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1. Motivation

Clusteralgorithmen werden oft fiir Analyse von Genexpressionsdaten verwendet. Man ver-
sucht in diesem Kontext die Gene sinnvoll in Gruppen anhand bestimmter Muster in
den Variationen von Expressionsniveaus aufzuteilen. In der Anwendung wird man mit
grofler Vielzahl an Clusteralgorithmen konfrontiert und es gibt keine eindeutige Antwort
auf die Frage, welcher von allen bevorzugt werden soll. Das heif3t, dass verschiedene Algo-
rithmen oder sogar verschiedene Konfigurationen von ein und demselben Algorithmus zu
ganz unterschiedlichen Partitionen fiir denselben Datensatz fithren kénnen. Eine etablierte
Vorgehensweise setzt Bestimmung von mehreren Partitionen voraus, wobei anschliefend
diejenige Partition bevorzugt wird, die zu den Daten am besten ”passt”. Dafiir probiert
man unzerschiedliche Algorithmen mit mehreren Inputparametern aus und man beurteilt
diese mit geeigneten Clustervalidierungsmethoden.

Hierbei unterscheidet man zwischen externen und internen Validierungsmethoden. Ex-
terne Validierung basiert auf dem Vergleich der Clusteringergebnisse mit korrekter Par-
titionierung der Daten; alternativ vergleicht man zwei verschiedene Clusteringergebnisse
untereinander. Interne Validierungsmethoden hingegen beziehen keine zusétzlichen Infor-
mationen iiber die Daten ein, sondern basieren ausschliellich auf Beurteilung der vom
Algorithmus erhaltenen Partition. In der Anwendung sind aber ”korrekte” Strukturen in
den Daten unbekannt, das heifit also die wahre Gruppenzugehorigkeit der Objekte ist nicht
vorhanden. Deswegen der Fokus in dieser Arbeit auf internen Validierungsmethoden. Die
Idee interner Validierungskriterien liegt typischerweise auf Beurteilung von Kompaktheit
sowie Separation von Clustern (Handl et al., 2005).

Wie bereits angedeutet wurde, probiert man in der Praxis verschiedene Clusteralgorithmen
mit unterschiedlichen Parametern aus um das ”optimale” Clustering zu finden. Es ist aber
nicht auszuschliefen, dass ein bestimmtes Clustering besser als alle anderen bei interner
Validierung abschneidet, was aber nur an der Vielzahl der ausprobierten Clustering Metho-
den liegt. Das heifit, dass solch ein ”gutes” Clustering nur durch Zufall zustande kommt
und jedoch nicht die wahre Struktur der Daten beschreibt. Deshalb wird im Rahmen
dieser Arbeit untersucht, ob solche moglichen Data-Dredging-Effekte aufgedeckt werden
konnen. Eine im Fokus liegende Idee ist die Aufteilung des verwendeten Datensatzes in
einen Trainings- und Testdatensatz. Dabei ist zu erwarten, dass eine Clustermethode, die
auf dem Trainigsdatensatz gut abschneidet und somit den anderen Methoden bevorzugt
wird, genauso ein gutes Resultat auf den Testdaten zeigt. Wird es nicht der Fall sein, liegt
womdglich ein Data-Dredging-Effekt vor.

Weiterhin soll untersucht werden, welche Mafizahlen der internen Validierung dabei aus-
gewdhlt werden sollen. Das untersuchte Qualitétskriterium der Indizes wird ihre Stabilitéat
auf dem Testdatensatz sein. Es wird also untersucht, ob Indizes, die auf den Trainingsdaten
gut abschneiden, genauso gute Ergebnisse auf den Testdaten ausweisen konnen. Dabei wer-
den nicht die einzelnen Werte der internen Validierungsindizes von Interesse sein, sondern
es werden die Indizes fiir verschiedene Algorithmen und unterschiedliche Konfigurationen



der Inputparameter untereinander verglichen.

Der Rest von dieser Arbeit ist wie folgt aufgebaut. Im wird der fiir die Ana-
lyse verwendete Datensatz beschrieben. Ausgewihlte Clustering Algorithmen sowie Va-

lidierungsindizes werden im diskutiert, danach werden im siamtliche
Ergebnisse prisentiert und abschlieflend wird im das Fazit gegeben.



2. Datensatz

Der fiir die Clusteranalyse verwendete Datensatz ist ein Teil der Datensammlung The
Cancer Genome Atlas Breast Invasive Carcinoma (Lingle et al. |2016)), die dem Zweck der
Untersuchung des Zusammenhangs von Krebsphédnotypen mit Genotypen dient. Somit ba-
sieren samtliche Ergebnisse dieser Arbeit auf Daten, die vom TCGA Research Network
generiert wurden: http://cancergenome.nih.gov/. Als Basis der Datensammlung wur-
den klinische Bilder von Probanden aus dem TCGA bereitgestellt.

Der im Rahmen dieser Arbeit verwendete Datensatz enthilt Genexpressionsdaten von
1092 Patientinnen mit Brustkrebs, die mit Hilfe der Sequentierungsmethode RNA-Seq ge-
messen wurden.

Bei der Formatierung des Datensatzes wurden mehrfache Samples geloscht. Zusétzlich
wurden niedrig exprimierte Gene entfernt. Im Rahmen der Normierung von Genexpressi-
onsdaten wurden log2-CPM Werte berechnet.

Der formatierte Datensatz enthélt die Genexpressionen von 22694 Genen fiir 1092 Pa-
tientinnen, die an Brustkrebs leiden. Man interessiert sich fiir Clustering der Gene als
Objekte, es soll also untersucht werden, ob es Gruppen von Genen gibt, die sich beziiglich
ihrer Expressionsniveaus dhnlich verhalten. In diesem Fall enthélt der Datensatz eine feste
Menge von Genen, die fiir Untersuchung von Brustkrebs vom Interesse sind. Somit spricht
man vom deskriptiven Clustering, wobei Gene eine feste bekannte Menge an untersuchten
Objekten bilden.

Fiir die Analyse wurde eine nicht zuféllige Stichprobe von n = 2000 Genen gezogen, wobei
maximale Variabilitdt der Daten als inhaltliches Auswahlkriterium genommen wurde.

