann et al. (2020) on which this work is based on. However, it should be
mentioned that the value of the threshold is an additional degree of freedom of the
author. The influence of the choice of the threshold is discussed in more detail below.

An alternative differentiating imputation method was developed in this thesis
and is called the weighted method in the following. The goal of this method is to
avoid the degree of freedom of the threshold. This means that if a learner has many
missing values, this learner is automatically weighted worse than a learner with a
few number of missing values. If in the following r is again the proportion of missing
values, M the set of indices of the not failed CV Iterations and xm is the cindex or
ibrier value of the CV iteration m, then the imputation value is calculated by

IWcindex = 0.5 + (
∑
m∈M xm
|M |

− 0.5)+ · (1− r) (17)

IWibrier = 0.25− (0.25−
∑
m∈M xm
|M |

)+ · (1− r). (18)

31

3 Failure imputation 3.3 Results

Three important features are included in this calculation. The first two features
are included in the term (

∑n−m
i=1 xi

n−m −0.5)+. This term causes that if the mean cindex
for all CV iterations which did not fail is 0.5, then the imputation value automatically
remains at 0.5. In addition, this term refers to the case that if a learner has a mean
value less than 0.5 for the not failed CV Iterations, these values are uniformly set to
0.5, since all values below 0.5 are not relevant in this context. The same holds for
ibrier with 0.25. The third feature (1− r) causes that if a learner has 100% failures
for a dataset, then the missing values are all replaced by 0.5 for cindex and 0.25 for
ibrier.

3.3 Results

In the following section the performance of the learners is presented using the
ibrier and cindex. First, the performance of the learners is compared between the
different imputation methods and then the imputation method by setting a threshold
is discussed in more detail. Finally, it is analysed how the performance of certain
learners changes if zero values, obtained for the cindex, are treated as missing values.
For the comparison between the different methods, a default threshold of 20% is
chosen.

3.3.1 Comparison of different methods

Figure 2 shows the performance based on the ibrier of the individual learners per
imputation method aggregated over all datasets. The color of the lines indicates the
proportion of failures per learner over all datasets. The largest differences between
the imputation methods can be seen for the learners ipflasso, glmboost and Lasso.
While the data Independent method presents these learners worse than the other
methods, the mean value method presents them better. The method by setting
the threshold at 20% for Lasso and glmboost is very similar to the data indepen-
dent method, because these learners for the individual datasets predominantly show
failures in more than 20% of the CV iterations (see table 3). Interesting are also
the different ranks of the ipflasso. For the data independent method ipflasso would
be ranked sixth, while for the mean value method it would be the best performing
learner. The method with the threshold at 20% places ipflasso on rank five and the

32

3.3 Results 3 Failure imputation

weighted method on rank two. Although prioritylasso fails in only 1% of total itera-
tions, some differences can be observed. In this case the method with the threshold
at 20% is almost equal to the data independent method, because for the dataset
where most failures occurred prioritylasso failed in almost 30%. So, if the threshold
would be set at 30% the method after threshold would be the same as the mean
value method for ipflasso. The weighted method seems to be a compromise between
the mean value method and the data independent method for all learners.

Figure 2: Performance comparison for different imputation methods - ibrier. Colors indi-
cate the total percentage of failures: 0% (gray), below 5% (purple), below 10% (green),
below 20% (blue), above 20% (orange).

Figure 3 shows the same setting for the cindex. The differences between the
imputation methods are much smaller than for ibrier. The performance of the
learners is estimated to be approximately the same by all imputation methods. The
ranks also remain the same. However, Lasso and glmboost are rated worse for the
mean value method than for all other methods. This is due to the fact that Lasso
and glmboost usually have an average cindex below 0.5 for datasets with many
missing values. For these cases all other methods assign the value 0.5 to Lasso and
glmboost and only the mean value method assigns values below 0.5.

33

3 Failure imputation 3.3 Results

Figure 3: Performance comparison for different imputation methods - cindex. Colors
indicate the total percentage of failures: 0% (gray), below 5% (purple), below 10% (green),
below 20% (blue), above 20% (orange).

It should also be mentioned that in figure 2 and 3 the performance of the learners
was shown aggregated across all datasets. However, an interesting example results
if we look at the dataset UCEC separately. Here Lasso has 44%, prioritylasso 28%,
glmboost just under 20%, prioritylasso favoring 16% and ipflasso and grridge 0%
missing values. Figure 4 shows the performance of the learners for the different
imputation methods for ibrier (A) and cindex (B). The differences for ibrier are
substantial. For Lasso and prioritylasso, the 20% threshold method is the same as
the data independent method, while for all other learners it equals the mean value
method. If for example the threshold was set to 15%, then prioritylasso favoring
and glmboost would also match the data independent method and would have a
worse performance. The weighted method is again a compromise between the data
independent and mean value method. Cindex seems to be more robust between the
imputation methods. However, it is interesting to note that Lasso has 16% more
failures than prioritylasso, but the values between the imputation methods differ
less than the values for prioritylasso. The reason for this is that the mean value

34

3.3 Results 3 Failure imputation

(without consideration of the failures) for Lasso is 0.55 and for prioritylasso 0.69.
This means that the better the learner, i.e. the further the mean value of the not
failed iterations deviates from 0.5, the more the learner is affected by the different
imputation methods.

Figure 4: Performance comparison for different imputation methods for dataset UCEC -
A: ibrier, B: cindex. Colors indicate the total percentage of failures: 0% (gray), below 5%
(purple), below 10% (green), below 20% (blue), above 20% (orange).

If the focus is only on the best performing learner per dataset (measured on the
mean ibrier or cindex), the differences are hardly noticeable. Table 4 shows the best
learners per dataset for ibrier.

35

3 Failure imputation 3.3 Results

data independent mean value threshold 20% weighted
BLCA CoxBoost fav 0.190 CoxBoost fav 0.190 CoxBoost fav 0.190 CoxBoost fav 0.190
BRCA blockForest 0.141 blockForest 0.141 blockForest 0.141 blockForest 0.141
COAD blockForest 0.087 Lasso 0.086 blockForest 0.087 blockForest 0.087
ESCA ipflasso 0.214 ipflasso 0.209 ipflasso 0.209 ipflasso 0.210
HNSC glmboost 0.202 glmboost 0.202 glmboost 0.202 glmboost 0.202
KIRC ipflasso 0.144 ipflasso 0.144 ipflasso 0.144 ipflasso 0.144
KIRP ranger 0.118 ranger 0.118 ranger 0.118 ranger 0.118
LAML ranger 0.182 ranger 0.182 ranger 0.182 ranger 0.182
LGG Lasso 0.145 Lasso 0.145 Lasso 0.145 Lasso 0.145
LIHC ranger 0.146 ranger 0.146 ranger 0.146 ranger 0.146
LUAD CoxBoost fav 0.172 CoxBoost fav 0.172 CoxBoost fav 0.172 CoxBoost fav 0.172
LUSC grridge 0.210 grridge 0.210 grridge 0.210 grridge 0.210
OV ipflasso 0.169 ipflasso 0.169 ipflasso 0.169 ipflasso 0.169
PAAD Clinical only 0.190 Clinical only 0.190 Clinical only 0.190 Clinical only 0.190
SARC rfsrc 0.179 glmboost 0.179 glmboost 0.179 glmboost 0.179
SKCM Clinical only 0.191 Clinical only 0.191 Clinical only 0.191 Clinical only 0.191
STAD Clinical only 0.192 Clinical only 0.192 Clinical only 0.192 Clinical only 0.192
UCEC ipflasso 0.091 ipflasso 0.091 ipflasso 0.091 ipflasso 0.091

Table 4: Best performing learners and corresponding ibrier per dataset and imputation
method. The mean ibrier is obtained by averaging over all CV-Iterations.

There are only two datasets for which the best learner for one imputation method
differs from the others (written in bold). For COAD Lasso has missing values in 42%
of CV iterations. For the remaining iterations, however, there is a good mean ibrier
value of 0.086, which is used for the mean value method to replace the missing values.
The data independent and threshold methods replace the missing values with 0.25
and the weighted method with 0.25− (0.25− 0.086) · (1− 0.42) · I0.086<0.25 = 0.155.
Therefore, for all methods except the mean value method blockForest is the better
learner with a mean ibrier of 0.087. For SARC the situation is the other way around
for the data independent method. Since glmboost fails for only 2 iterations (4%)
and otherwise has the best ibrier score (0.179), the missing values of glmboost are
replaced with good ibrier values for all methods except the data independent method.
The data independent method replaces all missing values with 0.25, which increases
the mean ibrier for glmboost and therefore rfsrc is considered as the best learner.
It is also interesting that ipflasso is the best learner for all imputation methods
for the dataset ESCA, although ipflasso fails in 10% of CV iterations. The reason
for this is that the mean value of the not failed CV iterations is much better than
the mean ibrier values of all other learners, so ipflasso is still better than the other

36

3.3 Results 3 Failure imputation

learners, even if the missing values are replaced with 0.25. For all other datasets, the
respective best learner has no missing value for this particular dataset. For LGG,
for example, Lasso is the best performing learner. Although Lasso has the most
failures of all learners, it has not a single failure for this dataset and performs very
well and is therefore defined as the best learner by all imputation methods. For
the 20% threshold and the weighted method there is no difference if only the best
learner is considered.
Similar results are obtained for cindex. Here the best learners differ only for the
dataset UCEC, because the mean value method determines the learner prioritylasso
with 28% failures as the best learner, whereas all other methods determine the Cox
model as the best model. See Figure 4, where the UCEC dataset is visualized in
detail. For all other datasets, the same best learner is obtained across all applied
imputation methods.

3.3.2 Comparison of different thresholds

In this section the influence of the choice of the threshold is examined. The
thresholds 5%, 10%, 20%, 30% and 50% are considered. This means, for example,
for a threshold of 10%, if a learner fails for a specific dataset in less than 10% of the
CV iterations, the missing values are replaced by the mean value of the not failed
CV iterations. However, if the learner fails in more than 10% of the CV iterations,
the missing values are replaced by the data independent values (0.5 for cindex and
0.25 for ibrier).

For the benchmark experiment six learners have missing values. Table 5 shows
the learners with the percentage of failed CV iterations across all datasets. The third
column shows the mean cindex (A) and ibrier (B) for a threshold of 20% and columns
four to seven show the differences of the mean cindex resp. ibrier for the different
thresholds. As expected, for cindex, the mean values of the threshold at 5% and 10%
have a negative difference to the threshold at 20% for the Learner Lasso, glmboost,
ipflasso and prioritylasso favoring. This means that these methods would classify the
learner worse, because the threshold at which the data independent value is assigned
is lower. Nevertheless, the maximum difference of -0.004 for prioritylasso favoring
is quite small. For grridge and prioritylasso there is no difference to threshold 20%.

37

3 Failure imputation 3.3 Results

One would intuitively expect that the imputations after threshold 30% and 50%
would only show positive differences, i.e. that the learners would have a better
overall assessment. However, since for most datasets for which the learners have a
large proportion of missing values, they have a mean value below 0.5 for the CV
iterations that did not fail. Therefore, missing values are replaced with a value below
0.5 and are thus rated even worse than with a threshold of 20%. Only prioritylasso
is rated better by both the 30% and 50% thresholds, since prioritylasso has 28%
failures for the UCEC dataset, but apart from that has a good mean cindex. If only
these six learners were compared, despite the differences, all five thresholds would
classify the learner prioritylasso favoring as the best learner for cindex.

A
differences to threshold 20%

failures (%) threshold 20% 5% 10% 30% 50%
Lasso 31.2% 0.542 -0.001 0 +0.002 -0.001
glmboost 19.7% 0.538 -0.001 -0.001 -0.001 -0.008
ipflasso 9.8% 0.573 -0.002 -0.002 -0.003 -0.003
prioritylasso fav 1.9% 0.607 -0.004 -0.004 0 0
grridge 1.4% 0.584 0 0 0 0
prioritylasso 1.2% 0.590 0 0 +0.002 +0.002

B
differences to threshold 20%

failures (%) threshold 20% 5% 10% 30% 50%
Lasso 31.2% 0.198 +0.001 0 -0.004 -0.013
glmboost 19.7% 0.189 +0.003 +0.003 -0.003 -0.009
ipflasso 9.8% 0.178 +0.002 +0.001 -0.003 -0.003
prioritylasso fav 1.9% 0.182 +0.001 +0.001 0 0
grridge 1.4% 0.182 0 0 0 0
prioritylasso 1.2% 0.180 0 0 -0.002 -0.002

Table 5: Differences for various thresholds - A: cindex, B: ibrier. The second column
shows the percentage of missing values across all datasets for the corresponding learners.
The third column shows the mean cindex resp. ibrier aggregated over all CV iterations
and datasets for the threshold at 20%. Columns three to seven show the difference of the
cindex reps. ibrier between the respective thresholds and the threshold at 20%.

38

3.3 Results 3 Failure imputation

Since hardly any learner has a mean ibrier value greater than 0.25 for the
CV iterations that did not fail, all thresholds greater than 20% rate the learners
better and all thresholds below that rate the learners worse. The largest difference
of -0.013 is for Lasso at a threshold of 50%, which is a change of about 7%.
Nevertheless, ipflasso would always be rated as best learner despite the different
thresholds.

If only the learners with at least one missing value are compared with each other
per dataset and the focus is on the best performing learner, then there are only
slight differences. For the dataset COAD, the threshold at 50% chooses Lasso as
best learner, since it has 42% failures and the mean value for the CV failures that
did not fail is very good. All other thresholds rate grridge as best learner. This
difference, however, only occurs for ibrier. For cindex all 5 thresholds choose grridge
as best learner. For the dataset LAML there are differences for ibrier and cindex.
Here, all thresholds from including 20% for ibrier and cindex rate ipflasso as the
best learner. The thresholds below 20% choose grridge for ibrier and prioritylasso
for cindex. The last difference occurs for UCEC, but only for cindex. Here the
thresholds at 30% and 50% choose prioritylasso as best learner and all thresholds
below choose ipflasso. For the ibrier ipflasso is the best learner for all thresholds.

3.3.3 Zero values as missing values

For a few learners, especially CoxBoost, it has occurred that cindex has a value
of zero. For the boosting learners, this is the case if mstop is set to 0 for the affected
iterations. This means that the resulting model contains no variables, therefore no
cindex can be calculated, ibrier, however does. The question now is how such zero
values should be handled. On the one hand, there is the possibility to leave the zero
values just like that and consider them as zeros, and on the other hand, these values
could be considered as missing values and thus have to be replaced. Table 6 gives
an overview of the learners with the corresponding total number and proportion of
zero values per datasets. Especially learners, which also have missing values, are
affected. CoxBoost however does not have a single missing value, but a total of
207 (29%) CV iterations for which the cindex is zero. As shown in table 6, there

39

3 Failure imputation 3.3 Results

are datasets for which CoxBoost does not have a single zero value (BLCA, KIRC
and LGG) and then again there are datasets for which CoxBoost has zero values
for more than half of the CV iterations (BRCA, COAD, ESCA and OV). All other
learners always have a proportion of zero values below the 20% threshold for each
dataset.

