
LUDWIG MAXIMILIANS-UNIVERSITÄT MÜNCHEN
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1. Motivation

Clusteralgorithmen werden oft für Analyse von Genexpressionsdaten verwendet. Man ver-
sucht in diesem Kontext die Gene sinnvoll in Gruppen anhand bestimmter Muster in
den Variationen von Expressionsniveaus aufzuteilen. In der Anwendung wird man mit
großer Vielzahl an Clusteralgorithmen konfrontiert und es gibt keine eindeutige Antwort
auf die Frage, welcher von allen bevorzugt werden soll. Das heißt, dass verschiedene Algo-
rithmen oder sogar verschiedene Konfigurationen von ein und demselben Algorithmus zu
ganz unterschiedlichen Partitionen für denselben Datensatz führen können. Eine etablierte
Vorgehensweise setzt Bestimmung von mehreren Partitionen voraus, wobei anschließend
diejenige Partition bevorzugt wird, die zu den Daten am besten ”passt”. Dafür probiert
man unzerschiedliche Algorithmen mit mehreren Inputparametern aus und man beurteilt
diese mit geeigneten Clustervalidierungsmethoden.

Hierbei unterscheidet man zwischen externen und internen Validierungsmethoden. Ex-
terne Validierung basiert auf dem Vergleich der Clusteringergebnisse mit korrekter Par-
titionierung der Daten; alternativ vergleicht man zwei verschiedene Clusteringergebnisse
untereinander. Interne Validierungsmethoden hingegen beziehen keine zusätzlichen Infor-
mationen über die Daten ein, sondern basieren ausschließlich auf Beurteilung der vom
Algorithmus erhaltenen Partition. In der Anwendung sind aber ”korrekte” Strukturen in
den Daten unbekannt, das heißt also die wahre Gruppenzugehörigkeit der Objekte ist nicht
vorhanden. Deswegen der Fokus in dieser Arbeit auf internen Validierungsmethoden. Die
Idee interner Validierungskriterien liegt typischerweise auf Beurteilung von Kompaktheit
sowie Separation von Clustern (Handl et al., 2005).

Wie bereits angedeutet wurde, probiert man in der Praxis verschiedene Clusteralgorithmen
mit unterschiedlichen Parametern aus um das ”optimale” Clustering zu finden. Es ist aber
nicht auszuschließen, dass ein bestimmtes Clustering besser als alle anderen bei interner
Validierung abschneidet, was aber nur an der Vielzahl der ausprobierten Clustering Metho-
den liegt. Das heißt, dass solch ein ”gutes” Clustering nur durch Zufall zustande kommt
und jedoch nicht die wahre Struktur der Daten beschreibt. Deshalb wird im Rahmen
dieser Arbeit untersucht, ob solche möglichen Data-Dredging-Effekte aufgedeckt werden
können. Eine im Fokus liegende Idee ist die Aufteilung des verwendeten Datensatzes in
einen Trainings- und Testdatensatz. Dabei ist zu erwarten, dass eine Clustermethode, die
auf dem Trainigsdatensatz gut abschneidet und somit den anderen Methoden bevorzugt
wird, genauso ein gutes Resultat auf den Testdaten zeigt. Wird es nicht der Fall sein, liegt
womöglich ein Data-Dredging-Effekt vor.

Weiterhin soll untersucht werden, welche Maßzahlen der internen Validierung dabei aus-
gewählt werden sollen. Das untersuchte Qualitätskriterium der Indizes wird ihre Stabilität
auf dem Testdatensatz sein. Es wird also untersucht, ob Indizes, die auf den Trainingsdaten
gut abschneiden, genauso gute Ergebnisse auf den Testdaten ausweisen können. Dabei wer-
den nicht die einzelnen Werte der internen Validierungsindizes von Interesse sein, sondern
es werden die Indizes für verschiedene Algorithmen und unterschiedliche Konfigurationen
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der Inputparameter untereinander verglichen.

Der Rest von dieser Arbeit ist wie folgt aufgebaut. Im Kapitel 2 wird der für die Ana-
lyse verwendete Datensatz beschrieben. Ausgewählte Clustering Algorithmen sowie Va-
lidierungsindizes werden im Kapitel 3 diskutiert, danach werden im Kapitel 4 sämtliche
Ergebnisse präsentiert und abschließend wird im Kapitel 5 das Fazit gegeben.
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2. Datensatz

Der für die Clusteranalyse verwendete Datensatz ist ein Teil der Datensammlung The
Cancer Genome Atlas Breast Invasive Carcinoma (Lingle et al., 2016), die dem Zweck der
Untersuchung des Zusammenhangs von Krebsphänotypen mit Genotypen dient. Somit ba-
sieren sämtliche Ergebnisse dieser Arbeit auf Daten, die vom TCGA Research Network
generiert wurden: http://cancergenome.nih.gov/. Als Basis der Datensammlung wur-
den klinische Bilder von Probanden aus dem TCGA bereitgestellt.

Der im Rahmen dieser Arbeit verwendete Datensatz enthält Genexpressionsdaten von
1092 Patientinnen mit Brustkrebs, die mit Hilfe der Sequentierungsmethode RNA-Seq ge-
messen wurden.

Bei der Formatierung des Datensatzes wurden mehrfache Samples gelöscht. Zusätzlich
wurden niedrig exprimierte Gene entfernt. Im Rahmen der Normierung von Genexpressi-
onsdaten wurden log2-CPM Werte berechnet.

Der formatierte Datensatz enthält die Genexpressionen von 22694 Genen für 1092 Pa-
tientinnen, die an Brustkrebs leiden. Man interessiert sich für Clustering der Gene als
Objekte, es soll also untersucht werden, ob es Gruppen von Genen gibt, die sich bezüglich
ihrer Expressionsniveaus ähnlich verhalten. In diesem Fall enthält der Datensatz eine feste
Menge von Genen, die für Untersuchung von Brustkrebs vom Interesse sind. Somit spricht
man vom deskriptiven Clustering, wobei Gene eine feste bekannte Menge an untersuchten
Objekten bilden.

Für die Analyse wurde eine nicht zufällige Stichprobe von n = 2000 Genen gezogen, wobei
maximale Variabilität der Daten als inhaltliches Auswahlkriterium genommen wurde.

Anschließend wurde dieser Datensatz mehrfach in einen Trainingsdatensatz und einen
Testdatensatz aufgeteilt, wobei das Größenverhältnis 80%/20% bei jeder Aufteilung be-
trug.
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3. Methoden

3.1 Clusteralgorithmen

Wie bereits erwähnt wurde, interessieren wir uns für Entdeckung der Gruppen von Ge-
nen, die funktional zusammenhängen beziehungsweise ähnliches Verhalten aufweisen. Die
Idee vom Clustering liegt daran, Gruppen von Objekten im Datensatz zu finden. Formal
gesehen, gegeben sei ein Datensatz D = {x1, ..., xn}, der n Elemente enthält. Die Aufgabe
von Clusteranalyse liegt darin, den Datensatz in K disjunkte Teilmengen C1, ..., CK auf-
zuteilen, das heißt man sucht nach einer Partitionierung der Daten C = {C1, ..., CK}.

Es gibt eine Vielzahl von Clusteralgorithmen und die zentrale Frage lautet, welcher Clus-
teralgorithmus am besten für die Analyse der Genexpressionsdaten geeignet wäre (Datta
and Datta, 2003). Somit liegt der Vergleich von verschiedenen Algorithmen im Fokus die-
ser Arbeit.

Im Folgenden werden drei wichtige Ansätze von Clustermethoden vorgestellt und unter-
einander verglichen.

3.1.1 Partitionierende Verfahren (K-means Algorithmus)

Für Partitionsverfahren soll die Anzahl der Cluster K vorgegeben werden. Wir fokus-
sieren uns zunächst auf dem K-means Algorithmus. Nachdem die gewünschte Anzahl
an Cluster gewählt wurde, beschäftigt man sich mit der Wahl von K initialen Cluster-
Repräsentanten, der sogenannten Zentroiden. Der Algorithmus ordnet dann die Objekte
den einzelnen Clustern zu mit dem Ziel der Minimierung von totaler Quadratsumme in-
nerhalb der Cluster. Nachdem die Objekte den einzelnen Clustern zugewiesen wurden,
werden für jede Klasse neue Zentroide bestimmt und das Verfahren wird sukzessive wie-
derholt bis keine Veränderung bei der Anordnung von Objekten mehr vorliegt.

Dabei wird die Frage der Minimierung von Intra-Cluster Variation formal definiert als

S(D,m1, ...,mK) =

n∑
i=1

d(xi,mc(i)),

wobei
c(i) = arg min

j∈{1,...,K}
d(xi,mj), j = 1, ...,K.

Dabei werden die Zentroide mit m1, ...,mK bezeichnet und d ist ein geeignetes Unähnlichkeitsmaß.
Typischerweise wird für d die quadrierte euklidische Distanz verwendet.

Der K-means Algorithmus wurde im R-Paket stats als Funktion kmeans() implemen-
tiert. Dabei sollten der Datensatz, die Anzahl an Cluster, die maximale Anzahl an Itera-
tionen sowie die Anzahl an zufälligen Startpartitionen als Input-Parameter der Funktion
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übergeben werden. Letztes Parameter ist besonders wichtig um Stabilität des Verfahrens
sicherzustellen.

