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Abstract

Nowadays, Bayesian Optimization (BO) is applied in various disciplines of work. While

the procedure of BO is often intransparent and the user-specifications are unchallenged, it

limits the understanding and the potential for improvement of such models. Therefore, as

part of this work, we present the R package VisBayesOpt which helps to overcome these

difficulties. The work contributes in the following ways: First, we introduce Sequential

Model-Based Optimization (SMBO) in a formal way. Second, we review existing packages

in the programming languages R and Python to provide an overview on the status quo

of visualization tools for SMBO. Third, we introduce the package VisBayesOpt and its

user friendly Shiny application which facilitates the analysis of SMBO runs. Fourth, we

conduct an exemplary analysis of a SMBO problem in the context of Machine Learning

(ML), that we analyze by using the visualizations of VisBayesOpt. We conclude the

work with an outlook on the usage of VisBayesOpt in the future and discuss further

improvements of the package.

Zusammenfassung

Heutzutage findet die BO Anwendung in einer Vielzahl von Arbeitsbereichen. Während

das Verfahren der BO oft intransparent bleibt und die Nutzerspezifikationen wenig

hinterfragt werden, führt dies zu einem eingeschränkten Verständnis und limitiert das

Verbesserungspotential solcher Modelle. Daher stellen wir im Rahmen dieser Arbeit

das R Paket VisBayesOpt vor, welches bei diesen Schwierigkeiten unterstützt. Der

Beitrag der Arbeit is wie folgt: Zunächst führen wir die SMBO auf formale Weise ein.

Zweitens überprüfen wir bestehende Pakete in den Programmiersprachen R und Python,

um einen Überblick über den gegenwärtigen Status von Visualisierungstools für SMBO

darzulegen. Drittens stellen wir das Paket VisBayesOpt und seine benutzerfreundliche

Shiny Applikation vor, welche die Analyse von SMBO-Läufen erleichtern soll. Viertens

betrachten wir ein SMBO-Problem, aus dem Anwendungsbereich des maschinellen

Lernens, welches wir mit Hilfe der Visualisierungen aus dem Paket VisBayesOpt

analysieren. Wir runden die Arbeit mit einem Ausblick auf die zukünftige Verwendung

von VisBayesOpt ab und diskutieren weitere Verbesserungsmöglichkeiten des Pakets.
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1 The Importance of Black-box Optimization in

Various Disciplines of Work

In recent years the world strives more for efficiency than ever before. Production and

research use resources in the most efficient way, while tasks as such gain in complexity.

Laboratory experiments for example need to consider various input parameters which all

together have an impact on the measured output.[3][p. 5] The input and output is linked

by a function which is often unknown. In a world without constraints, where time does

not matter, resources are unlimited, and evaluations are cheap, we would try to observe

all possible input-output combinations and choose the set of inputs that lead to the best

result. Since most problems increase in complexity, trying all combinations is mostly not

possible. Besides that the evaluation of many laboratory experiments nowadays is highly

complex leading to high consumption of time and resources, which make each combination

of the input/output-relation expensive to evaluate. The absence of a functional relation

leads to the fact that traditional optimization, like derivative based approaches, cannot

be applied to such kind of problems.

Black-Box Optimization (BBO) handles such problems where (i) the functional form

between input and output is unknown and (ii) the influence of combinations of inputs on

the output is expensive to evaluate and is usually free of any assumptions on continuity,

differentiability, or smoothness.[3][p. 6] One of the most prominent approaches of BBO

is the field of BO where optimization levers the Bayes Theorem by incorporating the

evidence gathered during the optimization process. This knowledge is incorporated in

the response surface or so called surrogate.[2][preface] SMBO, a prominent algorithm

to perform BO, iterates between fitting models and using them to make choices

about which configuration to evaluate.[11][p. 2] SMBO is steered by an acquisition

function that balances the trade-off between exploration (sample next point where

uncertainty is high) and exploitation (sample next point where function is expected to be

minimized).[12][p. 455]

The demonstrated performance of SMBO, compared to other optimization methods,

in many areas of expertise ([4], [9], [6]) makes SMBO a technique applied by people

from various disciplines like physicist, mechanical engineers, seismologists, statisticians
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and many others. Several package implementations of BO exist in common statistical

programming languages like R or Pyhton. Applying methods from these packages is

easy and does not necessarily require in depth knowledge on statistics and the field of

BO. Fist, this might be perceived as an advantage, but it comes with the drawback

of intransparency on the optimization process and absence of challenging the results

critically. Accepting the results of the optimization as ’given’ and not questioning the

meaningfulness of the user specifications can lead to results which are far away from an

ideal, or even acceptable solution. Even for more experienced users, choosing a well suited

setup for the specification of the optimization is not arbitrary.

Therefore, this work presents the R-package VisBayesOpt, which enables a broad

visualization of different aspects of SMBO, obtained from model-based optimizations

conducted with the package mlrMBO [6]. VisBayesOpt provides a visualization of the

entire run, as well as a diagnostic tool for analyzing a single iteration of the SMBO. The

work is outlined as follows. The next section describes the theoretical aspects of SMBO

including a formal statement of the SMBO problem and elaborates on the important

parts of such, the surrogate model and the acquisition function. Subsequently, existing

visualization tools of packages from R and Python are reviewed and shortcomings of

these pointed out. Afterwards the package VisBayesOpt is introduced. This covers

an overview of optimization problems manageable by the package and an introduction

of the Shiny application, which provides a user-friendly interface for the analysis of a

mlrMBO-run.1 Besides that, an exemplary diagnostic analysis is provided, which covers

common problems in SMBO and how to approach and overcome these problems by the

usage of the visualizations from VisBayesOpt.

1 Formally the model-based-optimization-run is an object of class MBOSingleObjResult that is returned
by the function mbo() from the package mlrMBO.
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2 The Framework of Sequential Model-Based

Optimization

This section introduces the Framework of SMBO. First, the optimization problem is

formally stated and the algorithm, which guides the SMBO process, is presented.

Subsequently, the central elements of SMBO, the surrogate model and the acquisition

function is defined.

2.1 Problem Statement

In the context of optimization f : X → Y describes a black-box function which maps a

p-dimensional search space X to an associated outcome space Y . The search space vector

is denoted as x = (x1, . . . , xp)
⊤ ∈ X while the observed output is y ∈ Y . Search spaces

can be either numeric X = Rp, bounded X ⊂ Rp or categorical.[16][p. 8]

Specifying empirical observations, (x(i), y(i)) describes the i-th observation, thus a set of n

observations is denoted as D = {(x(1), y(1)), . . . , (x(n), y(n))} ∈ (X ×Y)n. All observations

are assumed to be realizations of independent and identically distributed (iid) random

variables (X,Y) that follow a joint probability distribution PX,Y .

Given the fundamental definitions we subsequently state the optimization problem. Each

SMBO considers a general optimization problem of the form

x! = min
x∈X

f(x) (1)

where x! corresponds to the set of search space values which minimize the objective

function f . Note that an equivalent maximization problem is obtained by changing the

prefix of f(x). To determine the optimum, SMBO carries out the steps outlined in
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algorithm 1.[17][p. 150], [6][p. 4-5].