CoxBoost glmboost Lasso ipflasso prioritylasso CoxBoost fav
BLCA 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
BRCA 16 (64%) 2 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
COAD 27 (54%) 6 (12%) 3 (6%) 0 (0%) 0 (0%) 0 (0%)
ESCA 33 (66%) 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%)
HNSC 1 (4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
KIRC 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (2%)
KIRP 14 (28%) 0 (0%) 1 (2%) 2 (4%) 0 (0%) 0 (0%)
LAML 20 (40%) 0 (0%) 2 (4%) 1 (2%) 1 (2%) 0 (0%)
LGG 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
LIHC 11 (22%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
LUAD 2 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
LUSC 12 (48%) 2 (8%) 1 (4%) 1 (4%) 0 (0%) 0 (0%)
OV 35 (70%) 7 (14%) 3 (6%) 0 (0%) 0 (0%) 0 (0%)
PAAD 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
SARC 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
SKCM 17 (34%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
STAD 10 (20%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
UCEC 7 (28%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
total 207 (29%) 18 (2%) 11 (2%) 4 (1%) 1 (0%) 1 (0%)

Table 6: Applied learners with the total number and proportion of zero values per dataset.
Only the learners with at least one zero value are shown.

If the zero values are considered as missing values, then the number and
proportion of missing values per dataset and learner increases. This means for the
differentiating imputation methods, that there may now be learners which exceed
the threshold more frequently or are now assessed worse by the weighted method.
For this specific benchmark experiment, however, this is hardly noticeable, since
CoxBoost previously had no missing values and the other learners have only a small
number of zero values.

Since mainly CoxBoost is affected by the difficulty of zero values, the following
analysis will focus on CoxBoost and its performance changes due to different han-
dlings of zero values. For the performance change for glmboost, Lasso and ipflasso

40

3.3 Results 3 Failure imputation

see figure 21 in the appendix. Figure 5 shows the performance of CoxBoost, for the
case when zero values are kept as zero values (gray) and for the different imputation
methods when zero values are treated as missing values. Since CoxBoost has no
further missing values, only the imputation method by setting a threshold is shown
for the case that the zero values remain zero.

Figure 5: Zero values as missing values - Performance changes for CoxBoost. Each boxplot
includes the cindex of all CV iterations over all 18 datasets for CoxBoost.

As expected, CoxBoost is rated much worse if the zero values are kept as zeros.
For the threshold and weighted methods CoxBoost performs quite similar and has
a median slightly higher than 0.5. For the data independent method, the median
remains at 0.5 while it is again slightly higher for the mean value method, but the
0.25 quantile is lower than for the other methods. This is because CoxBoost has
a mean cindex below 0.5 for certain datasets, so the mean value method replaces
the missing values with a value below 0.5. Considering the mean cindex across all
datasets, CoxBoost has a mean value of 0.405 if the zero values are maintained
as zeros and is therefore the worst performing learner. If the zeros are treated as
missing values, the mean value is 0.548 for the data independent method, 0.541 for
the mean value method, 0.549 for the method at a threshold of 20% and 0.551 for the

41

3 Failure imputation 3.3 Results

weighted method. The weighted method therefore represents CoxBoost best, but
the mean value method is the only method that gives CoxBoost a better rank. Here
CoxBoost not only performs better than Kaplan-Meier, but also as Lasso. This
means that if cindex is aggregated across all datasets, CoxBoost performs worse
than Kaplan-Meier if the zero values are maintained as zeros. If the zero values
are treated as missing values, then CoxBoost performs better than Kaplan-Meier
but still worse than all other learners, except for the mean value method where
CoxBoost also performs better than Lasso.
However, if the individual datasets are considered separately, large changes can
occur. For example, for the dataset LIHC, CoxBoost is the worst performing learner
when zero values are maintained. If the zero values are considered as missing values
and are replaced by the imputation method with a threshold at 20%, CoxBoost
performs better than Lasso, glmboost, prioritylasso, rfsrc, ranger and ipflasso. So,
if the goal is to compare the performance of different learners for certain datasets,
it is very important how zero values are treated.
Overall, CoxBoost is much better represented if the zero values are treated as missing
values. However, it is not possible to determine which method is the correct one.
Therefore, it is very important not only to give the mean cindex, but also the
number of zero values and missing values and to document exactly how zero values
were handled and which imputation method was used.

In this section it was shown that the method of replacing the missing values has
an influence on the performance of the learner. The mean value method can lead a
learner with a lot of CV iteration failures to becoming one of the best learners, if
the mean value of the not failed iterations is very good. However, this method can
also lead to a learner being rated worse than all other imputation methods. This is
the case if a learner has a mean value below 0.5 for cindex or above 0.25 for ibrier
for the iterations that did not fail. Replacing the failures with the data independent
method can cause, that a learner that has just a few number of failures and apart
from that performs well, to be rated quite bad. An example for this is glmboost
for the dataset SARC. When using the imputation method by setting a threshold,
attention should be paid to what exactly the threshold is set. It was shown that a

42

3.3 Results 3 Failure imputation

high threshold does not automatically mean that a learner is rated better than if the
threshold is set low. Nevertheless, the choice of the threshold remains an additional
degree of freedom. This degree of freedom is not present in the weighted method.
This method often turned out to be a compromise between the mean value and the
data independent method taking into account the proportion of failed CV iterations.
Furthermore, the influence of the imputation method also depends on the robustness
of the performance measure. Ibrier is obviously more sensitive than the cindex.
In addition, the size of the difference between the methods also depends on the
performance of the learner. The further the performance of the learner deviates from
the data independent values, the greater the influence of the imputation method.
If the individual datasets are considered separately and the performance of individual
learners is of interest, it is important which imputation method is used. However, if
the focus is only on the best performing learner, only slight differences arise between
the different imputation methods and thresholds. If one compares different learners
for certain datasets with each other and zero values for the cindex occur, one should
carefully consider how these zero values are treated.
To achieve a transparent comparison of different learners, a detailed documentation
is always necessary for the handling of zero and missing values.

43

4 Multiplicity of analysis strategies 4.1 Analysis across all datasets

4 Multiplicity of analysis strategies

The aim of this chapter is to draw attention to how different analysis strategies
may lead to different study results. For this purpose, the performance of the learners
is analysed on different levels. First, the performance is evaluated across all datasets,
then the learners are evaluated according to certain characteristics of the dataset
(e.g. for large resp. small datasets) and after that the performance of the learners
is evaluated according to certain characteristics of the learner (e.g. membership
to the different modeling approaches). A detailed analysis for each dataset and
learner follows and finally a test statistic was applied which compares the mean
performance of the individual learners and tests for statistical significance. For the
following analysis, the imputation method by setting the threshold at 20% is used
as default. In addition, the zero values for CoxBoost are maintained as zeros and
are therefore not replaced.

4.1 Analysis across all datasets

Within each evaluation measure there are different possibilities to identify the
best performing learner. In the following, in addition to the mean cindex resp. ibrier,
the median, the number of datasets for which the learner was best performing learner
(measured by the mean value), the number of datasets for which the learner was
in the 0.05 environment of the best performing learner and the average rank are
considered. Table 7 shows the results for the cindex. Here blockForest has the
highest cindex mean and the best average rank. In total, blockForest was the best
performing learner for 4 datasets just like the simple Cox model. However, if the
median of the cindex is considered, the simple Cox model comes out better and is
followed by CoxBoost favoring. If one is interested in the number of datasets for
which the learner is the best learner or in the 0.05 environment of the best learner,
CoxBoost favoring is in first place with a number of 15 datasets, followed by the
Cox model and then blockForest.

44

4.1 Analysis across all datasets 4 Multiplicity of analysis strategies

mean median best/ 0.05 env rank
blockForest 0.6215 0.6256 4/ 12 3.6
Clinical only 0.6167 0.6309 4/ 14 3.8
CoxBoost fav 0.6142 0.6259 2/ 15 3.8
prioritylasso fav 0.6066 0.6210 2/ 11 4.9
prioritylasso 0.5901 0.5990 2/ 4 6.3
grridge 0.5840 0.5860 1/ 8 6.2
ipflasso 0.5732 0.5859 0/ 6 7.0
rfsrc 0.5690 0.5615 1/ 2 8.3
ranger 0.5646 0.5598 1/ 2 8.4
Lasso 0.5424 0.5000 0/ 4 8.5
glmboost 0.5381 0.5379 1/ 4 8.3
Kaplan-Meier 0.5000 0.5000 0/ 0 10.9
CoxBoost 0.4054 0.5003 0/ 2 11.0

Table 7: Learner performances across all datasets - cindex. Column two shows the mean
cindex which is obtained by averaging over all CV iterations and datasets. The "median"
column shows the median of the cindex. The fourth column shows the number of datasets
for which the learner is the best performing learner according to the mean cindex and the
number of datasets for which the learner is in the 0.05 environment of the best performing
learner. The last column shows the average rank.

Table 8 shows the results for ibrier. Although blockForest has the best mean
value, for almost each additional measure there is at least one other learner that
scores better. For the median CoxBoost favoring and Cox model have a lower and
therefore better value than blockForest. Looking at the number of datasets for
which the learner was the best performing learner, ipflasso is in first place with four
datasets, followed by Cox model and ranger with three datasets. Considering the
number of datasets for which a learner performs almost as well as the best learner,
blockForest and the simple Cox model come first. Overall ipflasso has the lowest
average rank. So, for the ibrier almost every possible rating category result in a
different learner as best performing learner.

45

4 Multiplicity of analysis strategies 4.1 Analysis across all datasets

mean median best/ 0.05 env rank
blockForest 0.1721 0.1779 2/ 12 5.3
CoxBoost fav 0.1752 0.1725 2/ 9 5.2
CoxBoost 0.1756 0.1799 0/ 6 6.2
Clinical only 0.1757 0.1736 3/ 12 5.2
ranger 0.1777 0.1824 3/ 6 7.3
ipflasso 0.1777 0.1806 4/ 10 4.8
Kaplan-Meier 0.1797 0.1884 0/ 4 7.6
rfsrc 0.1799 0.1835 0/ 5 8.6
prioritylasso 0.1801 0.1786 0/ 5 7.5
grridge 0.1816 0.1848 1/ 5 7.1
prioritylasso fav 0.1824 0.1774 0/ 6 8.2
glmboost 0.1893 0.1925 2/ 3 8.6
Lasso 0.1977 0.2024 1/ 3 9.6

Table 8: Learner performances across all datasets - ibrier. Column two shows the mean
ibrier which is obtained by averaging over all CV-iterations and datasets. The "median"
column shows the median of the ibrier. The fourth column shows the number of datasets
for which the learner is the best performing learner according to the mean ibrier and the
number of datasets for which the learner is in the 0.05 environment of the best performing
learner. The last column shows the average rank.

The differences between ibrier and cindex are also interesting. For example,
prioritylasso and prioritylasso favoring perform quite good for cindex in terms of
mean and median and become best learner each for two datasets. For the ibrier,
however, they do not become the best learner for any dataset. The average rank
also differs greatly. Another extreme example is CoxBoost. The performance of
CoxBoost is very low for cindex, regardless of how zero values are treated. For
ibrier however it scores quite good and is even on place 3 if only the mean ibrier is
considered.

When comparing different learners, the central question is usually which learner
performs better than all the others. If we look only at the mean value, then for ibrier
and cindex blockForest is the best performing learner. If considering the median,
then for cindex Cox model and for ibrier CoxBoost favoring is the best learner. If we
look at the number of datasets for which the learner has the highest mean cindex,
then blockForest and Cox model are the best, for ibrier ipflasso. If the number

46

4.2 Analysis based on dataset characteristics 4 Multiplicity of analysis strategies

of datasets for which the learner is not only the best learner but also in the 0.05
environment of the best learner is of interest, then for cindex CoxBoost favoring is
first and for ibrier blockForest and the simple Cox model. For the average rank,
blockForest is at the top for cindex and ipflasso for ibrier. After such an analysis it
can be said that blockForest, the simple Cox model, ipflasso and CoxBoost favoring
are good learners for the underlying data, but it does not seem to be possible to
determine one learner that generally performs better than the others.

4.2 Analysis based on dataset characteristics

For the following analysis, the datasets were divided into different groups. The
characteristics number of observations (N), number of clinical features (clin), total
number of features (p) and number of effective cases i.e. events (neff) are considered.
A dataset is assigned to group 1 if the value of the characteristic is less than the
mean value of all datasets and to group 2 if the value is greater than the mean
value. For example, the mean of the number of observations across all datasets is
271, so all datasets with fewer observations are assigned to group 1 and all datasets
with more observations are assigned to group 2. Figure 6 shows four histograms
illustrating the distribution of the cindex across all learners for the different dataset
groups and each characteristic. The largest accumulation of values is at 0.5, since
many missing values have been replaced by 0.5 and Kaplan-Meier only has values of
0.5. For the number of observations N (figure A) and the number of effective cases
neff (figure D), only slight differences between the groups can be observed. For the
number of clinical features (figure B) and the number of features in total (figure C),
the differences in the mean values (dashed lines) are quite large. Considering the
number of clinical features, the learners have better values for the cindex when the
number of features is larger. For the number of features in total the opposite is true.
Here the cindex values are better for a smaller number of features. Furthermore, it
is visible that most of the zero values of the cindex are in the group of the smaller
number of clinical features while for the total number of features most of the zero
values are in the larger group. Now the question arises whether there are learners
which perform particularly well for certain characteristics of the dataset.

47

4 Multiplicity of analysis strategies 4.2 Analysis based on dataset characteristics

Figure 6: Distribution for different dataset groups - cindex. A: number of observations
(N), B: number of clinical features (clin), C: total number of features (p), D: number of
effective cases i.e. events (neff). The histogram shows the cindex of all CV iterations for
the datasets in the respective group. Colors indicate the group, smaller than mean (red),
larger than mean (blue). The dashed lines indicate the mean values of the groups. See
Figure 20 in the appendix for the ibrier.

48

4.2 Analysis based on dataset characteristics 4 Multiplicity of analysis strategies

The following groups of allocations result for the different characteristics:

Number of observations:
Group 1: COAD, ESCA, KIRC, KIRP, LAML, LGG, LIHC, OV, PAAD, SARC,
SKCM
Group 2: BLCA, BRCA, HNSC, LUAD, LUSC, STAD, UCEC

Number of clinical features:
Group 1: BLCA, BRCA, COAD, ESCA, KIRP, LAML, OV, STAD
Group 2: HNSC, KIRC, LGG, LIHC, LUAD, LUSC, PAAD, SARC, SKCM, UCEC

Total number of features:
Group 1: HNSC, KIRC, LAML, LGG, LIHC, PAAD, SARC
Group 2: BLCA, BRCA, COAD, ESCA, KIRP, LUAD, LUSC, OV, SKCM, STAD,
UCEC

Number of effective cases:
Group 1: COAD, ESCA, KIRC, KIRP, LAML, LIHC, PAAD, SARC, STAD,
UCEC
Group 2: BLCA, BRCA, HNSC, LGG, LUAD, LUSC, OV, SKCM

Tables 9 and 10 show the mean cindex and ibrier for the different groups and
the corresponding learners. The last line shows the mean cindex and ibrier across
all learners per group. As seen in figure 6, the mean cindex is considerably better
for a larger number of clinical features than for smaller ones and better for a small
number of total features than for large values. For the ibrier this is exactly the
opposite. For the number of observations and effective cases, the same tendency is
evident for cindex and ibrier.

