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Abstract

This thesis compares different prediction approaches for training- and test-
sets with block-wise missing values. It introduces five random forest based
approaches to deal with block-wise missingness. Additionally the adaptions
of the priority-Lasso from Hagenberg’s thesis [1] and the mdd-sPLS method
from Lorenzo et al. [2] are briefly introduced. The predictive performances
of the approaches are investigated and compared based on various data sets
with different patterns of block-wise missingness. Among the random forest
based approaches, the 'Imputation’, 'Fold-wise’ and 'Block-wise’ approach
provide promising results. The idea of the ’Fold-’/ 'Block-wise’ approach
was taken from [3]/ [4] and extended with a new weighting scheme. This new
weighting scheme leads to better results compared to the original approaches
without the weighting scheme. The mdd-sPLS method performs rather
bad and is always outperformed by the priority-Lasso adaptions, as well
as most of the random forest based approaches. Most of the priority-Lasso
adaptions perform quite well and outperform the diverse random forest based
approaches. The drawback of the different priority-Lasso adaptions is that
they require prior knowledge of the data - e.g. which feature-blocks are how
important for the target variable. With the random forest based adaptions,
this is not necessary. Hence the optimal approach for data with block-wise
missingness depends on the prior knowledge of the user. If the user is familiar
with the data and knows which feature-blocks are rather important and
which are not, then the priority-Lasso adaptions can be recommended. If
the user is unfamiliar with the data and does not know which feature-blocks
are important and which are not, then the random forest based adaptions
can be recommended.
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1 Introduction

On October 1, 1990 the international scientific research project named
Human Genome Project was launched, with the aim to sequence the first
complete human genome ever [5]. After a total investment of $2.7 billion
and 13 years of research, the sequencing was officially finished in 2003 [6].
Since then, on the one hand, there have been biomedical advances that have
led to the identification of disease genes which in turn have led “to im-
proved diagnosis and novel approaches in therapy” [[7], p. 14]. On the other
hand there has been an “extraordinary progress [...] in genome sequencing
technologies” [[8], p. 333] leading to a sharp drop in sequencing prices. Nowa-
days whole genome sequencing is available and affordable for everyone - e.g.
"Veritas Genomics’ offers whole genome sequencing for ~$700 [9].

Besides the 'genome’ that carries the whole genetic material of an organism,
there are also other types of -omes’, such as ’epigenomes’, "transcriptomes’,
‘proteomes’ and 'microbiomes’. The time and costs to collect data from these
different types of -omes’ have been reduced drastically ever since the comple-
tion of the Human Genome Project [[10], [11], [12], [13], [14], [15]]. The methods
for “fast, automated analyses of large numbers of substances including DNA,
RNA, proteins, and other types of molecules” [16] are summarized under the
term "High Throughput Technologies’. These technologies make data from
molecular processes available for many patients on a large scale.

The collected data from any type of -omes’ is commonly referred to as 'omics
data’. In the clinical context, it is of utmost interest to incorporate such
omics data into different statistical approaches. A typical example in this
context is the survival time prediction for cancer patients, where in addition
to the regular clinical data 'gene expression’ data has been incorporated into
the survival models. This additional omics data has “often been found to be
useful for predicting [the] survival response” [[11], p. 1]. In “the beginning,
only data from single omics was used to build such prediction models, to-
gether or without [...] clinical data” [[17], p. 1]. The usage of multiple distinct
types of -omes’ in a single prediction approach was the next logical step and
coined the term 'multi-omics data’. The theoretical aspects of integrating
multiple omics types into a single prediction approach and how to deal with
the block-wise structures have been the topic of several papers already - e.g.
[17], [18], [19], [20], [21].

This thesis deals with a special type of missing data “that is common in
practice, particular in the context of multi-omics data” [3] - the so-called
"block-wise missingness’. Data with block-wise missingness consists of differ-
ent folds and feature-blocks. While a feature-block stands for a collection of



associated covariates, a fold represents a set of observations with the same
observed feature-blocks. In data sets with block-wise missingness, there is
always at least one fold, with a missing feature-block, such that not all ob-
servations are observed in the same feature-blocks.

Most statistical methods require fully observed data for their training and
predictions. Data with block-wise missingness does not fulfil this require-
ment, such that either the approaches need methodical adjustment or the
data itself needs to be processed. This fundamental problem raises the fol-
lowing challenges and questions: How can we fit a model on the block-wise
missing data, without removing observations or whole feature-blocks? Does
imputation work appropriately in these settings? How does a model that
uses single feature-blocks only perform in comparison? How can a model
predict on observations with missing feature-blocks?

In addition to the problem of block-wise missingness, there is also the chal-
lenge of “inherent high dimensionality” [[4] p. 93], when working with multi-
omics data. Data from a single omics type can easily exceed thousands of
covariates, and the corresponding data sets usually consist of fewer observa-
tions than features [17]. Besides the predictive performance of an approach,
it is furthermore important for the approach to be sparse. “Sparsity is [...]
an important aspect of the model which contributes to its practical util-
ity” [[19], p. 3], as it makes the model much more interpretable than models
including several thousands of variables.

A method that handles high dimensional data, even if the number of obser-
vations is lower than the amount of features, is the random forest method
[17]. The method additionally handles different input types, does not need a
lot of tuning and yields comparable predictive performances [22]. The only
drawback is that it is not as interpretable as “models yielding [in] coeffi-
cient estimates of few relevant features” [[17], p. 35], as penalised regression
approaches for example. Nevertheless, variable importance measures can be
extracted with the random forest method, as well as partial dependencies.
Furthermore it has already been used successfully in various articles dealing
with multi-omics data - e.g. [17], [18]. Moreover, there have been proposals
by Hornung et al. [3] and Krautenbacher [4] that modify the random forest
approach, such that it can directly handle data with block-wise missingness.
The different adaptations of penalised regression - e.g. the priority-Lasso [19)
- can also be modified so they can directly deal with block-wise missing data.
The theoretical aspects of these approaches are only briefly explained, while
a closer explanation is in Hagenberg’s thesis [1]. Nevertheless, the perfor-
mances of the different random forest approaches and penalised regression
adaptations are compared in this thesis as well.



Even though the problem of block-wise missingness is common in multi-omics
data, there are, to my knowledge, no comparison studies of such prediction
approaches yet. Krautenbacher has already stated that “reliable analysis
strategies for multi-omics data [...] [with block-wise missingness are] urgently
needed” [[4] p. 94]. The thesis at hand aims to provide such a large scale com-
parison study of prediction approaches capable of dealing with block-wise
missingness and shall help to find a reliable analysis strategy.

This paper compares the predictive performance of two naive random for-
est approaches, a random forest approach on imputed data, two random
forest adaptations, the mdd-sPLS method and the adaptions of penalised
regression on data with block-wise missing values. In the second chapter the
term ’block-wise missingness’ is defined in more detail, and how it can arise
in multi-omics data. Then a theoretical explanation of the random forest
method for classification is given. Linking to this, three data processing ap-
proaches are described - these process the block-wise missing data such that a
regular random forest can be trained with it. Moreover, two methodological
adaptations of the random forest method are illustrated. These adaptations
allow the random forest approach to deal with block-wise missing data di-
rectly. The first part of the third chapter covers general information on the
used metrics and evaluation techniques, while the second part introduces the
different data sources and corresponding data sets. These data sets are then
used to validate the performances of the various approaches. In the penul-
timate chapter, all methods are analysed, and the predictive performance
is compared. The last section of this thesis discusses all findings, draws a
conclusion and gives an outlook.



2 Methods

This section deals with the theory of the random forest model and the
different adaptions of it to handle data with block-wise missingness.

In the beginning, block-wise missingness is defined in more detail, and it
is shown how it can arise in multi-omics data. Afterwards, the theory of
the random forest method for classification is illustrated. Subsequent three
approaches that process the data with block-wise missingness, such that a
regular random forest can be fit on them regularly, are described. The last
two sections of this chapter present two different adaptations of the random
forest method. These adaptions enable the random forest method to deal
with block-wise missing data directly.

2.1 Block-wise missingness

Collecting omics data has become significantly cheaper and faster ever since
the completion of the Human Genome Project. As a result, this type of
data is used more and more frequently in the biomedical research - e.g. risk
prediction of childhood asthma [4]. Even though the integration of multiple
types of -omes’ into a single prediction approach seems promising, there are
still challenges to face. One of these challenges is a special type of missingness
that is common in the context of multi-omics data, the so-called block-wise
missingness [3].

The term block-wise missingness needs to be defined in more detail before
clarifying how it can arise in multi-omics data. Table 1 shows a minimalist
example for a data set with block-wise missingness, whereby the data consists
of eight observations, 105 covariates and the binary response variable Y.
While the covariates 'weight’, "height’, 'income’ and ’education’ are pretty
much self-explanatory, the features 'g;’, ..., 'g100’ could be any type of omics
data. Data with block-wise missingness always consist of different blocks and
folds. On the one hand, a block describes a set of covariates containing all
features collected based on a characteristic - basically all covariates that
are related in content. The data in table 1 has three blocks in total.
‘Block 17 consists of the variables 'weight’ and ’height’ representing the
physical properties. 'Block 2’ contains the variables 'income’ and ’education’
standing for economic properties. 'Block 3’ includes the remaining variables
‘g1, ..., 'g100’ that are measurements from a single omics type and represent
genetic properties. On the other hand, a fold represents a set of observations
with the same observed feature-blocks - basically all observations with the
same observed features. The data set in table 1 consists of three folds in total.



'Fold 1’ holds the observations 1, 2 and 3, as these have the same observed
feature-blocks ("Block 1’ & ’'Block 2’). ’Fold 2’ holds the observations 4
and 5, while "Fold 3’ consists of the remaining observations 6, 7 and 8. As
each fold has different observed feature-blocks, each fold is unique, and every
observation belongs to exactly one of them. The only variable all folds must
have in common is the target variable.

ID || weight | height | income | education | ¢ ool g0 | Y
1 65.4 187 2.536 Upper 1
2 83.9 192 1.342 Lower 0 Fold1
3 67.4 167 5.332 Upper 1
4 743 Lower | —042|---] 143 |1
5 2125 | Lower | 0.52 |---| —1.37] 0 }Fom
6 105.2 175 —1.53|---| 201 | O
7 71.5 173 093 [---] 053 |0 Fold3
8 73.0 169 031 |[---|=0.07|1
Blocki . Block2 T Blocks

Table 1: A data set with block-wise missingness - consisting of three
feature-blocks, three folds and the binary target variable Y.

Multi-omics data with block-wise missingness have a structure as displayed
in table 1, but the single feature-blocks are usually much higher dimensional
than in the example. When working with multi-omics data, this type of
missingness is a common problem. There are two main reasons for this:
The first one is related to the costs of collecting omics data. Even though the
costs have been reduced drastically over the last 15 years, collecting omics
data is still more complex and expensive than obtaining standard clinical
data, as ’weight’, ’height’ or ’smoking status’. As a consequence, omics
data can not always be collected for all participants of a study. Therefore
participants from the same survey can end up with different observed feature-
blocks, such that the data for the study contains block-wise missingness.
The second reason is related to the collection of data sets from different
sources - e.g. various hospitals. Even though the different sources do research
regarding the same response variable, the surveyed feature-blocks can still
differ. Therefore the concatenation of such data sets can result in a data set
with block-wise missingness. This scenario is illustrated in figure 1.

In the top of the figure, the three different data sources are displayed -
"Hospital 17, "Hospital 2" and "Hospital 3’. Each source consists of the target
variable Y’, and two feature-blocks as covariates - e.g. "Hospital 2’ consists
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of the target variable 'Y’ and the feature-blocks 'RNA’ and ’Clinical’. The
feature-blocks 'TRNA’, 'miRNA’ and ’CNV’ represent high dimensional omics
data, while the 'Clinical’ feature-block stands for several clinical features.
Even though the target variable Y’ is the same for all data sources, the
observed feature-blocks still differ. The concatenation of the data sets results
in data with block-wise missingness and is displayed at the bottom of figure 1.
In the concatenated data, an observed block is marked with a green tick and
a missing block with a red cross. The fold 'Hospital 2" only has 'RNA’ and
"Clinical” as observed feature-blocks, such that the observations from this fold
miss all the features from the blocks 'CNV’ and 'miRNA’. The concatenated
data consists of three unique folds and four different feature-blocks.

]

HOSPITAL 1 HOSPITAL 2 HOSPITAL 3

Y|CNV|Clinical | [Y|RNA|Clinical | Y| CNV| miRNA

Y [Clinical | CNV | RNA| miRNA
>HOSPITAL1|v/| v | v | ¥ | &K
»HOSPITAL 2|v/| X v *®
>»HOSPITAL3|v| € | v | X v

Figure 1: Block-wise missingness, when concatenating data from diverse
sources.

Training a prediction model is for most approaches not directly possible

on data with block-wise missingness. Either the methods have to be adopted
or the data processed. As block-wise missingness can also affect the test data,
it raises the following question. How can a model predict for an observation
that misses feature-blocks the model has been trained with? This challenge
has to be taken into account when proposing methods capable of dealing
with block-wise missingness.
The remaining sections in this chapter focus on the approaches and
adaptations of the random forest method. Firstly the concept of the random
forest for classification is explained and then the different approaches and
adaptions to handle data with block-wise missingness.



2.2 Random Forest

This chapter illustrates the random forest method that has already been
applied in several articles dealing with multi-omics data [[17], [18], [19]]. It
is a “powerful prediction method [...] able to capture complex dependency
patterns between the outcome and the covariates” [[18] p. 2]. Furthermore, it
does not need a lot of tuning and naturally handles high-dimensional data
with more covariates than observations [17]. The random forest method
can be applied to classification-, regression- and even survival-problems.
Latter was added in 2008 by Ishwaran et al. [23]. As this thesis focuses
on classification tasks, only the random forest model for classification is
explained. Nevertheless, all of the approaches and adaptions described in
sections 2.3 to 2.7 can also be applied in regression- and survival-problems.
The random forest model is a tree-based ensemble method that was
introduced by Breiman in 2001 [24]. An ensemble is a concept from machine
learning that “train[s] multiple models using the same learning algorithm”
[25]. Therefore an ensemble consists of 1 identical so-called 'base learners’.
The base learner of the random forest method is a ’decision tree’. The
decision tree is an excellent base learner for an ensemble, as it can capture
complex interactions and has a relatively low bias if grown sufficiently deep.
Especially as single decision trees are known to be noisy, they benefit from the
ensemble [22]. Since decision trees are the basis of the random forest method,
it is crucial to understand how these work to understand the random forest
method properly.

2.2.1 Decision Tree

A decision tree is a supervised learning method that was introduced by
Breiman et al. in 1984 [26]. It has a hierarchical nature, is easy to interpret
and non-model based [27]. It applies recursive binary splitting to “partition
the feature space into a set of rectangles” [[22] p. 305], such that the resulting
squares are as pure as possible in terms of the target variable. A prediction
is generated by assigning an observation to one of the rectangles in the
partitioned feature space. The prediction then equals the distribution of
the target variable within the assigned rectangle. E.g. an observation that
falls into a rectangle with three negative and seven positive responses has a
predicted probability of 70% for a positive response.

To partition the feature space into the purest rectangles possible the
algorithm iterates over all possible split variable/ split value combinations.
For each of these possible splits, the observations from the parent node N
are divided - with respect to the split variable z; at split point ¢ - into the



child nodes N; and N, [[28], p. 10]:

Ni(zj,t) ={(z,y) € N : z; > t} (1)
Ny(zj,t) = {(z,y) € N :x; <t} (2)

N contains all observations from the parent node N with z; > ¢, while NV,
contains all observations from the parent node N with x; < ¢. The point
(x;, t) therefore creates a binary split and partitions the data from the parent
node N in the two subspaces N; and Ny. The split variable x; and split
point ¢ are chosen such that the resulting child nodes N; and N, have the
greatest possible purity [28]. To measure the impurity of a node N regarding
a categorical response with g classes the 'Gini-Index’ (3), "Misclassification-
Error’ (4) or ’Shannon-Entropy’ (5) can be used [[28], p. 12]:

- 7N Relative frequency of category k in node N

For all of these impurity measures applies: The lower I(N), the purer the
node N and a node N is completely pure, when it only contains observations
of the same response class — I(N) = 0. The corresponding plots of these
impurity functions for a binary target variable are in the attachment in figure
A-1. The reduction of the impurity when splitting the parent node N into
the child nodes N; and N; is calculated by [[28], p. 10]:
| V1 |V
I(N) W']le) W-I(Nz) (6)

- |N]: Number of observations in the parent node N

- | N1]: Number of observations in child node Ny

- | Na|: Number of observations in child node N

This equation calculates how strong the impurity from the parent node N
is reduced for a given split point that divides the observations to the child
nodes N; and Ny. This impurity reduction is calculated for every possible
split. The final split variable x; and split point ¢ are chosen, such that the
impurity is maximally reduced.
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For illustrative purposes, the single partition steps of a classification tree
are displayed in figure 2. The figure consists of three plots in total, whereby
each is a scatter plot of 'weight’ and "height’ for the observations from "Fold 1’
and 'Fold 3’ in table 1. Observations with a positive outcome are marked in
blue, while negative outcomes are labelled in red.