Algorithm 1: BO Search Procedure

init Generate the initial design D0 = (x
(i)
0 , y

(i)
0 ) by sampling points

x
(i)
0 , i = 1, . . . , n and evaluate f at these points, which yields y

(i)
0 . Use D0 to fit

the initial surrogate f̂0. Set iteration k = 0.

while Termination criterion not met do

Step 1: Propose m new points x
(i+j)
k+1 , j = 1, . . . ,m based on acquisition

function in iteration k + 1 (For single proposal m = 1).

Step 2: Evaluate the objective function at x
(i+j)
k+1 yielding y

(i+j)
k+1 and augment

the design with the new tuple Dk+1 = {Dk, (x
(i+j)
k+1 , y

(i+j)
k+1 )}

Step 3: Update the surrogate model f̂k+1 based on the new design Dk+1

end

return Best solution xopt

In generating the initial design the user is faced with a trade-off between choosing too few

points, not covering X well, and choosing to many points, using significant time to initially

evaluate f .[6][p. 5] The proposal of new points is guided by maximizing the acquisition

function (also called infill criterion) which balances exploration and exploitation. One

prerequisite of SMBO is that the acquisition function is cheap to evaluate (compared

to the objective function f), which is mostly the case when it has a closed form

notation.[17][p. 150] Once the objective function f is evaluated with the newly proposed

points x
(i+j)
k+1 the design is augmented with the resulting tuple (x

(i+j)
k+1 , y

(i+j)
k+1 ). Following

this, the surrogate f̂k+1 is updated based on the new design Dk+1. The decision of choosing

an appropriate surrogate is based on the structure of the input space X . For X ⊂ Rp

Kriging, which is built on a Gaussian Process (GP), is an often applied method.[6][p. 5]

The GP is easy to handle since it is entirely specified by its mean and covariance function

for a given input x.[2][p. 10-11] We will show this property later when formally introducing

the GP. For mixed search spaces of numeric and categorical parameters random forests

(RFs) are a suitable alternative for the surrogate model, which we will also discuss later

on.[6][p. 5]

In the following the main elements of SMBO, the surrogate model and the infill criterion,

are introduced. First, we present the general concepts and subsequently provide frequently

applied models for both concepts in practical applications.
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2.2 Surrogate Model

The surrogate model serves as a proxy for the real, unknown objective function and

incorporates the entire information (of evaluations) present up to the current iteration

k+1, i.e. Dk+1. Most applications consider probabilistic surrogates due to their theoretical

properties of offering an uncertainty estimation, which helps to balance the trade-off

between exploration and exploitation.[2][p. 10] The later introduced package VisBayesOpt

is geared to handling optimization problems from mlrMBO, thus the default surrogate

models used in mlrMBO are introduced. For numeric only (including integer) parameter

spaces mlrMBO (by default) uses a Kriging model (i.e. GP regression) while for mixed

numeric-categorical parameter spaces a RF model is used.2

First, the GP regression is introduced from the function-space view, where we can think

of a GP as defining a distribution over functions and inference is directly conducted in

the space of functions.[16][p. 7] A GP is a collection of random variables which exhibit

a joint gaussian distribution. It is entirely specified by its mean function m(x) and its

covariance function k(x,x′) and is formally defined as:[16][p. 13]

f(x) ∼ GP
!
m(x), k(x,x′)

"
(2)

where:

m(x) = E[f(x)] = E[f(x(i))]i=1,...,n

k(x,x′) = E
#!
f(x)−m(x)

"!
f(x′)−m(x′)

"$

= E
#!
f(x(i))−m(x(i))

"!
f(x(j))−m(x(j))

"$
i,j=1,...,n

The GP comes with the marginalization property which ensures that the examination

of a larger set of variables does not change the distribution of the smaller one, i.e. if a

GP specifies (y1, y2) ∼ N (µ,Σ) then it also specifies y1 ∼ N (µ1,Σ11).
3[16][p. 13] Having

outlined the general setup of a GP we now move on to sampling from prior and posterior

of a GP. Therefore we assume the mean function to be zero, i.e. m(x) = 0.

First, we have a more detailed look at the covariance function since it specifies the

distribution over the sampled functions. For most practical applications we need to

bear in mind that we only observe noisy values y(x) of the function f(x), so we

2 For default properties see documentation of makeMBOLearner() in package mlrMBO.
3 Where Σ11 is a sub-matrix of Σ and µ = (µ1, µ2)

⊤.
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can state the relationship as y = f(x) + !; !
iid∼ N (0, σ2).[16][p. 16] Assume we have

a set of observations D = {(x(i), y(i))|i = 1, . . . , n} and a set of unobserved values

D! = {(x(i)
! , y

(i)
! )|i = 1, . . . , n!}, we can write the observed search space values as

X = (x(1), . . . , x(n))⊤ and the unobserved test points by X! = (x
(1)
! , . . . , x

(n!)
! )⊤.

Having introduced the notation of noisy observations, the general form of the covariance

function over all function values y = (y(1), . . . , y(n))⊤ is given by:[16][p. 16]

Cov
!
y(i), y(j)

"
= k(x(i),x(j)) + σ2δij (3)

where:

δij =

%
&'

&(

1, if i = j

0, if i ∕= j

In n-dimensional identity matrix

Due to the assumption of noisy observations it is necessary to incorporate the variance

term σ2, of the random error !, iff x(i) = x(j). Using the relationship from equation (3),

we can state the prior distribution of y. Therefore we assume that f follows a Gaussian

process with a mean vector of zeros and the pre-specified covariance matrix K, which

results from the chosen kernel function. The prior distribution of y is given by:

y ∼ N
!
0,K+ σ2In

"
(4)

where:

K =

)
k
!
x(i),x(j)

"*

i,j=1,...,n

Plotting the sampled values as a function of the inputs is known as sampling from prior.

[2][p. 38] This enables us to state the joint distribution of the observed target values y

and the unknown function values f! under the prior at the test points as:[16][p. 16]

+

,y
f!

-

. = N
/
0,

+

,K+ σ2In k(X,X!)

k(X!,X) k(X!,X!)

-

.
0

(5)

We can now state the conditional distribution for the test outputs f! by conditioning on

the test inputs X!. This yields the posterior equations for the GP regression with the

6



posterior mean m! and the posterior covariance matrix K!:[16][p. 16-17]

f!|X,y,X! ∼ N (m!,K!) (6)

where:

m! = E[f!|X,y,X!] = k(X!,X)[k(X,X) + σ2In]
−1y

K! = Cov(f!) = k(X!,X!)− k(X!,X)[k(X,X) + σ2In]
−1k(X,X!)

This formula also holds for the noise-free case, where σ2 = 0. Having outlined the general

setup for calculating priors and posteriors of the GP we get back to the kernel function

which determines the distribution of the GP.