Anschlielend wurde dieser Datensatz mehrfach in einen Trainingsdatensatz und einen
Testdatensatz aufgeteilt, wobei das Grofilenverhiltnis 80%/20% bei jeder Aufteilung be-
trug.


http://cancergenome.nih.gov/

3. Methoden

3.1 Clusteralgorithmen

Wie bereits erwihnt wurde, interessieren wir uns fiir Entdeckung der Gruppen von Ge-
nen, die funktional zusammenhéngen beziehungsweise dhnliches Verhalten aufweisen. Die
Idee vom Clustering liegt daran, Gruppen von Objekten im Datensatz zu finden. Formal
gesehen, gegeben sei ein Datensatz D = {x1, ..., z,, }, der n Elemente enthilt. Die Aufgabe
von Clusteranalyse liegt darin, den Datensatz in K disjunkte Teilmengen C1, ..., Cx auf-
zuteilen, das heifft man sucht nach einer Partitionierung der Daten C = {C1, ..., Ck }.

Es gibt eine Vielzahl von Clusteralgorithmen und die zentrale Frage lautet, welcher Clus-
teralgorithmus am besten fiir die Analyse der Genexpressionsdaten geeignet wire (Datta
and Dattay, 2003). Somit liegt der Vergleich von verschiedenen Algorithmen im Fokus die-
ser Arbeit.

Im Folgenden werden drei wichtige Ansétze von Clustermethoden vorgestellt und unter-
einander verglichen.

3.1.1 Partitionierende Verfahren (K-means Algorithmus)

Fiir Partitionsverfahren soll die Anzahl der Cluster K vorgegeben werden. Wir fokus-
sieren uns zunichst auf dem K-means Algorithmus. Nachdem die gewiinschte Anzahl
an Cluster gewihlt wurde, beschéftigt man sich mit der Wahl von K initialen Cluster-
Reprisentanten, der sogenannten Zentroiden. Der Algorithmus ordnet dann die Objekte
den einzelnen Clustern zu mit dem Ziel der Minimierung von totaler Quadratsumme in-
nerhalb der Cluster. Nachdem die Objekte den einzelnen Clustern zugewiesen wurden,
werden fiir jede Klasse neue Zentroide bestimmt und das Verfahren wird sukzessive wie-
derholt bis keine Veréinderung bei der Anordnung von Objekten mehr vorliegt.

Dabei wird die Frage der Minimierung von Intra-Cluster Variation formal definiert als
n
S(D7 my, ... mK) = Z d(le? mc(i))7
i=1

wobei
c(i) = argmin d(z;,m;), j=1,...,K.
j€{17"'7K}
Dabei werden die Zentroide mit my, ..., mg bezeichnet und d ist ein geeignetes Undhnlichkeitsmaf.
Typischerweise wird fiir d die quadrierte euklidische Distanz verwendet.

Der K-means Algorithmus wurde im R-Paket stats als Funktion kmeans() implemen-
tiert. Dabei sollten der Datensatz, die Anzahl an Cluster, die maximale Anzahl an Itera-
tionen sowie die Anzahl an zufilligen Startpartitionen als Input-Parameter der Funktion



iibergeben werden. Letztes Parameter ist besonders wichtig um Stabilitéit des Verfahrens
sicherzustellen.

3.1.2 Agglomerative hierarchische Verfahren

Im Gegensatz zu den Partitionsverfahren wird von hierarchischen Verfahren keine feste
Anzahl an Clustern sondern eine Hierarchie von Clustern bestimmt. Im ersten Schritt bil-
det jedes Objekt sein eigenes Cluster. In jedem néchsten Schritt werden zwei ” &hnlichste”
Cluster zu einem gemeinsamen Cluster zusammengefiigt. Das Zusammenfiigen der Cluster
wird in jedem Schritt sukzessive wiederholt bis alle Objekte ein einziges Cluster bilden.
Man unterscheidet zwischen Single Linkage, Complete Linkage und Average Linkage Ver-
fahren, jedes von denen ein anderes Distanzmafl D fiir das Zusammenfiigen der Cluster
verwendet

o Single Linkage berechnet die kiirzeste Distanz zwischen Objekten aus zwei Clustern

D(Cy,C3) = min _ d(z1,x2)

1 EC1,3}2€CQ
und neigt somit zur Kettenbildung, was oft der Identifikation von Ausreiflern dient

o Complete Linkage bestimmt den grofiten Abstand zwischen Objekten aus zwei Clus-
tern

D(C1,Cy) = ma d(x1,x
( ! 2) 951601,;2(602 ( ! 2>
und ist somit empfindlicher gegeniiber kleinen Anderungen in den Daten als Single
Linkage

e Average Linkage ist ein Kompromiss zwischen den oberen zwei Verfahren und be-
rechnet die durchschnittliche Distanz zwischen Objekten aus zwei Clustern

D(Cl,CQ) = ; Z d(xl,lﬁ)

’Cl,|02| xleCl,:mECg

und fithrt zu sehr homogenen Clustern

Um die Partition der Daten in K Cluster zu erhalten, ”schneidet” man die Hierarchie an
einer bestimmten Stufe ab.

Agglomerative hierarchische Verfahren wurden in R ebenfalls im Standard-Paket stats
implementiert. Dafiir ruft man die Funktion hclust () auf. Folgende zwei Parameter sollen
der Funktion iibergeben werden: die Distanzmatrix und die Agglomerationsmethode.

3.1.3 Spektrales Clustering-Verfahren

Ahnlich wie bei hierarchischen Verfahren, berechnen wir zuerst die paarweisen Distanzen
zwischen den Datenobjekten. Wie vorher angedeutet wurde, gehéren zwei Objekte zu ver-
schiedenen Clustern, falls sie weit voneinander liegen oder anders ausgedriickt eine grofie
Distanz aufweisen. Zwei Objekte, die ”weit auseinander” liegen, kénnen aber auch dem
gleichen Cluster gehoren, falls sie dichteverbunden sind, das heifit falls es zwischen den re-
prasentativen Punkten im Raum eine Sequenz von anderen Punkten gibt, die solche zwei
Punkte untereinander ”verbindet”. Bei solchen Fragestellungen liefern Partitionierungs-
verfahren sowie hierarchische Verfahren meistens kein gutes Clusterergebnis. Spektrales



Clustering-Verfahren kann aber mit solchen Daten korrekt umgehen.

Spektrales Clustering nutzt Methoden, die auf Spektralzerlegung der sogenannten Laplace-
Matriz basieren. Die Laplace-Matrix wird aus der Distanzmatrix der Daten gebildet. Das
Ziel der Spektralzerlegung liegt daran, mittels der K kleinsten (also den K kleinsten Eigen-
werten korrespondierenden) Eigenvektoren der Laplace-Matrix eine Abbildung der Daten
in einen K-dimensionalen Raum zu konstruieren. Anschliefend wird ein Standardverfah-
ren wie zum Beispiel K-means auf die K-dimensionalen Vektoren angewendet.