In the very beginning, all observations are in the same feature space that
has not been divided yet 'N1’ - the so-called 'root node’. This situation
is displayed in the leftmost plot of figure 2. The node contains three
observations with a positive and three with a negative response - hence the
class distribution in this node is 50|50. The node is not pure regarding its
responses and all possible impurity measures [(3), (4), (5)] have the highest
possible value. The algorithm now iterates over all features, and for each
feature over all possible split points and calculates the impurity of the
resulting child nodes for each of these possible splits. The split variable
and corresponding split value are chosen, such that the impurity reduction
according to equation (6) is maximised. In the example of figure 2 the first
split variable is chosen as 'weight’ with the split value 69. Therefore the data
from the root node - N1’ - is split into the two child nodes 'N2’ and 'N3’ -
central plot in figure 2. 'N2’ contains the observations with weight > 69, while
"N3’ consists of the observations with a weight < 69. The distribution of the
target variable in N2’ is 25|75 and in 'N3’ 100]0. Hence both resulting child
nodes are purer than their parent node 'N1’. The node 'N3’ only contains
observations with a positive response, therefore it is completely pure and
can not be split any further - all possible impurity measures [(3), (4), (5)]
have the lowest possible value. The node 'N2’ on the other hand, is not
completely pure yet and can be split further. N2’ is now the parent node, and
the algorithm tries all possible splits on this segmented feature space. The
highest impurity reduction of 'N2’ is achieved with the split-variable "height’
on the value 171. 'N2’ is therefore further split into 'N4’ - all observations
from 'N2” with a height > 171 - and 'N5’ - all observations from 'N2’ with
a height < 171. As well 'N4’ as 'N5’ are completely pure, and the impurity
of these nodes can not be reduced any further. The final partitioned feature
space is displayed on the rightmost plot in figure 2. Based on this final
partitioned feature space, predictions can be made by assigning observations
to one of the segments in the feature space. An observation with weight = 90
and height = 185 for example falls into the segment ‘N4’ and has a predicted
class probability of 100% for response class 0 then.

Hence the decision tree algorithm splits the feature space, such that the
resulting child nodes maximally gain purity regarding the target variable.
This is done with an exhaustive search, trying all possible split variables and
corresponding split points.

11
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Figure 2: Recursive binary splitting of a decision tree on a two-
dimensional feature space.

A convenient property of a decision tree consists of its natural graphical
display, which makes it extremely easy to interpret - even for people without
a mathematical background. This visualisation is especially useful when the
training data for the decision tree holds more than two covariates and can
not be displayed as scatter plot [27].

The segmentation of the feature space from figure 2 is displayed as a graphical
decision tree in figure 3. Each square in the figure represents a node of
the decision tree. Each of these nodes displays the response class with the
highest proportion (top), the distribution of the response classes (mid) and
the fraction of observations they contain (bottom). The split variables and
split values are displayed below each node - nodes without a split variable/
value are so-called ’terminal nodes’. The prediction for a test observation
with figure 3 is straightforward and intuitive. The test observation is passed
down the decision tree until it reaches a terminal node. This is shown for
an observation with weight = 90 and height = 185. The first node splits on
the variable 'weight’ with the value 69. As the test observation has a weight
> 69, it is sent down to the left child node. The next node splits on the
variable height with the value 171. As the test observation is taller than
171cm, it is sent to the left child node. The observation is then in the node
on the leftmost in the bottom of figure 3. This is a terminal node and can
not be divided any further. The distribution of this node equals 100|0, and
the prediction for the observations is, therefore, class 0, with a probability of

100%.
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Figure 3: Corresponding decision tree for the segmented feature space on
the rightmost plot in figure 2.

The complexity of a decision tree grows with the number of used splits and
resulting terminal nodes [28]. The more complex a decision tree, the higher
the chances of overfitting, but a tree with not enough complexity “might not
capture the important structure[s]” [[27], p. 20]. So when should a tree stop
with the binary partition of the feature space? There are multiple stopping
criteria to control this, whereby the two most commonly used arguments
are [27]:

e MinSplit:
“The minimum number of observations that must exist in a node in
order for a split to be attempted” [[29], p. 22]

e Complexity:
“Split tree nodes only if the decrease in impurity due to splits exceeds
some threshold” [[27], p. 20]

Both arguments have a considerable impact on the complexity of a decision
tree, as they control when the tree stops the partition of the feature space.
The "MinSplit” argument forces the tree to stop the partition, as soon as a
potential parent node contains less than 'MinSplit’ observations. The higher
this argument, the earlier has the tree to stop growing and hence the less
complex the resulting tree. ’Complexity’, on the other hand, only allows
splits that lead to a decrease of impurity of a given threshold when splitting
the parent node to its child nodes. The drawback of this argument is that it
is rather short-sighted, as a “seemingly worthless split might lead to a very
good split below” [[27], p. 20]. Hence the "MinSplit’ argument is the preferred

13



argument to control the complexity of a decision tree.

The advantages of the decision tree method are numerous. It is easy to
interpret, has no problems with outliers, captures interaction effects between
features, handles categorical features and scales well with larger data [27].
Besides all these advantages, unfortunately, there is also a huge disadvantage.
A decision tree is highly unstable meaning that “small changes in the data
could lead to completely different splits, thus, to a completely different tree”
(28], p- 26]. Even the removing of a single observation/ feature from the
training data can lead to a completely different decision tree.

The next chapter explains, how this alleged disadvantage of high instability
of a decision tree is exploited by the random forest method to create better
predictions based on multiple decision trees.

2.2.2 Random Forest Model

As already mentioned at the beginning of this chapter, the random forest
model is an ensemble method that uses the decision tree as a base learner.
The random forest model, therefore, consists of multiple decision trees. To
train the diverse decision trees of a random forest model, the random forest
method uses a modified version of bagging that was initially proposed by
Breiman in 1996 [30]. As bagging is an essential component of the random
forest method, it is explained in more detail now.

To train M base learners on a single data set, each base learner needs to be
fit on a modified data set, else all resulting learners are completely identical.
To generate a different data set for each of the M base learners, bagging -
short for Bootstrap Aggregation - is applied to the original data. It is a
“type of resampling where large numbers of [...] samples of the same size
are repeatedly drawn, with replacement, from a single original sample” [31].
The bootstrapping therefore generates M different bootstrap samples of the
original data and trains any base learner B on these M bootstrapped data
sets. To obtain a prediction, each of the M fitted base learners is asked for
a prediction - B,,(x). These M different predictions are then aggregated for
a final prediction: B(x) = % Zf\il B,.(z) [[32], p. 4. Bagging works best for
learners with a high variance - e.g. a decision tree - as it reduces the variance
of the base learner and only increases the bias in return [32].

The random forest method uses a slight modification of the bagging algo-
rithm to construct bootstrapped decorrelated decision trees [22]. To do so,
the random forest algorithm does not only fit each decision tree on a sepa-
rate bootstrapped data set but decreases the correlation of these as well by
randomly drawing 'mtry’ features as possible split candidates at each split
point instead of having all 'p’ features as possible split candidates [32]. The
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standard value for 'mtry’ with a categorical response class is (\/ﬂ, whereby
p equals the number of covariates in the data. [33]. Hence at each node of
a decision tree, only a subset of the available features are drawn as possible
split variables. Therefore every single decision tree has a different set of pos-
sible split variables for each of their nodes. This modification of the original
bagging algorithm ensures that the trees are grown more diversely, and the
resulting trees are less correlated as with the regular bagging algorithm. The
modified bagging algorithm to fit a random forest is the following [[22], p. 588]:

Algorithm 1: Growing a random forest

Input : D « data with n observations & p features
M < number of trees in the forest
Ny < ‘MinSplit” argument of a decision tree
mtry < number of variables to draw at each split

for m <+ 1 to M do

1. Draw a bootstrap sample Z* of size 'n’ from 'D’;

2. Based on Z* grow a decision tree, by recursively repeating the
following steps for each terminal node of the tree, until the
minimum node size n,,;, is reached;

2.1 Randomly draw 'mtry’ of the ’p’ available variables;
2.2 Pick the best splitting point among the 'mtry’ variables;
2.3 Split the node into two daughter nodes;

The procedure to receive a prediction from a random forest model is the
same as in the original bagging algorithm. The input x is passed to each
decision tree in the random forest model, and each of these trees creates
a prediction - details in section 2.2.1. The final prediction of a categorical
response can either be the average of the M predicted class probabilities or
the label that was predicted by the majority of the trees.

2.2.3 Out-of-bag error

A convenient property of the random forest method is the so-called out-of-bag
error (OOB error). The random forest model consists of multiple decision
trees, whereby the data for each of these decision trees are obtained by draw-
ing observations with replacement from the original data. For each tree, the
average probability for an observation not to be drawn is ~ 0.37 [[32], p. 12]:
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1 n—7roo 1
P(Obs. not drawn) = (1 — —)" nree, 2
n e

~ 0.37 (7)
- n: Amount of observations in the data

The observations that are not used to grow the decision tree can be used
to estimate its predictive performance - the so-called OOB error. Before ex-
plaining the OOB error, let’s have a look at figure 4. The figure displays
the M different decision trees of a random forest model that were originally
supplied with data of n observations and p features. Under each tree, the
data used for growing is displayed - a pink background indicates that an ob-
servation was ’in-bag’ and hence used in the training of the decision tree. In
contrast, a grey background means that an observation is out-of-bag and was
not used in the training of the decision tree. It should be noticed that the
observations are drawn with replacement so that an observation can enter
the in-bag samples more than once.

Tree 1 Tree 2 Tree 3 Tree M
4 L - -
= b | i
® L i 1 @ ©
] o o ]
X1 Xp |Y X3 X, |Y X3 Xp |Y X1 X Y
al 1 al 1
2 2! 2 2
3 3 3 3
4 4 4 4
n n n ni|.

Figure 4: The data used to grow the M different decision trees of
a random forest. Below each decision tree the in-bag observations
are labelled in pink, while out-of-bag observations are labelled in

grey [[32], p. 13].

To receive the OOB error of a random forest model, each of the M decision
trees is asked for a prediction for the current observation i. Only those trees
that have observation ¢ as an out-of-bag observation create a prediction. This
results in ¢); < M predictions for the observation 7, whereby the final out-
of-bag estimation for observation ¢ equals the average of the 1; predictions.
After receiving this out-of-bag prediction for all n observations, the final
OOB error of the random forest model can be calculated. To compare the
predicted classes and the true response class of the n observations, any metric
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can be used - e.g. Accuracy, F-1 score. The OOB error “is almost identical
to that obtained by N-fold cross-validation” [[22], p. 593]. Therefore, unlike
most other prediction models, the random forest can be fit and evaluated in
one single step - an extremely handy property.

2.2.4 Variable importance

In most applications, not all feature variables are equally important, and
mostly only a few have a relevant influence. Therefore the property of vari-
able importance in any prediction method has high practical usage. Even
though the single decision trees of a random forest model are highly inter-
pretable, the random forest model itself “lose[s] this important feature, and
must, therefore, be interpreted in a different way” [[22], p. 367].

One possibility to measure the variable importance in a random forest model
is based on the permutations of the out-of-bag observations. For each deci-
sion tree T,,, the corresponding out-of-bag observations get a prediction and
the accuracy of a decision tree is calculated - accm, without permutation- 10O Ob-
tain the importance of a variable x;, the out-of-bag observations of a decision
tree T}, are permuted in the variable x;, such that all out-of-bag observations
receive a different value for the variable ;. For each decision tree T,,, the
corresponding permuted out-of-bag observations get a prediction and the
accuracy of a decision tree is calculated again - accm, with permutation x,- 1 he
difference between the regular OOB accuracy - accm without permutation - and
the OOB accuracy with permuted variable x; - accu, with permutation in x, - 15
used as measure for the importance of the [-th variable in the decision tree
T,.. The average importance of the [-th variable of the M decision trees
equals the variable importance for x; for the whole random forest model [32].
This technique to access the importance for the different variables is displayed
in figure 5 for the variable x;. For the decision trees 1 and M the data used
to train these is displayed below. A grey background marks the out-of-bag
observations. Based on these observations the out-of-bag accuracy can be
calculated for each of the M trees - this results in accn, without permutation 0T
each tree. Then the values of the variable z; are permuted for the out-of-bag
observations in each decision tree. Following the out-of-bag accuracy is cal-
culated with the permuted variable x; resulting in accn, with permutation in x;
for each tree. The difference diff,, between accpy, with permutation in x, and
ACCrm, without permutation I€Presents the importance of variable x; in the deci-
sion tree T,,. The final importance of variable x; then equals the average

M
over all these differences [[32], p. 16]: % > diff;
i=1
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Figure 5: Calculation of the variable importance of x; for a random forest
model consisting of M decision trees [[32], p. 16].

2.3 Complete-Case Approach

In this section, the first baseline approach to handle data with block-wise
missingness is explained - the so-called "Complete-Case’ approach. This ap-
proach does not modify the random forest model itself, but processes the
training data, such that it does not contain any missing values afterwards.
This processing has the advantage that every prediction model - e.g. a ran-
dom forest model - can be trained regularly on the processed data and the
disadvantage of not using all available folds and feature-blocks. Therefore it
is a rather simple approach and shall serve as a first baseline. The results
from this first baseline approach are a hurdle to overcome for the more so-
phisticated methods from the sections 2.5 - 2.7.

Let’s have a look at the approach itself. As block-wise missingness can af-
fect the test data as well as the training data, the test observations may be
missing feature-blocks - even if these are available in the training data. The
"Complete-Case’ approach removes all folds from the training data that miss
at least one of the available feature-blocks from the test data. The feature-
blocks of the training data that are not available in test data are removed
as well. After the processing, the training data only consists of the feature-
blocks that are available in the test data and only of observations that are
completely observed in these feature-blocks. Based on this processed training
data, a random forest can be trained regularly. The prediction on the test
observations with such a fitted model can then be made completely regular,
as the model does not use any split variables that are not available for the
test observations. To make the processing of the training data easier to un-
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derstand two examples are shown in figure 6 and 7. In these examples, the
concatenated data with block-wise missingness from figure 1 is used as an
exemplary training data:

1. Example: This example is displayed in figure 6. The test-set is
shown in the top of the figure and has only two observed feature-blocks -
"Clinical” and CNV’. The train-set is displayed below and consists of four
feature-blocks and three unique folds. The 'Complete-Case’ approach pro-
cesses the training data, such that it removes all observations that miss at
least one of the available feature-blocks of the test-set. Therefore only obser-
vations from the fold "Hospital 1’ can be used, as all other folds either miss
the feature-block 'Clinical’ or "CNV’. The fold and feature-blocks that can
be used for the model fitting are marked with a green box. On this processed
data, a regular random forest model can be trained and used to create pre-
dictions for the test observations then. The processed training data contains
two feature-blocks and two folds less than the original training data, as these
were removed by the processing of the ’Complete-Case’ approach.

Y Clinical CNV

| Y [Clinical | CNV | RNA| miRNA
HosPITAL1W| ¢ |« | % | X
HOSPITAL2| « | XK | v | X
HosPITAL3lv| ¥ | v | X |

Processed
Data

Figure 6: The "Complete-Case’ processing of the training data according
to the available feature-blocks in the test-set.

2. Example: This example is displayed in figure 7. The available
train-set is displayed at the bottom of the figure and consists of four feature-
blocks, while the test-set is only observed in the feature-block "CNV’. The
"Complete-Case’ approach removes all folds from the train-set that do not
have an observed 'CNV’ feature-block. Therefore only the observations from
the folds "Hospital 1’ and "Hospital 3’ can be used as training data. For these
folds, only the feature-block ’"CNV’ can be used for training, and all other
feature-blocks are discarded. The folds and feature-block that can be used
for the model fitting are marked with a green box. On this data, a regular
random forest model can be trained and used to create predictions for the
test observations then. As in the example before, the 'Complete-Case’ ap-
proach discards much of the original training data.
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Figure 7: The ’Complete-Case’ processing of the training data according
to the available feature-blocks in the test-set.

Besides the generous discarding of training data, the method has another
disadvantage. As the 'Complete-Case’ approach removes all observations
from the train-set that miss at least one of the available feature-blocks of the
test-set, there may be no training observations left after the processing of
the train-set. In situations like this, the "Complete-Case’ approach can not
provide predictions for the test-set then.

In summary, the 'Complete-Case’ approach removes all observations from
the train-set that miss at least one of the observed feature-blocks in the test-
set. Also, all feature-blocks from the train-set that are not available in the
test-set are removed. This data processing approach can discard a big part
of the original train-set, and hence it handles the data not very efficiently.

2.4 Single-Block Approach

The second baseline approach to handle data with block-wise missingness
is the 'Single-Block’ approach. As well as the 'Complete-Case’ approach, it
does not modify the random forest model itself but processes the training
data, such that it does not contain any missing values afterwards. As well as
the "Complete-Case’” approach, the "Single-Block’ approach discards much of
the available training data. As this approach is rather naive, it is the second
baseline approach. It shall serve as another lower limit for the performances
of the more sophisticated methods from the following sections 2.5 - 2.7.

As the name of the approach already suggests, it only uses a single feature-
block to train a random forest model that is used for predictions on the
test-set then. The model must be trained with a feature-block that is avail-
able in the test-set, else the fitted model can not predict on the test-set, as it
uses split variables that are not available for the observations in the test-set.
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Hence the single feature-blocks from the training data that can be used to
train a model depend on the observed feature-blocks in the test-set. The
concept of this approach is now explained with the example in figure 8. The
training data in this example has already been introduced in section 2.1 and
has been used as an example in the previous section as well:

Example:  The test-set for this example is displayed in the top of fig-
ure 8 and contains two different feature-blocks - 'Clinical’ and "CNV’. The
training data consists of four different feature-blocks and three different folds
in total. The ’'Single-Block’ approach processes the training data in multi-
ple ways to get rid of the block-wise missingness in the train-set. For each
available feature-block in the test-set, it is checked, whether the train-set
involves the feature-block as well. For each feature-block that the test and
train-set have in common, a separate random forest model is fitted and used
to predict the outcome of the test observations. In the current example, it
is firstly checked whether the training data involves a 'Clinical’ or a "CNV’
feature-block. In this example, the training data involves both feature-blocks
of the test-set. For each of the feature-blocks, the test- and train-set have in
common a separate processed data set is created.

Y Clinical CNV
Test Set |’?| v |\/|
[Y]Clinical | CNV | RNA | miRNA
HOSPITAL1V| v | v [ X | X
Processed lysspmaial| o | X | v | X
Datal e
HospmaLs| X |v [ X | v

[Y]Clinical | CNV [ RNA| miRNA
HosPITAL1V] ¢ | v | ¥ | X

Processed ' |
S HOSPITAL2lv/| « | % | v |

-HosplTALstfi./" 4 v | v

Figure 8: "Single-Block’ processing of the training data so a random forest
model can be regularly trained with each of these processed data sets.