In general the kernel should state our assumptions about the link between the input space

X and the output space Y . Generally spoken, a kernel function transforms points in a

way such that, if input space values are close to each other, the corresponding output

values are close to each other too.[2][p.40-41] To see how this relationship is established

in the functional form of a kernel, two common kernels, the squared-exponential kernel

and the Matérn kernel are introduced. In general, any function k which transforms two

arguments x(i) and x(j) into a scalar and satisfies the following two characteristics is a

kernel function:

(i) symmetry: k(x,x′) = k(x′,x) ⇔ k(x(i),x(j)) = k(x(j),x(i)) ∀i, j = 1, . . . , n

(ii) Positive semidefinite (PSD) Gram matrix K =

)
k
!
x(i),x(j)

"*

i,j=1,...,n

Bearing these properties in mind the Squared Exponential (SE) kernel function is defined

as:

kSE(x,x
′) = exp

/
− ||x− x′||2

2l2

0
(7)

where:

|| · || Euclidean norm

l Characteristic length-scale

The characteristic length-scale rescales any point x by 1/l. A short length-scale makes

function values only strong correlated when their input values are close to each other,

while a large length-scale implies long ranged correlations.4 One important property of

4 We can determine the closeness among the search space values by calculating a distance measure (e.g.
euclidean distance for numeric search spaces or Gower distance for mixed search spaces).
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the SE kernel is its smoothness, as it is indefinitely differentiable.5[2][p. 41] The second

kernel function introduced is the Matérn kernel which uses the modified Bessel function

Kν
6 and is formally defined by:

kMat(x,x
′) =

21−ν

Γ(ν)

/
− ||x− x′||

√
2ν

l

0ν

Kν

/
− ||x− x′||

√
2ν

l

0
(8)

where:

Γ(·) Gamma function

For ν → ∞ the Matérn kernel approaches the SE kernel. Now the GP regression is

formally introduced. By now we can built a surrogate model for numeric search spaces,

with a specified kernel function. Besides that, the sampling from prior was introduced

which enables us to draw samples based on the chosen kernel. In addition the posterior

equations were setup that allow us to incorporate our knowledge in the surrogate, once

new observations are made. Now we move on to the RF regression to built surrogate

models for mixed numeric-categorical parameter spaces.[2][p. 52]

The RF regression is an ensemble learning method that uses the principle of bagging, to

sample from the dataset, and randomly select search space components based on which

every tree of the forest is trained. The dataset is given by our design D of n observations.

The RF regression comes with the ability to calculate the mean estimate and the standard

deviation estimate based on the observations. Technically this can be done by calculating

the mean and variance of the results generated from the individual trees. Using the

estimates of the mean and the standard deviation, we can construct the surrogate model

for y. Assume S to be the number of decision trees in the forest, Ti(X) the output provided

by the i-th decision tree. We can compute the variance estimate, as the empirical variance

over all trees, by:[2][p. 52]

V

/
1

S

S1

i=1

Ti(x)

0
= Cov

/
1

S

S1

i=1

Ti(x),
1

S

S1

j=1

Tj(x)

0
= ρσ2 + σ21− ρ

S
(9)

where:

5 This property comes from the differentiability of the exponential function exp(·).
6 For details on the modified Bessel function see [1][p. 374-377].
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σ2 maximum variance of all Ti(x)

ρσ2 = Cov(Ti(x), Tj(x)) maximum covariance of all combinations of Ti(x), Tj(x)

Equation (9) shows that the variance of the RF regression is proportional to σ2 and ρ

and is increasing with the size S of the RF. The mean estimate can also be calculated

by its empirical equivalent. Besides these properties, the computational efficiency of RF

regression, compared to GP regression, should be highlighted. For optimization problems

with a large number of search space components RF does not need to invert a the kernel

matrix, like in GP regression, and parallelization of the RF regression decreases the time

spent on the computation of the model.[2][p. 51-53]

As of now we introduced the surrogate models for numeric and mixed parameter spaces in

SMBO. With the surrogate we can incorporate all information known at a certain iteration

into the model. This enables us to derive an estimate for the posterior mean function

µ̂(x) and an uncertainty estimate based on the estimated variance ŝ(x) by the surrogate.

Now we turn towards the question where the unknown function f should be evaluated

next. This is done by the acquisition function. We will focus on acquisition functions for

single-point-proposals (m = 1)7 and for simplicity assume noise-free objective functions.

2.3 Acquisition Function

The proposal of the new point to evaluate the objective function next is based on

the trade-off between exploration and exploitation which is handled by the acquisition

function (infill criterion). mlrMBO offers a variety of acquisition functions.8 For the

subsequent section we introduce the common infill criteria Probability of Improvement

(PI), Expected Improvement (EI) and the Lower Confidence Bound (LCB).

To start with, the PI is defined by:

PI(x) = P(f(x) ≤ fmin(x) + λ) = Φ

/
fmin(x)− µ̂(x)− λ

ŝ(x)

0
(10)

where:

7 Acquisition functions for multi-point-proposals can be found in [6][p. 10].
8 To inspect the available acquisition functions see the help page of the function MBOInfillCrit.
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fmin(x) Best value of objective function observed so far

µ̂(x), ŝ(x) Estimate for mean and standard deviation of surrogate model

λ ≥ 0 Parameter to control exploration/exploitation. λ = 0 is pure exploitation

Φ(·) Cumulative distribution function of normal distribution

For the parameter λ we notice that low (high) values of λ favor exploitation (exploration).

To derive the next point x(n+1)9 to sample, the PI is maximized, i.e.

max
x∈X

PI(x) (11)

One of the main disadvantages of the PI is the fact that the magnitude of the improvement

is not considered, once a value is assigned to a new point.[2][p. 57-58] This weakness can

be overcome by the next infill criterion, the EI.

The EI measures the expectation of improvement w.r.t. the predictive distribution of the

surrogate model and is formally defined as:

EI(x) =

%
&'

&(

(fmin(x)− µ̂(x)− λ)Φ(Z) + ŝ(x)φ(Z) ,if ŝ(x) > 0

0 ,if ŝ(x) = 0
(12)

with:

Z =

%
&'

&(

fmin(x)−µ̂(x)−λ
ŝ(x)

,if ŝ(x) > 0

0 ,if ŝ(x) = 0

φ(·) Probability distribution function of normal distribution

The first term in equation (12) increases if the predictive mean of the surrogate decreases,

while the second term increases if the uncertainty in the surrogate model increases. This

shows how EI automatically balances exploration and exploitation while the degree of

both can be controlled by the choice of λ. Visually spoken, the acquisition function tends

to flatten with higher values for λ, in an extreme case the function can get close to random

search.10 The proposal of a new point x(n+1) is derived by maximizing the EI [2][p. 58-60],

i.e.

max
x∈X

EI(x) (13)

9 Note that we only consider single-point-proposal, i.e. j = 1.
10 See equation (12), in which the first term vanishes for high values of λ.
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To effectively manage the trade-off between exploration and exploitation we introduce the

LCB.

The LCB is geared at managing the proposal of points in a minimization problem11 and

is given by:

LCB(x) = µ̂(x)− λŝ(x) (14)

The proposal of a new point x(n+1) is attained by minimizing the LCB12[2][p. 60-62], i.e.

min
x∈X

LCB(x) (15)

Having outlined different infill criteria, we will turn towards the concrete proposal of new

points. This task is accomplished by the infill optimizer, that searches for the point x,

which yields the best infill value. Compared to the evaluation of the objective function,

the infill function is cheap to evaluate. mlrMBO uses the method of so called focus search,

which handles a broad variety of search spaces, among others numeric, categorical and

mixed search spaces. For the detailed focus search algorithm implemented in mlrMBO

we refer to the published paper in accordance with the package mlrMBO.[6][p. 6-7]

11 For a maximization problem the equivalent upper confidence bound needs to be considered.
12 In the case of upper confidence bound maximization is required.
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3 Visual Diagnostics for Bayesian Optimization

In this section the VisBayesOpt package is introduced. First, we review existing

visualization tools in R and Python and motivate VisBayesOpt by shortcomings and

improvements in the packages under review. Subsequently, we provide an overview of

VisBayesOpt and introduce the Shiny application that comes with the package. The

Shiny application provides a user friendly interface to the visualizations from the package.