Das R-Paket kknn bietet eine Moglichkeit fiir die Durchfithrung des Spektralen Clustering-
Verfahrens mittels der Funktion specClust(). Als Parameter werden die Datenmatrix
sowie die gewiinschte Anzahl an Clustern bendtigt. Wichtig ist hierbei anzumerken, dass
die Affinitétsmatrix, die fiir die Bildung der oben eingefithrten Laplace-Matrix bendtigt
wird, auf dem kNN Verfahren basiert.

Wie man an dieser Stelle erkennen kann, kommt zusétzlich zu der Frage der Wahl ei-
nes "richtigen” Clustering-Verfahrens auch die Wahl der Input-Parameter wie die Anzahl
der Cluster oder die Methode der Bildung einer Distanzmatrix. Somit kommt man auf
die Frage, ob man nicht einfach verschiedene Algorithmen mit unterschiedlichen Input-
Parametern ausprobieren sollte und dann aus der Vielzahl der Ergebnisse das ”beste”
Ergebnis auswihlen. Dabei kann man aber nicht ausschlieffen, dass ein so gutes Ergebnis
nur durch das Ausprobieren von Vielzahl an Methoden zustande kommt. Eine weitere Fra-
ge ist auch, wie man das beste Ergebnis findet. Damit beschéftigen wir uns im néchsten
Abschnitt dieser Arbeit.

3.2 Validierungsindizes

Jeder Clustering-Algorithmus erzeugt eigene Partition der Daten, es heiflit wir erhalten
verschiedene Clusterings, die nicht notwendig alle gleich sind. Somit stellt sich der Anwen-
der die Frage, wie gut jedes einzelne Clustering eigentlich ist? Also inwiefern ”passt” das
Ergebnis zu den Daten und ob die Struktur, die dahinter steckt, korrekt abgebildet wird.

Um die Giite eines Clusterings zu beurteilen, betrachtet man verschiedene Eigenschaften.
Beispielsweise werden die Kompaktheit, die Verbundenheit sowie die réumliche Separation
der einzelnen Cluster meistens begutachtet.

Es gibt unterschiedliche Validierungsmethoden von Clusterergebnissen. Dabei unterschei-
det man hauptséchlich zwischen externen und internen Validierungsmethoden.

Externe Validierungsindizes sind unabhéngig von den Clusteralgorithmen und dienen zum
Vergleich von zwei Clusterings mit denselbsen Clusterobjekten. Im Rahmen dieser Arbeit
werden externe Validierungsindizes benstigt um die Ubereinstimmung von Clusterings auf
dem Trainigsdatensatz mit den Ergebnissen auf dem Testdatensatz zu vergleichen. Es wird
also untersucht, inwiefern ein Clusteralgorithmus die gleichen Cluster von Genen auf den
Trainigs- sowie Testdaten bildet.

Interne Validierungsmethoden bewerten hingegen einzelne Clusterings. Dabei wird die
Qualitét eines Clusterings nur anhand der Informationen, die den Daten zugrunde liegen,
geschétzt (Handl et al., [2005)). Der Fokus dieser Arbeit liegt darauf zu iiberpriifen, ob
Verfahren, die auf dem Trainingsdatensatz beziiglich der internen Validierungsindizes be-
sonders gut abschneiden, ein dhnlich gutes Ergebnis auch auf dem Testdatensatz aufweisen



konnen. Sollte es nicht der Fall sein, liegt eventuell ein Data-Dredging-Effekt vor.

Folgende Validierungsmethoden wurden auf diejenigen eingeschréinkt, die bei der Analyse
von Genexpressionsdaten etabliert wurden und am meisten benutzt werden. Samtliche
Notationen wurden von Hennig et al.| (2015, Kapitel 26-27) tibernommen.

3.2.1 Externe Validierungsindizes

Seien C und C’ zwei Clusterings mit K und K’ Clustern entsprechend. Wir betrachten
eine Klasse von externen Indizes, die auf der Anzahl von Objektepaaren basieren, die im
Resultat der beiden Clusterings iibereinstimmen. Dabei unterscheidet man zwischen vier
Féllen:

e N1 Anzahl an Paaren von Objekten, die im gleichen Cluster unter C sowie C’ sind
e Nyy Anzahl an Objektepaaren, die unter C und C’ in unterschiedlichen Clustern sind

e Nig Anzahl von Paaren, die unter C im gleichen Cluster sind aber unter C’' zu
unterschiedlichen Clustern gehéren

e Np;1 Anzahl von Paaren, die unter C’ im gleichen Cluster sind aber unter C zu
unterschiedlichen Clustern gehoren

Jaccard Index

Jaccard Index wird definiert als

N1t
Jgec,ch =
( ) Ni1 + No1 + Nio

und ist eine MafBzahl fiir den Anteil der Ubereinstimmungen von Objekten in zwei Mengen.
Dabei wird die Anzahl Nyg bei der Berechnung nicht beriicksichtigt um die Invarianz des
Index gegeniiber der Anzahl an Cluster K gewihrleisten zu konnen, da in [Hennig et al.
(2015, Kapitel 27) gezeigt wird, dass Ny mit zunehmendem K steigt.

Die Werte fiir den Jaccard Index liegen zwischen 0 und 1, wobei grofle Werte fiir gute
Ubereinstimmung der Objekte stehen.

Adjustierter Rand-Index

Adjustierter Rand-Index ist einer der am hiufigsten verwendeten externen Validierungs-
indizes. Der Index ist eine korrigierte Version vom Rand-Index, der den Nachteil ei-
ner hoheren Baseline, die den Erwartungswert des Index unter der Annahme von un-
abhéngigen Clusterings bezeichnet, mit steigender Anzahl an Cluster K hat. Die Korrektur
vom Rand Index stellt eine sogenannte Normierung des Index mit der Baseline dar

K K’ / K K' iy
Skt = (M) = ey ()= (né“ N/ (3)
K K ’, K K " )
ke (5) + 2002 (5)1/2 = oims ()= (5)1/(5)
wobei n die Gesamtanzahl an Objekten bezeichnet und ngi, ni sowie ng aus der soge-
nannten Kontingenztabelle herausgenommen werden konnen. Die Kontingenztabelle ist

eine K x K' Matrix N = [ng], wobei das kk'-te Element die Anzahl der Objekte im
Schnitt von Clustern Cj von C und C}, von C’ bezeichnet

ARZ(C,C') =

Ngk! = |Ck N C];/|



und

K K’
Do =Cul=nw Y = |Ch| = i
k=1 k'=1

sowie
K/

K
E ne = E NnNEr =n
k=1 k'=1

Adjustierter Rand-Index ist bei 1 beschréinkt, wobei Werte nahe bei 1 gute Ubereinstimmung
der Clusterings andeuten (Hennig et al., [2015, Kapitel 27).