3.1.2 Agglomerative hierarchische Verfahren

Im Gegensatz zu den Partitionsverfahren wird von hierarchischen Verfahren keine feste
Anzahl an Clustern sondern eine Hierarchie von Clustern bestimmt. Im ersten Schritt bil-
det jedes Objekt sein eigenes Cluster. In jedem nächsten Schritt werden zwei ”ähnlichste”
Cluster zu einem gemeinsamen Cluster zusammengefügt. Das Zusammenfügen der Cluster
wird in jedem Schritt sukzessive wiederholt bis alle Objekte ein einziges Cluster bilden.
Man unterscheidet zwischen Single Linkage, Complete Linkage und Average Linkage Ver-
fahren, jedes von denen ein anderes Distanzmaß D für das Zusammenfügen der Cluster
verwendet

• Single Linkage berechnet die kürzeste Distanz zwischen Objekten aus zwei Clustern

D(C1, C2) = min
x1∈C1,x2∈C2

d(x1, x2)

und neigt somit zur Kettenbildung, was oft der Identifikation von Ausreißern dient

• Complete Linkage bestimmt den größten Abstand zwischen Objekten aus zwei Clus-
tern

D(C1, C2) = max
x1∈C1,x2∈C2

d(x1, x2)

und ist somit empfindlicher gegenüber kleinen Änderungen in den Daten als Single
Linkage

• Average Linkage ist ein Kompromiss zwischen den oberen zwei Verfahren und be-
rechnet die durchschnittliche Distanz zwischen Objekten aus zwei Clustern

D(C1, C2) =
1

|C1||C2|
∑

x1∈C1,x2∈C2

d(x1, x2)

und führt zu sehr homogenen Clustern

Um die Partition der Daten in K Cluster zu erhalten, ”schneidet” man die Hierarchie an
einer bestimmten Stufe ab.

Agglomerative hierarchische Verfahren wurden in R ebenfalls im Standard-Paket stats

implementiert. Dafür ruft man die Funktion hclust() auf. Folgende zwei Parameter sollen
der Funktion übergeben werden: die Distanzmatrix und die Agglomerationsmethode.

3.1.3 Spektrales Clustering-Verfahren

Ähnlich wie bei hierarchischen Verfahren, berechnen wir zuerst die paarweisen Distanzen
zwischen den Datenobjekten. Wie vorher angedeutet wurde, gehören zwei Objekte zu ver-
schiedenen Clustern, falls sie weit voneinander liegen oder anders ausgedrückt eine große
Distanz aufweisen. Zwei Objekte, die ”weit auseinander” liegen, können aber auch dem
gleichen Cluster gehören, falls sie dichteverbunden sind, das heißt falls es zwischen den re-
präsentativen Punkten im Raum eine Sequenz von anderen Punkten gibt, die solche zwei
Punkte untereinander ”verbindet”. Bei solchen Fragestellungen liefern Partitionierungs-
verfahren sowie hierarchische Verfahren meistens kein gutes Clusterergebnis. Spektrales
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Clustering-Verfahren kann aber mit solchen Daten korrekt umgehen.

Spektrales Clustering nutzt Methoden, die auf Spektralzerlegung der sogenannten Laplace-
Matrix basieren. Die Laplace-Matrix wird aus der Distanzmatrix der Daten gebildet. Das
Ziel der Spektralzerlegung liegt daran, mittels der K kleinsten (also den K kleinsten Eigen-
werten korrespondierenden) Eigenvektoren der Laplace-Matrix eine Abbildung der Daten
in einen K-dimensionalen Raum zu konstruieren. Anschließend wird ein Standardverfah-
ren wie zum Beispiel K-means auf die K-dimensionalen Vektoren angewendet.

Das R-Paket kknn bietet eine Möglichkeit für die Durchführung des Spektralen Clustering-
Verfahrens mittels der Funktion specClust(). Als Parameter werden die Datenmatrix
sowie die gewünschte Anzahl an Clustern benötigt. Wichtig ist hierbei anzumerken, dass
die Affinitätsmatrix, die für die Bildung der oben eingeführten Laplace-Matrix benötigt
wird, auf dem kNN Verfahren basiert.

Wie man an dieser Stelle erkennen kann, kommt zusätzlich zu der Frage der Wahl ei-
nes ”richtigen” Clustering-Verfahrens auch die Wahl der Input-Parameter wie die Anzahl
der Cluster oder die Methode der Bildung einer Distanzmatrix. Somit kommt man auf
die Frage, ob man nicht einfach verschiedene Algorithmen mit unterschiedlichen Input-
Parametern ausprobieren sollte und dann aus der Vielzahl der Ergebnisse das ”beste”
Ergebnis auswählen. Dabei kann man aber nicht ausschließen, dass ein so gutes Ergebnis
nur durch das Ausprobieren von Vielzahl an Methoden zustande kommt. Eine weitere Fra-
ge ist auch, wie man das beste Ergebnis findet. Damit beschäftigen wir uns im nächsten
Abschnitt dieser Arbeit.

3.2 Validierungsindizes

Jeder Clustering-Algorithmus erzeugt eigene Partition der Daten, es heißt wir erhalten
verschiedene Clusterings, die nicht notwendig alle gleich sind. Somit stellt sich der Anwen-
der die Frage, wie gut jedes einzelne Clustering eigentlich ist? Also inwiefern ”passt” das
Ergebnis zu den Daten und ob die Struktur, die dahinter steckt, korrekt abgebildet wird.

Um die Güte eines Clusterings zu beurteilen, betrachtet man verschiedene Eigenschaften.
Beispielsweise werden die Kompaktheit, die Verbundenheit sowie die räumliche Separation
der einzelnen Cluster meistens begutachtet.

Es gibt unterschiedliche Validierungsmethoden von Clusterergebnissen. Dabei unterschei-
det man hauptsächlich zwischen externen und internen Validierungsmethoden.

Externe Validierungsindizes sind unabhängig von den Clusteralgorithmen und dienen zum
Vergleich von zwei Clusterings mit denselbsen Clusterobjekten. Im Rahmen dieser Arbeit
werden externe Validierungsindizes benötigt um die Übereinstimmung von Clusterings auf
dem Trainigsdatensatz mit den Ergebnissen auf dem Testdatensatz zu vergleichen. Es wird
also untersucht, inwiefern ein Clusteralgorithmus die gleichen Cluster von Genen auf den
Trainigs- sowie Testdaten bildet.

Interne Validierungsmethoden bewerten hingegen einzelne Clusterings. Dabei wird die
Qualität eines Clusterings nur anhand der Informationen, die den Daten zugrunde liegen,
geschätzt (Handl et al., 2005). Der Fokus dieser Arbeit liegt darauf zu überprüfen, ob
Verfahren, die auf dem Trainingsdatensatz bezüglich der internen Validierungsindizes be-
sonders gut abschneiden, ein ähnlich gutes Ergebnis auch auf dem Testdatensatz aufweisen
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können. Sollte es nicht der Fall sein, liegt eventuell ein Data-Dredging-Effekt vor.

Folgende Validierungsmethoden wurden auf diejenigen eingeschränkt, die bei der Analyse
von Genexpressionsdaten etabliert wurden und am meisten benutzt werden. Sämtliche
Notationen wurden von Hennig et al. (2015, Kapitel 26-27) übernommen.

3.2.1 Externe Validierungsindizes

Seien C und C′ zwei Clusterings mit K und K ′ Clustern entsprechend. Wir betrachten
eine Klasse von externen Indizes, die auf der Anzahl von Objektepaaren basieren, die im
Resultat der beiden Clusterings übereinstimmen. Dabei unterscheidet man zwischen vier
Fällen:

• N11 Anzahl an Paaren von Objekten, die im gleichen Cluster unter C sowie C′ sind

• N00 Anzahl an Objektepaaren, die unter C und C′ in unterschiedlichen Clustern sind

• N10 Anzahl von Paaren, die unter C im gleichen Cluster sind aber unter C′ zu
unterschiedlichen Clustern gehören

• N01 Anzahl von Paaren, die unter C′ im gleichen Cluster sind aber unter C zu
unterschiedlichen Clustern gehören

Jaccard Index

Jaccard Index wird definiert als

J (C, C′) =
N11

N11 + N01 + N10

und ist eine Maßzahl für den Anteil der Übereinstimmungen von Objekten in zwei Mengen.
Dabei wird die Anzahl N00 bei der Berechnung nicht berücksichtigt um die Invarianz des
Index gegenüber der Anzahl an Cluster K gewährleisten zu können, da in Hennig et al.
(2015, Kapitel 27) gezeigt wird, dass N00 mit zunehmendem K steigt.
Die Werte für den Jaccard Index liegen zwischen 0 und 1, wobei große Werte für gute
Übereinstimmung der Objekte stehen.