Finally, an exemplary analysis is conducted, which demonstrates how to use the package

and to which extend the user can add value to its understanding of SMBO in general and

the refinement of the optimization run.

Before introducing the package, the target user group and value add of VisBayesOpt is

stated. As outlined in the Introduction there are various scientists making use of SMBO

in their work. The target group of VisBayeOpt should be any scientist from one of the

various disciplines outlined in the introduction, an in-depth knowledge on the statistical

foundations and mathematical implementations of SMBO is not required. For this user

group the Shiny application adds a substantial value since it facilitates the analysis of an

SMBO run with a user-friendly interface. Besides that more experienced users can use

the package to get an overall and handy insight into a SMBO run. For sure, advanced

users can produce each single visualization from VisBayesOpt on their own, but due to

reasons of time and complexity (especially with handling a high number of SMBO runs)

such an in depth review is mostly not carried out.

The value add for both user groups is manifold. First, VisBayesOpt provides

an enhancement on the understanding of the optimization process, removing the

intransparency (complexity) of the optimization process. This enhancement is especially

important for the less statistical oriented user group. In this case the tool helps to facilitate

the ’what’ the optimizer does thus preventing to take the results from the SMBO run as

given without questioning the process of the optimization. The second value add comes

by detecting mis-specifications based on the provided visualizations. Among others, such

mis-specifications consist of to wide/narrow input spaces, too tight stopping rules (while

results still improve) or an inappropriate surrogate model. In the exemplary conducted

analysis, later in this section, we show how to detect these mis-specifications by the help

of VisBayesOpt.
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3.1 Review of Existing Visualization Tools

First, we review existing tools for visualizations of SMBO. This review includes the

R packages tune and mlrMBO and the Python packages hyperopt and scikit-optimize.

Besides that we looked at the Python packages smac and the newly published package

BoTorch, but these do not, to the knowledge of the author, include any built-in

visualization functions. All visualizations presented in the following review can be

reproduced by the provided R/Pyhton code in the github repo.13 The general procedure

of the review is the same for all packages and proceeds as follows: First, we take a

look at the possible visualizations that can be produced with the plot functions of the

package. Afterwards we discuss improvements of the plots. At this stage we will also

mention the respective plot classes of VisBayesOpt, which overcome these shortcomings.

We will not explicitly state additional visualizations, that might be helpful for a broader

understanding of the SMBO each time, since most packages come with a limited number

of possible plots.

3.1.1 R packages tune and mlrMBO

For R we have a look at the two packages tune [13], an extension to the caret package for

bayesian optimization, and mlrMBO [5], a package focused on model based optimization

based on the mlr package.

In tune we can visualize results from a SMBO in three types of plots.14 The

function autoplot.tune results() is the central plot function of the package and enables

all plots. The plot type is specified with the type argument, i.e. type ∈
{performance,marginals, parameters}. Figure 1 shows the three possible visualization

(combined as facets) of the tuning result. The left facet of the first plot shows the

accuracy over the iterations, calculated as out-of-sample estimates. Besides that the Area

Under the Curve (AUC) of the model is plotted which measures the overall predictive

capability of the model. The second visualization (type = ”marginals”) plots the same

performance measures over the search space components. In the third visualization (type

= ”parameters”) the value of each evaluated search space component is plotted over the

13 Please see repo for final submission of this bachelors’ thesis.
14 The function tune bayes() returns an object of class tibble with all information from the bayesian

optimization run.
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single iterations. The middle plot of figure 1, for the accuracy over the parameter values

(type = ”marginals”), could be extended by including the parameter values sampled from

the specified input space. This could provide us with an intention, how the optimizer

Figure 1: Visualization R package tune. Shows all possible types performance, marginals,
parameters from left to right. Performance plots the model performance (i.e. accuracy
and AUC) over each iteration. Marginals plots the model performance against each
value of the search space components. Parameters plots the value of each search
space component over the iterations. The visualization is based on a svm model for
a classification task on the cells dataset from the modeldata library.15

proceeds, compared to a random search strategy. Besides that, it would give us an insight

into the sampling of the initial design, since we could notice transformations of the search

space components, if specified by the user. We will see, that MboPlotInputSpace and

MboPlotDependencies from VisBayesOpt address these shortcomings. The third plot of

Figure 1 (type=”parameters”) lacks the information on the target. If the target value

would be included (as a third dimension, e.g. as color) one could distinct between

exploration (target has probably a worse value) and exploitation (target has probably

a better value) and thus interpret the values of the search space components in light of

the outcome y. This shortcoming is considered by the function MboPlotSearchSpace in

VisBayesOpt.

Next we take a look at the package mlrMBO, which offers the three plot functions

plot.OptState(), plotExampleRun() and plotMBOResult(). Figure 2 shows an exemplary

15 Own illustration based on R.
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output of plotMBOResult(). While the plot in the top visualizes the target variable over

the search space, the lower plots show how the target and search space evolves over each

iteration. Besides that the acquisition function is plotted over the iterations. In each

single plot the points from the initial design are separated from the points during the

iterations and the last proposed point is highlighted. A possible enhancement for the

plotMBOResult() would be a combination of the search space components, the target and

the iterations. This kind of visualization is provided by the class MboPlotSearchSpace

of VisBayesOpt. Besides that the surrogate could be included in the upper plot which

would provide the user with an intention on the ”best guess” between the evaluated points.

Besides these specific enhancements a few overall improvements on the visualization in

mlrMBO are subsequently discussed.

Figure 2: Visualization R package mlrMBO : plotMBOResult. In the plot on top the input
and target variable is plotted. In the lower plot the search space component x, target y
and infill criterion ei is plotted over the iterations.16

The package does not provide a function for visualizing the surrogate and acquisition

function in a single iteration on an already performed run since plotExampleRun() requires

an input from the specific function exampleRun() and does not handle objects from the

central optimization function mbo() of the package. This limits the value add for practical

16 Own illustration based on R. Example taken from mlrMBO examples.
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users, as they would need to re-run the SMBO with the exampleRun() function, just for

visualization purposes. Besides that all visualizations are limited to a 2 dimensional search

space.17 This limitation is especially severe for practical users, as most practical problems

require higher dimensional search spaces. VisBayesOpt overcomes both problems, as

it entirely operates on the final.opt.state18 returned by the function mbo(). Besides

Figure 3: Visualization R package mlrMBO : plotExampleRun, plot.OptState. The left
plot shows a specified iteration (iter=3) of the example run with the surrogate model in
the top and the acquisition function in the bottom. The right plot visualizes the final
optimization state with the acquisition function, the mean and the standard deviation
(from left to right) over the search space.19

that VisBayesOpt also covers higher dimensional search spaces of numeric and discrete

parameters for the visualization. In the next part of this chapter we focus on packages in

Python.