49

4 Multiplicity of analysis strategies 4.2 Analysis based on dataset characteristics

N clin p neff
< > < > < > < >

Kaplan-Meier 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Clinical only 0.618 0.613 0.588 0.644 0.650 0.593 0.624 0.603
Lasso 0.546 0.533 0.491 0.591 0.612 0.493 0.553 0.522
ipflasso 0.571 0.579 0.530 0.613 0.638 0.528 0.570 0.579
prioritylasso 0.597 0.572 0.562 0.616 0.631 0.561 0.590 0.591
prioritylasso fav 0.612 0.593 0.576 0.636 0.644 0.580 0.610 0.601
grridge 0.590 0.569 0.543 0.623 0.638 0.546 0.588 0.577
glmboost 0.542 0.529 0.483 0.590 0.621 0.479 0.555 0.507
CoxBoost 0.401 0.417 0.281 0.522 0.555 0.299 0.422 0.373
CoxBoost fav 0.617 0.606 0.582 0.644 0.654 0.586 0.615 0.612
blockForest 0.635 0.586 0.600 0.642 0.674 0.585 0.637 0.592
rfsrc 0.584 0.530 0.574 0.565 0.607 0.542 0.585 0.539
ranger 0.580 0.525 0.567 0.563 0.595 0.543 0.571 0.552
mean 0.569 0.550 0.529 0.596 0.617 0.526 0.571 0.550

Table 9: Performance per dataset group - cindex. Bold values indicate the highest cindex
per group. The columns "<" shows the mean cindex for the groups with the smaller values
of the specific dataset characteristic and ">" shows the mean cindex for the groups with
the larger values. The last row shows the mean cindex over all CV iterations and learners
for the specific group.

For the smaller group of each characteristic, blockForest is the best learner for
cindex and ibrier, for the larger groups not even once. For large values of N simple
Cox model is clearly better than the other learners for cindex, but only slightly
better than CoxBoost favoring and ipflasso for ibrier. Considering the datasets
with a large number of clinical features and effective cases, CoxBoost favoring is the
best learner for ibrier and cindex. For a large number of total features, Cox model
performs best for ibrier and cindex. The Cox model, however, only includes clinical
features in the prediction and no multi-omics data. Among the learners which do
consider multi-omics data, CoxBoost favoring is the best learner, but only slightly
better than blockForest.

Looking at how the performance of the individual learners changes for the dif-
ferent groups of datasets, then we can see that for cindex, the largest differences
for the two groups according to N indicate the random forest learners while for the

50

4.2 Analysis based on dataset characteristics 4 Multiplicity of analysis strategies

different sizes of the variable clin especially the boosting and penalised learners are
affected. For the total number of features all learners seem to perform much better
for smaller values. Overall, CoxBoost shows the largest differences. For example,
for group 1 of total number of features, it has a mean cindex of 0.555, while for
group 2 it only reaches a value of 0.299. For ibrier, the random forest learners
have the largest differences between the groups for the variables N , clin and neff .
Among the groups according to p, the penalised learners have the largest differences
between group 1 and 2. For ibrier it is not the performance of CoxBoost that is
most influenced by the characteristics of the datasets, but the performance of the
random forest learners for the variable neff . The difference between each random
forest learner is 0.034. Therefore, they move from the three best performing learners
in group 1 to the worst performing learners with Lasso and glmboost in group 2.

N clin p neff
< > < > < > < >

Kaplan-Meier 0.177 0.186 0.170 0.188 0.190 0.172 0.172 0.194
Clinical only 0.175 0.177 0.174 0.177 0.188 0.167 0.172 0.183
Lasso 0.193 0.210 0.208 0.189 0.187 0.205 0.190 0.213
ipflasso 0.178 0.177 0.173 0.182 0.187 0.171 0.175 0.183
prioritylasso 0.177 0.189 0.177 0.183 0.187 0.175 0.177 0.187
prioritylasso fav 0.182 0.183 0.183 0.182 0.194 0.174 0.180 0.187
grridge 0.180 0.185 0.177 0.185 0.187 0.178 0.176 0.192
glmboost 0.188 0.192 0.195 0.183 0.188 0.190 0.183 0.201
CoxBoost 0.173 0.183 0.173 0.178 0.180 0.172 0.170 0.187
CoxBoost fav 0.174 0.177 0.174 0.177 0.184 0.169 0.172 0.181
blockForest 0.167 0.186 0.165 0.178 0.175 0.170 0.160 0.194
rfsrc 0.173 0.198 0.170 0.189 0.184 0.177 0.168 0.202
ranger 0.171 0.195 0.169 0.186 0.181 0.175 0.166 0.200
mean 0.178 0.187 0.178 0.183 0.186 0.177 0.174 0.193

Table 10: Performance per dataset group for ibrier. Bold values indicate the lowest ibrier
per group. The columns "<" shows the mean ibrier for the groups with the smaller values
of the specific dataset characteristic and ">" shows the mean ibrier for the groups with
the larger values. The last row shows the mean ibrier over all CV iterations and learners
for the specific group.

51

4 Multiplicity of analysis strategies 4.3 Analysis based on learner characteristics

The tendencies of the learners between the individual groups usually remain
the same. There are a few exceptions, such as rfsrc which is the only learner for
cindex that performs better for a small number of clinical variables than for a larger
number, but no learner can be identified that has a completely different tendency
than all other learner.

4.3 Analysis based on learner characteristics

In this section the learners are categorised and analysed according to their mod-
eling approach on the one hand and then, according to the respective handling of the
group structure information. Table 2 gives an overview to which modeling approach
each learner is assigned and how the group structure information is considered. The
aim is to find out if there is a modeling approach or handling of the group structure
which performs generally better than others or the reference models and to examine
the individual learners of a modeling approach or handling of the group structure
to analyse if there is a certain best performing learner within this group of learners.

4.3.1 Analysis of different modeling approaches

Figure 7 shows the performance distribution over all datasets for the respective
modeling approaches. The first thing to notice is that there is no modeling approach
that generally outperforms the simple Cox model (indicated by the red horizontal
line). For cindex the modeling approaches all perform better than Kaplan-Meier
(dashed black line), only the boosting approach has more values below Kaplan-
Meier than the other modeling approaches, but this is due to the fact, that the zero
values of CoxBoost were maintained as zeros. For ibrier the modeling approaches
perform only slightly better than Kaplan-Meier. The variability of the approaches
is very similar and there is no modeling approach that performs on general better
than the others.

52

4.3 Analysis based on learner characteristics 4 Multiplicity of analysis strategies

Figure 7: Comparison of modeling approaches - A: cindex, B: ibrier. The solid red and
dashed black horizontal lines correspond to the median performance of the simple Cox
model and Kaplan-Meier, respectively. Each boxplot includes the cindex resp. ibrier of all
CV iterations over all 18 datasets of the learners which belong to the respective modeling
approach.

Table 11 shows the results of the different modeling approaches. The rows "total"
show the result aggregated or summed up for the entire modeling approach. Here
it can be seen that the random forest methods for cindex and ibrier have the best
overall mean. For cindex these learners are also the best learners for the individual
datasets. For ibrier, the learners of penalised regression perform best for six datasets
and thus more often than all other modelling approaches, although this modelling
approach has the worst mean ibrier. The high number of datasets as best perform-
ing learners is due to the fact that ipflasso belongs to this modeling approach and
performs best for ibrier for most datasets. Considering the other learners belonging
to the penalised regression, prioritylasso and prioritylasso favoring do not perform
best for any dataset and grridge and standard Lasso perform best for one dataset
only. The boosting learners have a clearly worse mean cindex than the other mod-
eling approaches, because of the low cindex values of CoxBoost.
By looking at the individual learners, it becomes clear that blockForest has the best

53

4 Multiplicity of analysis strategies 4.3 Analysis based on learner characteristics

mean cindex and ibrier among the random forest learners. Out of 18 datasets block-
Forest is 15 times better for cindex and 12 times better for ibrier than the other
random forest learners. For cindex, blockForest is also most often the best learner
overall (compared to all other learners), but for ibrier ranger is more often the best
learner overall. For the boosting approaches, CoxBoost favoring is best learner in
all categories. For the penalised approaches, it is not clear which learner performs
better. For cindex, prioritylasso favoring is the best learner compared to the other
penalised learners, whereas for ibrier ipflasso clearly performs best in all categories.

cindex ibrier
mean b_total b_approach mean b_total b_approach

Kaplan-Meier 0.500 0 - 0.180 0 -
Clinical only 0.617 4 - 0.176 3 -

Random Forest
blockForest 0.622 4 15 0.172 2 12
rfsrc 0.569 1 1 0.180 0 2
ranger 0.565 1 2 0.178 3 4
total 0.585 6 - 0.177 5 -

Boosting
CoxBoost fav 0.614 2 15 0.175 2 11
glmboost 0.538 1 3 0.189 2 2
CoxBoost 0.405 0 0 0.176 0 5
total 0.519 3 - 0.180 4 -

Penalised Regression
prioritylasso fav 0.607 2 6 0.182 0 2
prioritylasso 0.590 2 2 0.180 0 0
grridge 0.584 1 5 0.182 1 5
ipflasso 0.573 0 4 0.178 4 9
Lasso 0.542 0 1 0.198 1 2
total 0.579 5 - 0.184 6 -

Table 11: Comparison of modeling approaches. The column "b_total" shows the number
of datasets for which the learner was the best performing learner according to the mean
cindex resp. ibrier compared to all other learners. The column "b_approach" shows the
number of datasets for which the learner was the best, regarding the mean cindex resp.
ibrier within the respective modeling approach. The rows "total" show the respective
values aggregated for the entire modeling approaches.

54

4.3 Analysis based on learner characteristics 4 Multiplicity of analysis strategies

4.3.2 Analysis of different group structure handlings

Figure 8 shows the performance distribution across all datasets for the respec-
tive possibilities to handle group structure information. There is no handling that
generally outperforms the simple Cox model (indicated by the red horizontal line),
but the learners which favor clinical features perform almost as good as the cox
model. For cindex all handlings perform better than Kaplan-Meier (dashed black
line), but for ibrier they are only slightly better and the learners which do not take
the group structure into account are even worse. The variability of the handlings is
very similar, but the learners which do not consider group structure perform clearly
worse than the others for both cindex and ibrier. It seems like in general, the best
performers are the learners which favor the clinical features.

Figure 8: Comparison of group structure handlings - A: cindex, B: ibrier. The solid red and
dashed black horizontal lines correspond to the median performance of the Cox model and
Kaplan-Meier, respectively. Abbreviations: Kaplan-Meier = Kaplan-Meier, Clinical only
= Clinical only, no gs = no group structure, gs fav clin = group structure with favoring
clinical features, gs without fav = group structure without favoring. Each boxplot includes
the cindex resp. ibrier of all CV iterations over all 18 datasets of the learners which handle
the group structure accordingly.

55

4 Multiplicity of analysis strategies 4.3 Analysis based on learner characteristics

Table 12 shows the results of the different handlings for using group structure.
The rows "total" show the results aggregated or summed up for the entire handling.
Comparing the different handlings of the group structure, the learners that favor
clinical features have the highest mean cindex. The best mean ibrier, however, have
the learners that take group structure into account without favoring clinical features.
Within the individual handlings for cindex rfsrc has the highest mean value, but
glmboost is seven times better out of 18 datasets than the other learners which do
not consider group structure and rfsrc only four times. For ibrier, CoxBoost has
the best mean value and performs better than the other learners for eight datasets,
but of these 8 times, CoxBoost does not once become the best learner overall. For
the two learners which favor clinical features, CoxBoost favoring is clearly the best
learner for cindex and ibrier. Within the learners which take group structure into
account without favoring clinical features, blockForest is the best learner for cindex.
For the ibrier blockForest also has the lowest mean value, but ipflasso is more often
best learner within this group of learners and compared to all other learners.

56

4.3 Analysis based on learner characteristics 4 Multiplicity of analysis strategies

cindex ibrier
mean b_total b_group mean b_total b_group

Kaplan-Meier 0.500 0 - 0.180 0 -
Clinical only 0.617 4 - 0.176 3 -

No group structure
rfsrc 0.569 1 4 0.180 0 0
ranger 0.565 1 4 0.178 3 6
Lasso 0.542 0 2 0.198 1 1
glmboost 0.538 1 7 0.189 2 3
CoxBoost 0.405 0 1 0.176 0 8
total 0.524 3 - 0.184 6 -

Favoring clinical features
CoxBoost fav 0.614 2 12 0.175 2 16
prioritylasso fav 0.607 2 6 0.182 0 2
total 0.610 4 - 0.179 2 -

Group structure
without favoring
blockForest 0.622 4 9 0.172 2 7
prioritylasso 0.590 2 2 0.180 0 0
grridge 0.584 1 4 0.182 1 1
ipflasso 0.573 0 3 0.178 4 10
total 0.592 7 - 0.178 7 -

Table 12: Comparison of group structure handlings. The column "b_total" shows the
number of datasets for which the learner was the best performing learner according to the
mean cindex resp. ibrier. The column "b_group" shows the number of datasets for which
the learner was the best, regarding the mean cindex and ibrier within the respective group
structure handling. The rows "total" show the respective values aggregated for the entire
group structure handlings.

For cindex, of all 18 datasets the structured learners perform 11 times better
than the unstructured or the Cox model. For ibrier this is the case for 9 datasets.
In Table 6 in Herrmann et al. (2020) it was shown that when cindex and ibrier are
aggregated across all corresponding learner types (structured/ unstructured), the
structured learners perform better than the unstructured learners for cindex for 17
of 18 datasets and for 14 of 18 datasets for ibrier. It can also be seen in table 12, that
the total mean of the learners which do not take the group structure into account,
is only slightly better than Kaplan-Meier for cindex and even worse for ibrier. This
does not hold for the structured learners.

57

4 Multiplicity of analysis strategies 4.4 Detailed Analysis

4.4 Detailed Analysis

In this subsection the datasets and learners are analysed individually without
categorizing them into specific groups. Figure 9 and 10 show the overall perfor-
mance of the datasets with the performance of the best performing learner. Figure
9 shows the performance for cindex. For the last three datasets (COAD, ESCA
and LUSC) the median of all learners and CV iterations is 0.5. This means, that
half of the cindex values for the CV iterations and learners are worse than those of
Kaplan-Meier. The variance between datasets also differs widely. While LUSC, OV
and HNSC are examples of quite small variances, the variances of COAD, KIRP
and LAML and their best learners are large, probably because these are the three
datasets with the lowest values of effective cases neff . Interesting is also the dif-
ference between the best performing learner and all learners together. For OV and
LUSC, the best learners clearly perform better than the overall performance for the
dataset, while for BLCA or LIHC the difference between the performance of the
best learner and the overall performance is small.