Adjustierter Rand-Index

Adjustierter Rand-Index ist einer der am häufigsten verwendeten externen Validierungs-
indizes. Der Index ist eine korrigierte Version vom Rand-Index, der den Nachteil ei-
ner höheren Baseline, die den Erwartungswert des Index unter der Annahme von un-
abhängigen Clusterings bezeichnet, mit steigender Anzahl an Cluster K hat. Die Korrektur
vom Rand Index stellt eine sogenannte Normierung des Index mit der Baseline dar

ARI(C, C′) =

∑K
k=1

∑K′

k′=1

(nkk′
2

)
− [
∑K

k=1

(
nk
2

)
][
∑K′

k′=1

(n′
k′
2

)
]/
(
n
2

)
[
∑K

k=1

(
nk
2

)
+
∑K′

k′=1

(n′
k′
2

)
]/2− [

∑K
k=1

(
nk
2

)
][
∑K′

k′=1

(n′
k′
2

)
]/
(
n
2

) ,
wobei n die Gesamtanzahl an Objekten bezeichnet und nkk′ , nk′ sowie nk aus der soge-
nannten Kontingenztabelle herausgenommen werden können. Die Kontingenztabelle ist
eine K × K ′ Matrix N = [nkk′ ], wobei das kk′-te Element die Anzahl der Objekte im
Schnitt von Clustern Ck von C und C ′k′ von C′ bezeichnet

nkk′ = |Ck ∩ C ′k′ |
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und
K∑
k=1

nkk′ = |C ′k′ | = nk′

K′∑
k′=1

nkk′ = |Ck| = nk

sowie
K∑
k=1

nk =
K′∑
k′=1

nk′ = n

Adjustierter Rand-Index ist bei 1 beschränkt, wobei Werte nahe bei 1 gute Übereinstimmung
der Clusterings andeuten (Hennig et al., 2015, Kapitel 27).

3.2.2 Interne Validierungsindizes

Interne Validierungsindizes werden für verschiedene Clustering-Algorithmen sowie ver-
schiedene Input-Parameter ausgerechnet und deren Werte werden verglichen um das ”bes-
te” Clustering zu bestimmen. Interne Indizes werden besonders oft benutzt um die opti-
male Anzahl an Cluster zu bestimmen. Im Rahmen dieser Arbeit verwendete Indizes sind
nur für metrische Daten definiert und basieren auf Quantifizierung von Unähnlichkeiten
zwischen den Objekten (Arbelaitz et al., 2013).

Dabei betrachten wir weiterhin den Datensatz D = {x1, ..., xn}, der n Elemente enthält.
Angenommen das Clustering CK = {C1, ..., CK} sei gegeben und die Funktion c sei die
Zuweisungsfunktion, wobei c(i) = j gleichbedeutend ist zu xi ∈ Cj . Weiterhin bezeichnen
wir mit nj , j = 1, ...,K die Anzahl der Elemente in den jeweiligen Clustern. Für metrische
Daten definieren wir x̄j , j = 1, ...,K als Mittelwertsvektor für den Cluster Cj und x̄ als
Gesamtmittelwert.

Calinski-Harabasz Index

Die Idee basiert auf Minimierung der Intra-Cluster-Quadratsumme. Dafür werden die
Intra-Cluster-Varianz

WCK =
K∑
j=1

∑
c(i)=j

(xi − x̄j)(xi − x̄j)
>

und die Inter-Cluster-Varianz

BCK =
K∑
j=1

nj(x̄j − x̄)(x̄j − x̄)>

untereinander verglichen.

Calinski-Harabasz Index ist definiert als

CH(CK) =
trace(BCK )

trace(WCK )
· n−K

K − 1

Dabei sind große Werte von CH-Index ein Zeichen für ein gutes Clustering, da in diesem
Fall die Objekte innerhalb der Cluster homogen sind und gleichzeitig die Cluster sich stark
untereinander unterscheiden.

Dabei muss man anmerken, dass CH-Index implizit sphärische Cluster mit Objekten, die
um die Clusterzentren konzentriert sind, erfordert. Dabei sollen einzelne Clusterzentren
möglichst weit auseinander liegen. In vielen praktischen Anwendungen sind sphärische
Cluster jedoch oft nicht der Fall (Hennig et al., 2015).
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Davies-Bouldin Index

Davies-Bouldin Index basiert ebenfalls auf dem Vergleich von Intra- und Inter-Cluster-
Varianzen. Dabei wird

Sk =
( 1

nk

∑
c(i)=k

||xi − x̄k||q2
) 1

q
, k = 1, ...,K

als Maß für die Variation innerhalb der Cluster benutzt. Es werden paarweise Ähnlichkeiten
zwischen den Clustern berechnet als

Rij =
Si + Sj
Mij

wobei
Mij = ||x̄i − x̄j ||p

die Distanz zwischen den Zentroiden bezeichnet. Für jedes Cluster wird

Di = max
j 6=i
Rij

berechnet, was als Maß für paarweise ”ähnlichste” Cluster dient, und Davies-Bouldin Index
ist definiert als

DB(Ck) =
1

K

K∑
i=1

Di

Dabei wählt man typischerweise p = q = 2. Für jedes Cluster wird somit ein Maß für
die Ähnlichkeit mit dem ”nächstgelegenen” Cluster berechnet und die Cluster werden
entsprechend ihrer Größe gewichtet. Die Separation der Cluster wird analog zum CH-
Index über die Distanz zwischen den Zentroiden bestimmt. Kleine Werte von DB-Index
besagen, dass die einzelnen Cluster homogen und gleichzeitig gut separiert sind.

Dunn Index

Der Index von Dunn verfolgt ebenfalls die Idee des Vergleiches vom Verhältnis der Sepa-
ration und der Kompaktheit einzelner Cluster

DI(CK) = min
i=1,...,K

{
min

j=i+1,...,K

( dC(Ci, Cj)

maxk=1,...,K(∆(Ck))

)}
Dabei ist dC(Ci, Cj) = minx∈Ci,y∈Cj d(x, y) ein Maß für die Distanz zwischen zwei Cluster
und ∆(C) = maxx,y∈C d(x, y) bestimmt den Durchmesser oder anders ausgedrückt die
”Verbreitung” der einzelnen Cluster. Das Ziel ist Maximierung vom Dunn Index, da große
Werte für gute Separation sowie Homogenität sorgen.

Average Silhouette Width Kriterium

Ein weiterer Validierungsindex, der ebenfalls auf Visualisierung interner Clusterhomoge-
nität sowie Separation der Cluster beruht, ist Silhouettenkoeffizient. Für jeden einzelnen
Datenpunkt wird berechnet, wie viel deutlicher der Punkt zu dem ihm zugeordneten Clus-
ter gehört als zu dem nächstgelegenen Cluster. Für eine Beobachtung xi ∈ Ck ist die
Silhoutte definiert als

si =
bi − ai

max{ai, bi}
,

wobei ai = 1
nk−1

∑
c(j)=k d(xi, xj) die mittlere Distanz vom Objekt xi zu anderen Objek-

ten aus gleichem Cluster und bi = minl 6=k
1
nl

∑
c(j)=l d(xi, xj) die mittlere Distanz zu dem
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nächsten Cluster bezeichnen.

Für ein Clustering CK ist somit Average Silhouette Width definiert als

ASW (Ck) =
1

n

n∑
i=1

si

Dabei wäre bei einem guten Clustering zu erwarten, dass für jedes Objekt xi mittlere
Distanz bi zum nächsten Cluster größer ist als mittlere Distanz ai zu den Punkten aus
eigenem Cluster. Somit spricht eine große Differenz bi−ai für gutes Clustering. Die Werte
von si sind normiert und liegen zwischen −1 und 1. Entsprechend sind wir an Maximierung
von ASW-Kriterium interessiert, da in diesem Fall ein Kompromiss zwischen Homogenität
und Separation erreicht wird.
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4. Ergebnisse

4.1 Einfache Aufteilung des Datensatzes

Die Daten wurden mit Hilfe aller fünf betrachteten Clustering-Algorithmen partitioniert.
Maximale Anzahl an Cluster wurde gleich 10 gewählt, damit inhaltliche Interpretation
der gebildeten Cluster gewährleistet werden kann. Es ist wichtig anzumerken, dass Single
Linkage Verfahren kein sinnvolles Ergebnis lieferte, da für jede von uns überprüfte Anzahl
an Cluster k alle Objekte in ein Cluster eingeordnet wurden und die restlichen k−1 Clus-
ter nur jeweils ein Objekt enthielten. Da ein solches Ergebnis für Clustervalidierung wenig
interessant ist, wird das Single Linkage Verfahren bei weiterer Analyse nicht berücksichtigt.

Für die restlichen vier Clustering-Algorithmen berechnen wir jeweils vier interne Validie-
rungsindizes, die im Unterabschnitt 3.2.2 beschrieben wurden, einmal für den Trainings-
datensatz und einmal für den Testdatensatz. Vom primären Interesse ist der Vergleich
interner Indizes für den Trainings- sowie den Testdatensatz. Zusätzlich werden für je-
des Verfahren und jede uns interessierende Anzahl an Cluster externe Validierungsindi-
zes berechnet, die die Frage beantworten sollten, inwieweit die Clusteringergebnisse für
Trainings- und Testdaten übereinstimmen. Es macht in diesem Kontext besonders viel
Sinn, da für deskriptives Clustering von Genexpressionsdaten eine feste Menge von Genen
und nicht die Patienten als Datenobjekte betrachtet werden und somit die Elemente ein-
zelner Cluster sinnvoll untereinander verglichen werden können.