3.2.2 Interne Validierungsindizes

Interne Validierungsindizes werden fiir verschiedene Clustering-Algorithmen sowie ver-
schiedene Input-Parameter ausgerechnet und deren Werte werden verglichen um das ”bes-
te” Clustering zu bestimmen. Interne Indizes werden besonders oft benutzt um die opti-
male Anzahl an Cluster zu bestimmen. Im Rahmen dieser Arbeit verwendete Indizes sind
nur fiir metrische Daten definiert und basieren auf Quantifizierung von Un&hnlichkeiten
zwischen den Objekten (Arbelaitz et al., [2013)).

Dabei betrachten wir weiterhin den Datensatz D = {1, ...,x,}, der n Elemente enthélt.
Angenommen das Clustering Cx = {C1,...,Ck} sei gegeben und die Funktion ¢ sei die
Zuweisungsfunktion, wobei ¢(i) = j gleichbedeutend ist zu x; € C;j. Weiterhin bezeichnen
wir mit n;, j = 1,..., K die Anzahl der Elemente in den jeweiligen Clustern. Fiir metrische
Daten definieren wir z;, j = 1,..., K als Mittelwertsvektor fiir den Cluster C; und Z als
Gesamtmittelwert.

Calinski-Harabasz Index

Die Idee basiert auf Minimierung der Intra-Cluster-Quadratsumme. Dafiir werden die
Intra-Cluster- Varianz

K
Wee =D Y (@i — 2) (i — 35) "
=1 eli)=j

und die Inter-Cluster- Varianz
K
 N/= T
Bey = Y (T — 2)(T; — 7)
j=1
untereinander verglichen.

Calinski-Harabasz Index ist definiert als

_ trace(Be,) n—K
 trace(We,) K —1

CH(Cx)

Dabei sind grofie Werte von CH-Index ein Zeichen fiir ein gutes Clustering, da in diesem
Fall die Objekte innerhalb der Cluster homogen sind und gleichzeitig die Cluster sich stark
untereinander unterscheiden.

Dabei muss man anmerken, dass CH-Index implizit sphérische Cluster mit Objekten, die
um die Clusterzentren konzentriert sind, erfordert. Dabei sollen einzelne Clusterzentren
moglichst weit auseinander liegen. In vielen praktischen Anwendungen sind sphérische
Cluster jedoch oft nicht der Fall (Hennig et al., 2015]).



Davies-Bouldin Index

Davies-Bouldin Index basiert ebenfalls auf dem Vergleich von Intra- und Inter-Cluster-
Varianzen. Dabei wird

1
Sk = <nlc(%;k|xi —fk!\g)q7 k=1,..K

als Ma8 fiir die Variation innerhalb der Cluster benutzt. Es werden paarweise Ahnlichkeiten
zwischen den Clustern berechnet als

S, +S
R = J
wobei
M;j = [|Zi — z4llp

die Distanz zwischen den Zentroiden bezeichnet. Fiir jedes Cluster wird
D; = maxR;;
B A

berechnet, was als Maf fiir paarweise ” &hnlichste” Cluster dient, und Davies-Bouldin Index
ist definiert als

L
B(Cy) = I Zpi
i1

Dabei wihlt man typischerweise p = ¢ = 2. Fiir jedes Cluster wird somit ein Maf fiir
die Ahnlichkeit mit dem ”niichstgelegenen” Cluster berechnet und die Cluster werden
entsprechend ihrer Grofie gewichtet. Die Separation der Cluster wird analog zum CH-
Index iiber die Distanz zwischen den Zentroiden bestimmt. Kleine Werte von DB-Index
besagen, dass die einzelnen Cluster homogen und gleichzeitig gut separiert sind.

Dunn Index

Der Index von Dunn verfolgt ebenfalls die Idee des Vergleiches vom Verhéltnis der Sepa-
ration und der Kompaktheit einzelner Cluster

dc(Cy, Cj) )}

DI(Ck) = min{ min (maxk:L...,K(A(Ck))

i=1,..,K Uj=i+1,..,K
Dabei ist do(C;, Cj) = mingec; yeo; d(z,y) ein MaB fiir die Distanz zwischen zwei Cluster
und A(C) = max, yec d(z,y) bestimmt den Durchmesser oder anders ausgedriickt die
”Verbreitung” der einzelnen Cluster. Das Ziel ist Maximierung vom Dunn Index, da grofie
Werte fiir gute Separation sowie Homogenitét sorgen.

Average Silhouette Width Kriterium

Ein weiterer Validierungsindex, der ebenfalls auf Visualisierung interner Clusterhomoge-
nitdt sowie Separation der Cluster beruht, ist Silhouettenkoeffizient. Fiir jeden einzelnen
Datenpunkt wird berechnet, wie viel deutlicher der Punkt zu dem ihm zugeordneten Clus-
ter gehort als zu dem néchstgelegenen Cluster. Fiir eine Beobachtung z; € Cj ist die
Silhoutte definiert als
bi — Q;

§; = ———,
" max{a;, b;}
wobei a; = ﬁ Zc(j):k d(zi, xj) die mittlere Distanz vom Objekt z; zu anderen Objek-
ten aus gleichem Cluster und b; = minj, n% > ()=l d(x;,x;) die mittlere Distanz zu dem

10



nachsten Cluster bezeichnen.

Fiir ein Clustering Cx ist somit Average Silhouette Width definiert als
Aswe) = L3
k) = n £ Si

Dabei wire bei einem guten Clustering zu erwarten, dass fiir jedes Objekt x; mittlere
Distanz b; zum néchsten Cluster grofler ist als mittlere Distanz a; zu den Punkten aus
eigenem Cluster. Somit spricht eine grofie Differenz b; — a; fiir gutes Clustering. Die Werte
von s; sind normiert und liegen zwischen —1 und 1. Entsprechend sind wir an Maximierung
von ASW-Kriterium interessiert, da in diesem Fall ein Kompromiss zwischen Homogenitét
und Separation erreicht wird.