58

4.4 Detailed Analysis 4 Multiplicity of analysis strategies

Figure 9: Performance for individual datasets - cindex. The large light gray boxplot is the
performance over all CV iterations and learners, the small boxplot is the performance of the
best performing learner over all CV iterations. Colors indicate the modeling approaches of
the best performing learner: reference methods (dark gray), random forest (blue), boosting
(green), penalised regression (orange).

Figure 10 shows the same setting for ibrier. The dataset COAD for ibrier has
the lowest and therefore best median with a value of 0.082, although it is one of the
datasets with a median of the data independent value 0.5 for cindex. For ibrier, no
dataset has a median worse or equal the data-independent value 0.25. The highest
median is 0.228 for the dataset ESCA. As for cindex, the datasets LAML and COAD
are the ones with the greatest variance. It seems that the random forest learners
perform better especially for datasets that generally show a good performance of all
learners, while the boosting learners and the Cox model perform better especially
for datasets with a higher ibrier distribution.

59

4 Multiplicity of analysis strategies 4.4 Detailed Analysis

Figure 10: Performance for individual datasets - ibrier. The large light gray boxplot is der
performance over all CV iterations and learners, the small boxplot is the performance of the
best performing learner over all CV iterations. Colors indicate the modeling approaches of
the best performing learner: reference methods (dark gray), random forest (blue), boosting
(green), penalised regression (orange).

Table 13 shows a detailed view of the individual datasets. It shows the total
mean and standard deviation for each dataset for cindex (A) and ibrier (B). In
addition, the best performing learner and the respective mean value are shown. For
comparison, the mean value of the simple Cox model is displayed. The last three
columns show the mean values of the different handlings of the group structure.

60

4.4 Detailed Analysis 4 Multiplicity of analysis strategies

A
total best learner clin only mean

mean sd learner mean mean no gs gs without fav gs fav clin
BLCA 0.596 0.082 CoxBoost fav 0.640 0.633 0.580 0.614 0.628
BRCA 0.543 0.161 CoxBoost fav 0.643 0.637 0.467 0.587 0.619
COAD 0.493 0.249 blockForest 0.656 0.541 0.452 0.507 0.540
ESCA 0.472 0.172 Clinical only 0.574 0.574 0.405 0.483 0.552
HNSC 0.551 0.089 blockForest 0.582 0.554 0.549 0.562 0.561
KIRC 0.688 0.138 Clinical only 0.761 0.761 0.671 0.716 0.730
KIRP 0.544 0.247 rfsrc 0.648 0.572 0.527 0.557 0.567
LAML 0.587 0.241 ranger 0.709 0.596 0.548 0.651 0.599
LGG 0.686 0.104 glmboost 0.749 0.652 0.721 0.692 0.700
LIHC 0.549 0.168 grridge 0.602 0.586 0.530 0.552 0.594
LUAD 0.583 0.106 prioritylasso 0.665 0.663 0.519 0.623 0.661
LUSC 0.467 0.146 prioritylasso fav 0.537 0.531 0.406 0.484 0.536
OV 0.501 0.171 prioritylasso 0.600 0.598 0.393 0.568 0.591
PAAD 0.621 0.113 prioritylasso fav 0.686 0.683 0.581 0.654 0.682
SARC 0.638 0.133 blockForest 0.685 0.673 0.624 0.671 0.659
SKCM 0.535 0.161 blockForest 0.597 0.581 0.478 0.576 0.589
STAD 0.535 0.158 Clinical only 0.598 0.598 0.504 0.545 0.579
UCEC 0.592 0.252 Clinical only 0.686 0.686 0.526 0.652 0.634

B
total best learner clin only mean

mean sd learner mean mean no gs gs without fav gs fav clin
BLCA 0.200 0.023 CoxBoost fav 0.190 0.192 0.203 0.199 0.195
BRCA 0.162 0.040 blockForest 0.141 0.147 0.180 0.150 0.155
COAD 0.107 0.061 blockForest 0.087 0.101 0.114 0.104 0.104
ESCA 0.231 0.051 ipflasso 0.209 0.214 0.233 0.237 0.230
HNSC 0.212 0.023 glmboost 0.202 0.210 0.214 0.211 0.210
KIRC 0.157 0.023 ipflasso 0.144 0.146 0.159 0.153 0.154
KIRP 0.132 0.058 ranger 0.118 0.140 0.133 0.127 0.143
LAML 0.210 0.073 ranger 0.182 0.231 0.211 0.198 0.225
LGG 0.167 0.033 Lasso 0.145 0.168 0.158 0.173 0.161
LIHC 0.167 0.044 ranger 0.146 0.169 0.164 0.171 0.170
LUAD 0.189 0.028 CoxBoost fav 0.172 0.172 0.199 0.185 0.173
LUSC 0.223 0.023 grridge 0.210 0.216 0.231 0.221 0.218
OV 0.179 0.026 ipflasso 0.169 0.173 0.189 0.172 0.173
PAAD 0.200 0.034 Clinical only 0.190 0.190 0.205 0.199 0.192
SARC 0.191 0.042 glmboost 0.179 0.202 0.180 0.191 0.208
SKCM 0.208 0.024 Clinical only 0.191 0.191 0.221 0.204 0.192
STAD 0.204 0.031 Clinical only 0.192 0.192 0.211 0.201 0.196
UCEC 0.107 0.047 ipflasso 0.091 0.092 0.115 0.105 0.098

Table 13: Detailed analysis of individual datasets - A: cindex, B: ibrier. The second
and third column show the total mean and standard deviation over all learners and CV
iterations. The columns "best learner" show the best learner with the corresponding mean.
The column "clin only" shows the mean for the Cox model. The last three columns show
the mean per handling of group structure. All means are obtained by averaging over all CV
iterations. Abbreviations: clin only: Cox model, no gs: no group structure, gs without fav:
group structure without favoring clinical features, gs fav clin: favoring clinical features.

61

4 Multiplicity of analysis strategies 4.4 Detailed Analysis

Looking first at the performance of the Cox model over the different datasets,
one can see a similarity with the performance of the learners which favor the clinical
features. The Cox model almost always performs best when the learners, which
favor the clinical features perform best compared to the other group structure
handlings. On the contrary, the Cox model is outperformed by at least two groups
of learners that take into account the group structure of the multi-omics data for the
datasets HNSC, LAML and LGG for cindex. For ibrier, this is the case for KIRP,
LAML, LGG and SARC. Looking at the performance of the learners which favor the
clinical features for these datasets, it can be seen that at least one different handling
of the group structure outperforms these learners. One could therefore assume that
the Cox model often performs similarly to the learners, which favor the clinical
features. Using a correlation test, the correlation between the cindex of the Cox
model and the learners which favor the clinical features is 0.892 and for ibrier 0.965,
with a p-value far below 0.05. It is questionable whether there are certain features
of a dataset for which the Cox model or the learners which favor the clinical features
outperform the other learners. Looking at the individual datasets for which either
the Cox model or a learner that favors clinical features performs best for at least
one of the performance measures, the mean value of total features is 99858 whereas
the mean is 97497 for datasets where another learner performs best. Therefore, one
could assume that, especially for a high number of features in total, it would be
better to favor clinical features or only to consider the clinical features (see table
1 for the number of total features per dataset). This assumption would also be in
accordance with table 9 and 10, where it was shown, that CoxBoost favoring and
the simple Cox model have the best mean cindex resp. ibrier for datasets with a
large value of total features. A similar assumption can be drawn for the number
of observations, since the average number of observations for datasets where the
Cox model or a learner that favors clinical features performs best is 339, whereas
the mean for the datasets for which none of these learners performs best is 186.
However, there are also exceptions to these assumptions, such as the datasets COAD
and KIRP, where the total number of features exceeds 100000, but neither the Cox
model nor a learner that favors the clinical features perform best for ibrier or cindex.

62

4.4 Detailed Analysis 4 Multiplicity of analysis strategies

If we now look at the datasets which have a very small number of effective cases,
e.g. COAD, KIRP and LAML, each have a maximum of 20 effective cases, we see
that for these learners the standard deviation is highest. A clear trend can be seen,
visualizing the standard deviation with the corresponding number of effective cases
(see figure 11 1A and 1B). Especially for ibrier, it can be seen, the higher the number
of effective cases, the lower the standard deviation of the performance of the dataset.

Figure 11: Standard deviation and mean value according to the number of effective cases
- standard deviation (1), mean cindex resp. ibrier (2), cindex (A), ibrier (B).

The second row of figure 11 shows the mean cindex (A) and ibrier (B) for the
corresponding number of effective cases. The mean values are averaged over all
learners and CV iterations for each dataset. In contrast to the standard deviation,
no clear trend can be seen here. However, contrary to expectations, one could assume
that the smaller the number of effective cases, the smaller and therefore better the
ibrier. This would also be in accordance with table 10. Here it can be seen that the
mean ibrier for datasets with smaller neff values is better than the one for datasets
with large neff values. For the mean cindex there is hardly any difference between

63

4 Multiplicity of analysis strategies 4.4 Detailed Analysis

datasets with small or high values of effective cases.
Considering the total performance for the individual datasets in table 13, for ibrier
and cindex the total performance is worst for the datasets ESCA and LUSC. For
these datasets, the average cindex is below the data independent value 0.5, since none
of the learners that do not take the group structure into account have a cindex above
0.5. Furthermore, for 33 out of the 50 CV iterations for the dataset ESCA CoxBoost
has zero values (see table 6). For ibrier grridge is the only learner which has a value
above the data independent value 0.25 for the dataset ESCA. Nevertheless, many
other learners have an ibrier value close to 0.25 and every learner has a value above
0.2 for the datasets ESCA and LUSC. In addition, table 3 in section 3, shows that
Lasso, glmboost and ipflasso have a high percentage of missing values for these
datasets. Looking at the key figures of these datasets in table 1, one could deduce
the poor performance of the learners for ESCA from the fact that it has a small
number of clinical features, a small number of observations and a small number of
effective cases but a large number of total features. However, this is not the case for
LUSC. This dataset has many effective cases, a large number of observations and
many clinical features. Interestingly, the two datasets COAD and UCEC, which
have the lowest ratio of effective cases with a value of 0.09, have the best mean
ibrier. For cindex, the total performance for the dataset KIRP is best. It does not
seem to be possible to explain the average performance of the learners based on
different key figures of these datasets.

Based on previous analyses, especially blockForest, the simple Cox model,
CoxBoost favoring and ipflasso perform very well. Therefore, these learners will
be examined more closely in the following. Table 14 shows these learners with the
corresponding mean cindex resp. ibrier and rank per dataset.
Overall, the ranks between the individual datasets vary greatly. Although blockFor-
est has the best mean cindex and ibrier overall, blockForest has rank 8 for cindex
once and rank 11 for ibrier three times. For most datasets, ipflasso has the best
mean for ibrier, but for cindex it has a mean value below the data independent
value 0.5 for the five datasets COAD, ESCA, KIRP, LIHC and LUSC. The biggest
difference is for the dataset ESCA. Here ipflasso is on rank 12 for cindex, but for

64

4.4 Detailed Analysis 4 Multiplicity of analysis strategies

ibrier on rank 1 and performs therefore better than all other learners.
For cindex blockForest and the Cox model are four times on rank 1 each, CoxBoost
favoring two times and ipflasso not once. For ibrier ipflasso is four times on rank
1, the Cox model three times and blockForest and CoxBoost favoring two times
each. Comparing the performance of these four learners with each other, for the
datasets for which none of them is best performing learner, then the result is quite
evenly distributed for cindex. Here blockForest performs three times better, the
Cox model and CoxBoost favoring twice and ipflasso once. Comparing the four
learners for the ibrier, blockForest performs four times better, the Cox model and
ipflasso once each and CoxBoost favoring for no dataset.

This overview shows how large the difference in performance can be for one
learner for different datasets. For example, if for the benchmark experiment only the
datasets ESCA, LUSC, OV and STAD were available, the performance of blockFor-
est would be very poor compared to the other learners, although previous analyses
showed that blockForest often performs best.

65

4 Multiplicity of analysis strategies 4.4 Detailed Analysis

A
best learner blockForest Clinical only CoxBoost fav ipflasso

mean mean rank mean rank mean rank mean rank
BLCA 0.640 0.619 4 0.633 2 0.640 1 0.626 3
BRCA 0.643 0.627 4 0.637 2 0.643 1 0.574 8
COAD 0.656 0.656 1 0.541 5 0.553 4 0.427 11
ESCA 0.574 0.530 4 0.574 1 0.558 2 0.422 12
HNSC 0.582 0.582 1 0.554 6 0.574 4 0.542 10
KIRC 0.761 0.740 3 0.761 1 0.729 7 0.755 2
KIRP 0.648 0.575 4 0.572 6 0.561 8 0.455 12
LAML 0.709 0.701 3 0.596 7 0.607 6 0.663 4
LGG 0.749 0.718 4 0.652 12 0.712 5 0.676 11
LIHC 0.602 0.590 3 0.586 5 0.602 2 0.485 12
LUAD 0.665 0.609 6 0.663 3 0.663 4 0.664 2
LUSC 0.537 0.463 8 0.531 3 0.534 2 0.441 10
OV 0.600 0.556 6 0.598 2 0.585 4 0.583 5
PAAD 0.686 0.677 4 0.683 2 0.678 3 0.642 6
SARC 0.685 0.685 1 0.673 4 0.665 5 0.674 3
SKCM 0.597 0.597 1 0.581 6 0.590 3 0.551 8
STAD 0.598 0.558 5 0.598 1 0.569 3 0.563 4
UCEC 0.686 0.675 2 0.686 1 0.654 4 0.661 3
B

best learner blockforest Clinical only CoxBoost fav ipflasso
mean mean rank mean rank mean rank mean rank

BLCA 0.190 0.195 4 0.192 2 0.190 1 0.193 3
BRCA 0.141 0.141 1 0.147 4 0.149 6 0.152 9
COAD 0.087 0.087 1 0.101 8 0.107 10 0.144 11
ESCA 0.209 0.219 4 0.214 2 0.216 3 0.209 1
HNSC 0.202 0.218 11 0.210 8 0.203 4 0.203 2
KIRC 0.144 0.146 2 0.146 3 0.152 5 0.144 1
KIRP 0.118 0.120 3 0.140 11 0.140 10 0.129 6
LAML 0.182 0.185 3 0.231 10 0.215 8 0.198 5
LGG 0.145 0.180 11 0.168 8 0.155 4 0.159 5
LIHC 0.146 0.149 2 0.169 9 0.166 7 0.212 13
LUAD 0.172 0.202 11 0.172 2 0.172 1 0.172 3
LUSC 0.210 0.232 10 0.216 4 0.217 5 0.224 8
OV 0.169 0.177 10 0.173 7 0.172 5 0.169 1
PAAD 0.190 0.190 3 0.190 1 0.190 2 0.195 5
SARC 0.179 0.180 4 0.202 11 0.203 12 0.192 7
SKCM 0.191 0.209 6 0.191 1 0.192 2 0.197 4
STAD 0.192 0.202 6 0.192 1 0.196 4 0.193 2
UCEC 0.091 0.093 3 0.092 2 0.096 4 0.091 1

Table 14: Detailed analysis of specific learners - A: cindex, B: ibrier. The second column
shows the mean cindex resp. ibrier for the best performing learner per dataset. The other
columns show the mean and rank for the specific learner and dataset. All mean values are
obtained by averaging over all CV iterations.