3.1.2 Pyhton packages hyperopt and scikit-optimize

Subsequently, we take a look at the available visualizations from the Python packages

hyperopt20 and scikit-optimize21. All figures provided are set up in accordance with

17 The visualizations for a 2 dimensional search space are not provided in the review.
18 Object from class OptState.
19 Own illustration based on R. Example taken from mlrMBO examples.
20 See github package hyperopt.
21 See github package scikit-optimize.
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examples from the respective github page of the package and are modified where necessary.

To start with, the hyperopt package offers three main plot functions for the visualization of

the SMBO result, main plot history(), main plot vars() and main plot histogram(). For

the SMBO we specified an artificial 3 dimensional test function z =
2

x2
1 + x2

2 with

parameters x1, x2 as inputs (search space components). Since hyperopt offers implemented

functions for specifying the distribution of the input space we choose x1 to be lognormal

with µ = 0, σ = 0.5 and x2 uniform on the interval [−6, 6]. Figure 4 shows the available

visualizations from hyperopt, based on the SMBO result. The first plot shows the true

result y over each iteration.22 To get a better understanding of the overall improvement of

Figure 4: Visualization Python package hyperopt. From left to right: the first plot shows
the evaluated output values y(i) (axis label ’loss’) at each iteration i (axis label ’time’). The
green line specifies the best evaluated output of the run (here -1.0). The second wrapped
plot shows the values for each search space component (y-axis) over the iterations (x-axis).
The color corresponds to the difference between the evaluated output value in the iteration
and the best evaluated output, with white as largest and black as closest distance. The
third plot shows a histogram of the results over all iterations for the respective losses.23

the optimization it might be helpful to show the minimum cumulative value of the output

y over the iterations. This would enable us to see if the optimizer still improves in later

iterations, or if it already converges in early iterations. The class MboPlotProgress from

VisBayesOpt provides this type of plot.

The second plot shows the value of each search space component (y-axis) over the

iterations (x-axis).24 This plot might be improved by a pairwise comparison of the search

22 The default axis label might be misleading in this plot since it shows y and not ŷ − y which we would
consider as loss.

23 Own illustration based on Python. Example from hyperopt is modified where necessary but general
setup taken from hyperopt examples.

24 Label for y-axis and x-axis not provided by plot function; information based on source code of hyperopt.
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space components in a matrix plot. This would enable the user to identify if search space

components follow a certain pattern among each other. VisBayesOpt offers such a plot

by the class MboPlotDependencies.

Next we take a look at the Python package scikit-optimize, which offers the greatest

extend of modern visualizations for SMBO found within the scope of this review.

It also implements visualizations for higher dimensional search spaces via Partial

Dependence Plots (PDPs), known from Interpretable Machine Learning (IML).25

In total scikit-optimize offers the five functions plot evaluations(), plot objective(),

plot convergence(), plot regret() and plot gaussian process().

Figure 5: Visualization Python package scikit-optimize: plot evaluations. Shows a plot
matrix with histograms on the diagonal for the respective search space variables (x0, x1)
and their combined scatter plot. The color of the scatters correspond to the iteration
in which the points were sampled, from early iterations (dark) to late iterations (light).
The combination of the search space components with the best target value of the run is
highlighted with a red star.26

For the optimization we use the three dimensional artificial Branin test function and

define the input space x0 ∈ [−5, 10], x1 ∈ [0, 15] and limit the number of evaluations to

200. Figure 5 shows the output of plot evaluations() for the SMBO run. The visualization

points out the dependence between the search space variables and is thus well suited to

25 For more details on PDPs see chapter 5.1 of [15].
26 Own illustration based on Python. Example from scikit-optimize is modified where necessary but

general setup taken from scikit-optimize examples.
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serve its purpose. One improvement may be, to include a possibility to color the points

with the value of the output variable y. This would enable us, getting an insight into the

dependence between the search space components and the output, too. In VisBayesOpt

we provide the class MboPlotDependence, which enables to color the points either by the

iteration or by the value of y.

Figure 6 shows the visualization of the objective function as a PDP of the single search

space components and the effect on the output in the contour plot. This plot enables

Figure 6: Visualization Python package scikit-optimize: plot objective. Shows a matrix
plot with effects of the single search space component (x0, x1) on the objective function
on the diagonal. The plot below the diagonal shows the effect on the objective function
when varying the two search space components (x0, x1). The scatters show the points
evaluated during the iterations. The red star highlights the minimum of the objective
function y evaluated during the SMBO run.27

to extract all relevant information on the dependence between search space components

and output and does not lack any missing information in that respect. Figure 7 shows

the plot convergenge() and the plot regret(). In the convergence plot we can see the

improvement during the optimization, thus giving an intention of where the optimizer

still improves and when there is no/only minor improvement (i.e. convergence). The

cumulative regret plot shows the cumulative difference between all evaluated search space

components and the true optimum value of the output. This leads to a monotone

27 Own illustration based on Python. Example from scikit-optimize is modified where necessary but
general setup taken from scikit-optimize examples.

19

https://github.com/hyperopt/hyperopt/tree/master/tutorial


increasing function, which increases more if the prediction f(x(i)) in iteration i is still far

away from the optimum (e.g. in first iterations of plot) or if the optimizer still explores

a lot (which is also possible in later iterations). Both visualizations help the user to

understand if the optimizer converges or still improves and thus provide a nice overview

on the optimization. VisBayesOpt does not provide a plot of the cumulative regret as

the true value of the target is rarely (if at all) known in practical setting of SMBO. All in

Figure 7: Visualization Python package scikit-optimize: plot convergenge, plot regret.
From left to right: The first plot shows the minimum value of the objective function
over the single iterations. The second plot shows the cumulative difference between the
objective function f(x(i)) of iteration i and the true minimum value of the objective
function (optimum).28

all we found the implemented visualizations in scikit-optimize already profound in their

informative value.

Until now we have seen an overview of the existing environment of visualizations in the

context of SMBO in the programming languages R and Python. We found the most

packages offer only a limited number of visualizations or are subject to constraints of low

dimensionality. To overcome these issues we now introduce VisBayesOpt which covers

most of the seen visualizations in the review section and enhances the understanding of

SMBO by providing additional insights. It also incorporates the suggested improvements

of the review section.

28 Own illustration based on Python. Example from scikit-optimize is modified where necessary but
general setup taken from scikit-optimize examples.
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3.2 The VisBayesOpt Package

In this section we introduce VisBayesOpt29, the package implemented as part of this thesis.

First, we give a short introduction to the package which is followed by an explanation

of the Shiny application. Subsequently, we demonstrate the usage of VisBayesOpt by

analyzing an example from a practical ML-context by methods of VisBayesOpt.

3.2.1 Introduction to VisBayesOpt

VisBayesOpt aims to visualize SMBO runs conducted with the package mlrMBO. It

is implemented in a modern R6 class design.30 R6 objects enable object-oriented

programming, which is usually not the focus of R.[7][p. 3] In VisBayesOpt this

object-oriented programming enables us to incorporate all public plot methods into our

Shiny application, standardizing the way user interfaces (UIs) are generated. VisBayesOpt

takes a final.opt.state31 as input to initialize a new instance of the R6 class object.

MboPlot is the main class of which all other classes inherit.