Die Ergebnisse werden in Form der Abbildungen dargestellt, wobei in jeder Abbildung
jeweils oben die Ergebnisse für den Trainingsdatensatz und unten für den Testdatensatz
dargestellt werden. Für jede Abbildung wurden auf der horizontalen Achse die Anzahl
an Cluster und auf der vertikalen Achse die Werte für einzelne Indizes abgetragen. Die
Tabellen, die einzelne Werte (gerundet auf fünf Nachkommastellen) für alle verwendeten
Indizes enthalten, sind im Anhang A zu finden.

Calinski-Harabasz Index liefert ähnliche Ergebnisse bei jedem der vier Clustering-Algorithmen,
wie es aus Abbildung 4.1 abzulesen ist. Wir erinnern uns daran, dass große Werte vom
Calinski-Harabasz Index ein Zeichen für gutes Clustering sind. Dabei können wir sehen,
dass bei K-means Algorithmus sowie Complete Linkage Clustering der Index für zwei Clus-
ter maximal wird. Diese Ergebnisse werden sowie vom Trainingsdatensatz als auch vom
Testdatensatz geliefert, was auf gewisse Stabilität des Indizes hindeutet. Im Gegensatz da-
zu wird der Index für Partitionen, die von Average Linkage sowie spektralem Clustering
für die Trainingsdaten erzeugt wurden, für Anzahl Cluster k = 3 maximal, wenngleich der
Index immer noch für k = 2 auf dem Testdatensatz maximal wird. Eine Erklärung für
den extrem kleinen Wert von Calinski-Harabasz Index bei der vom Average Linkage Clus-
tering für zwei Cluster erzeugten Partition auf dem Trainingsdatensatz ist, dass alle bis
auf ein Datenobjekt dem ersten Cluster zugeordnet wurden. In diesem Fall muss natürlich
die Frage gestellt werden, ob das Ergebnis überhaupt Sinn macht und wie aussagekräftig
interne Indizes für den Fall sind.
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Abbildung 4.1: Calinski-Harabasz Index

Weiterhin analysieren wir Ergebnisse, die vom Davies-Bouldin Index geliefert werden (Ab-
bildung 4.2). Eine Partition der Datenpunkte, die homogene aber gleichzeitig gut separierte
Cluster liefert, weist einen kleinen Davies-Bouldin Index auf. Somit sehen wir, dass der
Index minimal auf dem Trainingsdatensatz für k = 2 wird, wenn wir uns die Ergebnisse
des K-means Verfahrens sowie des spektralen Clusterings anschauen. Gleichzeitig sehen
wir, dass für die zwei Algorithmen der Davies-Bouldin Index auch auf dem Testdatensatz
für zwei Cluster minimal bleibt. Also in dem Fall können wir davon ausgehen, dass ein
Data-Dredging-Effekt ausgeschlossen ist. Analog können wir sehen, dass für das Complete
Linkage Verfahren DB Index auf beiden Teildatensätzen für k = 3 Cluster minimal wird,
wobei sich die Werte für den Index bei zwei und drei Cluster nicht stark voneinander un-
terscheiden. Etwas uneindeutig sind die Ergebnisse des Davies-Bouldin Index für Average
Linkage Verfahren, da auf dem Trainingsdatensatz der Index seinen minimalen Wert für
zwei Cluster annimmt, wobei der Wert für den Index bei den Testdaten für k = 2 am
höchsten ist, was ein Zeichen für ein schlechtes Cluster Ergebnis ist. Es kann aber immer
noch dadurch erklärt werden, dass in unserem Fall für den Trainingsdatensatz alle Da-
tenpunkte laut dem Average Linkage Verfahren einem Cluster gehören und sich nur ein
einziger Datenpunkt in dem anderen Cluster befindet. Wenn wir diesen Fall ignorieren
würden, wäre der Davies-Bouldin Index für beide Teildatensätze bei k = 7 Cluster mini-
mal.

Der Index, der am meisten unterschiedliche Ergebnisse lieferte, ist der Dunn Index. Der In-
dex wird berechnet als Verhältnis von kleinster Distanz zwischen zwei Beobachtungen, die
unterschiedlichen Clustern zugewiesen wurden, zu der größten Intraclusterdistanz (Brock
et al., 2008). In der Abbildung 4.3 können wir nachsehen, dass Werte, die der Index für den
Trainings- sowie den Testdatensatz liefert, am weitesten auseinander liegen. Bei K-means
Algorithmus sehen wir als Beispiel, dass laut dem Dunn Index Clustering mit 10 Clustern
bevorzugt werden sollte, wobei auf den Testdaten der Index für sechs Cluster maximal
wird. Beim Average Linkage Verfahren (unter Beachtung des Problems für Partition in
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Abbildung 4.2: Davies-Bouldin Index

zwei Cluster) sind die Indexwerte auf beiden Teildatensetzen bis auf mehrere Nachkom-
mastellen für unterschiedliche Anzahl an Cluster nicht unterscheidbar. Für Analyse von
Genexpressionsdaten scheint der Index somit wenig geeignet zu sein und soll genauer für
weitere Datensätze untersucht werden. Mohanty et al. (2013) zeigte ebenfalls, dass Dunn
Index im Vergleich mit Average Silhouette Width eine deutlich schlechtere Validierungs-
methode für Genexpressionsdaten ist.

Besondere Aufmerksamkeit müssen wir dem Average Silhouette Width schenken, da der
Index als der am meisten verbreitete Validierungsindex für Clustering bekannt ist. Die
Ergebnisse für Average Silhouette Width werden in Abbildung 4.4 dargestellt. Der Index
wird für Anzahl an Cluster k = 2 für drei Clusteralgorithmen sowie auf dem Trainings-
als auch auf dem Testdatensatz maximal, und zwar für K-means, Complete Linkage sowie
spektrales Clustering. Beim Average Linkage Verfahren wird AWS auf dem Trainingsda-
tensatz für k = 3 Cluster maximal, wobei Clustering auf dem Testdatensatz laut dem
Silhoutte Index für k = 2 sinnvoller zu sein scheint. Dabei muss man anmerken, dass die
Werte für zwei und drei Cluster auf den beiden Teildatensätzen sich nur marginal unter-
scheiden. Somit schneidet Average Silhouette Index für alle vier Algorithmen bezüglich
seiner Stabilität auf Trainings- und Testdaten am besten ab. Der Vorteil beim ASW liegt
auch an seiner Normiertheit, da nur Werte vom Intervall [−1, 1] angenommen werden
können. Da maximale Werte für Average Silhouette Width für jede der vier von uns ver-
wendeten Clustering Algorithmen den Wert von 0.32 nicht überschreiten, deutet es auf
kein eindeutiges Clusterergebnis hin, da Werte von Silhouette Index, die nahe an Null
sind, auf Zwischenposition der Datenobjekte zwischen zwei Clustern schließen lassen (Liu
and Graham, 2019).

Weiterhin wollen wir zwei Clusterings mit denselben Objekten für jeweils die gleichen
Kombinationen von Algorithmus und Inputparameter vergleichen. Es wird also geprüft,
inwieweit die Ergebnisse von einzelnen Clustering-Verfahren auf dem Trainings- und dem
Testdatensatz übereinstimmen. Im Rahmen dieser Arbeit wurden zwei externe Validie-

14



Abbildung 4.3: Dunn Index

rungsindizes ausgewählt, nämlich Jaccard Index und Adjustierter Rand Index, jedoch
existiert eine Vielzahl an anderen Indizes, die ausführlich in Hennig et al. (2015, Kapi-
tel 27) beschrieben werden.

Jaccard Index deutet mit dem Wert von 0.94 auf sehr gute Übereinstimmung der Objekte
für K-means Algorithmus bei zwei Clustern hin. Analog sieht es für Adjustierten Rand
Index aus, da der Wert von 0.93 auch für sehr gute Übereinstimmung der Clustering-
Resultate spricht. Diese Ergebnisse liefern eine sehr positive Tendenz, da auch interne
Validierungsindizes bei K-means Algorithmus für zwei Cluster ihre besten Ergebnisse lie-
ferten.

Beim Complete Linkage Verfahren erhalten wir generell etwas niedrigere Werte für die bei-
den Indizes, und zwar ist Jaccard Index mit dem Wert von circa 0.73 für Clusterings mit
zwei und drei gebildeten Clustern am höchsten, und Adjustierter Rand Index schwankt
zwischen den Werten von 0.64 und 0.66 für zwei, drei oder vier Cluster. Auch hier sieht
man, dass Ergebnisse mit internen Validierungsindizes gewissermaßen übereinstimmen.
Calinski-Harabasz Index und Average Silhouette Width waren für k = 2 Cluster maximal,
wobei Davies-Bouldin Index für drei Cluster minimal wurde.

Im Fall des Average Linkage Algorithmus sind auch Ergebnisse der internen Validierungs-
indizes nicht eindeutig interpretierbar, da wir in Abbildung 4.5 sehen können, dass die
Werte für alle Anzahlen von Clustern k = 3, ..., 10 in etwa gleich groß für beide Indizes
sind. Bei zwei Clustern ist jedoch der Wert vom Jaccard Index am kleinsten und ARI
nimmt sogar einen leicht negativen Wert an. Genau Werte für die Indizes sind aus Tabel-
le A.9 zu entnehmen.