66

4.5 Testing for significance 4 Multiplicity of analysis strategies

The detailed analysis showed that the performances of the learners vary greatly
for different datasets. For example, for some datasets, the performance of all learners
is quite poor although this dataset has a large number of effective cases, while the
performance of the learners is very good for datasets with a small number of effective
cases. For some cases it seems random how the learners perform for a particular
dataset. The same holds when looking at individual learners for each dataset. A
learner that performs very well in general, may perform much worse than all other
learners for specific datasets. It has also been seen that the simple Cox model often
performs similarly to the learners, which favor clinical features. For the effective
cases it was shown that the smaller the number of effective cases, the higher the
variance.

4.5 Testing for significance

In this section the differences of performance of the learners are tested for sig-
nificance. First, a one-way analysis of variance (ANOVA) with repeated measures
is carried out. Afterwards, the differences of the mean values are examined by a
post-hoc analysis. A paired t-test is applied, which adjusts the p-values using the
procedure by Holm (Fu et al. (2014)). For the statistical tests, the zero values of
the learners were treated as missing values, since CoxBoost is strongly affected and
otherwise the approximate normal distribution cannot be assumed.

Probably the best-known statistical tests are the analysis of variance (ANOVA)
and the standard t-test. One assumption for these tests is that the observations are
independently obtained, but since in this case the different learners were performed
on the same CV iterations, this assumption is not confirmed. Therefore, ANOVA
for repeated measures is used in the following. Here the hypothesis H0 = µ1 = µ2 =
... = µk is tested, i.e. the alternative hypothesis is H1 : µi 6= µj for at least one pair
(i, j). In this benchmark study this means that it is tested whether the mean values
of the performance measures are the same across all learners or if there is at least
one pair of learners for which this does not hold. Additionally, similar variances
between the learners are assumed. This is given here since the ratio between the
smallest and largest variance is 1.297 for cindex and 1.853 for ibrier, see Blanca

67

4 Multiplicity of analysis strategies 4.5 Testing for significance

et al. (2018). However, Kaplan-Meier must be excluded for testing using cindex,
since it has a variance of 0 due to the fact that Kaplan-Meier always has the data
independent value of 0.5.

For this study, the repeated measures ANOVA contains one between-subjects
factor (datasets) and one within-subjects factor (learners). The CV iterations are
treated as individuals within one dataset. From this, we get the group design as
described in Huck and McLean (1975) and illustrated in table 15. The values Xi,j,k

stand for the cindex respectively ibrier in dataset i, for the learner j and the CV
iteration k.

factor B (learners)
iteration learner 1 learner 2 ... learner p

factor A
(datasets)

BLCA

BLCA-1 X1,1,1 X1,2,1 ... X1,p,1
BLCA-2 X1,1,2 X1,2,2 ... X1,p,2

...
BLCA-25 X1,1,25 X1,2,25 ... X1,p,25

BRCA

BRCA-1 X2,1,1 X2,2,1 ... X2,p,1
BRCA-2 X2,1,2 X2,2,2 ... X2,p,2

...
BRCA-25 X2,1,25 X2,2,25 ... X2,p,25

...

UCEC

UCEC-1 X18,1,1 X18,2,1 ... X18,p,1
UCEC-2 X18,1,2 X18,2,2 ... X18,p,2

...
UCEC-25 X18,1,25 X18,2,25 ... X18,p,25

Table 15: Analysis of variance - group design. The number of learners is 12 for cindex
(p = 12), since Kaplan-Meier is excluded while the number for ibrier is 13 (p = 13), since
Kaplan-Meier can be included for ibrier.

After applying the ANOVA, we get three F tests: one for the main effect of
datasets, one for the main effect of learners, and one for the datasets × learners
interaction. For ibrier and cindex all three p-values are far below 0.05, which means
that the null hypothesis can be rejected for cindex as well as for ibrier and there is at
least one pair of learners which do have a significantly different mean performance.
As described in Wollschläger (2016), after applying ANOVA, paired t-tests can be

68

4.5 Testing for significance 4 Multiplicity of analysis strategies

performed to test pairwise group differences for significance. The α value should
be adjusted to ensure that the actual α level is below the nominal level. Table
16 shows the significance of pair comparisons with the α adjustment according to
Holm (Fu et al. (2014)). The paired t-test does not test a two-sided hypothesis as in
ANOVA, but a one-sided, since the main interest of this benchmark study is whether
one learner performs significantly better than another. This means the hypothesis
H0 : µi ≥ µj is tested.

A

BF CoxPH CoxBf priorf prior GRr IPF rfsrc ranger glmB Lasso
CoxPH ns
CoxBf ns ns
priorf ns ns ns
prior *** ** ** ns
GRr **** *** *** * ns
IPF **** **** **** **** * ns
rfsrc **** **** **** **** ns ns ns
ranger **** **** **** **** * ns ns ns
glmB **** **** **** **** **** **** * ns ns
Lasso **** **** **** **** **** **** * ns ns ns
CoxB **** **** **** **** **** **** * ns ns ns ns

B

BF CoxBf CoxB CoxPH ranger IPF KM rfsrc prior GRr priorf glmB
CoxBf ns
CoxB ** ns
CoxPH ns ns ns
ranger **** ns ns ns
IPF *** ns ns ns ns
KM **** ns **** ns ns ns
prior **** * ns ns ns ns ns
rfsrc **** ns *** ns **** ns ns ns
GRr **** * **** ns ns ns ns ns ns
priorf **** **** ** **** ns ns ns ns ns ns
glmB **** **** **** **** **** **** **** **** **** *** *
Lasso **** **** **** **** **** **** **** **** **** **** **** ****

Table 16: Significance of pairwise t-tests - A: cindex, B: ibrier. Level of significance is
indicated by *, p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≥ 0.05 (ns). Abbreviations:
KM = Kaplan-Meier, Lasso = Lasso, glmB = glmboost, CoxB = CoxBoost, CoxPH =
Clinical only, prior = prioritylasso, priorf = prioritylasso favoring, IPF = ipflasso, CoxBf
= CoxB favoring, GRr = grridge, BF = blockForest, rfsrc = rfsrc, ranger = ranger.

69

5 Sampling 5.1 Random sampling

In table 16, the learners are sorted in descending order of mean value, therefore
a descending trend of significance can be observed. For cindex (A), the null hy-
pothesis for the comparison of blockForest and the Cox model, CoxBoost favoring
and prioritylasso favoring cannot be rejected. For all other learners one can reject
the null hypothesis that blockForest performs worse or equal. There is no learner
that performs significantly better than the simple Cox model, on the other hand
the Cox model performs significantly better than all learners except blockForest,
CoxBoost favoring and prioritylasso favoring for cindex. Considering the ibrier (B)
substantial differences can be observed. For example, while no learner performs
significantly better for prioritylasso favoring for cindex, BlockForest, CoxBoost fa-
voring, CoxBoost and the simple Cox model perform significantly better for ibrier.
Furthermore, for ibrier only BlockForest and CoxBoost perform significantly bet-
ter than Kaplan-Meier and glmboost and Lasso significantly worse. Overall, every
learner seems to perform better than Lasso for ibrier.

5 Sampling

In this section datasets are drawn randomly, and it is analyzed how often a
learner performs best for certain samples. First, the datasets are drawn with equal
probability, then the probability varies between datasets, and finally, specific groups
of learners are compared. The goal of this procedure is to find out if there are certain
learners that perform more often better than other learners for given samples.

5.1 Random sampling

In this section datasets are randomly selected and a best learner for the random
sample of datasets is determined. Since there are 18 datasets in total, the probability
of a dataset Di being drawn into the sample is given by P (Di) = 1

18 . Each sample
contains a fixed number k of datasets. For example, five datasets are drawn from all
18 possible datasets and then the best learner is determined for these five datasets
by averaging the cindex or ibrier over the whole sample and all CV iterations. Two
to 16 datasets per sample are drawn without repetition and each sample is repeated
50 times. Therefore, there are 750 samples in total. Figure 12 shows the number

70

5.1 Random sampling 5 Sampling

of samples for which a learner has performed best across all sample sizes. Figure
13 shows the more detailed view of how many samples a learner performed best for
each sample size. As illustrated in figure 12, blockForest is obviously most often best
learner for both ibrier (A) and cindex (B) with over 60% of samples each. Apart
from this, many differences are observable between ibrier and cindex. The greatest
difference occurs for ipflasso, while it is second most often best learner for ibrier
with a frequency of 112 samples, it is only for two samples best learner for cindex.
The differences for the Cox model are also considerable. Cox model performs best
for 211 (28%) samples for cindex, but only 68 times (9%) for ibrier. CoxBoost is not
once best learner for cindex, even if the zero values are treated as missing values,
but 32 (6%) times for ibrier.

Figure 12: Best performing learners for random samples - A: ibrier, B: cindex. Colors in-
dicate the modeling approaches: reference methods (gray), random forest (blue), boosting
(green), penalised regression (orange).

Figure 13 shows the results per sample size. The y-axis shows the number of
datasets that were drawn into the sample, i.e. the sample size. For ibrier and
cindex blockForest becomes best learner more often for large sample sizes. For
ibrier blockForest is best learner for 49 out of 50 samples with the maximum sample

71

5 Sampling 5.1 Random sampling

size 16. Ipflasso seems to perform better than Clinical only for small sample sizes but
worse for large sample size. The other learners however seem to perform better for
smaller sample sizes and therefore, the variability between the best learners is higher
for small sample sizes. It is also interesting to mention that blockForest performs
best most often for the sample size of 2 datasets neither for ibrier nor cindex. For
this sample size ipflasso is most often the best learner for ibrier and the simple Cox
model for cindex. The same applies for ibrier for a sample size of 5 datasets.

Figure 13: Detailed view of the best performing learners for random samples - A: ibrier,
B: cindex. Colors indicate the modeling approaches: reference methods (gray), random
forest (blue), boosting (green), penalised regression (orange). The size of the circles is
proportional to the number of samples as best performing learner.

72

5.1 Random sampling 5 Sampling

Table 17 shows the frequencies of the best learners for the different imputation
methods. For ibrier (A) there are large differences especially for the naive imputation
methods. For the method with a threshold at 20%, the data independent and the
weighted method blockForest is the learner with most samples, as best performing
learner. For the mean value method, ipflasso performs for 412 samples best, while
blockForest performs best for only 240 samples. For the method with a threshold
at 20% and the weighted method, ipflasso is the second-best learner, while for the
data independent method the simple Cox model and CoxBoost favoring perform
better more often. The large differences for ipflasso are due to the fact that ipflasso
performs well for ibrier, but for some datasets it has a rather high percentage of
missing values. The largest difference between the method at a threshold of 20%
and the weighted method also occurs for ipflasso. Apart from that the number
of samples as best performing learners is quite similar when comparing these two
imputation methods. For the cindex (B) there are hardly any differences between
the imputation methods. Here the frequencies match almost perfectly, and the ranks
of the learners remain the same, except for prioritylasso. This again shows how the
influence of the imputation method also depends on the evaluation measure.

73

5 Sampling 5.2 Sampling by dataset characteristics

A
threshold 20% weighted data independent mean value

blockForest 465 434 497 240
ipflasso 112 164 56 412
Clinical only 68 57 81 22
CoxBoost fav 47 38 58 25
CoxBoost 32 30 32 15
ranger 10 10 10 10
grridge 6 6 6 6
prioritylasso 4 4 4 3
rfsrc 4 4 4 4
Lasso 2 1 0 12
glmboost 0 2 1 1
Kaplan-Meier 0 0 1 0

B
threshold 20% weighted data independent mean value

blockForest 458 459 460 457
Clinical only 211 211 212 209
CoxBoost fav 41 41 42 40
grridge 19 19 16 19
rfsrc 9 9 9 9
prioritylasso fav 5 5 5 5
prioritylasso 4 5 4 8
ipflasso 2 0 0 2
ranger 1 1 2 1

Table 17: Number of random samples as best performing learner for different imputation
methods- A: ibrier, B: cindex.

5.2 Sampling by dataset characteristics

The samples in this section are designed in the same way as in section 5.1, only
the probabilities for drawing a dataset are calculated differently. The probabilities
are now proportional to the size of certain dataset characteristics. For example, if
the number of observations N is considered, the probability of drawing a dataset Di

into the sample is given by
P (Di) = Ni∑18

j=1 Nj

. (19)

74

5.2 Sampling by dataset characteristics 5 Sampling

This means that the more observations a dataset has, the higher the probability
that this dataset will be drawn into the sample. Figure 14 shows the number of sam-
ples for which a learner performs best by calculating the probabilities proportional
to the total number N of observations. For ibrier (A) and cindex (B) Cox model
performs best more often than blockForest, for cindex even in more than the half of
all samples. This is in accordance with tables 9 and 10, which show that the simple
Cox model has the best mean cindex and ibrier when comparing the learners for
the group of datasets for which the number of observations is large. Ipflasso is now
in third place for ibrier, but with a higher number of samples than for the random
samples. BlockForest is less likely to be best performing learner than if the datasets
are all drawn with the same probability. CoxBoost favoring remains in fourth place
for ibrier and in third place for cindex, but performs best for ibrier and cindex more
often, as in section 5.1.

Figure 14: Best performing learners for sampling by dataset size - A: ibrier, B: cindex.
Colors indicate the modeling approaches: reference methods (gray), random forest (blue),
boosting (green), penalised regression (orange).

75

5 Sampling 5.2 Sampling by dataset characteristics

As can be seen in Figure 15, when drawing the probabilities proportional to
the number of effective cases (neff) ipflasso performs most frequently best for
ibrier (A) and Cox model for cindex (B). For ibrier the frequencies of the first
four learners are quite similar distributed, while for cindex the simple Cox model
performs obviously most frequently best (59%). Comparing the samples which are
drawn according to the number of effective cases with the previous samples, then
blockForest performs best for the lowest percentage of samples. BlockForest is the
best performing learner for random samples in slightly over 60%, for both cindex
and ibrier and for the samples according to effective cases in only 22%.