11



4. Ergebnisse

4.1 Einfache Aufteilung des Datensatzes

Die Daten wurden mit Hilfe aller fiinf betrachteten Clustering-Algorithmen partitioniert.
Maximale Anzahl an Cluster wurde gleich 10 gewé&hlt, damit inhaltliche Interpretation
der gebildeten Cluster gewéihrleistet werden kann. Es ist wichtig anzumerken, dass Single
Linkage Verfahren kein sinnvolles Ergebnis lieferte, da fiir jede von uns iiberpriifte Anzahl
an Cluster k alle Objekte in ein Cluster eingeordnet wurden und die restlichen k — 1 Clus-
ter nur jeweils ein Objekt enthielten. Da ein solches Ergebnis fiir Clustervalidierung wenig
interessant ist, wird das Single Linkage Verfahren bei weiterer Analyse nicht beriicksichtigt.

Fiir die restlichen vier Clustering-Algorithmen berechnen wir jeweils vier interne Validie-
rungsindizes, die im [Unterabschnitt 3.2.2] beschrieben wurden, einmal fiir den Trainings-
datensatz und einmal fiir den Testdatensatz. Vom priméren Interesse ist der Vergleich
interner Indizes fiir den Trainings- sowie den Testdatensatz. Zusétzlich werden fiir je-
des Verfahren und jede uns interessierende Anzahl an Cluster externe Validierungsindi-
zes berechnet, die die Frage beantworten sollten, inwieweit die Clusteringergebnisse fiir
Trainings- und Testdaten iibereinstimmen. Es macht in diesem Kontext besonders viel
Sinn, da fiir deskriptives Clustering von Genexpressionsdaten eine feste Menge von Genen
und nicht die Patienten als Datenobjekte betrachtet werden und somit die Elemente ein-
zelner Cluster sinnvoll untereinander verglichen werden kénnen.

Die Ergebnisse werden in Form der Abbildungen dargestellt, wobei in jeder Abbildung
jeweils oben die Ergebnisse fiir den Trainingsdatensatz und unten fiir den Testdatensatz
dargestellt werden. Fiir jede Abbildung wurden auf der horizontalen Achse die Anzahl
an Cluster und auf der vertikalen Achse die Werte fiir einzelne Indizes abgetragen. Die
Tabellen, die einzelne Werte (gerundet auf fiinf Nachkommastellen) fiir alle verwendeten

Indizes enthalten, sind im zu finden.

Calinski- Harabasz Index liefert #hnliche Ergebnisse bei jedem der vier Clustering- Algorithmen,
wie es aus abzulesen ist. Wir erinnern uns daran, dass grofie Werte vom
Calinski-Harabasz Index ein Zeichen fiir gutes Clustering sind. Dabei kénnen wir sehen,
dass bei K-means Algorithmus sowie Complete Linkage Clustering der Index fiir zwei Clus-
ter maximal wird. Diese Ergebnisse werden sowie vom Trainingsdatensatz als auch vom
Testdatensatz geliefert, was auf gewisse Stabilitéit des Indizes hindeutet. Im Gegensatz da-
zu wird der Index fiir Partitionen, die von Average Linkage sowie spektralem Clustering
fiir die Trainingsdaten erzeugt wurden, fiir Anzahl Cluster £ = 3 maximal, wenngleich der
Index immer noch fiir £k = 2 auf dem Testdatensatz maximal wird. Eine Erklarung fir
den extrem kleinen Wert von Calinski-Harabasz Index bei der vom Average Linkage Clus-
tering fiir zwei Cluster erzeugten Partition auf dem Trainingsdatensatz ist, dass alle bis
auf ein Datenobjekt dem ersten Cluster zugeordnet wurden. In diesem Fall muss natiirlich
die Frage gestellt werden, ob das Ergebnis {iberhaupt Sinn macht und wie aussagekriftig
interne Indizes fiir den Fall sind.
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Abbildung 4.1: Calinski-Harabasz Index

Weiterhin analysieren wir Ergebnisse, die vom Davies-Bouldin Index geliefert werden
bildung 4.2)). Eine Partition der Datenpunkte, die homogene aber gleichzeitig gut separierte
Cluster liefert, weist einen kleinen Davies-Bouldin Index auf. Somit sehen wir, dass der
Index minimal auf dem Trainingsdatensatz fiir k = 2 wird, wenn wir uns die Ergebnisse
des K-means Verfahrens sowie des spektralen Clusterings anschauen. Gleichzeitig sehen
wir, dass fiir die zwei Algorithmen der Davies-Bouldin Index auch auf dem Testdatensatz
fiir zwei Cluster minimal bleibt. Also in dem Fall kénnen wir davon ausgehen, dass ein
Data-Dredging-Effekt ausgeschlossen ist. Analog kénnen wir sehen, dass fiir das Complete
Linkage Verfahren DB Index auf beiden Teildatensétzen fiir £ = 3 Cluster minimal wird,
wobei sich die Werte fiir den Index bei zwei und drei Cluster nicht stark voneinander un-
terscheiden. Etwas uneindeutig sind die Ergebnisse des Davies-Bouldin Index fiir Average
Linkage Verfahren, da auf dem Trainingsdatensatz der Index seinen minimalen Wert fiir
zwei Cluster annimmt, wobei der Wert fiir den Index bei den Testdaten fiir £ = 2 am
hochsten ist, was ein Zeichen fiir ein schlechtes Cluster Ergebnis ist. Es kann aber immer
noch dadurch erkléirt werden, dass in unserem Fall fiir den Trainingsdatensatz alle Da-
tenpunkte laut dem Average Linkage Verfahren einem Cluster gehéren und sich nur ein
einziger Datenpunkt in dem anderen Cluster befindet. Wenn wir diesen Fall ignorieren
wiirden, wére der Davies-Bouldin Index fiir beide Teildatensétze bei k = 7 Cluster mini-
mal.

Der Index, der am meisten unterschiedliche Ergebnisse lieferte, ist der Dunn Indez. Der In-
dex wird berechnet als Verhéltnis von kleinster Distanz zwischen zwei Beobachtungen, die
unterschiedlichen Clustern zugewiesen wurden, zu der grofiten Intraclusterdistanz (Brock
et al., 2008). In derkénnen wir nachsehen, dass Werte, die der Index fiir den
Trainings- sowie den Testdatensatz liefert, am weitesten auseinander liegen. Bei K-means
Algorithmus sehen wir als Beispiel, dass laut dem Dunn Index Clustering mit 10 Clustern
bevorzugt werden sollte, wobei auf den Testdaten der Index fiir sechs Cluster maximal
wird. Beim Average Linkage Verfahren (unter Beachtung des Problems fiir Partition in
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Abbildung 4.2: Davies-Bouldin Index

zwei Cluster) sind die Indexwerte auf beiden Teildatensetzen bis auf mehrere Nachkom-
mastellen fiir unterschiedliche Anzahl an Cluster nicht unterscheidbar. Fiir Analyse von
Genexpressionsdaten scheint der Index somit wenig geeignet zu sein und soll genauer fiir
weitere Datensétze untersucht werden. Mohanty et al. (2013) zeigte ebenfalls, dass Dunn
Index im Vergleich mit Average Silhouette Width eine deutlich schlechtere Validierungs-
methode fiir Genexpressionsdaten ist.