Ergebnisse vom spektralen Clustering stimmen am meisten bei drei Clustern laut den bei-
den externen Validierungsindizes überein. Sowie Jaccard Index als auch ARI nehmen für
k = 3 Clustern ihre maximalen Werte von ungefähr 0.88 an. Ergebnisse für interne Vali-
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Abbildung 4.4: Average Silhouette Width

dierungsindizes waren für zwei und drei Cluster am besten, wie es aus oberen Abbildungen
zu entnehmen ist. In diesem Fall ist es etwas überraschend, dass die Ergebnisse für zwei
Cluster deutlich weniger übereinstimmen, vor allem liefert Adjustierter Rand Index einen
ersichtlich niedrigeren Wert von 0.59.

Calinski-Harabasz Davies-Bouldin Dunn Silhouette

K-means 0.99998893 0.99492905 0.73728853 0.99939261
Complete Linkage 0.99633344 0.90541478 0.95654027 0.98639493

Average Linkage -0.15742780 -0.20721416 NA 0.88334083
Spektrales Clus. 0.87611757 0.98760686 -0.40734129 0.98596622

Tabelle 4.1: Korrelationskoeffizienten zwischen internen Validierungsindizes (berechnet auf
dem Trainings- und Testdatensatz)

Die nächste für uns interessante Frage wäre, wie gut interne Indizes übereinstimmen oder
anders gesagt, ob es einen (linearen) Zusammenhang zwischen den einzelnen internen
Validierungsindizes für Trainingsdaten und Testdaten gibt. Dafür wird der Korrelations-
koeffizient nach Bravais-Pearson (Fahrmeir et al., 2016, Kapitel 3) berechnet. Die Ergeb-
nisse sind in Tabelle 4.1 nachzusehen. Hierbei sehen wir, dass Calinski-Harabasz Index,
Davies-Bouldin Index, Dunn Index sowie Average Silhouette Width für k-Means Algo-
rithmus sowie für Complete Linkage Verfahren einen starken positiven Zusammenhang
haben. Also steigen die Indizes auf dem Trainingsdatensatz, so werden sie auch auf dem
Testdatensatz größer, also können wir davon ausgehen, dass gelieferte Werte von den In-
dizes nicht zufällig sind und somit kein Data-Dredging-Effekt vorliegt. Anders sieht es für
Average Linkage Verfahren aus, da die Korrelationskoeffizienten für verschiedene Indizes
sowie stark positive als auch leicht negative Werte annehmen. Für Dunn Index wird kein
Wert für den Korrelationskoeffizienten geliefert, da laut der Warnung, die vom Software
R bei der Berechnung ausgegeben wurde, eine Standardabweichung von Null vorliegt und
somit der Koeffizient nicht berechnet werden kann. Da es keinen stark positiven Zusam-
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Abbildung 4.5: Externe Validierungsindizes: Jaccard Index (oben) und Adjustierter Rand
Index (unten)

menhang zwischen den Ergebnissen interner Validierungsindizes gibt, deutet es nochmal
darauf hin, dass Ergebnisse, die Average Linkage Algorithmus für den Datensatz liefert,
nicht wirklich sinnvoll zu sein scheinen. Beim spektralen Clustering sehen wir einen starken
positiven Zusammenhang zwischen Calinski-Harabasz Indizes auf beiden Teildatensätzen
sowie zwischen Davies-Bouldin und Silhouette Width Indizes. Somit können wir sehen,
dass Calinski-Harabasz Index, Davies-Bouldin Index und Average Silhouette Width als
drei besonders stabile interne Validierungsindizes gemäß der Analyse des im Rahmen die-
ser Arbeit verwendeten Datensatzes ausgezeichnet werden können.

Calinski-Harabasz Davies-Bouldin Dunn Silhouette

K-means 0.76996417 -0.70792480 -0.74167305 0.68184923
Complete Linkage 0.54841736 -0.66122482 -0.54963256 0.76625044

Average Linkage 0.56886563 0.83928682 -0.97859633 -0.31616044
Spektrales Clus. 0.61341368 0.12699897 -0.59254925 0.40003892

Tabelle 4.2: Korrelationskoeffizienten zwischen internen Validierungsindizes (berechnet auf
dem Trainingsdatensatz) und Adjustierten Rand Indizes

In Tabelle 4.2 werden Korrelationskoeffizienten zwischen internen Validierungsindizes auf
dem Trainingsdatensatz und dem Adjustierten Rand Index dargestellt. Wenn kein Data-
Dredging-Effekt vorliegt, das heißt wenn gute Ergebnisse von internen Validierungsindizes
nicht zufällig sind und nicht nur durch mehrfaches Ausprobieren verschiedener Konstel-
lationen zustande kommen, würde man erwarten, dass es starke Korrelationen zwischen
internen Validierungsindizes und dem Adjustierten Rand Index gibt. In einem solchen Fall
wird also erwartet, dass gute Clusteringergebnisse auf den Trainings- und auf den Testda-
ten übereinstimmen und somit Adjustierter Rand Index Werte nahe bei 1 annimmt. Dabei
wäre es wichtig anzumerken, dass wir an Maximierung von Calinski-Harabasz Index, Dunn
Index sowie Silhouette Index interessiert sind, bei Davies-Bouldin Index erwartet man hin-
gegen kleine Werte bei einem guten Clusteringergebnis. Also gehen wir im Idealfall davon
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aus, dass bei den drei oben genannten Indizes starke positive Korrelationen nachgewiesen
werden können und bei dem Davies-Bouldin Index starke negative Korrelationen vorlie-
gen. Wie wir sehen können, gibt es einen mittleren positiven Zusammenhang zwischen dem
Calinski-Harabasz Index und dem Adjustierten Rand Index, ebenso wie erwartet sind Sil-
houette Width und ARI positiv korreliert, wobei die einzelne negative Korrelation für den
Average Linkage Algorithmus durch die fragwürdigen Ergebnisse (wenig sinnvolle Cluster-
größen) erklärbar sein könnte. Ähnlich sieht die Situation bei dem Davies-Bouldin Index
aus, wobei die Korrelation für Average Linkage Verfahren wieder auf einen gegenläufigen
Trend hindeutet. Die meisten Fragen entstehen jedoch bei den Ergebnissen vom Dunn
Index, da dieser in allen vier Fällen eine mittlere bis auf eine starke negative Korrelation
mit dem ARI aufweist. Dies stützt die oben erwähnte Vermutung, dass Dunn Index für
die Analyse der Genexpressionsdaten weniger geeignet ist und seine Anwendung in diesem
Bereich genauer untersucht werden soll.

4.2 Mehrfache Aufteilung des Datensatzes

Um die Ergebnisse der internen Validierungsindizes besser evaluieren zu können, wird
der Datensatz mehrfach zufällig in Trainings- und Testdatensatz aufgeteilt. Im Rahmen
dieser Arbeit wurde die Anzahl der Wiederholungen auf n = 10 festgelegt, wobei die
Größenverhältnisse von Trainings- und Testdatensätzen für jeden Split mit 80%/20% gleich
bleiben. Da Average Linkage Verfahren ähnlich wie für den Fall mit der einfachen Auftei-
lung des Datensatzes keine vernünftigen Clusteringergebnisse für den Datensatz lieferte,
wurde der Algorithmus von weiteren Analysen ausgeschlossen. Somit werden interne Va-
lidierungsindizes in diesem Abschnitt nur für K-means Algorithmus, Complete Linkage
Algorithmus und spektrales Clustering untersucht.

Zuerst wird untersucht, wie sich einzelne interne Validierungsindizes für Trainings- und
Testdaten unterscheiden sowie welche Kombinationen von Algorithmen und Inputpara-
metern die besten Ergebnisse liefern. Für mehrfache Aufteilung des Datensatzes wurden
solche Indizes für jede uns interessierende Kombination und jede Partition des Datensatzes
einzeln berechnet, wobei wir uns im Folgenden für mittlere Werte der Validierungsindizes
(gemittelt über alle 10 Splits) interessieren.

Mittlere Werte vom Calinski-Harabasz Index, die in Abbildung 4.6 zu sehen sind, liefern
insgesamt sehr gute Ergebnisse, da für den K-means Algorithmus und für den Complete
Linkage Verfahren mittlere Werte des Index sich für alle Anzahlen der Cluster ähnlich
verhalten und maximale Werte bei k = 2 Clustern erreicht werden. Beim spektralen Clus-
tering wird der mittlere Index für k = 3 Cluster auf dem Trainingsdatensatz maximal,
wobei auf dem Testdatensatz der maximale Wert für zwei Cluster vorliegt. Da aber die
Indexwerte auf den Trainingsdaten für zwei und drei Cluster recht ähnlich sind, sollte
dies eher kein Grund für einen Verdacht auf Data-Dredging sein. Der Index bleibt auch
bei mehrfacher Aufteilung des Datensatzes stabil und zuverlässig. Insgesamt nimmt der
Calinski-Harabasz Index seinen größten Wert für K-means Clustering mit zwei Clustern
an, also sollte genau die Kombination von Algorithmus und Inputparameter gegenüber
allen anderen bevorzugt werden.