Figure 15: Best performing learners for sampling by effective cases - A: ibrier, B: cindex.
Colors indicate the modeling approaches: reference methods (gray), random forest (blue),
boosting (green), penalised regression (orange).

When calculating the probabilities proportional to the total number of features
and proportional to the number of clinical features, the distribution of samples of
the best performing learners is very similar to that of the random sampling, see
figure 22 and 23 in the appendix.

76

5.2 Sampling by dataset characteristics 5 Sampling

Considering the results of the samples per sample size, as shown in figure 16 and
17, the simple Cox model for cindex performs best for almost every sample size, for
probabilities proportional to N and neff . However, this is not true for ibrier. If
the samples are drawn proportional to the number of observations, the Cox model,
as shown in figure 14, performs best for most datasets. However, for the detailed
view (figure 16), it can be seen that for large samples (samples of 11, 14, 15 and 16
datasets) blockForest performs best most often and for samples of size two, three
and five, ipflasso performs best most often. For the samples drawn proportionally
to the number of effective cases, according to figure 15 ipflasso is the learner that
performs best most often. After a closer examination (figure 17), it is shown that
blockForest and the Cox model for sample sizes of 14, 15 and 16 perform better
than ipflasso. In addition, it can be observed especially in figure 17 that CoxBoost
favoring often performs best for certain sample sizes.

77

5 Sampling 5.2 Sampling by dataset characteristics

Figure 16: Detailed view of the best performing learners for sampling by dataset size -
A: ibrier, B: cindex. Colors indicate the modeling approaches: reference methods (gray),
random forest (blue), boosting (green), penalised regression (orange). The size of the
circles is proportional to the number of samples as best performing learner.

78

5.2 Sampling by dataset characteristics 5 Sampling

Figure 17: Detailed view of the best performing learners for sampling by effective cases -
A: ibrier, B: cindex. Colors indicate the modeling approaches: reference methods (gray),
random forest (blue), boosting (green), penalised regression (orange). The size of the
circles is proportional to the number of samples as best performing learner.

In contrast to Section 4, the number of samples is now large enough to say that
certain characteristics of a dataset influence the performance of a learner. It seems
that the simple Cox model is still the best prediction method when the number of
observations is large enough. This is the case for ibrier and cindex. For a large
number of effective cases, the difference between the Cox model and blockForest
has become even greater for cindex, while ipflasso scores best most often for ibrier.
However, caution should be taken with such statements. Looking at individual sam-
ple sizes, different results are obtained, especially for the ibrier. Here, blockForest

79

5 Sampling 5.3 Sampling within groups of learners

still performs best for large samples.
If the datasets are drawn randomly, blockForest is the best performing learner, al-
most for every single sample size and imputation method. Only for the mean value
imputation method ipflasso was the best performing learner aggregated over all
sample sizes.

5.3 Sampling within groups of learners

In this section the learners within each modeling approach and handling of group
structure are compared for random samples, i.e. the sample design is the same as
in section 5.1, with 50 repetitions of each sample size. That means, for each group
of learners, 750 samples are considered. Within each learner group, the simple Cox
model is always included in order to be able to compare the performance of the
learners with the reference model.

In figure 18 the results for the different modeling approaches are presented.
For ibrier (A) and cindex (B), blockForest is the learner that performs best most
frequently (74% for ibrier and 65% for cindex), in the random forest group of learners
(1). After that comes Cox model with 24% and 33%. Ranger and rfsrc are best
learners for not more than 3% of the samples for ibrier and cindex. For the boosting
approaches (2) there are major differences between ibrier and cindex. For ibrier,
CoxBoost performs best most often (for 42% of the samples), while it does not
perform best at all for cindex. The simple Cox model clearly performs best for most
datasets for cindex. CoxBoost favoring is second for both evaluation measures, while
glmboost performs best for ibrier in only 1% of samples and for no sample for cindex.
For the penalised methods (3), Cox model performs best for both measures. For
ibrier, however, ipflasso also performs best for a large number of datasets, while for
cindex all penalised learners together perform better than Cox model, in only 11%
of datasets. For cindex Cox model thus performs better than the learner in the
respective group in more than half of the datasets for the boosting and penalised
methods. Only for the random forest learners blockForest performs clearly better
more often than the simple Cox model. Looking at the ibrier, there is at least one
learner that performs better than Cox model for both the random forest methods
and the boosting methods. For the penalised methods Cox model is in first place.

80

5.3 Sampling within groups of learners 5 Sampling

Figure 18: Best performing learners within the general modeling approaches for random
samples - A: ibrier, B: cindex, 1: random forest, 2: boosting, 3: penalised regression.
Colors indicate the general modeling approaches: reference methods (gray), random forest
(blue), boosting (green), penalised regression (orange).

Figure 19 is structured in the same way as figure 18, except that here the learners
are grouped according to the different handlings of group structure. Again, large
differences between ibrier and cindex can be observed. For the learners which do not
take group structure into account, Cox model performs best most often for ibrier
and cindex, but for ibrier there is at least one learner in 57% of the samples that
performs better than the Cox model. For cindex this proportion is only 7% of the
samples. Regarding the learners which favor clinical features (2) for ibrier CoxBoost
favoring performs better than the Cox model in 65% of samples, but prioritylasso
favoring does not perform better even once. For cindex, Cox model is again in first
place for this group of learners with 70% of the samples. Looking at learners which
take the group structure into account without favoring the clinical features (3), Cox
model performs best for both measures, ibrier and cindex, in less than half of the

81

5 Sampling 5.3 Sampling within groups of learners

samples. Here, blockForest is clearly in first place for both measures. It is also
interesting that while ipflasso performs best for ibrier second most often, it is last
for cindex within this group of learners.

Figure 19: Best performing learners within different group structure handling for random
samples - A: ibrier, B: cindex, 1: no group structure, 2: favoring clinical features, 3: group
structure without favoring. Colors indicate the group structure handling: Clinical features
only (gray), no group structure (blue), favoring clinical features (brown), group structure
without favoring (pink).

82

5.3 Sampling within groups of learners 5 Sampling

The sampling was also applied in case zero values are treated as missing values.
However, there are hardly any differences. Reasons for this are that all learners
except CoxBoost have a negligible number of zero values and CoxBoost has a poor
performance compared to the other learners even when replacing the zero values. It
performs best only for one sample, when comparing only those learners which do
not take group structure into account. Comparing all learners with each other, as
in figure 12, or only the learners in the respective modeling approaches, as in figure
18, CoxBoost is still not the best learner for any sample.

Overall, sampling showed that there are factors that can influence the perfor-
mance of certain learners and that the simple Cox model still plays an important role
and often provides better predictions than learners using the multi-omics data. In
total, blockForest often performs better than other learners. When comparing cer-
tain groups of learners with the simple cox model, the cox model performs better for
cindex and ibrier, than learners which do not take the group structure into account
for most samples. The same is true when comparing the simple cox model with
the learners of penalised regression. For cindex only blockForest seems to perform
better than the Cox model in general, while for ibrier in addition to blockForest also
ipflasso and CoxBoost favoring often perform better.

83

6 Case Studies 6.1 Possible degrees of freedom

6 Case Studies

In this section it will be shown how several degrees of freedom and different analy-
sis strategies can be used to achieve desirable study results. Even small adjustments
can cause misleading interpretations and results. First, the possible degrees of free-
dom are presented in general terms in a benchmark study and then the procedure
and results of various exemplary case studies are described.

6.1 Possible degrees of freedom

As already described in Jelizarow et al. (2010), there are several optimizations
a researcher can apply to better represent new methods. In most cases, these op-
timizations are not documented in detail and can lead to bias in the study results.
In this work various possible degrees of freedom were presented. As described in
section 3, there are several possibilities to replace missing values. If a learner with
few missing values is to be presented well, the threshold method could be used and
the threshold could be set very low, so that the learner with few missing values is
presented well and the learners with more missing values are presented worse. If a
learner with a high percentage of missing values is to be presented, but otherwise
performs well, the mean value method could be used to replace the missing values.
The data independent method could be used for example if the learner to be pre-
sented has no missing values but the learners to be compared have some missing
values. Another optimization possibility is the selection of datasets. In Jelizarow
et al. (2010) this is called "optimization of the dataset". As described above, the
performance of a learner often varies for different datasets. If one selects the datasets
for which the learner to be presented performs better without documenting this, the
learner is presented better than it actually is. A further optimization possibility is
as defined in Jelizarow et al. (2010) "optimization of the competing methods". This
refers to the learners which are compared with the learner to be presented. If learners
that perform better are not presented for any reason, the reader gets the impres-
sion that the learner to be presented is the best possible learner for the described
setting. Furthermore, it was shown in this thesis that many assessments depend
on the respective evaluation measure. Often different results have been obtained

84

6.2 Study 1: Lasso vs. random forest 6 Case Studies

for ibrier and cindex. Examples are CoxBoost and ipflasso. If one is interested in
presenting these learners well, it would be useful to evaluate them using the ibrier.
It also depends on how the results are evaluated. As shown in Tables 7 and 8, values
such as mean, median, number of datasets as best performing learner or in the 0.05
environment of the best performing learner and average rank often lead to different
results.

Table 25 in the Appendix shows for how many datasets a learner was either the
best performing learner or in the 0.05 environment of the best performing learner for
each imputation method and evaluation measure. This table is intended to serve as
a guideline for which study which imputation method and which evaluation measure
is most appropriate.

6.2 Study 1: Lasso vs. random forest

In the previous analysis it was shown that Lasso performs best for cindex for
not a single dataset. For ibrier, Lasso performs better than any other learner for
one dataset, but has the worst mean, median, and average rank. And although
Lasso has a worse mean ibrier than all random forest learners, the following will
show how, through certain adjustments to the analysis and withholding of further
information, Lasso performs better than all random forest learners. An appropriate
hypothesis would be:

"Predictions on multi-omics data estimated with standard Lasso lead
to better results than random forest methods."

First, it can be seen from table 25 that Lasso is most often best performing
learner or in the 0.05 environment of the best performing learner for the ibrier
and mean value method. This seems to make sense since Lasso has many missing
values and is therefore often better rated by the mean value method. That means
in the following all missing values are replaced by the mean value method. Since
the random forest learners have no missing values, this imputation method is only
useful for Lasso. If Lasso is only compared with the random forest learners and

85

6 Case Studies 6.2 Study 1: Lasso vs. random forest

the mean value imputation method is applied, Lasso has the best performance for
ibrier no longer for only one dataset, but for six. These are: COAD, HNSC, LGG,
LUAD, LUSC and SARC. However, since there is no recognizable pattern for these
datasets, for example, that these datasets all have a large number of observations,
it cannot be argued that Lasso performs particularly well once the datasets have
a certain property. However, if one looks at the cancer types more closely, LUAD
and LUSC, i.e. Lung Adenocarcinoma and Lung Squamous Cell Carcinoma, are
the only cancer types in the benchmark study that affect the respiratory system.
LGG, the low-grade glioma is the only cancer in the study that affects the central
nervous system. This means that Lasso could be said to be more predictive of cancer
types affecting the respiratory and central nervous systems than any random forest
learner.

If one argues like this and filters the datasets according to these cancer types,
one gets that Lasso has by far the best mean and median for ibrier, has rank one for
each dataset and no random forest learner was in the 0.05 environment of Lasso, so
that Lasso performs better for each dataset by far. This result is shown in table 18.

mean median rank best/ 0.05 env
Lasso 0.1844 0.1893 1.00 3/3
blockForest 0.2048 0.2106 2.67 0/0
ranger 0.2098 0.2197 2.67 0/0
rfsrc 0.2124 0.2189 3.67 0/0

Table 18: Results of study 1. Column 2 shows the ibrier averaged over all CV iterations
and datasets, column 3 shows the median over all CV iterations and datasets, column 4
shows the average rank over all datasets and the last column shows the number of datasets
as best performing learner or in the 0.05 environment of the best performing learner.

This shows that if a hypothesis is made a priori and then certain datasets that
confirm the hypothesis are fished posteriori, the results are biased. If all 18 datasets
are considered and the imputation method with a threshold of 20% is applied, a
contradictory hypothesis could be made as shown in table 7. From this table it
can be concluded that blockForest in general performs better than all learners of
penalised regression. BlockForest has a better mean and median for cindex than all
penalised learner, performs better for most of the datasets and has a better average
rank.

86

6.3 Study 2: Considering group structure vs. simple Cox model 6 Case Studies

6.3 Study 2: Considering group structure vs. simple Cox
model

As shown in table 2, Clinical only has a higher mean ibrier than blockForest,
but a lower mean ibrier than all other learners which take the group structure into
account. Nevertheless, the hypothesis:

"Taking group structure into account without favoring clinical features
always outperforms the simple Cox model"

can be formulated and proven by the application of data dredging and the use of
an appropriate imputation method. As except for blockForest, all learners consider-
ing the group structure have missing values, in the following the mean value method
is used to replace the missing values. In addition, ibrier is used for the performance
evaluation, since the Cox model performs slightly worse for ibrier and more learners
which consider group structure perform better for ibrier. When looking more closely
at the datasets for which the learners consider group structure perform better than
the Cox model, they often have small values for effective cases neff . So, if all missing
values are replaced by the mean value method, the results are evaluated by the ibrier
and it is argued that the focus is mainly on cancer types that have a small number
of effective cases (neff < 40), then the results are as in table 19. The datasets which
remain in the analysis for this case study are COAD, ESCA, KIRP, LAML, LIHC,
SARC and UCEC.

87

6 Case Studies 6.4 Study 3: CoxBoost within Boosting approaches

A
mean rank

blockForest 0.152 1.57
ipflasso 0.159 2.29
grridge 0.168 3.14
prioritylasso 0.169 3.86
Clinical only 0.170 4.14

B
mean median rank best learner

gs without fav 0.1570 0.1604 2.71 7
Clinical only 0.1643 0.1691 4.14 0

Table 19: Results of study 2 for ibrier - A: Comparison on learner level B: Aggregated
comparison

Table A shows the results at learner level. Each learner that takes into account
the group structure has a better mean ibrier and average rank than the simple
Cox model. One could argue that no matter which modeling approach a learner
belongs to, as soon as a learner takes the group structure into account it outperforms
the simple Cox model especially for a small number of effective cases. For the
aggregated table (B), it can also be seen that even if it is aggregated over all datasets,
CV iterations and the learners which take into account the group structure, the
structured learners have a better mean ibrier than the Cox model. Furthermore,
the median has a smaller value and for all the seven considered datasets, the best
performing learner is one that takes the group structure into account.

6.4 Study 3: CoxBoost within Boosting approaches

The goal of this case study was to show that if one treats the zero values of
CoxBoost as missing values and replaces them with the weighted method, and filters
the datasets accordingly, then it can be shown that CoxBoost performs better than
the other learners within the boosting modeling approaches. The weighted method
would be the most appropriate, because this imputation method guarantees that
CoxBoost is never assigned a value below 0.5 (as it would be possible with the mean
value method) and at the same time CoxBoost has the highest mean cindex with
the weighted method as described in section 3.3.3. But even if one proceeds in this

88

6.4 Study 3: CoxBoost within Boosting approaches 6 Case Studies

way, one gets the results as shown in table 20. CoxBoost is still not better than the
other two Boosting learners for any dataset. This is obviously too weak to support
the hypothesis that CoxBoost performs better.