Problem Feasibility for VisBayesOpt under current implementation

Objective function Real valued (no mixed-space)

Proposal of new points Single proposal (no multi-point proposal)

Search space Numeric and discrete search spaces

Table 1: Manageable problems for VisBayesOpt. Table shows the characteristics of
optimization problems manageable for VisBayesOpt under the current implementation.32

To start with table 1 outlines the characteristics of supported optimization problems of

VisBayesOpt. At a first glance some constraints (e.g. no mixed-space objective functions

manageable) might limit the number of users but due to the modular setup of VisBayesOpt

the constraints can be unset by expanding the plot classes. Besides handling the outlined

problems from table 1 the package provides the general setup of the infrastructure and

ideas of different possibilities for appropriate visualizations. Table 2 gives an overview of

the classes implemented in VisBayesOpt with a short description on their plot() functions.

29 See repository of VisBayesOpt .
30 For details see R6 package.
31 Is of class OptState and incorporates all information from a mbo() run.
32 Own illustration based on VisBayesOpt.
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For a more detailed introduction to VisBayesOpt and how to use the package please see

the readme file in the repository33 of the package. It gives a full work-flow for handling

the plot classes and how to adjust plot-specific parameters.

Plot class Description of $plot() function

MboPlotDependencies Matrix of pairwise scatterplots of the values of the

search space components

MboPlotDistToNeighbor Plots the Gower distance between the search

space components

MboPlotEstimationUncertainty Plots the degree of uncertainty in the estimation

of new points

MboPlotFit Plots the R-squared over the iterations and the

predicted output ŷ against the true output y

MboPlotInputSpace Plots the histogram over the evaluated values

of the single search space components

MboPlotOptPath Plots the surrogate for a chosen iteration

MboPlotProgress Plots the cumulative minimum value of the

objective function f(x) at the design points

MboPlotRuntime Plots the split of the time spent during the

optimization on the different tasks

MboPlotSearchSpace Plots the values of each search space component

evaluated by the optimizer over the iterations

Table 2: Plot classes of VisBayesOpt. Table shows the plot classes implemented in the
package VisBayesOpt and gives a short description on the plot() function of each class.34

Besides the overview in table 2, appendix 1 provides a Unified Modeling Language (UML)

diagram of the classes and how they relate to each other.

3.2.2 Shiny Application

VisBayesOpt comes with a Shiny application which can be run with the function

runAppLocal(). The app is organized as follows: The Setup tab lets us upload any

final.opt.state file from a mlrMBO run from a local directory. Once a run is uploaded

a summary of the specifications of the run is displayed at the main panel. Another

functionality in the tab is the export-plot button, which enables the user to export the

33 See repository of VisBayesOpt .
34 Own illustration based on VisBayesOpt.
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last plot viewed in the application to a local directory. The tab Visualize mlrMBO Run

contains all plots related to the overall run, while the tab Diagnostic Tool for Single

Iteration is aimed to inspect a specified iteration in detail. Both tabs have a sidebar

panel where we can select different parameters of the plots.35 The sidebar enables the

user to easily modify all parameters of the plots, providing a superior user experience,

especially to unfrequent users of R. All plots come with a description section below, which

explains the plot under review and guides the user on how to interpret the results and

how typical patterns (of failure, improvements) look like. Having this guidance right at

hand, the user can leverage the full value of VisBayesOpt.

The plots in the following section are generated with the functions implemented in the

package, even though they are all part of the application too. We will now turn from the

generalized context of SMBO towards a specific application in the context of ML.

3.2.3 Exemplary Diagnostic Analysis

In this section we use VisBayesOpt to analyze two specific mlrMBO runs. The analysis

aims to highlight patterns which result from the different specifications of the models.

We build our analysis on the public available pid-task36, which aims to classify

Indian patients with several characteristics regarding their predisposition of having

diabetes.[14][p. 29] For this classification task we use eXtreme Gradient Boosting

(XGBoost), a tree boosting model which grows ensembles of trees by the technique of

gradient boosting.[8][p.786-787] The aim of our SMBO is thus optimizing the various

parameters (also called hyperparameters in the context of ML) of the XGBoost model.

The following list states the hyperparameters and gives a short description on their task

during the XGBoost training:[10][p 52-54]

• nrounds : maximum number of boosting iterations

• eta ∈ [0, 1]: tree parameter; contribution of each tree when added to the current

approximation

• max depth: tree parameter; maximum depth of a tree

35 Note that the specifications in the sidebar panel do not affect all plots; please see the Modifications
bullet of the description section in the application, to see which parameters belong to each plot. This
layout comes due to the automatic generated UIs and might be enhanced to also display sections.

36 For pid-task and various other example tasks see mlr example-tasks.
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• colsample bytree: tree parameter; subsample ratio of columns when constructing

each tree

• lambda: boosting parameter; L2 regularization term on the weights

• alpha: boosting parameter; L1 regularization term on the weights

• subsample ∈ [0, 1]: ratio of the training instance, i.e. subsample=0.5 would mean

that XGBoost uses only half of the data to grow trees.

We transform the parameter lambda37 of the XGBoost model by taking the power function

2lambda. This artificial transformation affects the random sampled initial design and we

would like to see the effect of such transformation in our later analysis.

Characteristic model1 model2

Infill Criterion Confidence bound Confidence bound

Infill Criterion Parameter cb.lambda = 0.5 cb.lambda = 2.0

Optimization Direction minimize minimize

Surrogate-Model Kriging Kriging

Search Space nrounds, eta, max depth,

gamma, colsample bytree,

lambda, alpha, subsample

nrounds, eta, max depth,

gamma, colsample bytree,

lambda, alpha, subsample

Number of Objectives 1 1

Multi-Point Proposal 1 1

Maximum number of

Evaluations

200 200

Runtime [Minutes] 7.11 6.82

Minimum y 0.240 0.243

Table 3: MboSummary: model1, model2. The table shows the output of the function
MboSummary$getMboSummary().38

Specifying the characteristics of the SMBO, we choose the GP (also known as Kriging)

as surrogate and the LCB acquisition function. The 2 examples vary in the way such that

lambda is chosen as λ1 = 0.5 for model one and λ2 = 2 for the second model. According

to equation (14) the first model exploits, while the second explores, more frequent. We set

the maximum number of evaluations to 200. We subsequently refer to the two models as

model1 and model2. The resulting final.opt.state objects can also be inspected in the repo

of the package in the test-data thus the subsequent analysis can be followed by running

37 Not to be confused with the λ of the acquisition function.
38 Own visualization based on examples available in repo of VisBayesOpt.
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the Shiny app and accessing the data from the repo.39 The script for the general setup of

the subsequent analysis can be accessed in the submission repository.40

Starting with the analysis, we first generate a summary of the models with the

MboSummary class and use MboShiny to generate a table of these characteristics which is

provided in table 3. The summary is more important for a practical user who has various

mlrMBO runs on his local machine and thus gets a short wrap up of the specifications of

the chosen model.

Going forward, we look at the plots of MboPlotProgress which shows the cumulative

minimum value of the objective functionf(x) at the design points x after n iterations.