Auch Davies-Bouldin Index liefert sehr ähnliche Ergebnisse auf beiden Teildatensätzen
(Abbildung 4.7). Der mittlere Index wird minimal für Clustering mit zwei Gruppen bei
der Ergebnissen von allen drei Algorithmen und der Trend bleibt für beide Teildatensätze
der gleiche. Der Unterschied zu den Ergebnissen von Calinski-Harabasz Index liegt daran,
dass der über alle Clustering-Methoden hinweg beste Wert vom Davies-Bouldin Index für

18



Abbildung 4.6: Mittlerer Calinski-Harabasz Index

Complete Linkage Verfahren angenommen wird. Die Werte des Index bei K-means und
Complete Linkage Verfahren unterscheiden sich aber für zwei Cluster nur marginal.

Im Gegensatz zu den ersten zwei internen Validierungsindizes liefert der Dunn Index leider
auch bei mehreren Splits keine zuverlässigen Ergebnisse. Wie man aus Abbildung 4.8 so-
fort erkennt, wird der Maximum für verschiedene Algorithmen bei ganz unterschiedlichen
Anzahlen an Cluster angenommen und auch für die einzelnen Clustering-Algorithmen
stimmen die Ergebnisse vom mittleren Dunn Index auf dem Trainings- und Testdaten-
satz nicht überein. Insgesamt wird der Index bei Complete Linkage Clustering mit zwei
Clustern maximal, jedoch unterscheiden sich die Werte vom Dunn Index sehr stark für
verschiedene Algorithmen. Zudem liegen Ergebnisse von diesem Index mit den etwas mehr
eindeutigen Ergebnissen von anderen ausgewählten Validierungsindizes sehr weit ausein-
ander. Somit sehen wir auch bei mehrfacher Aufteilung des Datensatzes, dass der Dunn
Index als Validierungsmethode für Clustering von Genexpressionsdaten schlecht geeignet
ist.

Mittlerer Silhouette Width (Abbildung 4.9) liefert eindeutige Ergebnisse, da das Verhal-
ten des mittleren Index über für alle drei Clustering-Verfahren gleich bleibt und die Werte
maximal für k = 2 Cluster werden. Über die drei Algorithmen hinweg wird Average Sil-
houette Width auf beiden Teildatensätzen für Complete Link mit zwei Clustern maximal.
Auch hier sind aber die entsprechenden Werte für K-means Algorithmus nur etwas ge-
ringer. Jedoch muss man darauf hinweisen, dass maximale Werte für Average Silhouette
Width für den von uns betrachteten Datensatz bei ungefähr 0.3 liegen, was gleichzeitig
heißt, dass Objekte der einzelnen Cluster nicht äußerst homogen sind und die Cluster an
sich nicht sehr heterogen zueinander stehen.

Wir interessieren uns auch für mittlere Werte der externen Validierungsindizes wie Jac-
card Index und Adjustierter Rand Index. Kurz zusammengefasst kann man sagen, dass die
Übereinstimmung der Ergebnisse für Trainings- und Testdaten bei zwei und drei Clustern
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Abbildung 4.7: Mittlerer Davies-Bouldin Index

für alle Clustering-Algorithmen am besten ist, wie es aus Abbildung 4.10 zu erkennen
ist. Es heißt, dass bei den Cluster Ergebnissen, die laut den meisten internen Validie-
rungsindizes bevorzugt werden sollten, die Zuordnungen einzelner Datenobjekte am bes-
ten übereinstimmen, somit also kein Verdacht auf Zufälligkeit der Ergebnisse vorliegt.

Calinski-Harabasz Davies-Bouldin Dunn Silhouette

K-means 0.99989 0.98887 0.55631 0.99842
Complete Linkage 0.93133 0.87831 0.90930 0.94814

Spektrales Clus. 0.89454 0.79001 0.28675 0.98141

Tabelle 4.3: Mittlere Korrelationskoeffizienten zwischen internen Validierungsindizes (be-
rechnet auf dem Trainings- und Testdatensatz)

Im weiteren Verlauf der Analyse untersuchen wir mittlere Korrelationskoeffizienten, die
Ergebnisse sind in Tabelle 4.3 dargestellt. Es wurden Korrelationen zwischen einzelnen in-
ternen Validierungsindizes auf den Trainings- und den Testdaten für alle drei Clustering-
Algorithmen und für jede Datenaufteilung berechnet und die Werte für einzelne Splits
wurden gemittelt. Die Überlegung, die dahinter steckt, ist dass Kombinationen von Al-
gorithmen und Anzahlen an Clustern, die gute Ergebnisse auf Trainingsdaten aufweisen,
ebenfalls auch gute Werte für Testdaten liefern sollten, und umgekehrt. Es wäre also zu
erwarten, dass es einen starken positiven Zusammenhang zwischen den einzelnen Vali-
dierungsindizes gibt. Anders ausgedrückt wird somit analysiert, ob die Verläufe einzelner
Kurven von den oben dargestellten Grafiken gleichen Trend haben. Wie man sehen kann,
sind Calinski-Harabasz Index und Silhouette Width weit vorne bei den Werten von mitt-
leren Korrelationskoeffizienten, Davies-Bouldin Index und Dunn Index haben zwar etwas
niedrigere Werte, die aber immer noch auf einen starken linearen Zusammenhang hin-
deuten. Die Ausnahme stellt jedoch der Dunn Index für die Ergebnisse des spektralen
Clusterings mit dem mittleren Korrelationswert von 0.28675 dar. Dabei muss man aber
aufpassen, dass selbst stark positive mittlere Korrelation keinen Auskunft darüber gibt,
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Abbildung 4.8: Mittlerer Dunn Index

ob die Indizes gleiche Ergebnisse für alle drei Algorithmen liefern, ein gutes Beispiel dafür
ist die Problematik von Dunn Index, die aus Abbildung 4.8 klar erkennbar wird.

Calinski-Harabasz Davies-Bouldin Dunn Silhouette

K-means 0.75048 -0.71502 -0.48020 0.66761
Complete Linkage 0.45561 -0.48580 -0.40524 0.46744

Spektrales Clus. 0.65098 -0.01452 -0.52238 0.45718

Tabelle 4.4: Mittlere Korrelationskoeffizienten zwischen internen Validierungsindizes (be-
rechnet auf dem Trainingsdatensatz) und Adjustierten Rand Indizes

Analoge Überlegung gilt auch für die Korrelationen zwischen den internen Validierungsin-
dizes auf dem Trainingsdatensatz und dem Adjustierten Rand Index. Wie in ausführlich
Abschnitt 4.1 beschrieben wurde, erwarten wir betragsmäßig große Werte für Korrelatio-
nen im Fall wenn interne Validierungsindizes aussagekräftig sind und kein Data-Dredging-
Effekt vorliegt. Wir erwarten dabei große Werte für Calinski-Harabasz Index, Dunn Indes
und Average Silhouette Width und kleine Werte für Davies-Bouldin Index. Die Ergebnisse
werden in Tabelle 4.4 dargestellt. Wie wir sehen können, bleiben Calinski-Harabasz Index
sowie Silhouette Width relativ stabil mit mittleren bis auf starken positiven Werten von
Korrelationskoeffizienten bei allen drei Algorithmen. Der Dunn Index weist wie im Fall
von einfacher Aufteilung des Datensatzes negative Korrelationen auf, somit können wir
auch diesem Fall davon ausgehen, dass der Index bei der Analyse von Genexpressionsdaten
nicht aussagekräftig ist. Ebenso fraglich ist der mittlere Korrelationskoeffizient von Davies-
Bouldin Index beim spektralen Clustering, da der Wert nahe bei 0 besagt, dass es keinen
Zusammenhang zwischen den Ergebnissen von diesem Index und der Übereinstimmung
der Clusteringergebnisse auf dem Trainings- und dem Testdatensatz gibt.

Die letzte Frage, die im Rahmen dieser Arbeit analysiert wurde, ist welche Werte im Mittel
der Adjustierte Rand Index für die Clusteringergebnisse annimmt, die die besten Werte
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Abbildung 4.9: Mittlerer Average Silhouette Width

für einzelne internen Validierungsindizes auf dem Trainingsdatensatz aufweisen. Es wird
also für jeden Split die Konstellation von Clustering-Algorithmus und Anzahl von Clustern
rausgesucht, für die der ausgewählte interne Validierungsindex, beispielsweise Silhouette
Width, den größten Wert annimmt. Weiterhin wird für jede der Kombinationen der Ad-
justierte Rand Index betrachtet, (also wie gut die Ergebnisse auf dem Trainingsdatensatz
mit denen auf dem Testdatensatz übereinstimmen), und anschließend wird der mittlere
Adjustierte Rand Index über alle Splits hinweg ermittelt. Zu erwarten dabei wäre, dass
der mittlere ARI eher große Werte annimmt, da für ”gute” Kombinationen von Algorith-
mus und Anzahl an Cluster die Ergebnisse auf den Trainingsdaten und auf den Testdaten
übereinstimmen sollten und somit der ARI nahe bei 1 wäre. Solche Analyse wurde für
zwei interne Validierungsindizes - den Calinski-Harabasz Index und den Silhouette Width
- durchgeführt. Die Ergebnisse werden in Tabelle A.22 und Tabelle A.23 dargestellt. Mitt-
lerer ARI für Average Silhouette Width nimmt den Wert von 0.64777 an. Man muss
anmerken, dass die Werte für ARI bei einzelnen Splits sehr stark variieren und somit Wer-
te zwischen 0.2 und 0.9 annehmen. Dadurch wird auch der nicht besonders hohe Werte für
Adjustierten Rand Index erklärt. Bei dem Calinski-Harabasz Index schneidet der mittlere
ARI deutlich besser ab und nimmt den mittleren Wert von 0.8977 an. Eine wichtige Be-
sonderheit ist auch, dass der Calinski-Harabasz Index seinen größten Wert bei allen zehn
Splits für K-means Algorithmus und zwei Cluster annimmt.
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Abbildung 4.10: Mittlere externe Validierungsindizes: Jaccard Index (oben) und Adjus-
tierter Rand Index (unten)
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5. Fazit