CoxBoost glmboost CoxBoost fav
BLCA 0.618 0.612 0.640
BRCA 0.510 0.495 0.643
COAD 0.471 0.462 0.553
ESCA 0.483 0.500 0.558
HNSC 0.565 0.579 0.574
KIRC 0.714 0.732 0.744
KIRP 0.486 0.523 0.561
LAML 0.520 0.523 0.607
LGG 0.737 0.749 0.712
LIHC 0.581 0.581 0.602
LUAD 0.562 0.577 0.663
LUSC 0.478 0.463 0.534
OV 0.472 0.443 0.585
PAAD 0.608 0.610 0.678
SARC 0.625 0.638 0.665
SKCM 0.495 0.463 0.590
STAD 0.531 0.538 0.569
UCEC 0.532 0.504 0.654

Table 20: Results of study 3 for cindex. The mean cindex is obtained by averaging over
all datasets and CV iterations. Bold values indicate greater values for the given dataset.

Considering the ibrier, CoxBoost performs better than the other boosting learn-
ers more often for datasets with a number of observations below 200. If therefore the
datasets are filtered accordingly, that is, the datasets COAD, ESCA, KIRP, LAML,
LGG, LIHC, PAAD and SARC remain in the analysis, with the argument that one
wants to find a learner that performs well for small values of N , one gets the results
as shown in table 21. CoxBoost has the best mean ibrier, best average rank, is the
best performing learner for four of the eight datasets considered and for all eight
datasets at least in the 0.05 environment of best performing learner.

89

6 Case Studies 6.4 Study 3: CoxBoost within Boosting approaches

mean rank best/ 0.05 env
CoxBoost 0.1698 1.5 4/ 8
CoxBoost fav 0.1752 2.0 3/ 3
glmboost 0.1802 2.5 1/ 3

Table 21: Results of study 3 for ibrier. The mean ibrier is obtained by averaging over all
datasets and CV iterations. The column "best / 0.05 env" shows the number of datasets
for which the learner was the best performing learner out of the number of datasets for
which the learner was in the 0.05 environment of the best performing learner.

For this comparison, the missing values of glmboost were also replaced by the
weighted imputation method since it does not affect the performance of CoxBoost.
CoxBoost itself has no missing values for ibrier and glmboost for the dataset
SARC for which it performs best would also perform best for each possible impu-
tation method, since the proportion of missing values is at only 4%. The hypothesis:

"CoxBoost without favoring clinical features is the best possible
learner within boosting modeling approaches"

can be confirmed by using the ibrier. This case study has again shown how
different the results can be for different evaluation measures. Thus, if the researcher
does not mention that the same analyses were also carried out for the cindex but
only shows the results of the ibrier, since these support the hypothesis, and if the
researcher does not document that the datasets were filtered posteriori, the reader
gets a wrong impression.

90

6.5 Study 4: Cox model as best possible predictor 6 Case Studies

6.5 Study 4: Cox model as best possible predictor

As can be seen in table 9 and 10, the simple Cox model has the best mean
cindex and ibrier for datasets with many observations. Also, table 25 shows that
the Cox model performs well for ibrier and cindex. Therefore, for the following case
study, both evaluation measures are used to strengthen the hypothesis:

"The simple Cox model is still the best possible predictor for survival
time."

Since the Cox model does not have any missing values, all missing values of
the other learners are replaced by the data independent method. Looking at the
datasets for which the Cox model performs worse than the 75% quantile, many of
these datasets can be excluded by filtering the datasets for N > 200. This means
that the datasets BLCA, BRCA, HNSC, KIRC, LUAD, LUSC, OV, SKCM, STAD
and UCEC remain in the analysis. So, if all missing values are replaced by the data
independent method and the datasets are filtered by the condition N > 200, then
one gets the results as shown in table 22. The left side shows the results for cindex,
the right side for ibrier. The simple Cox model has the best mean and median
for cindex and ibrier, the best average rank and is for most datasets in the 0.05
environment of the best performing learner or is itself the best performing learner
for both measures.

91

6 Case Studies 6.5 Study 4: Cox model as best possible predictor

cindex ibrier
mean median rank 0.05 env mean median rank 0.05 env

Clinical only 0.627 0.635 2.70 10 0.174 0.175 3.4 10
CoxBoost fav 0.618 0.624 3.10 10 0.175 0.177 3.6 7
blockForest 0.606 0.611 4.00 6 0.182 0.190 6.4 5
prioritylasso fav 0.605 0.612 5.30 6 0.181 0.180 7.1 5
ipflasso 0.600 0.614 5.50 5 0.175 0.177 3.8 8
prioritylasso 0.598 0.605 5.60 4 0.182 0.182 6.7 5
grridge 0.576 0.576 6.90 4 0.186 0.192 6.4 4
ranger 0.544 0.540 9.10 1 0.191 0.196 9.4 1
rfsrc 0.538 0.533 9.60 0 0.194 0.196 10.9 1
Lasso 0.536 0.500 8.65 3 0.207 0.213 10.5 1
glmboost 0.525 0.527 8.60 3 0.195 0.197 9.0 1
Kaplan-Meier 0.500 0.500 11.05 0 0.186 0.193 7.7 3
CoxBoost 0.404 0.503 10.90 1 0.182 0.185 6.1 4

Table 22: Results of study 4 - cindex (left), ibrier (right). The column "mean" shows
the mean cindex resp. ibrier obtained by averaging over all datasets and CV Iterations.
The column "median" shows the median for cindex and ibrier obtained over all datasets
and CV iterations. The column "rank" shows the average rank and "0.05 env" shows the
number of datasets, a learner was the best performing learner or in the 0.05 environment
of the best performing learner.

If the results of the benchmark study are presented as in table 22, clearly Cox
model would still be the best possible prediction method. One could conclude that
the use of multi-omics data brings no added predictive value, no matter how the
group structure information is handled, and that the simple Cox model outperforms
any other learner, regardless of whether it is random forest, statistical boosting or
penalised regression.

92

6.6 Study 5: Ipflasso as best possible predictor 6 Case Studies

6.6 Study 5: Ipflasso as best possible predictor

For this case study we use the same hypothesis as in section 6.5, with the
difference that ipflasso is now presented as best possible predictor. Therefore, the
hypothesis is:

"Integrative Lasso with Penalty Factors is the best possible predictor
for survival time."

The datasets are also filtered according to the condition N > 200, which means
that the number of observations of a dataset should be greater than 200. The only
difference to Study 4 is that the missing values are replaced by the weighted method,
and we evaluate only by the measure ibrier. As it can be seen in table 22 the simple
Cox model performs best for ibrier when replacing the missing values by the data
independent method. The same result would be obtained by replacing the missing
values by the threshold method at 20%, but then the difference in mean values
between ipflasso and the Cox model would be slightly smaller. If the missing values
are replaced by the weighted imputation method, then ipflasso performs best for
ibrier, see table 23.

93

6 Case Studies 6.6 Study 5: Ipflasso as best possible predictor

mean rank best learner
ipflasso 0.1737 3.3 3
Clinical only 0.1739 3.4 2
CoxBoost favoring 0.1751 3.7 2
prioritylasso favoring 0.1793 7.4 0
prioritylasso 0.1797 6.9 0
CoxBoost 0.1818 6.2 0
blockForest 0.1820 6.4 1
grridge 0.1853 6.7 1
Kaplan-Meier 0.1861 7.9 0
glmboost 0.1875 8.6 1
ranger 0.1911 9.7 0
rfsrc 0.1937 11.2 0
Lasso 0.1980 9.6 0

Table 23: Results of study 5 - ibrier. The column "mean" shows the mean ibrier obtained
by averaging over all datasets and CV Iterations. The column "rank" shows the average
rank and "best learner" shows the number of datasets, for which a learner was the best
performing learner.

For this table, the median was deliberately omitted, since for this measure, the
Cox model would have the better value. If the missing values would be replaced by
the mean value method, ipflasso would have a mean ibrier of 0.17354 and therefore
the difference between Cox model and ipflasso would be a bit larger. But all in
all, if one wants to test two exactly identical hypotheses, i.e. if a certain learner
performs better than others and also filters the datasets according to the exact
same criterion, one can get two different results by just applying two different
imputation methods. In section 3 we have seen that the threshold method, with a
value of 20%, very often rates the learners similar to the weighted method, but still
these methods of replacing the missing values can give two different study results.
However, it should be mentioned that for the cindex, the Cox model still performs
best, regardless of the imputation method used. Here ipflasso still remains in fifth
place.

94

6.6 Study 5: Ipflasso as best possible predictor 6 Case Studies

This section has shown that there are many factors that have a great influence
on the study results. Probably the biggest influence is the choice of the evaluation
measure and the choice of datasets to be considered for the analysis. Case study 3 has
shown how differently the results can be presented if further analyses performed in
the study are concealed and only those results are shown that support the hypothesis.
This makes it clear how important it is to present all the analyses carried out in a
study and not only those that provide the desired result. It was also shown how
great the influence is when a hypothesis is set up a priori and then the datasets
are filtered posteriori, thus fishing for datasets that support the hypothesis. By
this approach, each hypothesis could be easily verified. Another influence that
should not be forgotten, especially in benchmark studies, is the "optimization of
the competing methods" (Jelizarow et al. (2010)). If the number of competing
learners had not been reduced that much in case study 1, Lasso could not have been
presented as the best learner. Furthermore, case studies 4 and 5 showed that the
choice of the imputation method also has a strong influence on the result. Even the
differentiating methods with a threshold at 20% and the weighted method showed
large differences. A further role plays the choice of the key figures to be presented.
For example, certain key figures such as median or number of datasets as best
performing learner were often deliberately omitted because they did not support
the hypothesis. Basically, it has been shown that almost any hypothesis can be
supported by using an appropriate imputation method, selecting certain competing
methods, posterior filtering of datasets and the suitable choice of a performance
measure.

95

7 Discussion and Conclusion

7 Discussion and Conclusion

The basis of this work was the benchmark experiment of Herrmann et al. (2020).
The goal was to compare the performance of different learners and to analyse
whether the use of multi-omics data leads to better results for the prediction of
survival time. Although it could be concluded that blockForest performs better
on average than the simple Cox model and that taking into account the structure
of the multi-omics data can lead to better performance, there were some datasets
out of the 18 datasets considered for which this conclusion was not appropriate.
The aim of this work was to present the multiplicity of analysis strategies and
the problem of data dredging for benchmark studies, using the work of Herrmann
et al. (2020). For this purpose the effect of different imputation methods of missing
values was discussed, different possible analysis methods were presented to compare
the learners and it was shown how small changes in the analysis strategy can lead
to large differences in the study results. In total 13 different learners were compared
on 18 different datasets.

When comparing the different imputation methods, it was shown that it would
be advantageous to avoid naive methods. These naive methods often lead to
the fact that a fair comparison of learners is not possible. However, even with
differentiating methods, attention must be paid to how they are conducted (see
case study 4 and 5). It remains to be discussed how zero values for the cindex
should be handled. In total it was shown that the use of missing or zero values
is a great degree of freedom for the researcher and that the different strategies
strongly influence the results of the study. In any case, it is very important to
document exactly how many missing or zero values a learner has and how exactly
the imputation was proceeded, so that the reader has the possibility to get a clear
picture.

For the different analysis strategies, it was difficult to make a consistent
statement for the performance of a learner. For only 18 datasets (which is already a
lot for a benchmark study) it is difficult to identify patterns in a learner’s behavior.
The sampling of datasets can help in any case. However, even if a learner performs

96

7 Discussion and Conclusion

well across all datasets, there are still some datasets for which the learner performs
worse than others. See Table 14, which compared the four learners which often
performed best, and showed that there are certain datasets where these learners
perform poorly. This shows that the comparison of different learners strongly
depends on the datasets used. Therefore, it is very important that for a fair
comparison in a benchmark study as many datasets as possible are used and are
not filtered posterior according to certain criteria. Case study 4 is an example of
how the study results of Herrmann et al. (2020) would change if the datasets were
filtered according to the number of observations and only datasets with more than
200 observations were considered.

Most noticeable were the large differences between ibrier and cindex. Especially
the case studies have shown how big the effects are when only one performance
measure is used. If a learner that is to be presented performs particularly well for
a certain performance measure but poorly for another, the researcher is tempted
to publish only the results of the better performance measure. However, this leads
to biased study results. Furthermore, especially in a benchmark study, several
performance measures should be used since they often measure different properties
as described in section 2.3. For example, a learner may have a good calibration
but a poor discrimination. Therefore, it is strongly recommended to evaluate the
performance using more than one measure. In addition, the learners should be
analysed using different key figures to identify other well performing learners. Table
7 and 8 have shown how different key figures favor different learners. For example,
a learner may have a worse mean performance than other learners, but still have a
better average rank.

As already described in Herrmann et al. (2020), it was shown that the simple
Cox model is still very important for the prediction of survival data and that the
clinical features have a high information content. It cannot be said that in general
the consideration of multi-omics data leads to a better prediction. The gain from
the use of multi-omics data depends on the learner using it. It has been shown
that the Cox model outperforms many learners which use multi-omics data. The
test for significance has also shown that none of the learners perform significantly

97

7 Discussion and Conclusion

better than the simple Cox model, but the Cox model performs significantly better
than other learners which take into account the multi omics-data. As in Herrmann
et al. (2020) it was still not possible to define one uniformly best learner. But in
any case, it can be said that blockForest, the simple Cox model, CoxBoost favoring
and ipflasso are suitable methods to provide a good prediction of survival time.

Overall, this work has shown how difficult it is to ensure a fair comparison and
how quickly different study results can be obtained through small changes in the
analyses. For each analysis, the author has a certain amount of degrees of freedom.
If the procedures of these degrees of freedom are not properly documented, this can
quickly lead to non-reproducible study results. For future studies it is therefore
strongly recommended to always provide good and transparent documentation to
ensure reproducibility.

98

Bibliography

Bibliography

Aarts, A. and Lin, S. C. (2015). Estimating the Reproducibility of Psychological
Science, Science 349(6251): 943 – 950.

Binder, H. (2013). Coxboost: Cox models by likelihood based boosting for a single
survival endpoint or competing risks. R package version 1.4.
URL: https: // CRAN. R-project. org/ package= CoxBoost

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio,
G. and Jones, Z. M. (2016). mlr: Machine Learning in R, Journal of Machine
Learning Research 17(170): 1–5.

Bischl, B., Mersmann, O., Trautmann, H. and Weihs, C. (2012). Resampling meth-
ods for Meta-Model Validation with Recommendations for Evolutionary Compu-
tation, Evolutionary Computation 20(2): 249–275.