Processed Data 1:  As the test- and train-set have the feature-block
"Clinical” in common, the first processed training data only consists of the re-
sponse Y and the feature-block 'Clinical’ for the observations that have been
observed in this block. This subset of the data is displayed in the middle of
figure 8 and marked with a green box. Based on this subset, a random forest
model can be fit regularly and used to create predictions for the test-set - for
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the predictions, only the features from the 'Clinical’ feature-block are used.

Processed Data 2:  As the test- and train-set also have the feature-block
'"CNV’ in common, another processed train-set is created. This processed
training data only consists of the response Y and the feature-block "CNV’
for the observations that were observed in the 'CNV’ block. This subset of
the data is displayed in the bottom of figure 8 and marked with a green box.
Based on this data, a random forest model can be regularly fit and used to
create predictions for the test-set. For the predictions on the test-set, only
the features from the "CNV’ feature-block are used.

Predictions:  As the processing of the training data with the ’Single-
Block’™ approach results in two processed train-sets, this approach consists
of two different fitted models then. One random forest model was fitted on
the ’Clinical’ feature-block and the other one on the 'CNV’ feature-block.
Both of the fitted models can create predictions for the test-set based on
the features they have been trained with. The ’Single-Block” approach can,
therefore, result in multiple predictions for the observations in the test-set.

In summary, the ’Single-Block” approach creates an own processed train-set
for each of the feature-blocks the test- and train-set have in common. Each of
the resulting processed train-sets consists of only one single feature-block and
do not contain any missing data, as the observations with missing values are
removed. On each of these processed train-sets, a random forest model can
be trained and used for predictions on the test-set. As the 'Complete-Case’
approach, the 'Single-Block’ does not handle the data very efficiently.

2.5 Imputation Approach

This section introduces an approach that deals with block-wise missingness
by imputing the missing values - the so-called Tmputation’ approach. Other
than the "Complete-Case’ and 'Single-Block’ approach, the 'Imputation’ ap-
proach does not discard any of the available training data and hence uses the
data more efficiently. After the missing values in the training data have been
imputed, any prediction model can be fit on this data in a regular way and
provide predictions for a test observation based on a single feature-block or
based on multiple different feature-blocks.

“Many established [prediction] methods [...] require fully observed datasets
without any missing values” [[34], p. 112] - in data with block-wise missingness
this requirement is clearly not fulfilled. The idea to deal with this missingness
by imputing the missing values seems natural. The data set does not contain
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any missing values after the imputation, such that a prediction method can
be fitted regularly then. There are two big drawbacks when imputing missing
values in multi-omics data. Firstly, multi-omics data with block-wise miss-
ingness can consist of “many missing values making imputation techniques
unreliable” [3]. Secondly, if the data is a concatenation of data sets from
different sources, the imputation is “performed across different, potentially
heterogeneous data sets” [3] - another reason for the unreliability of the impu-
tation. Despite these disadvantages, the 'Imputation” approach is still worth
being compared to the other approaches in this study.

Firstly a suitable imputation approach has to be found. This is not triv-
ial, as multi-omics data usually do not only have fewer observations than
features but also a mixture of continuous and categorical variables as fea-
tures [34]. Furthermore “such datasets often contain complex interactions
and non-linear relation structures which are notoriously hard to capture”
[[34], p. 112]. The 'k nearest neighbours’ imputation method [35] requires at
least one complete case observation, an assumption that is not always true
for multi-omics data with block-wise missingness. The ’Amelia’ imputation
[36] “assumes the data is distributed multivariate normal” [[37], p. 7]. Most
multi-omics data sets do not fulfil this assumption and need a transformation
to fulfil it - a not very handy property with such high-dimensional data [37].
There are more imputation methods, but most of these “are restricted to one
type of variable” [[34], p. 112] or “make assumptions about the distribution of
the data” [[34], p. 112]. An imputation method that can handle any type of
feature variables and makes as few as possible assumptions about the data
is based on the random forest method - the so-called "MissForest’ [34]. This
imputation approach needs “no tuning parameter, and hence it is easy to
use and needs no prior knowledge about the data” [[34], p. 113]. Additionally
it was shown that the "MissForest’ approach is competitive to the 'k near-
est neighbours’ and '"MICE’ imputation [34]. Furthermore the 'MissForest’
imputation method can handle “mixed-type data and is known to perform
very well under barren conditions like high dimensions, complex interactions
and non-linear data structures” [[34], p. 113]. Because of all these mentioned
advantages, the 'MissForest” method is used as the imputation method in
this thesis. It is explained in more detail in the following paragraph.

MissForest: The ’'MissForest’ imputation method was proposed by
Stekhoven and Biihlmann in 2012 [34] and builds upon the random forest
method. For the imputation of missing values, a random forest is trained on
the observed parts of the data and then used to predict the missing values in
the data. For the explanation, assume D to be a n x p dimensional data set
with missing values in the diverse variables. For the imputation of a variable
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X, with missing values at the entries z( C {1,...,n} the data set D is
separated into four parts [34]:

1 ygbsz Observed values of variable X
2 ¢’ . Missing values of variable X

3 27, Variables other than X with observations it o ={1,. n}\zmzs
typically not fully observed as the index zob)s

corresponds to the observed values in X;

4 xfm-sz Variables other than X; with observations in zfnzs

()

typically not completely missing as the index 1,7

corresponds to the missing values in X;

The imputation procedure is explained and shown in algorithm 2 - algorithm
and explanation are based on [34]:

In the beginning, all missing values in the data set D are imputed with an
initial guess - e.g. mean imputation. In the next step, the variables with
missing values are ordered accordingly to the number of missing values -
starting with the variable with the fewest missing values. For each of these
variables, a random forest model is fitted with the response y/,, and 27, as
predictor variables. With this fitted random forest model, the missing values
y,'m.S are imputed by the predictions of the random forest model based on
a’ ... This procedure is repeated for a fixed amount of iterations or until the

m
stopping criterion -y is met.

Algorithm 2: Imputation procedure of the "MissForest’
Input : D « data of n observations & p features
v 4— stopping criterion
1. Make initial guess for missing values - e.g. mean imputation;
2. k < vector of sorted indices of the variables in D w.r.t.
increasing amount of missing values;
while not v do
1. DIMP « store previously imputed data;
for s € k do
1. Fit a random forest: y5,, ~ x
2. Predict: y) ;. using x3,.;

3. DIMP . ypdate imputed matrix, using predictions 32 ;.;

| 2. Update ~;
3. Return the imputed data set D™,

s .
obs)
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The stopping criterion v measures the difference between the newly im-
puted data matrix DMP and the previous imputed data DIMP. For continu-

ous variables N the difference is calculated via [[34], p. 113]:

2 jen(Pnew = Daia”)?

new

2 jen(Dre )

And for categorical variables F it is calculated via [[34], p. 113]:

AN =

A > jer 2imt Lpmappiar ©
F pr—
ZNA

- #NA: Number of missing values in the categorical variables

The stopping criterion ~ is fulfilled as soon as “the difference between the
newly imputed data [...] and the previous one increases for the first time
with respect to both variables” [[34], p. 113]. An alternative to the stopping
criterion v is a fixed amount of iterations for the imputation.

Predictions: Now that is has been clarified how the "MissForest’ imputa-
tion works, the procedure of the 'Imputation’ approach can be explained in
more detail based on the example in figure 9. The training data has already
been introduced in section 2.1 and was used as an example in the previous
sections as well.

In the top of the figure, the train-set with block-wise missingness is displayed.
The very first step of the 'Imputation’ approach is to impute the missing val-
ues in the train-set with the ’MissForest” method. After the imputation has
taken place, the train-set does not contain anymore missing values - dis-
played right below the original training data. As this data has no missing
values at all, a random forest model can be fit regularly. But as the test-set
might miss feature-blocks, the random forest model is only trained with the
feature-blocks that the train- and test-set have in common. Else it might be
possible that the fitted random forest model can not create predictions for
the test-set, as it uses split variables that are not available for the test-set.
Therefore, all feature-blocks from the train data that are not available for
the test-set have to be removed. Hence the imputed train-set that can be
used to train a random forest model only consists of the feature-blocks that
are also in the test-set then. Based on this usable train-set a random forest
model can be fit regularly and provide predictions for the test-set then.
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Figure 9: 'Imputation’ approach to deal with block-wise missingness

Summary: With the ’Imputation’ approach, the block-wise missing
values in the train-set are imputed by the ’MissForest” method. After this
imputation step, the train-set does not consist of missing values anymore.
Based on the feature-blocks, the train- and test-set have in common a regular
random forest model can be trained. This fitted random forest model can
then provide predictions for the test-set.

2.6 Block-wise Approach

This section introduces the 'block-wise” approach that was initially proposed
by Krautenbacher in 2018 [4]. Other than the methods from the previous
sections 2.3 - 2.5 this approach does not modify the training data, but the
random forest model itself. The ’block-wise’ approach can directly handle
block-wise missingness in the training data and does not need to process the
data at all. Therefore it uses the available training data efficiently and does
not discard any observations or feature-blocks. Furthermore, a ’block-wise’
fitted random forest model is flexibly applicable and can provide predictions
for test data that is not observed in all features from the training data.

As the name of the approach already suggests, the random forest model is
fitted in a 'block-wise’ manner to the training data. In the beginning, all
available feature-blocks of the training data are extracted. On each of these
feature-blocks, a random forest model is separately fitted. This enables “all
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observations per [feature-block] [...] to be utilised for learning” [[4], p. 102]
and no observation or feature-block has to be left out. With the ’block-wise’
approach as many separate random forest models are fitted as the training
data has feature-blocks. To create a prediction for a test observation then,
each block-wise fitted random forest model is asked for a prediction. The
models that were fitted on a feature-block that is not available for the test
observation can not create a prediction, as these use split variables that are
not available for the test observation. The remaining random forest models
can create a prediction for the test observation by using the features from
the test observation the models have originally been trained with. The pre-
dictions from the separate block-wise fitted models can then be aggregated
to obtain a final prediction. The separate model fitting is explained in more
detail with the example in figure 10. The training data in this example has
already been introduced in section 2.1 and has been used as an example in
the previous sections as well:

Model Fitting: The training data is displayed in the top of figure 10
and consists of four feature-blocks and three folds. To fit a separate random
forest model on each feature-block, the training data needs to be split, such
that each feature-block can be used to train a random forest model. This is
done by merging each feature-block and the response Y to a separate train-
set. In figure 10, these separate train-sets are displayed as data frames with
a green background below the original training data. From each of these
separate train-sets, all folds that contain missing values in the corresponding
feature-block are removed - e.g. in the separate ’Clinical’” train-set all obser-
vations from ’Hospital 3" had to be removed, as this hospital did not collect
any clinical data. The folds that had to be removed from these separate
train-sets are marked with a red horizontal line, while the available folds are
marked with a green tick. Based on each of these four different train-sets,
a random forest model can be trained. This results in four distinct random
forest models in total - RFcjinicat, BFony, RErna and RF,,;rva. Each of
these models has been trained with a single feature-block only - e.g. RFrna
was only trained with the feature-block 'RNA’.
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Figure 10: Training of random forest models with the ’block-wise’
approach.

The "block-wise’ approach trains a separate random forest model on each
of the distinct feature-blocks in the training data. It has as many separate
random forest models as the training data consists of distinct feature-blocks.
But how can these models be used to create a final prediction? As already
mentioned, the block-wise predictions from the different random forest mod-
els need to be aggregated for a final prediction. This aggregation is explained
in the following paragraph based on the example in figure 11.

Predictions:  Assume that the four block-wise fitted random forest mod-
els from figure 10 can be used for the example in figure 11. The test-set is
displayed at the top of figure 11. For the observations in this test-set, the
outcome 'Y’ needs to be predicted. Other than the training data from fig-
ure 10, the test-set only contains three feature-blocks and misses the 'CNV’
feature-block from the training data. To create predictions for the observa-
tions in the test-set, each of the four block-wise fitted random forest models
is asked for predictions on the test observations. As the test-set contains the
feature-blocks ’Clinical’, ’'RNA’ and 'miRNA’, only the corresponding ran-
dom forest models RFciinical, RFrva and RF,,;rya can provide predictions
for the test-set. The random forest model RF¢ny can not create predictions
on this test-set, as the feature-block, "CNV’ is not available. Each of the
three block-wise fitted models RFcyinical, RErna and RF,,;rna create a pre-
diction for each observation in the test-set, by only using the variables from
the feature-block the models have originally been trained with. Therefore
each model generates a prediction for each observation in the test-set, such
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that there are three predicted outcomes for each observation - Predsciinicar,
Predsgya and Preds,,;rva. These predictions represent the probabilities for
each of the possible response classes. The final prediction for the target vari-
able Y’ equals a weighted average of these predictions.

Y[Clinical [RNA [ miRNA
7| ¢ |V |
« o

RFmi
RFClinical  RFRNA miRNA
Predsc_"mw PredSRNA PredsmirnA

v

‘Final Prediciton ‘

Figure 11: Prediction on test data with the 'block-wise’ approach. The
fitting of the random forest models was described with figure 10.

To create a meaningful weighted average of the different block-wise pre-
dictions, different techniques can be applied. The simplest method is giving
each block-wise fitted model the same weight and return the simple average
over all block-wise predictions. But as the block-wise fitted models have been
trained on different feature-blocks, this might not always be optimal, as the
models might differ sharply in their prediction quality. To make this clear
let us assume that the feature-block 'miRNA’ is not related at all to the out-
come "Y’, while the feature-block 'Clinical’ is strongly related to it. In this
case, it can be assumed that the predictions based on the 'miRNA’ feature-
block are worse than the predictions based on the ’Clinical’ feature-block.
Therefore it would be meaningful to put a higher weight on the predictions
from the RFcyinicaqr model than on the predictions from the RF},;rva model.
Usually, the real strength of the relation between a feature-block and the
target variable is unknown. Therefore the predictive quality of the different
feature-blocks needs to be estimated. This can be done with the out-of-bag
error of the block-wise fitted models. For each block-wise fitted random forest
model, the predicted classes for all out-of-bag observations are generated -
see chapter 2.2.3 for details. Based on the predicted outcomes and the actual
responses, any metric can be calculated to judge the predictive performance
of a block-wise fitted random forest model then. In this thesis, either the
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accuracy or F-1 score is used as a metric to judge the predictive quality -
details on the metrics in chapter 3.1.1. The better the out-of-bag accuracy/
F-1 score of a block-wise fitted model, the higher the estimated predictive
quality of the model. The higher the predictive quality of a model, the higher
its weight and therefore, the higher its contribution to the final prediction.
The reason to use the F-1 score beside the accuracy is that the F-1 score is
sensitive to class imbalances in the target variable. In contrast, the accuracy
only represents the fraction of correctly classified observations.

Let us have a look at a minimalist example to make the idea of the weighted
average clearer. Assume the block-wise fitted random forest models from
figure 11 have the following out-of-bag accuracy and predicted probabilities
for the observation i:

OOBACC(RFCZinical) = 067 PredSClim‘cal(ObSi) = 0.19
OOBACC(RFRNA) = 0.86 Pl"edSRNA(ObSZ') = 0.33
OOBAcc(RFmiRNA) =0.21 PI’edSmiRNA(ObSi) = 0.99

The predictions of the models represent the probability for a positive re-
sponse, such that all probabilities < 0.5 result in a negative predicted class,
while probabilities > 0.5 result in a positive predicted response class. The ac-
tual response class for the observation 7 is negative, as well as the predictions
of RFciinicat and RFry 4. Only the RF,,;rn 4 model predicts the response for
observation ¢ wrongly as positive. When calculating the simple average of all
these predicted probabilities, it results in 0.503. Therefore the final predicted
probability is > 0.5, and the predicted class is a positive - which is wrong for
observation . If we use the out-of-bag accuracy of the models as weights for a
weighted average, the final predicted probability is 0.355 < 0.5, and therefore
the predicted class is the negative class - which is correct for observation 1.
So instead of giving all block-wise predictions the same weight, the predictive
power of the single feature-blocks can be estimated with any out-of-bag met-
ric and used to weight the block-wise predictions. The better the out-of-bag
metric, the higher the weight for the predictions from the given feature-block.

In summary: With the 'block-wise” approach, a separate random forest model
is fitted on each feature-block of the training data. For a prediction on a test
observation, all block-wise fitted models are asked for a prediction. Only
those models that have been trained with a feature-block that is available
for the test observation can create a prediction. These predictions can then
be averaged in a weighted/ unweighted way to create a final prediction for
the test observation.
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2.7 Fold-wise Approach

This section introduces the ’fold-wise’ approach that was initially proposed
by Hornung et al. [3]. This approach was actually not proposed to deal with
block-wise missingness in multi-omics data, but to deal with multiple train-
sets with the same target variable and different partly overlapping feature-
blocks. Nevertheless, this approach can also deal with block-wise missingness
in multi-omics data. Other than the approaches from the sections 2.3 - 2.5
this approach does not modify the training data, but the random forest model
itself. The ’fold-wise’ approach can directly handle block-wise missingness
in the training data and does not need to process the data at all. Therefore
it does not discard any of the available observations or feature-blocks and
uses the available training data efficiently. Furthermore, a 'fold-wise’ fitted
random forest model is flexibly applicable and can “provide predictions for
test data that do not feature all covariates available from training” [3].