Clustervalidierung stellt ein großes Problem in Clustering dar, da die Wahl der ”richti-
gen” Kombination von Algorithmus und Inputparameter oft nicht einfach ist, da die wahre
Gruppenzugehörigkeit der Datenobjekte unbekannt ist. Im Fokus dieser Arbeit lag Unter-
suchung von Stabilität ausgewählter interner Validierungsindizes. Für diesen Zweck wurde
der Datensatz mehrfach zufällig in Trainingsdatensatz und Testdatensatz aufgeteilt und
Ergebnisse der Validierungsindizes wurden auf den beiden Teildatensätzen untereinander
verglichen.

Somit wurde festgestellt, dass Calinski-Harabasz Index und Average Silhouette Width für
verschiedene Splits sehr ähnliche Ergebnisse lieferten, was auf Stabilität dieser Indizes
hindeutet. Der Dunn Index zeichnete sich durch recht instabile Ergebnisse für mehrere
Aufteilungen des Datensatzes aus, somit sollte für weitere Genexpressionsdatensätze ge-
prüft werden, ob die Verwendung von Dunn Index als Validierungsmethode für Clustering
von Genexpressionsdaten sinnvoll ist.

Weiterhin haben wir gesehen, dass Single Linkage sowie Average Linkage Verfahren für
unseren Datensatz keine sinnvollen Clusteringergebnisse liefern, da bei der Mehrheit von
Fällen Cluster mit jeweils einem Element entstanden sind, wobei alle anderen Datenob-
jekte einem Cluster zugeordnet wurden. Eine Analyse von solchen Partitionen ist nicht
wirklich sinnvoll, deswegen wurden für diese zwei Verfahren interne Validierungsindizes
nicht untersucht.

Eine weitere Klasse der internen Validierungsindizes bilden sogenannte Stabilitätsindizes,
wobei Figure of Merit (FOM) ein in der Analyse der Genexpressionsdaten besonders ver-
breiteter Index ist. Die Idee von Figure of Merit liegt daran, den durchschnittlichen Ab-
stand jedes Datenobjektes zu seinem Cluster Schwerpunkt auszurechnen, nachdem einzelne
Variablen (im Fall unseres Datensatzes die Patienten) aus dem Datensatz entfernt wurden.
Dabei wird die Methode bevorzugt, die kleinere Werte von FOM liefert. Das Problem von
Stabilitätsindizes liegt daran, dass der Index mit der wachsenden Anzahl an Cluster ten-
denziell sinkt und somit das Minimum immer bei größeren Werten von k liegt. Somit wird
in Yeung et al. (2001) darauf hingewiesen, dass diese Statistik nur für relative Vergleiche
der Clusteringergebnisse von verschiedenen Algorithmen für ein festes k verwendet werden
kann. Aus diesem Grund wurde das Figure of Merit im Rahmen dieser Arbeit nicht unter-
sucht. Im Allgemeinen wäre die Analyse von Stabilitätsindizes für deskriptives Clustering
von Genexpressionsdaten vom großen Interesse. Dabei sollte aber ein weiteres inhaltliches
Kriterium überlegt werden, das einen Vergleich der Werte von Stabilitätsindizes für unter-
schiedliche Werte von Anzahl der Cluster k ermöglichen würde. Ein mögliches Kriterium
wäre dabei ein fest gesetztes Threshold für relative Veränderung des Index für steigendes
k.
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A. Tabellen

Dieser Anhang enthält Tabellen mit den Ergebnissen sämtlicher Analysen, die im Rahmen
dieser Arbeit durchgeführt wurden. Die Ergebnisse können mit Hilfe von den Daten sowie
des R-Codes, die sich in dem dieser Arbeit beigefügten elektronischen Anhang befinden,
reproduziert werden.

A.1 Einfache Berechnungen

A.1.1 K-means

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1075.49839 1.28391 0.12467 0.30004
3 773.55223 1.74172 0.10056 0.17669
4 591.85848 2.07022 0.15030 0.12813
5 480.79931 2.26496 0.14883 0.11421
6 411.84989 2.34933 0.16248 0.10039
7 362.33327 2.26800 0.16395 0.09257
8 322.42765 2.50358 0.16395 0.08048
9 290.79010 2.43954 0.16904 0.07771

10 265.55742 2.51038 0.17435 0.07328

Tabelle A.1: Interne Validierungsindizes für den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1067.95971 1.28742 0.12847 0.29951
3 766.33256 1.75630 0.10889 0.17479
4 589.09762 2.05417 0.15046 0.12932
5 481.23334 2.23430 0.10930 0.11912
6 411.47018 2.32413 0.17368 0.10250
7 361.82812 2.36770 0.16020 0.09040
8 321.35745 2.48475 0.14055 0.07998
9 290.56502 2.40677 0.15420 0.07740

10 266.49244 2.51584 0.15420 0.07796

Tabelle A.2: Interne Validierungsindizes für den Testdatensatz
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# Cluster Jaccard ARI

2 0.94140 0.93234
3 0.89105 0.90929
4 0.85691 0.89091
5 0.80563 0.86105
6 0.78144 0.84783
7 0.60368 0.70271
8 0.68113 0.77952
9 0.65569 0.76034

10 0.46597 0.58904

Tabelle A.3: Externe Validierungsindizes

A.1.2 Complete Linkage

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 999.58320 1.34646 0.11571 0.27955
3 571.30328 1.27530 0.14356 0.23458
4 436.45423 1.83392 0.16375 0.19078
5 401.39202 2.19253 0.16492 0.08262
6 347.65481 2.49058 0.16924 0.06980
7 295.20167 2.50771 0.17277 0.06850
8 262.54957 2.75880 0.17471 0.06172
9 231.23132 2.67627 0.18391 0.06105

10 206.18277 2.44394 0.18657 0.06119

Tabelle A.4: Interne Validierungsindizes für den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 977.02745 1.30145 0.12393 0.29243
3 531.69518 1.24747 0.14492 0.25066
4 411.13748 1.76439 0.15132 0.19288
5 338.40730 1.99446 0.17198 0.11438
6 340.38374 2.28839 0.17571 0.08155
7 294.10854 2.24078 0.17583 0.08146
8 258.33378 2.77575 0.18273 0.06895
9 234.11895 3.02784 0.18393 0.04517

10 209.24832 3.10936 0.18782 0.04238

Tabelle A.5: Interne Validierungsindizes für den Testdatensatz
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# Cluster Jaccard ARI

2 0.73127 0.64626
3 0.72514 0.64407
4 0.71695 0.65657
5 0.41001 0.34430
6 0.48077 0.52672
7 0.47878 0.52550
8 0.42247 0.47623
9 0.43848 0.50833

10 0.43791 0.50795

Tabelle A.6: Externe Validierungsindizes

A.1.3 Average Linkage

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 2.42512 0.61043 0.36349 0.27089
3 500.16116 1.01164 0.12990 0.30283
4 372.56346 1.12150 0.17278 0.25883
5 280.36042 1.01772 0.17278 0.25583
6 225.66047 0.98552 0.17278 0.25460
7 188.60413 0.93309 0.17278 0.19953
8 165.64516 1.22974 0.17278 0.18178
9 145.32890 1.17181 0.17278 0.17329

10 129.72076 1.19133 0.17278 0.16975

Tabelle A.7: Interne Validierungsindizes für den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

1 854.76177 1.18411 0.15944 0.31851
2 429.43307 0.97134 0.15944 0.27991
3 287.27365 0.88661 0.15944 0.22615
4 216.15747 0.84151 0.15944 0.20451
5 174.02182 0.86499 0.15944 0.19851
6 145.46197 0.83618 0.15944 0.16848
7 125.20734 0.96315 0.15944 0.15747
8 110.54698 1.12354 0.15944 0.14243
9 98.55303 1.07917 0.15944 0.13753

Tabelle A.8: Interne Validierungsindizes für den Testdatensatz
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# Cluster Jaccard ARI

2 0.69137 -0.00076
3 0.79434 0.67554
4 0.78745 0.66911
5 0.78751 0.66942
6 0.78787 0.67022
7 0.78775 0.67070
8 0.78648 0.67114
9 0.78624 0.67265