Besondere Aufmerksamkeit miissen wir dem Average Silhouette Width schenken, da der
Index als der am meisten verbreitete Validierungsindex fiir Clustering bekannt ist. Die
Ergebnisse fiir Average Silhouette Width werden in dargestellt. Der Index
wird fiir Anzahl an Cluster k£ = 2 fiir drei Clusteralgorithmen sowie auf dem Trainings-
als auch auf dem Testdatensatz maximal, und zwar fiir K-means, Complete Linkage sowie
spektrales Clustering. Beim Average Linkage Verfahren wird AWS auf dem Trainingsda-
tensatz fiir £ = 3 Cluster maximal, wobei Clustering auf dem Testdatensatz laut dem
Silhoutte Index fiir £ = 2 sinnvoller zu sein scheint. Dabei muss man anmerken, dass die
Werte fiir zwei und drei Cluster auf den beiden Teildatensédtzen sich nur marginal unter-
scheiden. Somit schneidet Average Silhouette Index fiir alle vier Algorithmen beziiglich
seiner Stabilitat auf Trainings- und Testdaten am besten ab. Der Vorteil beim ASW liegt
auch an seiner Normiertheit, da nur Werte vom Intervall [—1,1] angenommen werden
kénnen. Da maximale Werte fiir Average Silhouette Width fiir jede der vier von uns ver-
wendeten Clustering Algorithmen den Wert von 0.32 nicht iiberschreiten, deutet es auf
kein eindeutiges Clusterergebnis hin, da Werte von Silhouette Index, die nahe an Null
sind, auf Zwischenposition der Datenobjekte zwischen zwei Clustern schliefen lassen (Liu
and Graham) 2019).

Weiterhin wollen wir zwei Clusterings mit denselben Objekten fiir jeweils die gleichen
Kombinationen von Algorithmus und Inputparameter vergleichen. Es wird also gepriift,
inwieweit die Ergebnisse von einzelnen Clustering-Verfahren auf dem Trainings- und dem
Testdatensatz iibereinstimmen. Im Rahmen dieser Arbeit wurden zwei externe Validie-
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Abbildung 4.3: Dunn Index

rungsindizes ausgewahlt, nidmlich Jaccard Index und Adjustierter Rand Index, jedoch
existiert eine Vielzahl an anderen Indizes, die ausfiihrlich in [Hennig et al. (2015, Kapi-
tel 27) beschrieben werden.

Jaccard Index deutet mit dem Wert von 0.94 auf sehr gute Ubereinstimmung der Objekte
fiir K-means Algorithmus bei zwei Clustern hin. Analog sieht es fiir Adjustierten Rand
Index aus, da der Wert von 0.93 auch fiir sehr gute Ubereinstimmung der Clustering-
Resultate spricht. Diese Ergebnisse liefern eine sehr positive Tendenz, da auch interne
Validierungsindizes bei K-means Algorithmus fiir zwei Cluster ihre besten Ergebnisse lie-
ferten.

Beim Complete Linkage Verfahren erhalten wir generell etwas niedrigere Werte fiir die bei-
den Indizes, und zwar ist Jaccard Index mit dem Wert von circa 0.73 fiir Clusterings mit
zwei und drei gebildeten Clustern am hochsten, und Adjustierter Rand Index schwankt
zwischen den Werten von 0.64 und 0.66 fiir zwei, drei oder vier Cluster. Auch hier sieht
man, dass Ergebnisse mit internen Validierungsindizes gewissermaflen iibereinstimmen.
Calinski-Harabasz Index und Average Silhouette Width waren fiir k = 2 Cluster maximal,
wobei Davies-Bouldin Index fiir drei Cluster minimal wurde.

Im Fall des Average Linkage Algorithmus sind auch Ergebnisse der internen Validierungs-
indizes nicht eindeutig interpretierbar, da wir in sehen konnen, dass die
Werte fiir alle Anzahlen von Clustern & = 3,...,10 in etwa gleich grof fiir beide Indizes
sind. Bei zwei Clustern ist jedoch der Wert vom Jaccard Index am kleinsten und ARI
nimmt sogar einen leicht negativen Wert an. Genau Werte fiir die Indizes sind aus
[e"A.9] zu entnehmen.

Ergebnisse vom spektralen Clustering stimmen am meisten bei drei Clustern laut den bei-
den externen Validierungsindizes iiberein. Sowie Jaccard Index als auch ARI nehmen fiir
k = 3 Clustern ihre maximalen Werte von ungefdhr 0.88 an. Ergebnisse fiir interne Vali-
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Abbildung 4.4: Average Silhouette Width

dierungsindizes waren fiir zwei und drei Cluster am besten, wie es aus oberen Abbildungen
zu entnehmen ist. In diesem Fall ist es etwas iiberraschend, dass die Ergebnisse fiir zwei
Cluster deutlich weniger iibereinstimmen, vor allem liefert Adjustierter Rand Index einen
ersichtlich niedrigeren Wert von 0.59.

Calinski-Harabasz Davies-Bouldin Dunn  Silhouette

K-means 0.99998893 0.99492905  0.73728853 0.99939261
Complete Linkage 0.99633344 0.90541478  0.95654027 0.98639493
Average Linkage -0.15742780 -0.20721416 NA 0.88334083
Spektrales Clus. 0.87611757 0.98760686 -0.40734129 0.98596622

Tabelle 4.1: Korrelationskoeffizienten zwischen internen Validierungsindizes (berechnet auf
dem Trainings- und Testdatensatz)