The random forest model is fitted in a ’fold-wise’ manner to the training
data. In the beginning, all available folds of the training data are extracted.
On each of these folds, a random forest model is then separately fitted. This
results in as many fold-wise fitted random forest models as the training data
has folds. As the different folds of the training data usually consist of multiple
feature-blocks, each fold-wise fitted random forest model incorporates the
covariates from multiple different feature-blocks. For a prediction on test
data, only “the subsets of covariates included in the test data that are also
included in at least one of the” [3] train-sets is used. The prediction of a
single fold-wise fitted random forest model is then obtained as follows:
Firstly, remove all trees from the fold-wise fitted random forest that use a
split variable as the first split that is not available for the test observations.
These trees can not even split the test data once, as the first split variable
is not available for the test observations. Therefore these decision trees are
of no value for the given test observations. Secondly, for each remaining
decision tree “follow each branch of the tree and cut the branch as soon as a
covariate is used for splitting that is not available” [3] for the test data. This
process of cutting branches is called "pruning’. A node that has to be pruned
is a new terminal node of the decision tree then.

After these two steps have been applied to the fold-wise fitted model, the
predictions can be obtained as for a standard random forest model. The
predictions from the separate fold-wise fitted models can then be aggregated
to obtain a final prediction. The fold-wise model fitting is explained in more
detail with the example in figure 12. The training data in this example has
already been introduced in section 2.1 and has been used as an example in
the previous sections as well:
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Model Fitting: The training data is displayed at the top of figure 12
and consists of four feature-blocks and three folds. To fit a separate random
forest model on each fold, the training data needs to be split, such that each
fold can be used to train a random forest model. This is done by merging
the feature-blocks of a fold and the corresponding response Y to a separate
train-set. The feature-blocks that were not observed for a certain fold are
removed from the fold-wise training data - e.g. the feature-blocks '/RNA’ and
"MIRNA’ were not observed for the fold 'Hospital 1" and had to be removed
from the training data of the fold. In figure 12, these separate train-sets
are displayed as data frames with a green background below the original
training data. Based on each of these three different train-sets, a random
forest model can be trained. This results in three random forest models in
total - REHospital1, RFHospitarz @a0d REHospitai3- Fach of these models has
only been trained with the observed feature-blocks of the different folds - e.g.
RFospitann Was trained with the feature-blocks 'Clinical” and "CNV".

Y [Clinical | CNV | RNA| miRNA
HOSPITAL1WV| v |« [ ¥ | X
HOSPITAL2W| v | ¥ (v | &K
HOSPITAL3W| & |v (K| ¢

'Y [Clinical |CNV o
HOSPITAL1|+” | « | | > R Hospital1

Y [Clinical |[RNA|
HOSPITAL2 /| ¢ |V > RFHospital2

Y | CNV |miRNA
HOSPITAL3 «/ | «/ | & > RFtospitai3

Figure 12: Training of random forest models with the ’fold-wise’
approach.

The ’fold-wise’ approach trains separate random forest models on the
distinct folds of the training data. It consists of as many separate random
forest models as the training data consists of unique folds. But how can these
models be used to create a prediction? As already mentioned, the fold-wise
predictions from the different random forest models need to be aggregated
for a final prediction. To receive a prediction from a fold-wise fitted random
forest model the single decision trees of such a model might be pruned. Be-
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fore explaining the aggregation of the fold-wise predictions, it is essential to
understand the pruning process. It is explained in the following paragraph
with the help of figure 13:

Pruning: Pruning actually describes a process applied to a decision tree
to avoid overfitting. But it can also be applied to a decision tree if it contains
split variables that are not available for a test observation. The latter idea is
used in the ’fold-wise’ approach and explained in more detail with the help
of figure 13. On the left of the figure, the original decision tree from figure
3 can be seen. It was grown based on the two feature variables 'weight’” and
"height’. To obtain a prediction, the observation is passed down the tree until
it reaches a terminal node. The predicted probabilities equal the distribu-
tion of the target variable in the terminal node. But how can this decision
tree predict on an observation with an unknown ’height’? To receive such
a prediction, the original decision tree has to be pruned. For this, all nodes
that split with the variable 'height’ needs to be cut off. This is displayed
on the right side of figure 13. The scissors indicate the pruning at the node
that uses "height’ as a split variable - this node is a terminal node then. The
pruned tree has one terminal node less than the original decision tree. It can
create predictions for observations without a "height’ variable, as the pruned
decision tree does not use this variable as a split variable anymore.

Original Decision Tree Pruned Decision Tree
‘éL b
50 EDI ‘5(] ﬁﬂ!
100%. 100%.

ves weight >= §9n0 fres weight >= 69ino

12 IH]
I et B
75 .25 ‘75 .25J

1% % L 1% -
height >= 171 height >= 171

Terminal Node 1

[= 3

i i e

611
(s

Figure 13: The pruning of a single decision tree. The decision tree was
originally introduced in figure 3

The process of receiving a final prediction for an observation based on
the predicted classes from multiple fold-wise fitted random forest models is
explained in the next paragraph based on the example in figure 14.
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Predictions:  Assume that the three fold-wise fitted random forest
models from figure 12 can be used for the example in figure 14. The test-set
is displayed at the leftmost of figure 14, whereby the outcome 'Y’ needs
to be predicted. Other than the training data from figure 12, the test-
set contains only three feature-blocks and misses the "CNV’ block. To
create predictions for the observations in the test-set, the three fold-wise
fitted random forest models from figure 12 can be used. Each of these
models is asked for a prediction. As RF'pospitaiz Was only trained on feature-
blocks that are also available in the test-set - ’Clinical’ and 'RNA’ - no
single decision tree of RFlospitar2 needs to be pruned. The prediction on
the test-set with RFpospitai2 is therefore completely regular. The fold-wise
fitted random forest models RFpospitan and RFospitais Were both trained
under the inclusion of the feature-block 'CNV’. This feature-block is not
available for the test observations from figure 14. Therefore the single
decision trees in RFuospitai1 and REHospitaiz nNeed to be pruned, as these trees
could contain nodes with split variables that are not available for the test
observations. Firstly all decision trees of RFpyospitair and RFyospitars that use
a 'CNV’ covariate as the first split variable have to be removed, as these
trees can not even partition the test data once. Secondly, all remaining
trees are pruned, as explained in the paragraph before. After applying
these two steps to the models RFhospitain and REHospitar3, the predictions
for the test observations can be obtained “as in the case of a standard”
[18] random forest model. In the end, each fold-wise fitted model creates
a prediction for each observation in the test-set, such that there are three
predicted outcomes for each observation - Predsgospitair; Predsmospitarz and
Predsgospitais- These predictions represent the probabilities for each of the
possible response classes. The final predictions for the target variable 'Y’
equal a weighted/ unweighted average of these predictions then.

Pruning Pruned

RF ital] ———— —» Preds i
/1 Hospital1 RFHospitaH Hospital1 N

Clinical [RNA | miRNA Bl Pruned Final

v, AN Predspospi
v | V| v Hospital2 == RFospitalz Fospia ™ Prediction |

Pruning_ Pruned —» Predsyospitala

RFHospiiaB RFHospita|3

Figure 14: The prediction on test data with the ’fold-wise’ approach.
The training of the models was described with figure 12.
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Different techniques can be applied to create a meaningful weighted av-
erage of the different fold-wise predictions. The simplest method is giving
each fold-wise fitted model the same weight and return the simple average
over all the fold-wise predictions. This might not always be optimal, as the
fold-wise fitted random forest models were trained with different combina-
tions of feature-blocks and might differ in their predictive quality. As for the
'block-wise’ approach from section 2.6, the predictive quality of the various
prediction models can be estimated with an out-of-bag metric - e.g. Accu-
racy or F-1 score. The out-of-bag metrics of the fold-wise fitted random forest
models can then be used to weight the predictions of the different models.
The higher the out-of-bag metric for a model, the higher the contribution of
the model to the final prediction. There is only one difference in the out-of-
bag calculation between the block- and fold-wise approach. As the fold-wise
fitted random forest models might be pruned - depending on the test data -
the out-of-bag calculation is based on the pruned trees of the random forest
then. This is meaningful, as pruning might reduce the predictive power of a
model.

In summary: The fold-wise approach fits a separate random forest model
on each fold of the training data. Depending on the available feature-blocks
in the test-set, the fold-wise fitted random forest models might be pruned.
After the pruning process, each fold-wise fitted model can generate predic-
tions for the test-set. These predictions can then be averaged in a weighted/
unweighted way to create final predictions for the test-set.
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3 Benchmark Experiments

This section deals with the benchmark experiment for the comparison of
the predictive performance of different approaches on data with block-wise
missingness. It is not expected that such comparison experiments “result [in]
an absolute truth applicable to all situations” [[38], p. 14f], but with enough
different data sets and sufficient objective evaluation criteria general trends
can be determined [38].

In the beginning, the different metrics used in this thesis are introduced and
defined. Afterwards, it is explained how the predictive performance of an
approach can be estimated. Subsequently, the different data sources and
corresponding data sets are investigated, as well as the diverse structures of
block-wise missingness. Furthermore, the evaluation technique for each data
source is explained separately after the data sources have been introduced
and investigated.

3.1 Assessing the Performance

This part of the thesis supplies the essential information needed to
estimate the predictive performance of a classification model. In the first
chapter, different metrics are introduced and defined. These are used to
rate and compare the predictive performance of the different approaches.
Subsequently ’k-fold cross-validation’ is introduced and explained. This
technique is used to estimate the predictive performance of a model when
there is no separate test-set to do so.

3.1.1 Metrics

This subsection introduces the diverse metrics used in this thesis to rate
the predictive performances of the different approaches. Metrics are needed
“in order to evaluate the performance of a statistical learning method on
a given data set [...] [and] measure how well its predictions actually match
the observed data” [[39], p. 29]. As this thesis aims to compare classification
approaches, only performance metrics suitable for classification problems are
introduced. The thesis only uses data sets with a binary response variable to
compare the different approaches. Therefore the metrics are only explained
for a binary response, but most of the metrics can also be applied to multi-
class problems. The selection of metrics is crucial, as it influences how the
performance of the approaches are measured and compared.
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Confusion Matrix

The confusion matrix itself is not a performance measure, but the basis for
most classification metrics [40]. It is used in classification problems, and the
matrix always consists of as many rows and columns, as the response variable
has unique classes.

An example of a confusion matrix for a binary target can be seen in table
2 - it displays a matrix with the dimensions 2 x 2. The rows of the table
represent the predicted class - Y e [0; 1] -, while the columns represent the
actual class - Y € [0;1] [41). Each cell of the matrix displays the amount of
observations that were classified correctly | wrongly:

e TP: True Positives - amount of observations where thp true outcome
and the predicted outcome is both positive (Y =1 & Y = 1)

e F'N: False Negatives - amount of observations where the true outcome

~

is positive (Y = 1), but the predicted outcome is negative (Y = 0)

e F'P: False Positives - amount of observations where the true outcome

~

is negative (Y = 0), but the predicted outcome is positive (Y = 1)

e TN: True Negatives - amount of observations where the true outcome
and the predicted outcome is both negative (Y =0 & Y = 0)

Y=1]Y=0
Y=1| TP FP
Predi 1
v — 0 FN N } redicted Classes

True Classes

Table 2: Confusion matrix for a binary response.

Therefore TP and TIN show the amount of observations that were labelled
correctly, while FN and FP represent the wrongly labelled observations.
Hence the confusion matrix shows the amount of correctly and wrongly
labelled observations and can be used for the calculation of sophisticated
classification metrics.

The confusion matrix from table 2 is used as a running example for the
introduction of the different metrics in the next paragraphs.
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Error-rate & Accuracy

“The most common approach for quantifying the accuracy |...] [of a prediction
model is the] error-rate” [[39], p. 37]. It represents the proportion of mistakes
a prediction model did when predicting the classes for the given set of
observations - it can be calculated with help of the confusion matrix:
Error-rate = +¥§f§; —p [[41], p. 4].

The accuracy on the other hand represents the exact opposite, as it represents
the fraction of correctly classified observations. It can also be calculated
directly from the confusion-matrix: Accuracy = % +$§ﬂ;§ 5 [41], p- 4.
The error-rate and accuracy are rather simple metrics and intuitively
understandable. The accuracy is € [0, 1] and is better, the higher its value,
while the error-rate is € [0, 1] and is worse, the higher its value.

Both metrics are proper measures when the classes of the response variable
are nearly balanced, but should not be used if the classes of the target
variable are highly imbalanced [40]. Think of a data set where only 1% of the
observations have a ’positive’ response and the remaining 99% a 'negative’
one. If a model is naive and always predicts a negative outcome, it still has
an accuracy of 99% even though the model is terrible at predicting the actual
outcome. To overcome this drawback of the error-rate and accuracy, other

metrics are introduced in the following.

Precision

The precision metric represents the fraction of observations with an predicted
positive response - Y = 1 - that also have an actual positive response
-Y = 1. On basis of the confusion matrix it can be calculated via:
Precision = zpt [[41], p. 4].

As the precision metric only respects the observations with a predicted
positive class, it is less sensitive to class imbalances than the accuracy and
error-rate. The precision metric is € [0, 1], and the lower its value, the worse
the predictive performance. Another common term for this metric is 'positive
predictive value’.

Recall

The recall metric represents the fraction of observations with an actual
positive response - Y = 1 - that were correctly classified as positive
-Y = 1. It can be calculated on basis of the confusion matrix via:
Recall = zoh [[42], p. 2],

As it measures how accurate the predictions for observations with an actual

positive outcome are, the recall metric ignores the observations with an actual
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negative outcome. Therefore this metric is less sensitive to class imbalances
than the accuracy and error-rate metric. The recall metric is € [0, 1] and the
higher its value, the better the predictive performance. Another common
term for this metric is ’sensitivity’.

F-1 Score

The F-1 score is a widespread metric that represents the two metrics precision
and recall at once. It is the harmonic mean of both metrics and based on
the precision and recall it can be calculated via [[41], p. 4]:

Precision * Recall
F-18S =2 10
core * Precision + Recall (10)

The F-1 score is € [0,1], and the better the predictive performance of a
model, the higher the F-1 score.

Balanced Accuracy

The balanced accuracy is a metric that “avoids inflated performance
estimates on imbalanced data sets” [43]. It calculates the accuracy for each
possible response class separately and returns the average of these class-wise
accuracies. This average of the class-wise accuracies can be determined with
the confusion matrix [44]:

TP TN
TP+FN + TN+FP (11)

2
As the regular accuracy, it is € [0, 1] and the better, the higher its value.

Balanced Accuracy =

Matthews correlation coefficient

The Matthews correlation coefficient (MCC) is a metric that is insensitive to
class imbalances. It is a “widely used performance measure in biomedical
research” [[42], p. 1] and can be seen as a “discretization of the Pearson
correlation for binary variables” [[42], p. 1]. It can directly be calculated with
the confusion matrix via [[45], p. 415]:

TP « TN — FP « FN

MMC = (12)
V(TP £ FP) % (TP + FN) % (TN + FP) (TN + FN)

The MMC is in “essence a correlation coefficient” [43] with values € [—1, 1].
1 is the best possible value and represents perfect predictions, 0 indicates
that the predictions are random on average and a value of -1 indicates the
worst possible predictive performance [43].
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3.1.2 k-fold Cross-Validation

"K-fold cross-validation’ is a technique to estimate the predictive performance
of a model when there is no separate test-set. Before explaining the method
in more detail, it is essential to understand the difference between the calcu-
lation of a metric on the test- and train-set.

Regardless of the metric, there is a big difference whether it is calculated on
the train- or the test-set. The train-set consists of the data used to train
a prediction model, while the data of the test-set “was not used in training
the model” [[39], p. 176]. The results of calculating a metric on the train-set
are quite different from the metric obtained when calculating it on the test-
set - “in particular the former can dramatically underestimate the latter”
[[39], p. 176]. The calculation of a metric on the train-set is therefore over-
optimistic, as “the same data is being used to fit the method and assess
its [predictive performance|” [[22], p. 228]. Hence the calculation of a metric
should be done with data that has not been used to train the model. In case
of having no designated test-set, there are diverse techniques to estimate the
predictive performance by using only the available training data.

A straightforward approach to obtain a metric on a test-set is the so-called
"hold-out’ method. With this technique a data set D is split to a train-set
Dyyoin, and a test-set Di.sr. A model can then be trained on Dy,4, and eval-
uated on Dy.q to see how well that model performs on unseen data. Such
a single train-test split can be problematic and lead to distorted estimates,
as the metric highly depends on how the data is split into train- and test-
set. Different train-test splits of the data can, therefore, lead to completely
distinct results. In general, the smaller the test-set D;.s; “the higher the vari-
ance of our estimated metric” [[46], p. 18]. The smaller the train-set Dy qin,
the bigger the introduced pessimistic bias, as the model is trained on fewer
data and will, therefore, learn less and perform worse [46].

To avoid this bias-variance trade-off with the ’hold-out’ method, there are
techniques that use the data more efficiently through resampling. Resam-
pling, in general, describes the process of repeatedly splitting the training
data D into train- and tests-sets, whereby the resulting metrics can be cal-
culated for each of these splits and aggregated then [46]. This leads to a
more stable performance estimation. A well-known method to do so is the
so-called ’k-fold cross-validation’.

"K-fold cross-validation’ divides the available training data into k groups of
approximately equal size. By using only k-1 of these folds for the training of
the model, the trained model can then be evaluated on the remaining fold -
the so-called held-out fold. Based “on the observations in the held-out fold”
[[39], p. 181] any metric can then be calculated. This process is repeated until
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each fold has been the held-out fold once. This results in k estimates of a
metric, whereby the final k-fold cross-validation estimation for this metric
equals the average of the k values [39]: C'V (k) = % Zle Metric;

The process of the k-fold cross-validation” method is illustrated in figure 15.
In the top of the figure, the whole data is displayed. In the first step of the
cross-validation, the data is shuffled and partitioned into five equally sized
folds. In the first of the five iterations, the first fold is used as a held-out
fold, while the remaining folds are used to train the model. The fitted model
is then evaluated with the observations from the first fold, which results in
Metric;. The same process is repeated for the remaining iterations 2-5. In
each of these iterations, a different fold is used as held-out fold. Therefore
each of these iterations results in an estimated metric based on a different
held-out fold - Metricy, ..., Metrics. The final estimation of the metric equals
the average of the metric overall five iterations: % Zle Metric;

| DATA |

Shuffle & partition the data into
five equally sized folds

”
-+

[T T2 T
lteration 1 1 2 | 3 | a4 | 5 |->wmen
lteration 2 f 2 ‘ 3 ‘ 4 ‘ 5 ‘—b-Metricg
teratons| 1 | 2 3 | 4 | 5 |oMetic
lteration 4 ‘ 1 | 2 | 3 4 ’T‘ —>Metrics
lteration 5 ‘ 1 | 2 ‘ 3 ‘ 4 5 —>Metrics

Test-Fold Training-Fold

Figure 15: Example for 5-fold cross-validation.