10 0.78673 0.67456

Tabelle A.9: Externe Validierungsindizes

A.1.4 Spektrales Clustering

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 490.93573 1.65931 0.14348 0.22687
3 512.16572 2.02893 0.07476 0.16281
4 451.19152 2.29758 0.11231 0.12145
5 395.79979 2.48658 0.07476 0.09489
6 309.00340 5.63551 0.10158 0.08202
7 279.01643 2.84020 0.10058 0.05243
8 272.12075 2.61241 0.11622 0.04947
9 244.71827 2.75301 0.13112 0.03695

10 214.50311 2.92600 0.09112 0.04916

Tabelle A.10: Interne Validierungsindizes für den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 768.04520 1.48810 0.11153 0.25121
3 512.83408 1.90931 0.15546 0.15000
4 439.79106 2.34724 0.10520 0.12210
5 395.69238 2.42087 0.10250 0.10040
6 307.69643 5.03613 0.09334 0.08705
7 285.99640 2.66320 0.10520 0.06575
8 266.33056 2.66421 0.09392 0.03853
9 227.75152 2.93206 0.10947 0.04604

10 235.53496 2.68745 0.16906 0.04247

Tabelle A.11: Interne Validierungsindizes für den Testdatensatz
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# Cluster Jaccard ARI

2 0.72907 0.59161
3 0.88195 0.88100
4 0.83356 0.86816
5 0.75066 0.81236
6 0.73575 0.80134
7 0.42537 0.51558
8 0.38406 0.47472
9 0.39897 0.50245

10 0.52870 0.64982

Tabelle A.12: Externe Validierungsindizes

A.2 Mehrfache Berechnungen

A.2.1 K-means

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1071.95154 1.28790 0.12252 0.29907
3 770.02880 1.73911 0.10987 0.17681
4 589.81662 2.06870 0.15596 0.12839
5 479.58576 2.26258 0.14347 0.11464
6 410.66436 2.34267 0.16298 0.09958
7 361.10795 2.33156 0.15593 0.08985
8 321.20162 2.50737 0.16240 0.07988
9 289.78438 2.45596 0.14955 0.07755

10 264.87291 2.49022 0.15369 0.07373

Tabelle A.13: Mittlere interne Validierungsindizes für den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1087.37836 1.28075 0.11289 0.30032
3 784.10926 1.71542 0.10867 0.18022
4 599.84928 2.07080 0.13952 0.12785
5 488.19245 2.24701 0.14509 0.11481
6 417.67465 2.33458 0.15698 0.09867
7 367.60789 2.31912 0.14816 0.09121
8 327.25780 2.47197 0.13965 0.08093
9 295.35328 2.47644 0.14593 0.07515

10 269.59868 2.51272 0.15422 0.07296

Tabelle A.14: Mittlere interne Validierungsindizes für den Testdatensatz
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# Cluster Jaccard ARI

2 0.91245 0.89770
3 0.86228 0.88248
4 0.81436 0.85421
5 0.70669 0.77207
6 0.68717 0.76619
7 0.62552 0.71950
8 0.56624 0.65755
9 0.47441 0.57650

10 0.42358 0.53338

Tabelle A.15: Mittlere externe Validierungsindizes

A.2.2 Complete Linkage

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 808.82762 1.15573 0.14086 0.31932
3 577.51068 1.60205 0.15607 0.21514
4 434.54962 1.86484 0.17265 0.17121
5 381.13467 2.14162 0.17992 0.11386
6 319.68571 2.27687 0.18610 0.08628
7 284.78210 2.52825 0.18955 0.07104
8 255.86335 2.53616 0.19311 0.06785
9 230.28531 2.46578 0.19659 0.06519

10 209.59778 2.49392 0.19841 0.06235

Tabelle A.16: Mittlere interne Validierungsindizes für den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 887.80434 1.21876 0.13200 0.30620
3 594.53385 1.48516 0.15099 0.22127
4 468.03219 1.96509 0.16085 0.14980
5 387.67074 2.32439 0.16700 0.11464
6 329.48149 2.43352 0.17262 0.08214
7 287.58599 2.51028 0.17369 0.07239
8 257.89951 2.54172 0.17738 0.07384
9 238.04138 2.61787 0.18075 0.06472

10 216.37693 2.54670 0.18640 0.06105

Tabelle A.17: Mittlere interne Validierungsindizes für den Testdatensatz
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# Cluster Jaccard ARI

2 0.73681 0.53331
3 0.69358 0.59511
4 0.63864 0.57820
5 0.48116 0.43935
6 0.41757 0.38564
7 0.37207 0.36102
8 0.38268 0.39423
9 0.38480 0.42026

10 0.38317 0.42318

Tabelle A.18: Mittlere externe Validierungsindizes

A.2.3 Spektrales Clustering

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 508.13972 1.64333 0.12352 0.22902
3 512.32429 2.00433 0.07814 0.15940
4 446.94697 2.32642 0.10821 0.12204
5 394.99255 2.49378 0.07798 0.09532
6 310.84047 6.03936 0.09904 0.07740
7 278.96445 2.80574 0.10830 0.05423
8 251.72023 3.19877 0.10799 0.04706
9 230.97833 2.91545 0.10311 0.04276

10 215.89558 2.86539 0.09819 0.04723

Tabelle A.19: Mittlere interne Validierungsindizes für den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 762.39729 1.45765 0.10943 0.25997
3 523.54508 1.96441 0.09059 0.16134
4 455.49628 2.28639 0.11044 0.12333
5 409.21816 2.39410 0.09680 0.09865
6 320.08564 4.99986 0.08707 0.07873
7 275.38058 4.33186 0.09736 0.05847
8 260.60936 2.93759 0.10612 0.04648
9 238.99934 2.82799 0.10233 0.04173

10 220.74084 3.08206 0.10074 0.05028

Tabelle A.20: Mittlere interne Validierungsindizes für den Testdatensatz
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# Cluster Jaccard ARI

2 0.77964 0.65874
3 0.89700 0.89775
4 0.77873 0.81783
5 0.72376 0.78842
6 0.70785 0.77609
7 0.41578 0.49741
8 0.39638 0.48654
9 0.47014 0.57810

10 0.51013 0.62658

Tabelle A.21: Mittlere externe Validierungsindizes

A.2.4 ARI-Werte für Kombinationen mit besten Ergebnissen von inter-
nen Validierungsindizes

Split Algorithmus # Cluster Silhouette (train) ARI

1 Complete Link 2 0.33828 0.32679
2 Complete Link 2 0.32512 0.20077
3 Complete Link 2 0.34064 0.29725
4 Complete Link 2 0.32977 0.66244
5 K-means 2 0.30307 0.86533
6 K-means 2 0.29970 0.89380
7 K-means 2 0.29892 0.91489
8 Complete Link 2 0.33942 0.70866
9 Complete Link 2 0.31024 0.72979

10 Complete Link 2 0.32899 0.87800

Mittlerer ARI = 0.64777

Tabelle A.22: Clustering mit bestem Average Silhouette Width für jede Aufteilung der
Daten
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Split Algorithmus # Cluster Calinski-Harabasz (train) ARI

1 K-means 2 1065.01087 0.90712
2 K-means 2 1062.76153 0.82641
3 K-means 2 1071.14714 0.92844
4 K-means 2 1067.05470 0.92069
5 K-means 2 1089.03708 0.86533
6 K-means 2 1063.07367 0.89380
7 K-means 2 1068.62174 0.91489
8 K-means 2 1080.30571 0.87308
9 K-means 2 1084.15166 0.92655

10 K-means 2 1068.35134 0.92071

Mittlerer ARI = 0.89770

Tabelle A.23: Clustering mit bestem Calinski-Harabasz Index für jede Aufteilung der Da-
ten
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B. Implementierungen

In diesem Anhang sind Informationen über Implementierungen der Analysen sowie die
dafür verwendeten Pakete enthalten. Der Code wurde mit Hilfe der freien statistischen
Software R erstellt.

B.1 R-Pakete

Es wurden für die Analyse des im Kapitel 2 beschriebenen Datensatzes folgende Pakete
benutzt:

• cluster (Maechler et al., 2019)

• kknn (Schliep and Hechenbichler, 2016)

• clusterCrit (Desgraupes, 2018)

• mclust (Scrucca et al., 2016)

• clusteval (Ramey, 2012)

• reshape2 (Wickham, 2007)

• ggplot2 (Wickham, 2016)

Somit sind alle Funktionen, die im Code verwendet wurden, in den oben aufgelisteten
Paketen sowie im Standard-Paket stats (R Core Team, 2019) zu finden.

B.2 R-Code

Der R-Code ist in dem dieser Arbeit beigefügten elektronischen Anhang als Datei code BA.R

enthalten.
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C. Elektronischer Anhang

Dieser Arbeit ist eine CD beigefügt, die unter anderem den für die Analyse verwendeten
Datensatz sowie den R-Code enthält. Der Inhalt ist wie folgt strukturiert:

• data original

Der für die Analyse verwendete Datensatz (log2-CPM Werte wurden berechnet)

• data processed

Teildatensätze, die via code BA.R erzeugt wurden

• plots

Im Rahmen der Analyse mit Hilfe des R-Codes erzeugte Grafiken

• code BA.R

R-Code, der für die Analyse des Datensatzes verwendet wurde und sämtliche Er-
gebnisse reproduziert

• BA Holovchak.pdf

PDF-Version der Arbeit
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