Die néchste fiir uns interessante Frage wére, wie gut interne Indizes {ibereinstimmen oder
anders gesagt, ob es einen (linearen) Zusammenhang zwischen den einzelnen internen
Validierungsindizes fiir Trainingsdaten und Testdaten gibt. Dafiir wird der Korrelations-
koeffizient nach Bravais-Pearson (Fahrmeir et al., 2016, Kapitel 3) berechnet. Die Ergeb-
nisse sind in nachzusehen. Hierbei sehen wir, dass Calinski-Harabasz Index,
Davies-Bouldin Index, Dunn Index sowie Average Silhouette Width fiir k-Means Algo-
rithmus sowie fiir Complete Linkage Verfahren einen starken positiven Zusammenhang
haben. Also steigen die Indizes auf dem Trainingsdatensatz, so werden sie auch auf dem
Testdatensatz grofler, also kénnen wir davon ausgehen, dass gelieferte Werte von den In-
dizes nicht zufillig sind und somit kein Data-Dredging-Effekt vorliegt. Anders sieht es fiir
Average Linkage Verfahren aus, da die Korrelationskoeffizienten fiir verschiedene Indizes
sowie stark positive als auch leicht negative Werte annehmen. Fiir Dunn Index wird kein
Wert fiir den Korrelationskoeffizienten geliefert, da laut der Warnung, die vom Software
R bei der Berechnung ausgegeben wurde, eine Standardabweichung von Null vorliegt und
somit der Koeflizient nicht berechnet werden kann. Da es keinen stark positiven Zusam-
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Abbildung 4.5: Externe Validierungsindizes: Jaccard Index (oben) und Adjustierter Rand
Index (unten)

menhang zwischen den Ergebnissen interner Validierungsindizes gibt, deutet es nochmal
darauf hin, dass Ergebnisse, die Average Linkage Algorithmus fiir den Datensatz liefert,
nicht wirklich sinnvoll zu sein scheinen. Beim spektralen Clustering sehen wir einen starken
positiven Zusammenhang zwischen Calinski-Harabasz Indizes auf beiden Teildatensétzen
sowie zwischen Davies-Bouldin und Silhouette Width Indizes. Somit kénnen wir sehen,
dass Calinski-Harabasz Index, Davies-Bouldin Index und Average Silhouette Width als
drei besonders stabile interne Validierungsindizes geméfl der Analyse des im Rahmen die-
ser Arbeit verwendeten Datensatzes ausgezeichnet werden kénnen.

Calinski-Harabasz Davies-Bouldin Dunn Silhouette

K-means 0.76996417 -0.70792480 -0.74167305 0.68184923
Complete Linkage 0.54841736 -0.66122482 -0.54963256  0.76625044
Average Linkage 0.56886563 0.83928682 -0.97859633 -0.31616044
Spektrales Clus. 0.61341368 0.12699897 -0.59254925  0.40003892

Tabelle 4.2: Korrelationskoeffizienten zwischen internen Validierungsindizes (berechnet auf
dem Trainingsdatensatz) und Adjustierten Rand Indizes

In werden Korrelationskoeffizienten zwischen internen Validierungsindizes auf
dem Trainingsdatensatz und dem Adjustierten Rand Index dargestellt. Wenn kein Data-
Dredging-Effekt vorliegt, das heifit wenn gute Ergebnisse von internen Validierungsindizes
nicht zuféllig sind und nicht nur durch mehrfaches Ausprobieren verschiedener Konstel-
lationen zustande kommen, wiirde man erwarten, dass es starke Korrelationen zwischen
internen Validierungsindizes und dem Adjustierten Rand Index gibt. In einem solchen Fall
wird also erwartet, dass gute Clusteringergebnisse auf den Trainings- und auf den Testda-
ten iibereinstimmen und somit Adjustierter Rand Index Werte nahe bei 1 annimmt. Dabei
wére es wichtig anzumerken, dass wir an Maximierung von Calinski-Harabasz Index, Dunn
Index sowie Silhouette Index interessiert sind, bei Davies-Bouldin Index erwartet man hin-
gegen kleine Werte bei einem guten Clusteringergebnis. Also gehen wir im Idealfall davon
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aus, dass bei den drei oben genannten Indizes starke positive Korrelationen nachgewiesen
werden konnen und bei dem Davies-Bouldin Index starke negative Korrelationen vorlie-
gen. Wie wir sehen kénnen, gibt es einen mittleren positiven Zusammenhang zwischen dem
Calinski-Harabasz Index und dem Adjustierten Rand Index, ebenso wie erwartet sind Sil-
houette Width und ARI positiv korreliert, wobei die einzelne negative Korrelation fiir den
Average Linkage Algorithmus durch die fragwiirdigen Ergebnisse (wenig sinnvolle Cluster-
groBen) erkldrbar sein konnte. Ahnlich sieht die Situation bei dem Davies-Bouldin Index
aus, wobei die Korrelation fiir Average Linkage Verfahren wieder auf einen gegenldufigen
Trend hindeutet. Die meisten Fragen entstehen jedoch bei den Ergebnissen vom Dunn
Index, da dieser in allen vier Féllen eine mittlere bis auf eine starke negative Korrelation
mit dem ARI aufweist. Dies stiitzt die oben erwdhnte Vermutung, dass Dunn Index fiir
die Analyse der Genexpressionsdaten weniger geeignet ist und seine Anwendung in diesem
Bereich genauer untersucht werden soll.

4.2 Mehrfache Aufteilung des Datensatzes

Um die Ergebnisse der internen Validierungsindizes besser evaluieren zu kénnen, wird
der Datensatz mehrfach zufiillig in Trainings- und Testdatensatz aufgeteilt. Im Rahmen
dieser Arbeit wurde die Anzahl der Wiederholungen auf n = 10 festgelegt, wobei die
GroBenverhiltnisse von Trainings- und Testdatensétzen fiir jeden Split mit 80%/20% gleich
bleiben. Da Average Linkage Verfahren dhnlich wie fiir den Fall mit der einfachen Auftei-
lung des Datensatzes keine verniinftigen Clusteringergebnisse fiir den Datensatz lieferte,
wurde der Algorithmus von weiteren Analysen ausgeschlossen. Somit werden interne Va-
lidierungsindizes in diesem Abschnitt nur fiir K-means Algorithmus, Complete Linkage
Algorithmus und spektrales Clustering untersucht.

Zuerst wird untersucht, wie sich einzelne interne Validierungsindizes fiir Trainings- und
Testdaten unterscheiden sowie welche Kombinationen von Algorithmen und Inputpara-
metern die besten Ergebnisse liefern. Fiir mehrfache Aufteilung des Datensatzes wurden
solche Indizes fiir jede uns interessierende Kombination und jede Partition des Datensatzes
einzeln berechnet, wobei wir uns im Folgenden fiir mittlere Werte der Validierungsindizes
(gemittelt iiber alle 10 Splits) interessieren.