Figure 8 depicts the plots for each of the two models under review. We can see that both

Figure 8: MboPlotProgress: model1, model2. The left (right) plot shows the cumulative
minimum value of the objective function of model1 (model2) after n iterations.41

models converge within the first 30 iterations. For model1 (left plot) we can see that the

optimizer finds a minimum cumulative value of f(x) which is below that of model2. This

behavior might results from the chosen tuning parameter λ which lets model1 exploit more

than model2. Since the minimum cumulative value of both plots does not decrease beyond

39 See test-data in github repository.
40 Example script provided in submission-repository.
41 Own illustration based on R. Example provided in submission-repository.
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iteration 20 to 30 the optimizer might have converged. If so, it seems only of limited use,

compared to additional computation cost, to increase the overall number of iterations of

the optimization run. Since we now have a general intention on the convergence of the

optimization we turn towards analyzing the input space in more detail.

For this purpose figure 9 shows the input space, generated by the plot function of

class MboPlotInputSpace, for the selected search space components42 colsample bytree,

eta, lambda, nrounds. The figure shows the sampled values during the optimization

run (entire optimization run) as well as the sampling distribution of the initial design

(init design sampling distribution). Comparing the entire optimization run to the initial

Figure 9: MboPlotInputSpace: model1, model2. The left (right) plot shows the
histogram of the search space components colsample bytree, eta, lambda, nrounds for
model1 (model2). The init design sampling distribution shows artificially sampled values
according to the input space, considering possible transformations of the input space. The
entire optimization run shows the values actually evaluated by the optimizer.43

design sampling distribution for model1 we instantly note that the transformation of the

parameter lambda, by 2lambda, leads to large values around zero, while the optimizer

is searching more frequently for negative values. The initial sampled design, which

considers the transformation, might thus not be sufficiently covering the search space

domain. By comparing both overlaid histograms, we can see how SMBO proceeds

compared to a random search with the specified transformation. Looking at the parameter

42 In the context of ML, search space components are also called features.
43 Own illustration based on R. Example provided in submission-repository.
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colsample bytree reveals another pattern which often comes with the user specification of

the search space. The optimizer frequently searches at the upper boundary of the search

space, around one, which might be a sign that the value for colsample bytree, leading

to the minimum of the objective y, might be found above one. Thus in a second run

we could adjust the upper boundary of colsample bytree upwards. Comparing the plots

of colsample bytree between model1 and model2 we see the impact of the exploitation.

While model1 exploits more, leading to frequent evaluations around one, model2 explores

more, thus the limitations of the space seems not to affect the SMBO run with a higher

degree of exploration. A similar pattern can be detected for the feature nrounds. We can

see that values of below 500 are rarely evaluated by the optimizer, which might justify to

limit the domain to a value of 500 at the lower boundary.

Next we take a look at the search space over the iterations, i.e. the proposal of new

points during the SMBO run. Figure 10 shows the plot of MboPlotSearchSpace. In this

Figure 10: MboPlotSearchSpace: model1, model2. The left (right) plot shows the values of
the different search space components (y-axis) that have been evaluated by the optimizer
over the number of iterations (x-axis). The color of the points correspond to the value of
the objective function. The line shows a linear model fitted on the values of the search
space components (dependent variable) over the iterations (independent variable).44

plot type we can see the same patterns as identified before, which depicts a high number of

exploitation points of colsample bytree for model1 around one, leading to a positive linear

dependency over the number of iterations (marked by the regression line of the linear

44 Own illustration based on R. Example provided in submission-repository.
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model). Besides that, we see that most of these points have a low (good) y-value which

explains the behavior of the optimizer with a higher degree of exploitation, concentrating

on this part of the domain. We also note that the last of the bulk of points sampled around

a value of one show a more worse y-value (light blue color), thats why the optimizer begins

exploration afterwards again. In general the sampled points for model2 are broader spread

over the domains of the single search space components. A modification for this plot type

is possible in two ways. We can exclude the infromation on the objective function y and

we can also exclude the points from the initial design.

By now we gained insights into the general optimization progress and the search space

but we still have limited knowledge on the interrelation (dependencies) among the search

space components. We will thus take a look at the plot of the class MboPlotDependencies

which is provided in figure 11 for model1. In this plot we can check how single features are

Figure 11: MboPlotDependencies: model1. The plot matrix shows the histogram of the
single search space components on the diagonal.The lower triangle shows the pairwise
scatter plots of the search space components nrounds, colsample bytree, lambda, eta,
gamma, max depth. The red triangle marks the combination of the two search space
components under review which leads to the minimum value of the objective y. The color
corresponds to the iteration in which the points were sampled.45

related to each other and which combinations the optimizer searches in later iterations.

For nrounds we can see clear bulks of points around a value of 1,500 with all other features.

This may justify our intention to limit the lower boundary of the domain for nrounds to

45 Own illustration based on R. Example provided in submission-repository.
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around 500. For colsample bytree our intention from figure 9 was to shift the domain

upwards, but we can now see that the minimum y is found at the lower boundary of the

domain, thus we might just widen the range of colsample bytree, so it has a higher upper

boundary. Another pattern which could be detected in this plot type (which is not present

in the chosen example) is a high correlation between two features.46 In such a case, we

could choose the value of one feature depending on the value of the other.

In the last step on the overall run inspection, we take a look at the distance between the

search space components. Figure 12 shows the plot of the class MboPlotDistToNeighbor

which plots the Gower distance against the number of iterations. We use the Gower

distance to consider discrete parameters of the search space too.47 From the plot type of

MboPlotDistToNeighbor we can take several judgements. First, we can evaluate the size

Figure 12: MboPlotDistToNeighbor: model1, model2. The left (right) plot shows the
minimum Gower distance between the search space components that have been evaluated
by the optimizer over the number of iterations. The vertical line separates the points
from the initial design.48

of the design. If the Gower distance does not drop significantly after the initial design

we might choose a larger number of initial design points. For the example shown in

46 This correlation always needs to be seen as a correlation which is conditioned on the target.
47 For an explanation on the formula of the Gower distance please see the description section of

MboPlotDistToNeighbor in the tab Exploration vs. Exploitation in the Shiny application.
48 Own illustration based on R. Example provided in submission-repository.
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figure 12, both models seem to have a sufficient size of the initial design. Besides that we

can see the tradeoff between exploration and exploitation of the optimizer. For model1

we see that the Gower distance drops around iteration 130 where the optimizer exploits

heavily. These are exactly the iterations which we have highlighted in Figure 9, where

the optimizer searched frequently at around one for the feature colsample bytree. For

model2 the Gower distance varies in, more or less, the same bandwidth, which shows the

character of exploration.

We now took a look at the overall run section, where we can identify general patterns and

possible mis-specifications of the optimization run. Now we take a look at the diagnostic

section, where we can inspect single iterations of the SMBO run in more detail. We decide

to inspect iteration 123 in more details within the subsequent paragraphs.

The first class, MboPlotRuntime, plots the time spend during the SMBO run. The

associated plot is shown in figure 13. The left plot shows the execution time, i.e. the

time spend executing the objective function f(x) which has been passed to the optimizer.

The right plot shows the training and proposal time. The training time is the time spend

Figure 13: MboPlotRuntime: model1, model2. The upper (lower) plot shows the runtime
of the overall mlrMBO run for model1 (model2). The vertical line marks iteration 123.49

to train the surrogate model (which proposes the new points). The proposal time is the

49 Own illustration based on R. Example provided in submission-repository.
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time spend on the infill optimization, to propose a new point (given the trained surrogate).

This plot type assists the user as it can reveal patterns of an inadequate split of time,

spend for surrogate fitting (train time) and the proposal of new points (propose time).