In summary: 'K-fold cross-validation’ is a technique to estimate the pre-
dictive performance of an approach on unseen data. It can be applied if there
is only a train-set, but no separate test-set.
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3.2 Data

In this subsection, the data sets from the diverse sources are investigated. In
total, there are two distinct sources of data for the comparison of the different
approaches. The comparison of approaches with an insufficient number of
data sets leads to underpowered results, as the performance of the approaches
across the different data sets can be highly variable [38]. Therefore enough
data sets from different sources are needed for a meaningful comparison of the
approaches. In the coming sections, the different sources and corresponding
data sets are introduced in more detail, as well as their different structures
of block-wise missingness. After the introduction of each source, the data
source specific technique for the evaluation is explained.

3.2.1 TCGA data

The first source for multi-omics data is "The Cancer Genome Atlas’ (TCGA)
that provides “real multi-omics data sets [...], where each of these data sets
contains the measurements of patients with a certain cancer type” [[18], p. 14].
The data was not directly accessed via TCGA, but provided by R. Hornung,
who has used the data in one of his articles already [18]. In total, 21 dif-
ferent data sets were provided, whereby these data sets have already been
processed. The processing included the imputation of “missing values in
the clinical block” [[18], p. 14] and the transformation of categorical feature
variables into binary numerical features. For the imputation of the clinical
covariates, the 'k nearest neighbours imputation” and 'univariate logistic re-
gression” have been used - further details can be found in the article [18].
Hence the 21 provided data sets do not miss any values and only consist of
numerical covariates.

The 21 data sets have a survival outcome, but as this thesis aims to compare
classification approaches, this outcome is not used as the target variable.
Instead, the covariate ’gender’ from the ’Clinical’ feature-block is used as a
binary categorical response variable. This is not an unusual procedure and
has been applied in other studies already - e.g. [47]. Even though the ’gen-
der’ variable “is not a clinically meaningful outcome in biomedical applica-
tions, it features major advantages for a purely methodological investigation”
[[47], p. 5]. Seven of the 21 available data sets do not contain a ’gender’ co-
variate and had to be removed, such that a total of 14 data sets remained.
Each of the 14 remaining data sets is completely observed and consists of
the same five feature-blocks. Even though the number of available covari-
ates for each feature-block differs between the 14 data sets, they are still in
a similar field. The average amount of covariates over the 14 data sets for
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each feature-block is displayed in table 3. While the 'Clinical’ feature-block
represents clinical information like "weight’, "height’” and ’smoking status’ the
remaining four feature-blocks are different types of omics data and represent
biological properties. The 'Clinical’ feature-block has the lowest number of
covariates on average, while the "CNV’ block has by far the most.

Feature-Block | Average amount of covariates
Clinical 3.5
miRNA 770
Mutation 16218
CNV 57964
RNA 23559

Table 3: The average amount of covariates in each feature-block over the
14 TCGA data sets.

The average amount of observations for the 14 data sets is ~280. Hence,
the amount of features is on much higher than the number of observations -
a characteristic property of multi-omics data.

Reducing the dimensionality of the omics feature-blocks

A problem that comes with the choice of 'gender’ as target variable are the
“overly strong biological signal[s|” [[47], p. 5] contained in the different omics
feature-blocks. It is aimed to reduce these biological signals by only using
a subset of variables for each omics block, and “thus make it comparable to
signals observed in applications of clinical relevance” [[47], p. 5. Another rea-
son for using only a subset of the available covariates per feature-block is the
computational expense of evaluating models on such high dimensional data.
The reduction of the computational effort is especially important for the
"fold-wise” approach from section 2.7. This approach was implemented based
on the ’simpleRF’ package [48] in plain R, as no package offered a method
to prune the single trees of a random forest model dynamically. Therefore
this approach is computational much slower than the other approaches from
sections 2.3 - 2.6, as these were implemented with the 'randomForestSRC’
package [33] that directly builds upon 'Java’ and 'C’.

To find a reasonable subset for each omics feature-block, the performance of
a random forest model is evaluated on each of the single feature-blocks and
their corresponding subsets. The predictive performance of the models on
the different omics blocks is evaluated with 5-fold cross-validation and rated
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with the accuracy - general details on the metrics/ k-fold cross-validation in
section 3.1.1/ 3.1.2. The predictive performance of a random forest model
on the single omics blocks and their corresponding subsets - based on all 14
available TCGA data sets - is displayed in figure 16.

The figure consists of totally four plots, whereby each plot represents a single
omics feature-block. Each of these plots contains eight boxplots representing
the accuracy - y-axis - of the model for different subsets of used covariates -
x-axis. The predictive performance for the feature-blocks 'CNV’ and 'TRNA’
is, in general, the best, while the feature-blocks 'miRNA’ and ’Mutation’ are
much worse. The feature-blocks 'miRNA’” and "Mutation’ are, therefore only
trimmed to reduce the computational effort. As the 'miRNA’ block only
consists of 770 covariates on average, only 50% of the available covariates are
removed. The feature-block "Mutation’ has 16218 covariates on average from
which 90% are removed. While the trimming of these two feature-blocks
reduces the computational effort, it does not reduce the predictive quality of
these single feature-blocks too much. The number of covariates in the 'CNV’
and 'RNA’ feature-blocks have to be trimmed to reduce the biological signals
in these blocks. 85% of the available covariates were removed from the 'RNA’
block. This leads to a lower but still reasonable predictive performance with
this block. The "CNV’ block leads to the best predictive performances and
seems to contain a lot of strong biological signals. Therefore 95% of the

Single Block Performance of a random forest over all 14 TCGA data sets
Split by the different feature-blocks - Evaluated with 5-fold CV
CNV miRNA Mutation [ RNA
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Figure 16: The accuracy of a random forest model evaluated on the single
omics feature-blocks for a range of possible subsets on all 14 TCGA data
sets.
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available covariates from this feature-block were removed. The predictive
performance with the trimmed 'CNV’ block is still by far the best and not
much worse than on the complete 'CNV’ feature-block. The same plot but
with the F-1 score as a metric is displayed in figure A-2 in the attachment -
the results are about the same.

Removing 50% of the covariates from the 'miRNA’ block, 90% from the "Mu-
tation’ block, 85% from the 'RNA’ block and 95% from the 'CNV’ block lead
to data sets with much lower dimensions than originally. Nonetheless, the
essential multi-omics property of more observed covariates than observations
is still valid for the trimmed data sets. The average amount of covariates
over the 14 data sets for each reduced feature-block is displayed in table 4.

Reduced Feature-Block | Average amount of covariates
Clinical 3.5
miRNA 385
Mutation 1616
CNV 2898
RNA 3555

Table 4: The average dimensionality of the five trimmed feature-blocks
for the 14 TCGA data set.

Inducing block-wise missingness

To estimate the predictive performance of the different approaches, k-fold
cross-validation is applied. The 14 provided TCGA data sets are completely
observed and do not contain any missing values. But as these data sets shall
be used for the investigation of different approaches capable of dealing with
block-wise missingness, block-wise missingness needs to be induced into the
training-sets in the cross-validation - more details on this in algorithm 3.
Each of the 14 TCGA data sets consists of the response variable Y’ and
the five feature-blocks ’Clinical’, 'CNV’, 'RNA’, "Mutation’ and 'miRNA’.
These 14 data sets are induced with block-wise missingness according to the
following patterns. In the tables of these patterns, a red cross indicates a
missing feature-block for a fold, while a green tick indicates an observed
feature-block.
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Pattern 1 The first pattern of block-wise missingness is displayed in
table 5. Every fold consists of the same amount of observations, and to each
of them, there is an observed response variable Y’ the 'Clinical’ feature-
block and one additional omics feature-block. Therefore every single fold
consists of two feature-blocks as observed covariates - one ’Clinical’ and one
omics block. The ’Clinical’ block is the same for all folds, while the omics
blocks differ from fold to fold.

Y | Clinical | CNV | RNA | Mutation | miRNA
Fold1 | / v v X X X
Fold 2 | / v X v X X
Fold 3 | / v X X v X
Fold 4 | / v X X X v

Table 5: The first block-wise missingness pattern for the TCGA data
sets.

Pattern 2 The second pattern of block-wise missingness is displayed in
table 6. The amount of observations in the different folds is equal for all folds,
while the number of observed feature-blocks differ from fold to fold. The
order of the feature-blocks was randomly changed in comparison to "Pattern
1’. The last omics block ’'CNV’ is observed for all folds and the first omics
block 'miRNA’ only for the first fold. The amount of available feature-blocks
decreases from ’Fold 1’ to 'Fold 4’. 'Fold 1’ is completely observed within
all five feature-blocks and ’Fold 4’ in only two feature-blocks - ’Clinical’ and
"CNV'.

Y | Clinical | miRNA | RNA | Mutation | CNV
Fold1 | / v v v v v
Fold 2 | / v X v v v
Fold 3 | / v X X v v
Fold 4 | v/ v X X X v

Table 6: The second block-wise missingness pattern for the TCGA data

sets.

Pattern 3 The third pattern of block-wise missingness is displayed in

table 7. The amount of observations is equally split into the four folds. For
each of these folds, it is randomly drawn which feature-blocks are observed.
The probability for any feature-block to be observed equals % and the

probability of not observing a block, therefore, % The ’Clinical’; as well
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as the 'RNA’ feature-block, were sampled for every fold. Therefore the four
folds only differ in the feature-blocks ’'CNV’, "Mutation’ and 'miRNA’. The
same feature-blocks were sampled for 'Fold 3’ and "Fold 4’, such that these
folds have the same covariates. Therefore these two folds are a single fold,
and the data consists of only three unique folds then.

Y | Clinical | CNV | RNA | Mutation | miRNA
Fold1 | v/ v v Ve X v
Fold 2 | / v v v X X
Fold 3 | v/ v X v v v
Foldd | /| X [ 7 7 7 }F01d3

Table 7: The third block-wise missingness pattern for the TCGA data
sets.

Pattern 4 The fourth and last pattern of block-wise missingness is
displayed in table 8. Other than in the three patterns before, the amount of
observations is equally split in two instead of four folds. The next difference
to the first three patterns is that the amount of feature-blocks is reduced
from five to three. For this two of each of the four available omics feature-
blocks were combined into a single omics feature-block - this has been done
randomly. The feature-blocks 'RNA’ and 'miRNA’ were combined to a single
feature-block, as well as the feature-blocks "Mutation” and ’‘CNV’. Therefore
the whole data consists of three feature-blocks - ’Clinical’, ’/RNA & miRNA’
and 'Mutation & CNV’ - and two folds.

Y | Clinical | RNA & miRNA | Mutation & CNV
Fold1 | v/ v v X
Fold 2 | v/ v X v

Table 8: The fourth block-wise missingness pattern for the TCGA data
sets.

Evaluation Technique

The 14 data sets from the TCGA source are used to assess the predictive per-
formance of the different random forest adaptions for data with block-wise
missingness. All data sets are completely observed and to none of these exists
a separate test-set. A slightly modified version of 5-fold cross-validation is
applied to assess the predictive performance of the different approaches on
this data. The process is illustrated in algorithm 3.
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In the very beginning, a data set D, an approach App and a block-wise miss-
ingness pattern Patt have to be selected. The data set D is split into five
equally sized folds, whereby a single fold is used as test-set and the remain-
ing four folds as train-set. Then block-wise missingness is induced into the
train-set according to the selected pattern of missingness Patt. The pre-
dictive performance of an approach does not only depend on the train-set,
but also on the available feature-blocks in the test-set. Hence the approach
App is evaluated not only on a fully observed test-set, but also on the same
test-set, but with different combinations of missing feature-blocks. This is
relevant, as block-wise missingness can affect the train-set as well as the test-
set. Firstly the approach is evaluated on the test-set with all feature-blocks
available (2.3.1). Then it is further evaluated on the same test-sets with one
missing feature-block (2.3.2) - e.g. missing 'CNV’ feature-block -, with two
missing feature-blocks (2.3.3) - e.g. missing '"CNV’ & 'RNA’ feature-block -,
with three missing feature-blocks (2.3.4) - e.g. missing 'CNV’ & 'RNA’ &
'miRNA’ feature-block -, and finally on the same test-sets with only a single
observed feature-block (2.3.5) - e.g. only has the 'CNV’ feature-block. For
each of these possible test-sets, the metrics are calculated. When the evalu-
ation of an approach App on a data set D with the block-wise missingness
pattern Patt is done, to each possible test-set, there are five values of each
metric. The average of these metrics for each possible test-set is then used to
compare the predictive performance of the different approaches in section 4.1.

In summary: To evaluate an approach on a TCGA data set, 5-fold cross-
validation is applied. The training data is induced with a block-wise miss-
ingness pattern, and the model is fitted on this data. The model is then not
only evaluated on the fully observed test-set, but also on the same test-set
for all possible combinations of observed/ missing feature-blocks.

48



Algorithm 3: Evaluation of the approaches with the TCGA data
Input : D <+ TCGA data set with n observations & p features
App < Approach
Patt < Pattern of block-wise missingness
1. Split the fully observed data set D into five equally sized folds

2. for k< 1to 5 do
2.1 Use fold k as test-set and the remaining four folds as

train-set;
2.2 Induce the block-wise missingness according to Patt into the
train-set;
2.3 Evaluate the predictive performance of the approach App for
different combinations of observed feature-blocks in the test-set;
2.3.1 Evaluation on the fully observed test-set;
2.3.2 Evaluation on test-sets with one missing feature-block;
2.3.3 Evaluation on test-sets with two missing feature-blocks;
2.3.4 Evaluation on test-sets with three missing feature-blocks;
2.3.5 Evaluation on test-sets with a single feature-block;

3.2.2 Clinical asthma data

This subsection introduces the second source for multi-omics data - the so-
called ’clinical asthma data’. It is a real-world data set with block-wise
missingness that was provided by the group of Prof. Dr. med. Bianca
Schaub at the 'paediatric clinic Dr. von Haunersches Kinderspital’. The data
was collected as part of a clinical case-control study in the field of asthma
research, whereby the target variable of the data is binary and defined as
the presence of asthma. The data set contains 521 observations in total (age
5-16), whereby 265 observations have a negative response and the remaining
256 observations have a positive response. The data comprises five different
data sources, with 268 variables in total. 44 of those variables originated from
a questionnaire, 16 from a clinical routine diagnostic, 19 from the information
on allergen sensitization, 29 are from cytokine expression data, and 166 from
gene expression data. As the feature space of the gene expression data had
a block-wise missing structure itself, the gene expression data was split into
two data sets - 'gene expression data I’ (82 variables) and ’gene expression
data I’ (84 variables). The number of observations and variables in the
different data sources is displayed in table 9. The amount of observations in
the various data sources inversely reflects the effort of generating the data -
e.g. the fewer observations, the more valuable the measured features.
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ID | Feature-Block Number of observations | Number of variables
1 | Questionaire 521 44

2 | Clinical routine diagnostics 385 16

3 | Allergen sensitization 472 19

4 | Cytokine expression data 149 29

5 | Gene expression data I 66 82

6 | Gene expression data II 46 84

Table 9: The number of observations and variables for the different data
sets in the clinical asthma data.

The data preparation was carried out by the project partner and
conducted as follows:

(1) Feature variables (especially from the questionnaire) were selected such
that they are reasonable as predictor variables and either continuous
or binary distributed.

(2) All data sources were cleaned by removing variables with a high
proportion of missing values (>30%) and imputing the remaining
missing values with the 'missForest’ imputation approach.

(3) The data sets from the different sources were then combined into a
single data set.

The merged data set has the dimensions 521 x 274 and consists of six different
feature-blocks in total - each data source corresponds to a feature-block. The
single variable names of the different feature-blocks were censored because of
data protection regulations. Every single of the 521 observations in the data
misses at least one feature-block, such that there is no single observation
that is completely observed in all six feature-blocks. The structure of the
block-wise missingness is displayed in figure 17. In this figure, each row
corresponds to an observation in the data set, and each column stands for a
single data source. A green line indicates that an observation was observed
entirely for a given feature-block. In contrast, a red line indicates that the
observation was not observed at all for the corresponding feature-block. The
"Questionaire’ feature-block was observed for every patient of the data set,
and there is no single patient that is observed in both ’gene expression data
I’ and "gene expression data II” feature-blocks.
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Structure of the block-wise missingness for the clinical asthma data
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Figure 17: Structure of block-wise missingness in the clinical asthma
data.

Evaluation Technique

The clinical asthma data is used to assess the predictive performance of the
different approaches for data with block-wise missingness. Besides the com-
parison of the predictive performance of the various random forest based
approaches, also the performance of the mdd-sPLS method and the differ-
ent priority-Lasso adaptions from Hagenberg [1] are compared based on this
data. To assess the predictive performance of the different approaches on
this data, regular 5-fold cross-validation is applied - the distribution of the
target variable is approximately equal for all folds (50:50). Other than the
TCGA data, the clinical asthma data already consists of block-wise missing-
ness. As the data is randomly split into five folds, each of these folds consist
of observations with diverse block-wise missing values. Hence not only the
training-sets consist of different block-wise missingness structures but also
the test-sets (= held-out folds) contain observations with different observed
feature-blocks. This is completely different compared to the cross-validation
on the TCGA data, where the observations in the test-set always have the
same observed feature-blocks. The 5-fold cross-validation technique for the
clinical asthma data is explained now and illustrated in algorithm 4.
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In the beginning, the clinical asthma data is split into five equally sized
folds. In each iteration of the 5-fold cross-validation one of the folds is used
as test-set (held-out fold) and the remaining folds as train-set. Firstly, the
different patterns of block-wise missingness are extracted from the test-set.
For each pattern of block-wise missingness in the test-set, the approach App
is fitted on the train-set, such that it can provide predictions for the test-
observations with the current pattern of block-wise missingness. After the
outcome was predicted for each observation in the test-set, the predicted
classes are compared with the true classes, and the resulting metric for the
current cross-validation fold is returned.