Bischl, B., Schiffner, J. and Weihs, C. (2013). Benchmarking local classification
methods, Computational Statistics 28(6): 2599–2619.

Blanca, M. J., Alarcón, R., Arnau, J., Bono, R. and Bendayan, R. (2018). Effect of
variance ratio on ANOVA robustness: Might 1.5 be the limit?, Behavior Research
Methods 50(3): 937–962.

Boulesteix, A.-L., De Bin, R., Jiang, X. and Fuchs, M. (2017). IPFLASSO: In-
tegrative L1-Penalized Regression with Penalty Factors for Prediction Based on
Multi-Omics Data, Computational and Mathematical Methods in Medicine pp. 1–
14.

Boulesteix, A.-L. and Fuchs, M. (2015). ipflasso: Integrative Lasso with Penalty
Factors. R package version 1.1.
URL: https: // CRAN. R-project. org/ package= ipflasso

Breiman, L. (2001). Random Forests, Machine Learning 45(1): 5–32.

Bühlmann, P., Hothorn, T. et al. (2007). Boosting Algorithms: Regularization,
Prediction and Model Fitting, Statistical Science 22(4): 477–505.

99

https://CRAN.R-project.org/package=CoxBoost
https://CRAN.R-project.org/package=ipflasso

Bibliography

Cox, D. R. (1972). Regression Models and Life-Tables, Journal of the Royal Statis-
tical Society: Series B (Methodological) 34(2): 187–220.

De Bin, R. (2016). Boosting in Cox regression: a comparison between the likelihood-
based and the model-based approaches with focus on the R-packages CoxBoost
and mboost, Computational Statistics 31(2): 513–531.

De Bin, R., Sauerbrei, W. and Boulesteix, A.-L. (2014). Investigating the prediction
ability of survival models based on both clinical and omics data: two case studies,
Statistics in Medicine 33(30): 5310–5329.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for general-
ized linear models via coordinate descent, Journal of Statistical Software 33(1): 1–
22.

Fu, G., Saunders, G. and Stevens, J. (2014). Holm multiple correction for large-scale
gene-shape association mapping, BMC Genetics, Vol. 15, p. S5.

Gerds, T. A., Kattan, M. W., Schumacher, M. and Yu, C. (2013). Estimating a
time-dependent concordance index for survival prediction models with covariate
dependent censoring, Statistics in Medicine 32(13): 2173–2184.

Goel, M. K., Khanna, P. and Kishore, J. (2010). Understanding survival
analysis: Kaplan-Meier estimate, International Journal of Ayurveda Research
1(4): 274–278.

Goodman, S. N., Fanelli, D. and Ioannidis, J. P. (2016). What does research repro-
ducibility mean?, Science Translational Medicine 8(341): 341ps12.

Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999). Assessment and
comparison of prognostic classification schemes for survival data, Statistics in
Medicine 18(17-18): 2529–2545.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, Springer Series
in Statistics, New York: Springer.

100

Bibliography

Herrmann, M., Probst, P., Hornung, R., Jurinovic, V. and Boulesteix, A.-L. (2020).
Large-scale benchmark study of survival prediction methods using multi-omics
data. Briefings in Bioinformatics (accepted), previous version available at: https:
//arxiv.org/abs/2003.03621.

Hoffmann, S., Schönbrodt, F., Elsas, R., Wilson, R., Strasser, U. and Boulesteix, A.-
L. (2020). The multiplicity of analysis strategies jeopardizes replicability: lessons
learned across disciplines. Preprint available at: https://osf.io/preprints/
metaarxiv/afb9p/.

Hofner, B., Mayr, A., Robinzonov, N. and Schmid, M. (2014). Model-based boosting
in r: a hands-on tutorial using the r package mboost, Computational Statistics
29(1-2): 3–35.

Hornung, R. and Wright, M. N. (2019). Block Forests: random forests for blocks of
clinical and omics covariate data, BMC Bioinformatics 20(1): 358.

Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M. and Hofner, B. (2018). mboost:
Model-Based Boosting. R package version 2.9.0.
URL: https: // CRAN. R-project. org/ package= mboost

Huck, S. W. and McLean, R. A. (1975). Using a Repeated Measures ANOVA to
Analyze the Data from a Pretest-Posttest Design: A Potentially Confusing Task.,
Psychological Bulletin 82(4): 511–518.

Ishwaran, H. and Kogalur, U. (2018). Random forests for Survival, Regression and
Classification (RF-SRC). R package version 2.6.1.
URL: https: // cran. r-project. org/ package= randomForestSRC

Jelizarow, M., Guillemot, V., Tenenhaus, A., Strimmer, K. and Boulesteix, A.-
L. (2010). Over-optimism in bioinformatics: an illustration, Bioinformatics
26(16): 1990–1998.

Kho, J. (2018). Why random forest is my favorite machine learning model.
Accessed: 2019-08-03.
URL: https: // towardsdatascience. com/ why-random-forest-is-my-

favorite-machine-learning-model-b97651fa3706

101

https://arxiv.org/abs/2003.03621
https://arxiv.org/abs/2003.03621
https://osf.io/preprints/metaarxiv/afb9p/
https://osf.io/preprints/metaarxiv/afb9p/
https://CRAN.R-project.org/package=mboost
https://cran.r-project.org/package=randomForestSRC
https://towardsdatascience.com/why-random-forest-is-my-favorite-machine-learning-model-b97651fa3706
https://towardsdatascience.com/why-random-forest-is-my-favorite-machine-learning-model-b97651fa3706

Bibliography

Klau, S. and Hornung, R. (2017). Analyzing Multiple Omics Data with an Offset
Approach. R package version 0.2.1.
URL: https : // CRAN. R-project. org/ package= prioritylasso

Klau, S., Jurinovic, V., Hornung, R., Herold, T. and Boulesteix, A.-L. (2018).
Priority-Lasso: a simple hierarchical approach to the prediction of clinical out-
come using multi-omics data, BMC Bioinformatics 19(1).

Klau, S., Schönbrodt, F., Patel, C., Ioannidis, J., Boulesteix, A.-L. and Hoffmann,
S. (2020). Comparing the vibration of effects due to model, data pre-processing
and sampling uncertainty on a large data set in personality psychology, Technical
Report 232, Department of Statistics, University of Munich.

Probst, P., Wright, M. and Boulesteix, A.-L. (2019). Hyperparameters and Tuning
Strategies for Random Forest, WIRES Data Mining and Knowledge Discovery
9(3): e1301.

R Core Team (2020). R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria.
URL: https://www.R-project.org/

Royston, P. and Altman, D. G. (2013). External validation of a Cox prognostic
model: principles and methods, BMC Medical Research Methodology 13(1): 33.

Schulze, G. (2017). Clinical Outcome Prediction Based on Multi-Omics Data: Exten-
sion of IPF-LASSO, Master’s thesis, Ludwig-Maximilians-University, Department
of Statistics, Munich.

Simmons, J. P., Nelson, L. D. and Simonsohn, U. (2011). False-Positive Psychol-
ogy: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting
Anything as Significant, Psychological Science 22(11): 1359–1366.

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011). Regularization Paths
for Cox’s Proportional Hazards Model via Coordinate Descent, Journal of Statis-
tical Software 39(5): 1–13.

102

https ://CRAN.R-project.org/package=prioritylasso

Bibliography

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2013). A sparse-group lasso,
Journal of Computational and Graphical Statistics 22(2): 231–245.

Therneau, T. M. (2015). A package for survival analysis in s. R package version
2.38.
URL: https: // CRAN. R-project. org/ package= survival

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model,
Statistics in Medicine 16(4): 385–395.

Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B. and Wei, L. (2011). On the
C-statistics for evaluating overall adequacy of risk prediction procedures with
censored survival data, Statistics in Medicine 30(10): 1105–1117.

Van De Wiel, M. A., Lien, T. G., Verlaat, W., van Wieringen, W. N. and Wilting,
S. M. (2015). Better prediction by use of co-data: Adaptive group-regularized
ridge regression, Statistics in Medicine 35(3): 368–381.

Vanwinckelen, G. and Blockeel, H. (2012). On Estimating Model Accuracy with
Repeated Cross-Validation, BeneLearn 2012: Proceedings of the 21st Belgian-
Dutch Conference on Machine Learning, pp. 39–44.

Westphal, M. and Brannath, W. (2020). Evaluation of multiple prediction models:
A novel view on model selection and performance assessment, Statistical Methods
in Medical Research 29(6): 1728–1745.

Wollschläger, D. (2016). R kompakt - Der schnelle Einstieg in die Datenanalyse,
Springer Spektrum, Berlin, Heidelberg, Heidelberg.

Wright, M. N. and Ziegler, A. (2017). ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R, Journal of Statistical Software
77(1): 1–17.

103

https://CRAN.R-project.org/package=survival

A Figures

A Figures

Figure 20: Density for different dataset groups - ibrier. A: number of observations (N), B:
number of clinical features (clin), C: total number of features (p), D: number of effective
cases i.e. events (neff). Colors indicate the group, smaller than mean (red), larger than
mean (blue).

104

A Figures

Figure 21: Comparison of imputation methods for treating zero values as missing values
- A: glmboost, B: Lasso, C: ipflasso

105

A Figures

Figure 22: Best performing learners for sampling by higher number of clinical features -
A: ibrier, B: cindex. Colors indicate the modeling approaches: reference methods (gray),
random forest (blue), boosting (green), penalised regression (orange).

106

A Figures

Figure 23: Best performing learners for sampling by higher number of total features -
A: ibrier, B: cindex. Colors indicate the modeling approaches: reference methods (gray),
random forest (blue), boosting (green), penalised regression (orange).

107

B Tables

B Tables

Abbrevation Cancer typ
BLCA Bladder Urothelial
BRCA Breast Invasive Carcinoma
COAD Colon Adenocarcinoma
ESCA Esophageal Carcinoma
HNSC Head-Neck Squamous Cell Carcinoma
KIRC Kidney Renal Clear Cell Carcinoma
KIRP Cervical Kidney Renal Papillary Cell Carcinoma
LAML Acute Myeloid Leukemia
LGG Low-Grade Glioma
LIHC Liver Hepatocellular Carcinoma
LUAD Lung Adenocarcinoma
LUSC Lung Squamous Cell Carcinoma
OV Ovarian Cancer
PAAD Pancreatic Adenocarcinoma
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
STAD Stomach Adenocarcinoma
UCEC Uterine Corpus Endometrial Carcinoma

Table 24: Cancer types - abbreviations

108

B Tables

data independent mean value threshold 20% weighted
cindex ibrier cindex ibrier cindex ibrier cindex ibrier

Clinical only 4/ 14 3/ 12 3/ 14 3/ 12 4/ 14 3/ 12 4/ 14 3/ 12
blockForest 4/ 12 2/ 12 4/ 12 1/ 12 4/ 12 2/ 12 4/ 12 2/ 12
prioritylasso 2/ 4 0/ 5 3/ 5 0/ 6 2/ 4 0/ 5 2/ 5 0/ 5
prioritylasso fav 2/ 10 0/ 6 2/ 11 0/ 6 2/ 11 0/ 6 2/ 10 0/ 6
CoxBoost fav 2/ 15 2/ 9 2/ 14 2/ 9 2/ 15 2/ 9 2/ 15 2/ 9
glmboost 1/ 4 1/ 3 1/ 5 2/ 4 1/ 4 2/ 3 1/ 5 2/ 4
grridge 1/ 8 1/ 5 1/ 8 1/ 4 1/ 8 1/ 5 1/ 8 1/ 5
rfsrc 1/ 2 1/ 5 1/ 2 0/ 5 1/ 2 0/ 5 1/ 2 0/ 5
ranger 1/ 2 3/ 6 1/ 2 3/ 6 1/ 2 3/ 6 1/ 2 3/ 6
Kaplan-Meier 0/ 0 0/ 5 0/ 0 0/ 3 0/ 0 0/ 4 0/ 0 0/ 4
Lasso 0/ 4 1/ 3 0/ 5 2/ 6 0/ 4 1/ 3 0/ 5 1/ 3
CoxBoost 0/ 2 0/ 6 0/ 2 0/ 6 0/ 2 0/ 6 0/ 2 0/ 6
ipflasso 0/ 6 4/ 10 0/ 6 4/ 11 0/ 6 4/ 10 0/ 6 4/ 11

Table 25: Number of datasets as best performing learner or in the 0.05 environment per
imputation method and evaluation measure

109

C Electronic appendix

C Electronic appendix

The electronic appendix comprises an electronic version of this master thesis
(report.pdf) and the three folders Data, Plots and RCode.
The folder Data contains all data needed to reproduce the results.
Run the file tables_figures.R in the folder RCode1 to reproduce all tables and figures.
All data required for reproducing is already contained in the Data folder. Make sure
that all packages listed in packages.R are installed and loaded. The file functions.R
contains all created functions to reproduce the code. Make sure that these functions
are loaded. It is necessary to set the wd variable to the directory where the electronic
appendix folder is located.
To reproduce the data itself, first run the file NA_imputation.R. This is followed by
the file analysis_strategies.R, which contains the code for the sections Multiplicity of
analysis strategies and Sampling. Finally let case_studies.R run. For each of these
files, the variable wd must be set to the directory where the electronic appendix
folder is located. In addition, all packages from packages.R must be installed and
loaded and the functions of the file functions.R must be loaded.
The folder Plots already contains all figures presented in the master thesis. These
will be overwritten when the file tables_figures.R is run.

1All analyses were performed with R version 4.0.1 (R Core Team (2020)).

110

D Declaration of Authorship

D Declaration of Authorship

I declare that I completed this thesis on my own and that information which
has been directly or indirectly taken from other sources has been cited as such.
The material, either in full or in part, has not been previously presented to an
examination committee.

Munich, July 15, 2020 .
Chiara Wiedemann

111

	Introduction
	Background
	Datasets
	Cancer Types
	Results of the benchmark study

	Prediction methods
	Penalised regression
	Statistical boosting
	Random forest
	Reference methods
	Overview

	Evaluation measures
	Integrated Brier-Score
	C-Index
	Best learner environment

	Failure imputation
	Imputation difficulty
	Imputation methods
	Naive methods
	Differentiating methods

	Results
	Comparison of different methods
	Comparison of different thresholds
	Zero values as missing values

	Multiplicity of analysis strategies
	Analysis across all datasets
	Analysis based on dataset characteristics
	Analysis based on learner characteristics
	Analysis of different modeling approaches
	Analysis of different group structure handlings

	Detailed Analysis
	Testing for significance

	Sampling
	Random sampling
	Sampling by dataset characteristics
	Sampling within groups of learners

	Case Studies
	Possible degrees of freedom
	Study 1: Lasso vs. random forest
	Study 2: Considering group structure vs. simple Cox model
	Study 3: CoxBoost within Boosting approaches
	Study 4: Cox model as best possible predictor
	Study 5: Ipflasso as best possible predictor

	Discussion and Conclusion
	Bibliography
	Figures
	Tables
	Electronic appendix
	Declaration of Authorship