Using a GP as surrogate we are sometimes faced with very expensive fitting, especially

in later iterations. If such an inadequacy of fitting time, compared to the proposal time

of new points, escalates too much we might think of choosing a better suited surrogate.

Figure 13 shows quite a high train time in iteration 123 for model1. For model2, which

explores more often, there is only one major peak in train time. Keeping these information

in mind we now analyze the model fit in more detail.

MboPlotFit offers two kinds of visualizations, the R-squared of the model and the

comparison of the predicted target ŷ with the true target y. Figure 14 shows both plots

for model1 and model2. We see that the in-sample R-squared increases over the iterations

Figure 14: MboPlotFit: model1, model2. The upper (lower) plot shows the fit of the
mlrMBO for model1 (model2). The left plots show the in-sample R-squared. The vertical
line marks iteration 123. The right plots show the predicted target ŷ agains the evaluated
target y. The angle bisector marks a ’perfect’ prediction of the output y. The color of the
points corresponds to the iteration, while the red point marks iteration 123. The vertical
lines around the points correspond to the estimated standard deviation of the predicted
output.50

50 Own illustration based on R. Example provided in submission-repository.
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for model1, while this does not hold for model2. Both models show a poor overall fit,

with model1 being superior to model2. From the plots on the right we notice that, in

iteration 123 the proposed point ŷ(123) (marked by the red point) of model1 is more far

away from the true target y(123), than for model2. But we also note that the estimated

standard deviation of the proposed point of model1 is smaller than the one of model2,

which qualifies our statement on the prediction. To see if the fit may improve, we could

choose another surrogate model, e.g. a random forest surrogate, and benchmark both fits

against each other. In the next step we will have a more detailed look at the uncertainty

in the estimation.

MboPlotEstimationUncertainty helps to visualize the uncertainty in the estimation of new

points. In the left plots of figure 15 the uncertainty of the estimation |ŷ − y| is depicted
for both models. From the right plots in figure 15 we can see that, in general, model1 has

Figure 15: MboPlotEstimationUncertainty: model1, model2. The upper (lower) plot
shows the estimation uncertainty for model1 (model2). The left plots show the absolute
difference between the estimated output and the true output (i.e. the uncertainty) of
the estimation up to iteration 123. The right plots show the frequency of the absolute
uncertainty of the 123 iterations.51

a smaller estimation uncertainty than model2. For model1 the frequency of the absolute

deviations |ŷ − y| is highest in the left class with a count of around 20, while for model

51 Own illustration based on R. Example provided in submission-repository.
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2 the highest frequency is around a absolute deviation of 0.02. model1, which exploits

more often, only shows a few larger absolute deviations |ŷ − y|, while for model1 the

bar chart flattens out to the right, showing more frequent uncertain estimations. We

note that the uncertainty is, in general, decreasing with higher iterations for model1,

which is in line with the information on the R-squared from MboPlotFit (figure 14).

The surrogate of model1 seems to improve over the iterations, even though it found the

minimum cumulative value of the objective function already in iteration 25, as we have

seen in figure 8. Thus it might hold that an increase of the number of iterations can

decrease the cumulative minimum value of model1.

To get an intention how the search space components influence the surrogate model, we

will now take a look at MboPlotOptPath. In general, the class plots the surrogate model

in dependence of the search space. For higher dimensional search spaces the class plots

a PDP of the surrogate model with regards to the chosen search space component. For

an iteration i, the marginal effect of a specified search space component, on the predicted

outcome ŷ(i) of the surrogate model, is computed. Figure 16 shows the PDPs for model1

Figure 16: MboPlotOptPath: model1. The left (right) plot shows the PDP of the
surrogate model with respect to the search space component nrounds (colsample bytree)
at iteration 123.52

52 Own illustration based on R. Example provided in submission-repository.
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for the features nrounds and colsample bytree. In the left plot we see that, for iteration

123, if nrounds increases the predicted outcome ŷ(123) decreases, given all other search

space components. The interpretation of the PDP for colsample bytree follows equivalent.

To summarize our findings we have seen that both models find their minimum cumulative

value in an early iteration. We have analyzed this behavior further in the diagnostic

section and found model1 to improve its surrogate fit over the iterations, while this

does not hold for model2. This is also confirmed by the uncertainty of the estimated

output, where model1 shows more lower absolute deviations |ŷ − y| than model2 does.

Besides that we found some anomalies in the search space definition, which clearly

identified the transformation on the random sampled design. We also found a probable

mis-specification of the domain, where the optimizer searches frequently at the upper

boundary for colsample bytree. This seems to affect model1, which exploits frequently,

more than model2. We found that in general the distance between the search space

components is closer when we choose a model which exploits more often. The exploitation

brings the side effect that the runtime for the training of the GP surrogate shows peaks,

while this is rarely the case in a model which explores more often. All in all the different

visualizations gave us a variety of insights into the two analyzed SMBO runs that enhanced

our general understanding and led to ideas of possible improvements.
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4 Outlook and Further Improvements

To conclude this work, we give a short outlook on the future context of VisBayesOpt and

provide some further improvements to enhance the usability of the package.

One major challenge in the future is the migration of VisBayesOpt to mlr3, which is

currently under development. To balance the tradeoff between cost and benefit, an

adaption to mlr3 might be justified if VisBayesOpt finds sound interest among the users

of mlr2. Potential improvements may be identified once a broader user group analyzes

their mlrMBO runs using VisBayesOpt. This will also show the degree of the limitations

outlined in table 1 (i.e. no mixed-search spaces, no multi-point proposal).

For further improvements of the package itself, we refer to the limitations outlined in

table 1. The first step should be to expand the package to handle mixed-space objective

functions too. The additional value for visualizing SMBO runs with multi-point-proposals

might not exceed the complexity of the implementation. From the technical perspective

the package could be enhanced by implementing a full set of test (e.g. by the testthat

package) to check the functionality of the single functions easily.

All in all we hope that VisBayesOpt attracts a broad group of users from different

professions, enhances their insights into SMBO and facilitates their work on a day-to-day

basis.
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Appendices

Appendix 1: UML diagram of classes in VisBayesOpt53

VisBayesOpt - R

MboPlot

opt state: OptState
param set: ParamSet
param vals: list

set param vals(x: list)

MboPlotProgress

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot()

MboPlotInputSpace

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(include init design sampling distribution: logical,
search space components: list(character))

MboPlotSearchSpace

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(include init design: logical, include y: logical
search space components: list(character))

MboPlotDependencies

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(include init design: logical, dist measure: character)

MboPlotDistToNeighbor

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(color y: logical, search space components:
list(character))

MboPlotRuntime

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(highlight iter: logical)

MboPlotFit

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(highlight iter: logical, predict y iter surrogate:
logical)

MboPlotEstimationUncertainty

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(highlight iter: logical)

MboPlotOptPath

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
plot(highlight iter: logical, search space component:
character, parallel = logical, se factor: numeric)

MboSummary

opt state: OptState
param set: ParamSet
param vals: list

initialize(opt state)
getMboSummary()

53 Own illustration based on package VisBayesOpt. Note that helper functions are not part of the UML
diagram.
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VisBayesOpt - R Shiny

MboShiny

mbo plot: MboPlot

initialize(mbo plot: MboPlot)
generatePlotParamUi()
generateSummaryTable()
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