Algorithm 4: Evaluation of the approaches with the clinical asthma
data
Input : D < clinical asthma data with block-wise missingness
App < Approach
1. Split the clinical asthma data D into five equally sized folds
2. for k+ 1to 5 do
2.1 Use fold k as test-set and the remaining four folds as
train-set;
2.2 Extract the unique patterns of block-wise missingness in the
test-set - testpatterns;
2.3 for patterncyrrent € testpatterns do
2.3.1 Fit App on the train-set, such that it can be used for
the prediction on patterncyrent;
2.3.2 Generate predictions for the test-observations with
block-wise missingness according to currentpaitern

2.4 Evaluate the predictive performance of the approach App by
comparing the predicted classes with the true classes;
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4 Results

This section presents the results of the different approaches for data with
block-wise missing values on the diverse data sources. Firstly the results
of the various random forest adaptions on the TCGA data are shown,
compared and analysed. Afterwards, the results of the different random forest
adaptions, the mdd-sPLS method and the several priority-Lasso adaptions
from Hagenberg [1] are shown, compared and analysed based on the clinical
asthma data.

4.1 TCGA

This subsection contains all cross-validation results of the different random
forest adaptions for the diverse patterns of block-wise missingness in the
TCGA data. Detailed information on the evaluation technique with the
TCGA data can be found in the paragraph "Evaluation Technique’ of section
3.2.1.  Details on the diverse patterns of block-wise missingness can be
found in the paragraph 'Inducing block-wise missingness’ of section 3.2.1.
Firstly, the results for each approach on the various patterns of block-wise
missingness ("Pattern 1’ - "Pattern 47) are shown and explained separately
before the different approaches are compared then.

The figures that show the results for the different approaches always have
a similar structure. Each figure consists of four separate plots - one for
each pattern of block-wise missingness in the training data. Each of these
plots shows the results as boxplots, whereby the y-axis shows the F-1 score
and the x-axis the different combinations of feature-blocks in the test-set
- e.g. 'miss2_BD’ shows the results of the approach on a test-set with missing
feature-blocks 'B” and 'D’. For each possible combination of feature-blocks in
the test-set - so-called ’test-situations’ - the results are plotted as a boxplot.
The letters A, B, C & D represent the feature-blocks in the diverse patterns.
The order is as in the tables 5 - 8 - e.g. ’A” in pattern 1 stands for 'CNV’. The
data in the different test-situations is always the same and only differs in the
observed feature-blocks - e.g. in a given pattern, the test-situations 'miss1_A’
(observed feature-blocks: [B, C, D & Clin]) and 'miss1_B’(observed feature-
blocks: [4, C, D & Clin]) only differ in the observed feature-blocks, while
everything else is equal (the observations and feature-blocks [C, D & Clin|
are the same for both test-situations). As the training data in 'Pattern 4’
only has three feature-blocks and not five as in the remaining three patterns,
there are fewer test-situations. The test-situations that are only available for
the first three patterns but not for "Pattern 4’ are marked with an orange "X’.
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4.1.1 Complete-Case Approach

This subsection introduces the results of the complete-case approach on the
diverse patterns of block-wise missingness on the TCGA data - details on the
approach can be found in section 2.3.

Complete-Case Approach
TCGA - Patterns 1,2,3 & 4
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Figure 18: Results of the "Complete-Case’ approach on the TCGA data
with induced block-wise missingness according to pattern 1, 2, 3 & 4.
Test-Situations that are not available for "Pattern 4’ are marked with an
orange cross.

Figure 18 shows the average results of the 5-fold cross-validation for the
complete-case approach on the 14 TCGA data sets for the various patterns
of block-wise missingness. The first thing that stands out is that there are
not always results for each test-situation - e.g. with 'Pattern 1’ there are no

o4



results for the situations where the test-set is fully observed (’full’), misses a
single feature-block (e.g. 'miss1_A’) or two (e.g. 'miss2_CD’). The complete-
case approach only uses observations that are observed in the same feature-
blocks as the test-set to train a random forest model. As the training-set
with ’Pattern 1’ only contains folds with an observed clinical block and one
additional omics block, there are simply no complete case observations for
these test-situations. Hence the complete-case approach can not generate
predictions for these test-situations. Only with "Pattern 2’ the complete-case
approach can create predictions for all possible test-situations. In "Pattern
1’ and 'Pattern 3’ it is noticeable that the results are much better in test-
situations with the feature-block "A’ - e.g. 'miss3_BCD’/ ’single_ A’ (in both
patterns 'A’ stands for the 'CNV’ block). In "Pattern 2’ the results are the
best in test-situations with the feature-block "D’ - e.g. 'miss1_A’/ 'miss1 B’/
'miss1_C’ (in this pattern 'D’ stands for the 'CNV’ block). In "Pattern 4’
the results are the best for test-situations with the feature-block 'B’ - e.g.
'miss1_A’/ ’single_B’ (in this pattern 'B’ stands for the 'CNV’ & "Mutation’
block).

4.1.2 Single-Block Approach

This subsection introduces the results of the single-block approach on the
diverse patterns of block-wise missingness on the TCGA data - details on
the approach can be found in section 2.4.

Figure 19 shows the average results of the 5-fold cross-validation for the
single-block approach on the 14 TCGA data sets for the various patterns of
block-wise missingness. To each test-situation, the results are structured
according to the feature-block used for the training of the single-block
approach. The first thing that stands out is that the single-block approach
can not create predictions for all test-situations. It can only provide
predictions when the test-set contains the feature-block that has been initially
used for the training. E.g. when training a random forest model on the
"Clinical’ feature-block, the resulting model can only generate predictions for
observations/ test-sets that are observed in this feature-block. Moreover, the
performance of the single-block approach on a given feature-block is the same
for all test-situations. This makes sense, as the test-sets in the different test-
situations only differ in their observed feature-blocks, and as the single-block
approach uses the same feature-block for the predictions, the performance is
equal for the different test-situations. Regarding the predictive performance,
it is clear to see that in 'Pattern 1’ and "Pattern 3’ the performance is the best
when using the feature-block A’ (in both patterns A’ stands for the '"CNV’
block). In 'Pattern 2’ the single-block approach has its best performance
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with the feature-block 'D’ (in this pattern D’ stands for the 'CNV’ block),
and in 'Pattern 4’ it is the best with the feature-block 'B’ (in this pattern
‘B’ stands for the 'CNV’ & 'Mutation’ block).

Single-Block Approach

TCGA - Patterns 1,2, 3 & 4
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Figure 19: Results of the ’Single-Block’ approach on the TCGA data
with induced block-wise missingness according to pattern 1, 2, 3 & 4.
Test-Situations that are not available for "Pattern 4’ are marked with an
orange Cross.
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4.1.3 Imputation Approach

This subsection introduces the results of the imputation approach on the
diverse patterns of block-wise missingness on the TCGA data - details on
the approach can be found in section 2.5.

Imputation Approach
TCGA - Patterns 1,2, 3 &4
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Figure 20: Results of the 'Imputation’ approach on the TCGA data
with induced block-wise missingness according to pattern 1, 2, 3 & 4.
Test-Situations that are not available for "Pattern 4’ are marked with an
orange cross.

Figure 20 shows the average results of the 5-fold cross-validation for the
imputation approach on the 14 TCGA data sets for the various patterns of
block-wise missingness. The first thing that stands out is that the imputation
approach can provide predictions for any possible test-situation. This is
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possible, as the imputation approach firstly imputes all missing values in
the training data, such that the data is completely observed then. With
this wholly observed data, a random forest model can be fitted regularly
and provide predictions for all possible test-situations then. Regarding the
predictive performance in 'Pattern 1’ and ’Pattern 3’, it is the best in the
test-situations with the feature-block A’ (in both patterns 'A’ stands for
the 'CNV’ block). In ’Pattern 2’ the imputation approach has its best
performance with the feature-block 'D’ (in this pattern 'D’ stands for the
"CNV’ block), and in 'Pattern 4’ it is the best with the feature-block 'B’ (in
this pattern ‘B’ stands for the 'CNV’ & "Mutation’ block). Therefore, as with
the previous two approaches, the performance in the diverse test-situations
is always the best in test-situations with the feature-block 'CNV’,

4.1.4 Block-wise Approach

This subsection introduces the results of the block-wise approach for the
diverse patterns of block-wise missingness on the TCGA data - details on
the approach can be found in section 2.6.

Figure 21 shows the average results of the 5-fold cross-validation for the
block-wise approach on the 14 TCGA data sets for the various patterns of
block-wise missingness. For each test-situation, the results of the block-
wise approach are shown structured according to the weight metric used
to combine the block-wise predictions. The first thing that stands out is
that the block-wise approach can provide predictions for any test-situation.
As the block-wise approach combines the predictions of the single feature-
blocks it has been trained with, it is flexibly applicable in different test-
situations. Furthermore, the performance in the test-situations with a single
feature-block only - e.g. ’single_ A’ - is equal for the different weight metrics
used for the aggregation of the block-wise predictions. That is meaningful,
as the predictions in these test-situations only depend on a single feature-
block, such that there is no aggregation of block-wise predictions. Regarding
the predictive performance, it is clear to see that it is the best when using
the 'F-1 Score’ as weight metric. For all patterns of block-wise missingness
and almost all test-situations, the median F-1 score is the best with the
'F-1 Score’” as weight metric. The only situations in which the block-wise
approach with the 'F-1 Score’ as weight metric does not have the best results
are the test-situations with a single feature-block (’single_A’ - ’single_CL’).
In these test-situations, the used weight metric has no influence, as there
is no aggregation of the block-wise predictions. Regarding the predictive
performance, it is the same as with the previous approaches. In "Pattern 1’
and ’Pattern 3’ the predictive performance is the best in the test-situations

38



with the feature-block 'A’ (in both patterns 'A’ stands for the 'CNV’ block).
While in "Pattern 2’ the block-wise approach has the best performance with
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e feature-block 'D’ (in this pattern D’ stands for the 'CNV’ block). For
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Figure 21: Results of the 'Block-wise’ approach on the TCGA data with
induced block-wise missingness according to pattern 1, 2, 3 & 4. Test-
Situations that are not available for 'Pattern 4’ are marked with an orange
CToss.
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4.1.5 Fold-wise Approach

This subsection introduces the results of the fold-wise approach for the
diverse patterns of block-wise missingness on the TCGA data - details on
the approach can be found in section 2.7.

Figure 22 shows the average results of the 5-fold cross-validation for the
fold-wise approach on the 14 TCGA data sets for the various patterns
of block-wise missingness. For each test-situation, the results of the fold-
wise approach are shown structured according to the weight metric used to
combine the fold-wise predictions. As the fold-wise approach combines the
predictions of its diverse fold-wise fitted random forest models, it is flexibly
applicable and can provide predictions for any test-situation. Furthermore,
the performance of the fold-wise approach is identical for the different weight
metrics in the test-situations that only consist of feature-blocks that are only
available for a single fold in the training data. For example, with "Pattern
17 the performance in the test-situations 'single_A’, 'single_ B’; ’single_C’ and
'single_D’ is equal for the different weight metrics. That is reasonable, as in
these test-situations only a single fold-wise fitted random forest model can
create predictions, as the training-set only has a single fold that can be used
for these test-situations. Hence there is only one fold in the training data
with an observed feature-block ’A’, such that only this fold can be used to
train a random forest model and create a prediction for the test-set 'single_A’
then. Regarding the predictive performance, it is quite clear to see that it is
the best when using the 'F-1 Score’ as weight metric. With "Pattern 1’ the
median F-1 score is the best in 15 out of the 20 test-situations with the F-1
Score’” as weight metric. With "Pattern 2’ the median F-1 score is the best in
9 out of the 20 test-situations with the 'F-1 Score’ as weight metric, and with
"Pattern 3’ it is the best in 8 out of the 20 test-situations with the 'F-1 Score’
as weight metric. In "Pattern 4’ median F-1 score is once the best with the
"F-1 Score’ as weight metric, and once when using no weight metric. With the
"Accuracy’ as weight metric, the results were never the best in any pattern.
As with the previous approaches, in "Pattern 1’ and "Pattern 3’ the predictive
performance is the best in the test-situations that contain the feature-block
A’ (in both patterns 'A’ stands for the 'CNV’ block). While in "Pattern 2’
the block-wise approach has the best performance with the feature-block "D’
(in this pattern D’ stands for the 'CNV’ block). For "Pattern 4’ it is the
best with the feature-block ‘B’ (in this pattern ‘B’ stands for the 'CNV’ &
"Mutation’ block).
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Figure 22: Results of the ’Fold-wise’ approach on the TCGA data with
induced block-wise missingness according to pattern 1, 2, 3 & 4. Test-
Situations that are not available for "'Pattern 4’ are marked with an orange
CTOSS.

4.1.6 Comparison of the Approaches

This part of the thesis compares the results of the different random forest
based approaches on the TCGA data for its various patterns of block-wise
missingness. For the comparison of the diverse approaches, only the best
settings of each approach are used. For the block- & fold-wise approach the
results were the best with the 'F-1 Score’ as weight metric, and for the single-
block approach, the performance was the best, when using the feature-block
'CNV’. In ’Pattern 1’ and ’Pattern 3’ ’A’ stands for the 'CNV’ block | in
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"Pattern 2’ 'D’ stands for the 'CNV’ block | in "Pattern 4’ 'B’ stands for the
"CNV” and "Mutation’ block.

Pattern 1

Figure 23 shows the boxplots for the average results of the 5-fold cross-
validation of the diverse approaches on the 14 TCGA data sets with
block-wise missingness in the training-set according to 'Pattern 1’. In the
test-situations that do not contain the feature-block ’A’, the predictive
performance is in general much worse, as in the test-situations that contain
the feature-block "A’ (in this pattern A’ stands for the ’‘CNV’ block). The
single-block and complete-case approach can not create predictions for all
test-situations, while the fold-wise, block-wise, and imputation approach can
do so. Regarding the predictive performance, the fold-wise approach has
the best median metric in 11/20 test-situations, the block-wise approach
has the best median F-1 score in 3/20 test-situations and the imputation
approach has the best median F-1 score in 4/20 test-situations. The
single-block approach never has the best median performance in any test-
situation, while the complete-case approach has the best median performance
in only one. In this setting, it is clear to say that the fold-wise approach
has the best predictive performance. The second-best approach in this
scenario is the imputation approach which is only marginally better than
the block-wise approach. The single-block and complete-case approach have
a rather bad predictive performance compared to the other three approaches.
Additionally, these approaches have the drawback that they can not generate
predictions for all possible test-situations.

Summary: The fold-wise approach has by far the best predictive performance
and can create predictions for every test-situation. The imputation and
block-wise approach can create predictions for all test-situations as well
but have a worse predictive performance than the fold-wise approach. The
complete-case and single-block approach are inflexible and can only provide
predictions in certain test-situations. But even in these test-situations, the
approaches are usually worse than at least one of the remaining approaches.
The results with the balanced accuracy/ MCC as metric are similar -
corresponding figures A-3/ A-4 can be found in the attachment.
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Figure 23: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 1.

Pattern 2

Figure 24 shows the boxplots for the average results of the 5-fold cross-
validation of the diverse approaches on the 14 TCGA data sets with
block-wise missingness in the training-set according to ’'Pattern 2’. In the
test-situations that do not contain the feature-block 'D’, the predictive
performance is in general much worse, as in the test-situations that contain
the feature-block 'D’ (in this pattern 'D’ stands for the 'CNV’ block). The
complete-case approach can not create predictions for all test-situations,
while the other four approaches can do so. Regarding the predictive
performance, the imputation and block-wise approach have each the best
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Metric: F-1 Score

median F-1 score in 8/20 test-situations each. The fold-wise, complete-case,
and single-block approaches never have the best median F-1 score in any
test-situation. In this setting, it is clear to say then that the imputation
and block-wise approach have the best predictive performance. The fold-
wise approach performs poor in this setting and can be compared with the
single-block and complete-case approach.

Comparison of all Approaches
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Figure 24: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 2.

Summary: The imputation and block-wise approach have the best
predictive performance and can create predictions for every possible test-
situation. The fold-wise and complete-case approach can create predictions
for all test-situations as well but have a worse predictive performance.
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The single-block approach is inflexible and can only provide predictions in
certain test-situations. Regarding the predictive performance, the single-
block approach never leads to the best results. The results with the balanced
accuracy/ MCC as metric are similar - corresponding figures A-5/ A-6 can
be found in the attachment.

Pattern 3

Figure 25 shows the boxplots for the average results of the 5-fold cross-
validation of the diverse approaches on the 14 TCGA data sets with
block-wise missingness in the training-set according to 'Pattern 3’. In
the test-situations that do not contain the feature-block A’ the predictive
performance is in general much worse, as in the test-situations that contain
the feature-block A’ (in this pattern 'A’ stands for the 'CNV’ block). Only
the single-block and complete-case approach can not create predictions for
all test-situations. Regarding the predictive performance, the block-wise
approach has the best median F-1 score in ten out of the 20 test-situations.
The imputation approach has the best performance in four test-situations,
while the fold-wise approach has the best performance in only two test-
situations. The complete-case and single-block approaches never have the
best median F-1 score. The single-block approach can provide predictions
only for the test-situations with the feature-block ’A’, and there is no single
test-situation where this approach has the best median F-1 score. Also, the
complete-case approach never has the best median F-1 score.

Summary: The block-wise approach has the best predictive performance and
can create predictions for every possible test-situation. The imputation and
fold-wise approach can create predictions for all test-situations as well but
have a worse predictive performance than the block-wise approach. The
single-block and complete-case approach are inflexible and can only provide
predictions in certain test-situations - regarding the predictive performance,
the approaches never lead to the best results. The results with the balanced
accuracy/ MCC as metric are similar - corresponding figures A-7/ A-8 can
be found in the attachment.
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Figure 25: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 3.

Pattern 4

Figure 26 shows the boxplots for the average results of the 5-fold cross-
validation of the diverse approaches on the 14 TCGA data sets with
block-wise missingness in the training-set according to 'Pattern 4’. In the
test-situations that do not contain the feature-block 'B’, the predictive
performance is in general much worse, as in the test-situations that contain
the feature-block B’ (in this pattern ‘B’ stands for the 'CNV’ & "Mutation’
block). Only the single-block and complete-case approach can not create

predictions for all test-situations.

Regarding the predictive performance,

the fold-wise approach has the best median F-1 score in four out of the six
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Metric: F-1 Score
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test-situations. The complete-case approach has the best median F-1 score
once. In contrast, the remaining three approaches (block-wise, imputation
and single-block) never resulted in the best median F-1 score in any test-
situation. In this setting, it is clear to say that the fold-wise approach
has the best predictive performance. The single-block approach can provide
predictions only for the test-situations with the feature-block ’A’, and there
is no single test-situation where this approach has the best median F-1 score.

Comparison of all Approaches
TCGA - Pattern 4

Approach: £ Fold-wise ® Block-wise ® Imputation & Single-Block & Complete-Case
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Figure 26: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 4.
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Summary: The fold-wise approach has the best predictive performance
and can create predictions for every possible test-situation. The imputation
and block-wise approach can create predictions for all test-situations as well
but never have the best median F-1 score. The single-block and complete-
case approach are inflexible and can only provide predictions in certain test-
situations. Regarding the predictive performance, the single-block approach
never leads to the best results, while the complete-case approach has the
best median F-1 score in one test-situation. The results with the balanced
accuracy/ MCC as metric are similar - corresponding figures A-9/ A-10 can
be found in the attachment.

4.2 Clinical asthma data

This subsection contains all cross-validation results on the clinical asthma
data for the different random forest based approaches, as well as for the
adaptions of the priority-Lasso from Hagenberg [1] and the mdd-sPLS
method. Firstly the results of the different approaches are shown and
explained separately before the results of the approaches are compared then.

4.2.1 Random Forest

This part of the thesis introduces all results of the different random forest
adaptions from this thesis on the clinical asthma data. Detailed information
on the evaluation technique on the clinical asthma data can are in the
paragraph ’Evaluation Technique’ of section 3.2.2.

Complete-Case Approach

This paragraph shows the results of the complete-case approach for the
clinical asthma data - details on the approach itself in section 2.3.

Figure 27 shows the results of the 5-fold cross-validation with the complete-
case approach on the clinical asthma data. The resulting F-1 scores are
between 0.81 and 0.87, whereby the median and mean are slightly above
0.83. As the observed feature-blocks for the observations in the test-set
differ, the predictions need to be generated separately for each fold in the
test-set. To create predictions for a given fold in the test-set it is checked,
whether the training-set contains complete-cases regarding the current fold.
If there are complete-cases, a random forest model is trained with these
observations then and used to create predictions for the current fold. In
the 5-fold cross-validation on the clinical asthma data, there was no single
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case, where the complete-case approach could not generate a prediction for
a test-observation.

Complete-Case Approach

Clinical asthma data
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Figure 27: Results of the ’Complete-Case’ approach on the clinical
asthma data.

Single-Block Approach

This paragraph shows the results of the single-block approach for the clinical
asthma data - details on the approach itself in section 2.4.

Figure 28 shows the results of the 5-fold cross-validation with the single-block
approach on the clinical asthma data. The x-axis shows the different feature-
blocks that have been used for the training of the single-block approach
- e.g. the boxplot on the far left in the figure shows the results of the 5-fold
cross-validation when training a random forest model on the 'Questionaire’
feature-block and using this model to predict on the test-set then. As the
observations in the test-set are observed in different feature-blocks, the single-
block approach can not always generate predictions for all observations in the
test-set. Instead of evaluating the observations for which no prediction could
be made as misclassified, the predictions for these observations equal the
distribution of the predicted classes in the test-set. E.g. if the model labels
three test-observations as ’positive’ and seven as 'negative’, the predicted
probability for the remaining test-observations the model could not create
predictions for, is set to 0.7 for 'negative’. The single-block approach with
the 'Questionaire’ feature-block could always generate predictions for the
on average 104.2 observations per held-out-fold. With the ’Clinical routine
diagnostics’ feature-block, on average one test-observation out of the 104.2
test-observations per held-out fold had to be guessed and with the "Allergen
sensitization’ feature-block it were on average 8.2 test-observations per held-
out fold. The remaining feature-blocks have only been observed for a small
fraction of the observations in the clinical asthma data, such that the average
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amount of test-observations that could not be predicted is much higher. For
the 'Cytokine expression data’, it were 74.4 out of 104.2 test-observations
per held-out fold. With the 'Gene expression data I’, it were 91 out of 104.2
test-observations per held-out fold and with the 'Gene expression data II’
on average even 95. With a median F-1 score of 0.81, the best predictive
performance is achieved with the ’Questionaire’ feature-block. The second-
best performance is achieved with the feature-block "Allergen sensitization’
that has a median F-1 score of 0.77. With any other feature-block, the
median F-1 score is below 0.72.

Single-Block Approach

Clinical asthma data
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Figure 28: Results of the "Single-Block’ approach on the clinical asthma
data.

Imputation Approach

This paragraph shows the results of the imputation approach for the clinical
asthma data - details to the approach itself in section 2.5.

Figure 29 shows the results of the 5-fold cross-validation with the imputation
approach on the clinical asthma data as a boxplot. The resulting F-1 score
metrics are between 0.83 and 0.87, whereby the median is above 0.84 and
the mean around 0.85. As the observed feature-blocks for observations in the
held-out fold differ, the predictions are generated separately for each fold in
the test-set. To create a prediction for a given fold from the test-set, firstly
the observed feature-blocks for the given fold have to be extracted. From
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the imputed training data, only the available feature-blocks of the current
fold are then used to train a random forest model. This model is then able
to create predictions for the current fold then. In the 5-fold cross-validation
on the clinical asthma data, there was no single case, where the imputation
approach could not generate a prediction for a test-observation.

Imputation Approach

Clinical asthma data
0.881

0.841 \

Figure 29: Results of the 'Imputation’ approach on the clinical asthma
data.

Block-wise Approach

This paragraph shows the results of the block-wise approach for the clinical
asthma data - details on the approach itself in section 2.5.

Figure 30 shows the results of the 5-fold cross-validation with the block-
wise approach on the clinical asthma data. The results are split by the
weight metric used to aggregate the diverse block-wise predictions. With
this approach, predictions were always possible for the observations in the
test-set, as the block-wise fitted model is flexibly applicable to observations
with different patterns of block-wise missingness. The predictive performance
with the block-wise approach is the best when using the 'F-1 Score’ as weight
metric for the aggregation of the block-wise predictions. The median F-1
score metric is around 0.79, and around 0.78 when using the "Accuracy’ as
weight-metric. When using no metric for the aggregation of the block-wise
predictions, the performance is the worst - the median is 0.77. Even if the
results are close, it can be said that the best performance on this data set is
achieved when using the 'F-1 Score’ as weight metric.
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Block-wise Approach
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Figure 30: Results of the 'Block-wise’ approach on the clinical asthma
data.

Fold-wise Approach

This paragraph shows the results of the fold-wise approach for the clinical
asthma data - details on the approach itself in section 2.6.

Figure 31 shows the results of the 5-fold cross-validation with the fold-wise
approach on the clinical asthma data. The results are split by the weight
metric used to aggregate the diverse fold-wise predictions. As the fold-wise
approach combines the predictions of its different fold-wise fitted random
forest models, it is flexibly applicable and can provide predictions for all
observations in each held-out fold. Regarding the predictive performance, it
is clear to see that it is the best when using the 'F-1 Score’ as weight metric -
median F-1 score of 70.83. With the "Accuracy’ as weight metric, the median
is around 0.7, and when using no metric for the aggregation, the median
equals 0.65.
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Figure 31: Results of the "Fold-wise’ approach on the clinical asthma
data.

4.2.2 Priority-Lasso & mdd-sPLS

This part of the thesis introduces the predictive performances of the different
priority-Lasso adaptions from Hagenberg [1] and of the mdd-sPLS method
from Lorenzo et al. [2] on the clinical asthma data. These diverse
methods can directly deal with block-wise missingness. In the beginning, the
theoretical principles are briefly explained, before the predictive performance
of the different approaches is investigated then.

Theoretical principles - Priority-Lasso

The priority-Lasso is an extension of the lasso method. Lasso stands for least
absolute shrinkage and selection operator and was introduced by Tibshirani
in 1996 [49]. The lasso method is a regularised least squares estimator that
adds the absolute values of all parameters as an additional penalty. The loss
function is defined as:

ly — Bol — XBl5 + 2184l (13)

Jj=1

In the equation 13 the parameter A is a hyperparameter > 0. The bigger A,
the stronger the added penalty for each 5 # 0. The additional penalty leads
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to two major advantages over the regular least squares estimator. Firstly,
the lasso model can be fitted on data with more features than observations.
Secondly, the lasso method does variable selection, as only parameters of the
important variables are estimated with a value different from 0.

In 2018 the priority-Lasso was introduced by Klau et al. [19] as an extension
of the classical lasso method. The priority-Lasso can be applied to data with
different feature-blocks. It is described as a “hierarchical regression method
which builds prediction rules for patient outcomes [...] from different blocks
of variables including high-throughput molecular data” [[19], p. 2]. Firstly
the feature-blocks of the data are ordered in descending order of priority for
the target variable - the stronger the relation of a feature-block to the target
variable, the higher its priority. Then a separate lasso model is fitted to
each of these feature-blocks. The models that were fitted on the later blocks
(the later, the lower the importance of the block for the target variable) are
only used to improve the prediction from the previous blocks. “In order to
assure that later blocks only improve the prediction of the previous blocks,
the fitted linear predictor of block m is used as the offset when fitting block
m + 17 [1]. More details on this are in the second chapter of Hagenberg’s
thesis [1] or in Klau et al. [19].

Hagenberg [1] developed different adaptions of the priority-Lasso such that
it can directly deal with block-wise missingness. As for the priority-Lasso,
a model is fitted on each feature-block of the data. Mainly there are two
methods to deal with the missing data:

(1) Ignore: The “lasso model for every block is only fitted with the
observations that have no missing values” [1]. For observations that have
missing values in the current feature-block, no offset can be calculated for
the next block. For these observations the offset (incl. intercept) “from the
previous block is carried forward” [1]. For observations that lack values of the
first feature-block, the offset for the second feature-block is either set to zero
- PL-ignore, zero - or to the estimated intercept of the first feature-block -
PL-ignore, intercept.

(2) Impute: As in the ”Ignore” approach, the lasso model fitted on
each feature-block only uses the observations that have no missing values in
this block. For observations with missing values, the offset from the previous
block is not carried forward but imputed. “This has the advantage that in-
stead of imputing a possibly very high number of covariates, only one value
[- the offset -] is imputed” [1]. In the beginning, the unique patterns of block-
wise missingness (), are extracted from all the observations that miss the
feature-block m. Then for each pattern of block-wise missingness ¢ € (), all
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observations from the training data that can be used for an imputation model
are found. These observations need to be observed in the feature-block m
and in at least one feature-block that is observed in the pattern ¢. Then for
every pattern of block-wise missingness, it is counted how many observations
can be used for the imputation model. The pattern ¢ that the training ob-
servations must have to be usable for the imputation model is either chosen
according to the pattern “that has the most observations that can be used
for the imputation model” [1] [maz. n] or according to the pattern “that uses
the most high priority blocks” [maz. blocks] [1].

In total there are four different adaptions of the priority-Lasso - ’ignore,
zero’, 'ignore, intercept’, 'impute, max. n’ and ’impute. max. blocks’. All
models are fitted sequentially and only differ in the way how the offset is
carried forward for observations with missing values and how predictions are
made. Closer information on the theoretical principles of these adoptions is
in chapter three of Hagenberg’s thesis [1].

Theoretical principles - mdd-sPLS

Lorenzo et al. introduced the mdd-sPLS method in 2019 [2] and it can be
applied in “supervised high dimensional settings with a large number of vari-
ables and a low number of individuals” [[2], p. 1]. It can either be used
for variable selection or as a prediction model. In the thesis of Hagenberg
[1], it is used as a prediction method for the comparison with the different
priority-Lasso adaptions. The mdd-sPLS method “is based on singular value
decomposition (SVD) of the covariance matrix between the outcome Y and
the covariates X” [1]. The maximising of the covariance between X and Y
leads to latent variables for the covariates and the target variable. “The la-
tent variables can then be used to approximate X and Y and regress Y onto
X [(latent variables)]” [1]. Lorenzo et al. [2] use a soft-threshold covariance
matrix for the SVD, such that all entries with an absolute value smaller than
a threshold are set to zero - the method is called ’'covariance-thresholding
sparse PLS’ (ct-sPLS). To combine the information from multiple feature-
blocks, the ct-sPLS method is applied separately to all blocks. For the com-
bination of the information in the different blocks “the weights from the SVD
used to generate the latent variables are pooled. The pooling is performed in
such a way that the subsequent regression is done in a common subspace over
all blocks” [1]. This method is called "Multi-Data-Driven-sPLS (mdd-sPLS)’.
Missing values in the training data are mean imputed before the mdd-sPLS
algorithm is applied. Only variables that have been initially missing and re-
ceived a mean value as a first imputation get improved imputations then. To
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do this, another mdd-sPLS model is built. This model predicts the “variables
used in the first model from information about the outcome and is used to
impute the missing values. The process of building a model to predict the
outcome and then another model to impute the missing variables is repeated
until convergence of the latent variables of the covariates” [1].

Missing values in the test data are imputed by a mdd-sPLS model on the
observed data. Based on the complete test-set, predictions can then be gen-
erated.

The mdd-sPLS method can be fitted directly on data with block-wise missing
values and provide predictions for test observations with block-wise missing
values. Further details on the theoretical properties can either be found in
[2] or in Hagenberg’s thesis [1].

Naive block priority

In this setting, the analysis was performed with a block order that gives
a higher priority to feature-blocks with less missing observations. This is
a somewhat naive assumption, as the priority of the feature-blocks should
be justified by a professional - e.g. a doctor. The results of the 5-fold
cross-validation on the clinical asthma data for the different priority-Lasso
adaptions and the mdd-sPLS method are shown as boxplots in figure 32. The
x-axis shows the different approaches and the y-axis the corresponding F-1
scores. The overall F-1 scores are between 0.75 and 0.88. Among the priority-
Lasso adaptions, the 'PL - impute, maximise blocks’ approach has the worst
median F-1 score with 0.81. The second worst adaption is the 'PL - impute,
maximise n’ with a median F-1 score of 0.82. Hence the 'imputation’ priority-
Lasso adaptions perform worse than the ’ignore’ adaptions. The median F-1
score for the 'PL - ignore, zero’ approach is 0.82 and only slightly lower than
of the 'PL - ignore, intercept’ approach that has a median F-1 score of 0.83.
The mdd-sPLS method has a median F-1 score of 0.81 and is only slightly
better than the 'PL - impute, maximise blocks’ adaption.

In this setting the ’ignore’ priority-Lasso adaptions perform better than the
‘imputation’ adaptions. The best performance is achieved with the 'PL -
ignore, intercept’ approach that has a median F-1 score of 0.83. The mdd-
sPLS approach is the second-worst approach and is only better than the
worst priority-Lasso adaption - 'PL - impute, maximise blocks’.
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Priority-Lasso adaptions & mdd-sPLS method
Clinical asthma data
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Figure 32: Results of the priority-Lasso adaptions and the mdd-sPLS
approach on the clinical asthma data.

Influence of using different block combinations for the prediction

In this setting, the influence of different block combinations for the prediction
is investigated. The priority of the feature-blocks is the same naive one as in
the previous paragraph. The different priority-Lasso adaptions are trained
on all blocks, but the predictions are “based on a subset of the blocks, adding
one after the other” [1]. Figure 33 shows the results for the different priority-
Lasso adaptions as boxplots. The x-axis shows the different priority-Lasso
adaptions and the y-axis the corresponding F-1 scores. For each approach,
the F-1 score is shown for the predictions based on the different block
combinations. For example, the red boxplots show the results of the diverse
approaches when only using block 1 for the predictions, whereby the green
boxplots show the results of the same approaches when using block 1, 2 and
3 for the predictions.

When using only block 1 for the prediction, the median F-1 score for the
"ignore’ priority-Lasso adaptions are around 0.81, and for the 'imputation’
priority-Lasso adaptions around 0.82. The addition of block 2 increases the
median F-1 score for all approaches except for 'PL - impute, maximise blocks’.
The addition of block 3 increases the median F-1 scores for all approaches.
When additionally using block 4 for the prediction, it worsens the median
F-1 score for all approaches except for 'PL - ignore, intercept’. The additions
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of block 5 and 6 lead to a significant decrease in the predictive performance
for all the different approaches.

The predictive performance is the best for all approaches when only using
the feature-blocks 1, 2 and 3 for the predictions. As in the previous setting,
the ’ignore’ priority-Lasso adaptions perform better than the 'imputation’
adaptions. The best predictive performance is achieved with the "PL - ignore,
zero’ approach that has a median F-1 score of 0.88. As the mdd-sPLS method
always uses all feature-blocks for the prediction, the performance in this
setting is the same as in the previous paragraph - median F-1 score of 0.81.

Priority-Lasso - split by the blocks used for the prediction
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Figure 33: Results of the priority-Lasso adaptions on the clinical asthma
data, when using subsets of blocks for the predictions.

Influence of different block priorities

One of the key features of the priority-Lasso is that the priority of the blocks
can be set according to the needs of the user. In the previous two para-
graphs, the priority of the blocks was set according to the number of missing
observations in the feature-blocks. This does not necessarily reflect a pro-
fessional opinion. Therefore the analysis of the approaches was repeated for
a different order of the block priorities. The priority of the blocks was set
according to the opinion of the project partner and set as follows (ascending
order): cytokine expression data (ID 4), clinical routine diagnostics (ID 2),
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questionnaire (ID 1), and lastly the allergen sensitisation (ID 3), the gene
expression data I (ID 5) and the gene expression data II (ID 6) have the same
priority. “With this block order, not all models with both gene expression
data blocks could be estimated. Therefore, only the [...] block combinations
where only one gene expression data block is included were analysed” [1].
Thus one of the analyses is based on the feature-blocks 1, 2, 3, 4 and 5 and
the other one based on 1, 2, 3, 4 and 6.

Block Priority [4, 2, 1, 3, 5]:  In this part, the predictive performance
of the different priority-Lasso adaptions and the mdd-sPLS approach based
on the feature-blocks 1, 2, 3, 4 and 5 are analysed - the priority is set to 4,
2,1, 3, 5. The predictive performances of the different approaches are shown
as boxplots in figure 34. The x-axis shows the different approaches and the
y-axis the corresponding F-1 scores. For each approach, the F-1 scores are
shown separately when the “predictions are based only on the block with the
highest priority, based on the blocks with the two highest priorities and so
on” [1].

The mdd-sPLS method always uses all feature-blocks for the prediction, such
that there is only one single boxplot for this approach. The median F-1 score
is around 0.81 and hence more or less the same as with the 'naive block pri-
ority’. For the different priority-Lasso adaptions, the predictive performance
based only on block 4 is rather bad. Adding the blocks 2 and 1 increases
the predictive performances respectively for all approaches. The addition of
block 3 does not change too much, while the addition of block 5 has two
different effects. While the ’ignore’ priority-Lasso adaptions can increase
their median F-1 score, the median F-1 score of the 'imputation’ adaptions
is heavily reduced. The best predictive performance of the ’ignore’ priority-
Lasso adaptions is achieved on all five feature-blocks - the median F-1 score
for 'PL - ignore, zero’ is around 0.85 and slightly above the median of the
"PL - ignore, intercept’ approach. The 'imputation’ priority-Lasso adaptions
have the best predictive performance on the feature-blocks 4, 2, 1 and 3 -
the predictive performance is the same for both approaches, and the F-1
scores are only slightly below 0.85. Therefore the "PL - ignore, zero’” achieves
the best performance in this setting. The differences between the predic-
tive performance of the diverse priority-Lasso approaches are shallow in this
setting.
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Priority-Lasso adaptions & mdd-sPLS approach

Clinical asthma data with block-priorities: 4, 2, 1, 3, 5
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Figure 34: Results of the priority-Lasso adaptions and the mdd-sPLS
approach on the clinical asthma data, when using subsets of blocks for
the predictions and setting the block priorities according to the opinion
of the project partner.

Block Priority [4, 2, 1, 3, 6]: In this part, the predictive
performance of the different priority-Lasso adaptions and the mdd-sPLS
approach based on the feature-blocks 1, 2, 3, 4 and 6 are analysed - the
priority is set to 4, 2, 1, 3, 6. The predictive performances of the different
approaches are shown as boxplots in figure 35. The x-axis shows the different
approaches and the y-axis the corresponding F-1 scores. For each approach,
the F-1 scores are shown separately when the “predictions are based only on
the block with the highest priority, based on the blocks with the two highest
priorities and so on” [1].

The mdd-sPLS method always uses all feature-blocks for the prediction, such
that there is only one single boxplot for this approach. The median F-1 score
is around 0.83 and therefore 0.02 higher than with the priority order [4, 2, 1,
3, 5], as well as with the naive block priority. For the different priority-Lasso
adaptions, the predictive performance based on the first four blocks is the
same as in the paragraph before - the more of the first four blocks are used
for the prediction, the better the predictive performance. But the addition of
block 6 decreases the predictive performance for all priority-Lasso adaptions.
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Therefore the best performance of the priority-Lasso adaptions is achieved
again based on the feature-blocks 4, 2, 1 and 3. As in the paragraph before,
both ’ignore’ priority-Lasso adaptions, as well as both 'imputation’ priority-
Lasso adaptions, have a median F-1 score of around 0.85. The "PL - ignore,
intercept’ approach is again minimally better than the other approaches
regarding the median and mean F-1 score.

Priority-Lasso adaptions & mdd-sPLS approach
Clinical asthma data with block-priorities: 4, 2, 1, 3, 6
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Figure 35: Results of the priority-Lasso adaptions and the mdd-sPLS
approach on the clinical asthma data, when using subsets of blocks for
the predictions and setting the block priorities according to the opinion
of the project partner.

4.2.3 Comparison of the Approaches

This chapter compares the different approaches from Hagenberg’s thesis [1]
and the diverse random forest based approaches from this thesis based on
the clinical asthma data.

Only the best approaches of Hagenberg’s and this thesis are used for the
comparison on the clinical asthma data. The single-block approach had the
best performance based on the 'questionaire’ feature-block. The block- and
fold-wise approach had the best results with the 'F-1 Score’” as weight metric.
With the naive block order, the 'PL - ignore, intercept’ approach had the
best performance on the whole set and the 'PL - ignore, zero’ approach with
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the feature-blocks 1, 2 and 3 for the prediction. With the adjusted block
priorities, [4, 2, 1, 3, 5] the performance was the best for the 'PL - ignore,
zero’ approach on all five blocks. With the adjusted block priorities [4, 2, 1,
3, 6] the performance was the best for the 'PL - ignore, intercept’ approach
on the first four blocks. The mdd-sPLS method had the best performance
with the adjusted block priorities [4, 2, 1, 3, 6].

The predictive performances of the different approaches are shown as
boxplots in figure 36. The x-axis shows the different approaches and the
y-axis the corresponding F-1 scores. The approaches that are in the focus
of this thesis are green, the priority-Lasso adaptions from Hagenberg’s thesis
[1] are purple, and the mdd-sPLS method is dark golden. For the single-
block approach, the feature-block that was used is noted in the square
brackets. For the block- and fold-wise approach the weight metric used for the
aggregation is also indicated in square brackets. For the different approaches
from Hagenberg, the used feature-blocks for the prediction inclusive their
priority is noted in square brackets.

Among the approaches in figure 36, the block-wise approach has the worst
performance - the median F-1 score is 0.79. The second worst approach has
the single-block approach on the questionnaire feature-block with a median
F-1 score of 0.81. The complete-case approach achieves the third-worst
performance - it has a median F-1 score of 0.83. The approaches 'mdd-
sPLS [4, 2, 1, 3, 6] and 'PL - ignore, intercept [1, 2, 3, 4, 5, 6]" are only
slightly better than the complete-case approach and have a median slightly
above 0.83. The fold-wise approach has a median F-1 score of 0.84 and is
only slightly worse than the imputation approach that has a median F-1
score slightly above 0.84. The approaches 'PL - ignore, zero [4, 2, 1, 3, 5’
and 'PL - ignore, zero [4, 2, 1, 3]’ both have a median F-1 score of 0.85,
but the average F-1 score is considerably higher with the feature-blocks [4,
2, 1, 3]. The overall best performance has the approach 'PL - ignore, zero
[1, 2, 3]". The median F-1 score is close to 0.88 and therefore significantly
better than of all other approaches. The results with the balanced accuracy
/ Matthews correlation coefficient (MCC) as metric are in the attachment in
figure A-11 / A-12 - the results are about the same.
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Figure 36: Comparison of the random forest adaptions, the priority-Lasso
adaptions and the mdd-sPLS method on the clinical asthma data.

In summary, the best performance was achieved by a priority-Lasso
adaption that ignores three out of the six available feature-blocks for the
prediction. The second and third best predictive performances have also
been achieved with priority-Lasso adaptions. The priority-Lasso adaptions,
in general, perform better than the random forest adaptions on the clinical
asthma data. But the priority-Lasso adaptions highly depend on the priority
of the blocks and the blocks that are actually used for the prediction.
Without any prior knowledge about the data, the priority-Lasso adaptions
need to be fitted with a naive block priority. The results on such a naive block
order can be worse than with a block priority according to a professional
opinion. Furthermore, a ’selection bias’ might have been introduced, as
much more variants of the priority-Lasso (different block-priorities and a
different subset of blocks for the prediction) have been tried out than with
the random forest based approaches. The best random forest based approach
on the clinical asthma data is the imputation approach, while the block-wise
approach has by far the worst predictive performance. The second best
random forest based approach is the fold-wise approach.
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5 Discussion and Conclusion

This chapter of the thesis discusses the results of the different approaches in
the benchmark experiments, draws a conclusion to the approaches and gives
an outlook for possible future research. Firstly, the results of the diverse
random forest based approaches are compared and summarized. Then the
different methods from Hagenberg’s thesis [1] are compared and summarized,
before the approaches from this and Hagenberg’s thesis [1] are compared with
each other. Finally a conclusion on the different approaches is drawn, and
suggestions for future research are made.

The complete-case and single-block approach are the simplest random forest
based approaches for data with block-wise missingness. In the diverse
patterns of block-wise missingness in the TCGA data, the single-block
approach never had the best predictive performance in any test-situation. In
contrast, the complete-case approach had the best performance in just two
test-situations (out of 66 test-situations in total). On the clinical asthma
data, these approaches were only better than the block-wise approach,
whereby the block-wise approach had the worst predictive performance on
this data. The imputation approach had the best predictive performance
among all random forest based approaches on the clinical asthma data and
on the TCGA data with block-wise missingness according to pattern 2. On
the TCGA data with block-wise missingness according to pattern 1 and 3, the
imputation approach had the second-best results. The block-wise approach
had its best predictive performance in all test-situations when using the 'F-1
Score’ as weight metric for the aggregation of the block-wise predictions.
This approach had the worst predictive performance on the clinical asthma
data, but the best predictive performance on the TCGA data with block-wise
missingness according to pattern 2 and 3. On the TCGA data with block-
wise missingness according to pattern 1 and 4, the block-wise approach had
a rather bad predictive performance. The fold-wise approach had its best
predictive performance in all test-situations when using the 'F-1 Score’ as
weight metric for the combination of the fold-wise predictions. It was the
second-best random forest based approach on the clinical asthma data and
the best approach on the TCGA data with block-wise missingness according
to pattern 1 and 4. On the TCGA data with block-wise missingness according
to pattern 2 and 3, the fold-wise approach had a bad predictive performance
and was just better than the complete-case and single-block approach.

In summary to the predictive performance of the random forest based
approaches, it can be said that the single-block and complete-case approach
had a bad predictive performance. The fold- and block-wise approach
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outperformed the single-block and complete-case approach, and had a similar
predictive performance. In settings, where the fold-wise approach performed
good, the block-wise approach performed bad and vice versa, such that one of
these two approaches always resulted in a good predictive performance. The
imputation approach also had a good predictive performance comparable
with the fold- and block-wise approach. It was also by far the slowest
algorithm, as the imputation in high-dimensional data needs a lot of
computational power and time. The fold-wise approach was the second
slowest approach, as it was implemented in plain R. The single-block,
complete-case and block-wise approach were much faster, as these approaches
are based on the randomForestSRC’ package [33] that directly builds upon
"Java’ and 'C’.

The thesis of Hagenberg [1] contains diverse adaptions of the priority-Lasso
and the mdd-sPLS method from Lorenzo et al. [2]. These approaches were
evaluated on the clinical asthma data, whereby the diverse priority-Lasso
approaches were evaluated with different block-priorities and different subsets
of blocks for the prediction. In all these evaluations, the ’priority-Lasso
- impute’ adaptions ended up with worse results than the ’priority-Lasso -
ignore’ adaptions. Hence the 'impute’ approach with the priority-Lasso seems
less promising than the 'ignore’ approach. The two ’ignore’ adaptions of the
priority-Lasso had a very similar predictive performance. The results of the
priority-Lasso approaches with the naive block-priority were the worst. When
adjusting the priority of the blocks and/ or only using a subset of the available
feature-blocks of the test-set for the prediction, the predictive performance
of the priority-Lasso adaptions was increased. The best performance was
achieved with the naive block priority, whereby only the first three feature-
blocks were used for the prediction on the test-set. The mdd-sPLS approach
always had a worse predictive performance than the 'priority-Lasso - ignore’
adaptions.

The approaches from Hagenberg’s thesis [1] and the random forest based
approaches that are in the focus of this thesis were compared based on
the clinical asthma data. Among the random forest based approaches, the
‘imputation’ and ’fold-wise” approach had the best predictive performance on
the clinical asthma data - median F-1 score of ~0.84. These approaches had
a better predictive performance than the mdd-sPLS method, as well as the
best priority-Lasso approach on the naive block-priority [1, 2, 3, 4, 5, 6]. The
priority-Lasso adaptions that outperformed the 'imputation’ and ’fold-wise’
approach were achieved with different block-priorities and using only a subset
of available feature-blocks for the prediction. Compared to the priority-
Lasso adaptions, the random forest based adaptions were applied to clinical
asthma data only once, and no prior knowledge was needed. When fitting
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the priority-Lasso adaptions to the clinical asthma data without any prior
knowledge, the predictive performance was worse than with the 'imputation’
and ’fold-wise” approach. Also a ’selection bias’ might have been introduced,
as more variants of the priority-Lasso have been tried out than with the
random forest adaptions - using different block-priorities and different subsets
of all feature-blocks for the prediction. The choice of the approach highly
depends on the prior knowledge of the data. If the user does not know which
feature-blocks might be more important than others for the target-variable,
the random forest based approaches seem to be the better choice. Especially
the fold- and block-wise approach should be used in these situations, as these
use the OOB metric to estimate the importance of the diverse folds/ feature-
blocks. If a user knows which feature-blocks might be more important than
others for the target variable, the ’ignore’ priority-Lasso adaptions can be
recommended. With these approaches the user can set the priority of the
feature-blocks according to their needs - this is not possible with the different
random forest based adaptions.

In summary, it can be said that the priority-Lasso adaptions are more
appropriate if the user knows something about the relevance of the single
feature-blocks. If the relevance of the single feature-blocks for the target
variable is unknown, it is recommendable to apply the imputation-, fold-
and block-wise approach, as for these approaches no prior knowledge to the
data is needed.

For further research, it might be interesting to compare the predictive
performances of the random forest based approaches and the approaches
from Hagenberg’s thesis [1] not only on the clinical asthma data but also
on the TCGA data with its different patterns of block-wise missingness.
Furthermore, it might be interesting to combine the idea of the ’Block
Forests’ paper [18] with the fold-wise approach. With the fold-wise approach,
a random forest model is fit based on a single fold and the corresponding
feature-blocks, whereby the split point selection happens without the
incorporation of the block structure. Combining the idea of incorporating the
block structure for the split point selection from the 'Block Forests’ paper [18]
and the idea of the fold-wise approach seems promising. Moreover, an direct
implementation of the fold-wise approach in ’C’/ ’'Java’ would massively
reduce the computational time of the approach.
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7 Attachment

7.1 Availability of data and materials

The whole repository of this master thesis is on ’Github’:
https://github.com/rollator3000/MS_omics

It contains the entire code and sources of this master thesis. Additionally, a
README with documentation to the structure of the repository, quick ex-
planations to the different scripts and a summary of the different approaches
is included.

The whole code was written in R - version 3.6.1. The used libraries and their
corresponding versions are listed in the README.

The clinical asthma data is not part of the repository because of data protec-
tion regulations. For the TCGA data, only the subsetted data sets are part
of the repository, as the original TCGA data sets are too big to be uploaded.
If interested in the original TCGA data of this thesis contact me via e-mail:
'f.ludwigs@yahoo.de’
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7.3 Figures

Impurity functions (3), (4) and (5) for a binary target variable
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Figure A-1: The different impurity functions (3), (4) and (5) plotted for
a given fraction of a binary target variable within any node N [[28], p. 13]

Predictive performance of a random forest model on the single
feature-blocks of the 14 TCGA data sets
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Figure A-2: The F-1 score of a random forest model evaluated on the
single omics feature-blocks for a range of possible subsets. The results
were obtained on basis of the 14 TCGA data sets.
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Comparison of the approaches on the TCGA data with induced
block-wise missingness according to pattern 1 - Balanced Accuracy

Comparison of all Approaches
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Figure A-3: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 1 - Balanced

Accuracy metric
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with induced block-wise missingness according to pattern 1 - MMC metric
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Comparison of the approaches on the TCGA data with induced
block-wise missingness according to pattern 2 - Balanced Accuracy
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Figure A-5: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 2 - Balanced
Accuracy metric
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Figure A-6: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 2 - MMC metric
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Comparison of the approaches on the TCGA data with induced
block-wise missingness according to pattern 3 - Balanced Accuracy

Comparison of all Approaches
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Figure A-7: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 3 - Balanced
Accuracy metric
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Metric: MCC
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Figure A-8: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 3 - MMC metric
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Comparison of the approaches on the TCGA data with induced
block-wise missingness according to pattern 4 - Balanced Accuracy
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Figure A-9: Comparison of the different approaches on the TCGA data

with induced block-wise missingness according to pattern 4 - Balanced
Accuracy metric
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Metric: MCC

Comparison of the approaches on the TCGA data with induced
block-wise missingness according to pattern 4 - MMC
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Figure A-10: Comparison of the different approaches on the TCGA data
with induced block-wise missingness according to pattern 4 - MMC metric
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Comparison of the approaches on the clinical asthma data -
Balanced Accuracy

Comparison of all Approaches
Clinical asthma data

Approach

Figure A-11: Comparison of the random forest adaptions, the priority-
Lasso adaptions and the mdd-sPLS method on the clinical asthma data

- Balanced Accuracy metric
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Comparison of the approaches on the clinical asthma data - MMC
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Figure A-12: Comparison of the random forest adaptions, the priority-
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- MMC metric
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