Mittlere Werte vom Calinski-Harabasz Index, die in zu sehen sind, liefern
insgesamt sehr gute Ergebnisse, da fiir den K-means Algorithmus und fiir den Complete
Linkage Verfahren mittlere Werte des Index sich fiir alle Anzahlen der Cluster &hnlich
verhalten und maximale Werte bei & = 2 Clustern erreicht werden. Beim spektralen Clus-
tering wird der mittlere Index fiir £ = 3 Cluster auf dem Trainingsdatensatz maximal,
wobei auf dem Testdatensatz der maximale Wert fiir zwei Cluster vorliegt. Da aber die
Indexwerte auf den Trainingsdaten fiir zwei und drei Cluster recht #hnlich sind, sollte
dies eher kein Grund fiir einen Verdacht auf Data-Dredging sein. Der Index bleibt auch
bei mehrfacher Aufteilung des Datensatzes stabil und zuverlissig. Insgesamt nimmt der
Calinski-Harabasz Index seinen grofiten Wert fiir K-means Clustering mit zwei Clustern
an, also sollte genau die Kombination von Algorithmus und Inputparameter gegeniiber
allen anderen bevorzugt werden.

Auch Davies-Bouldin Index liefert sehr #hnliche Ergebnisse auf beiden Teildatensitzen
(Abbildung 4.7). Der mittlere Index wird minimal fiir Clustering mit zwei Gruppen bei
der Ergebnissen von allen drei Algorithmen und der Trend bleibt fiir beide Teildatensétze
der gleiche. Der Unterschied zu den Ergebnissen von Calinski-Harabasz Index liegt daran,
dass der iiber alle Clustering-Methoden hinweg beste Wert vom Davies-Bouldin Index fiir
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Abbildung 4.6: Mittlerer Calinski-Harabasz Index

Complete Linkage Verfahren angenommen wird. Die Werte des Index bei K-means und
Complete Linkage Verfahren unterscheiden sich aber fiir zwei Cluster nur marginal.

Im Gegensatz zu den ersten zwei internen Validierungsindizes liefert der Dunn Index leider
auch bei mehreren Splits keine zuverldssigen Ergebnisse. Wie man aus so-
fort erkennt, wird der Maximum fiir verschiedene Algorithmen bei ganz unterschiedlichen
Anzahlen an Cluster angenommen und auch fiir die einzelnen Clustering-Algorithmen
stimmen die Ergebnisse vom mittleren Dunn Index auf dem Trainings- und Testdaten-
satz nicht iiberein. Insgesamt wird der Index bei Complete Linkage Clustering mit zwei
Clustern maximal, jedoch unterscheiden sich die Werte vom Dunn Index sehr stark fiir
verschiedene Algorithmen. Zudem liegen Ergebnisse von diesem Index mit den etwas mehr
eindeutigen Ergebnissen von anderen ausgewéhlten Validierungsindizes sehr weit ausein-
ander. Somit sehen wir auch bei mehrfacher Aufteilung des Datensatzes, dass der Dunn
Index als Validierungsmethode fiir Clustering von Genexpressionsdaten schlecht geeignet
ist.

Mittlerer Silhouette Width liefert eindeutige Ergebnisse, da das Verhal-
ten des mittleren Index {iber fiir alle drei Clustering-Verfahren gleich bleibt und die Werte
maximal fiir & = 2 Cluster werden. Uber die drei Algorithmen hinweg wird Average Sil-
houette Width auf beiden Teildatensédtzen fiir Complete Link mit zwei Clustern maximal.
Auch hier sind aber die entsprechenden Werte fiir K-means Algorithmus nur etwas ge-
ringer. Jedoch muss man darauf hinweisen, dass maximale Werte fiir Average Silhouette
Width fiir den von uns betrachteten Datensatz bei ungefdhr 0.3 liegen, was gleichzeitig
heifit, dass Objekte der einzelnen Cluster nicht &uflerst homogen sind und die Cluster an
sich nicht sehr heterogen zueinander stehen.

Wir interessieren uns auch fiir mittlere Werte der externen Validierungsindizes wie Jac-

card Index und Adjustierter Rand Index. Kurz zusammengefasst kann man sagen, dass die
Ubereinstimmung der Ergebnisse fiir Trainings- und Testdaten bei zwei und drei Clustern
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Abbildung 4.7: Mittlerer Davies-Bouldin Index

fir alle Clustering-Algorithmen am besten ist, wie es aus [Abbildung 4.10] zu erkennen
ist. Es heifit, dass bei den Cluster Ergebnissen, die laut den meisten internen Validie-
rungsindizes bevorzugt werden sollten, die Zuordnungen einzelner Datenobjekte am bes-
ten iibereinstimmen, somit also kein Verdacht auf Zufélligkeit der Ergebnisse vorliegt.

Calinski-Harabasz Davies-Bouldin Dunn Silhouette

K-means 0.99989 0.98887 0.55631 0.99842
Complete Linkage 0.93133 0.87831 0.90930 0.94814
Spektrales Clus. 0.89454 0.79001 0.28675 0.98141

Tabelle 4.3: Mittlere Korrelationskoeffizienten zwischen internen Validierungsindizes (be-
rechnet auf dem Trainings- und Testdatensatz)

Im weiteren Verlauf der Analyse untersuchen wir mittlere Korrelationskoeffizienten, die
Ergebnisse sind in dargestellt. Es wurden Korrelationen zwischen einzelnen in-
ternen Validierungsindizes auf den Trainings- und den Testdaten fiir alle drei Clustering-
Algorithmen und fiir jede Datenaufteilung berechnet und die Werte fiir einzelne Splits
wurden gemittelt. Die Uberlegung, die dahinter steckt, ist dass Kombinationen von Al-
gorithmen und Anzahlen an Clustern, die gute Ergebnisse auf Trainingsdaten aufweisen,
ebenfalls auch gute Werte fiir Testdaten liefern sollten, und umgekehrt. Es wére also zu
erwarten, dass es einen starken positiven Zusammenhang zwischen den einzelnen Vali-
dierungsindizes gibt. Anders ausgedriickt wird somit analysiert, ob die Verldufe einzelner
Kurven von den oben dargestellten Grafiken gleichen Trend haben. Wie man sehen kann,
sind Calinski-Harabasz Index und Silhouette Width weit vorne bei den Werten von mitt-
leren Korrelationskoeffizienten, Davies-Bouldin Index und Dunn Index haben zwar etwas
niedrigere Werte, die aber immer noch auf einen starken linearen Zusammenhang hin-
deuten. Die Ausnahme stellt jedoch der Dunn Index fiir die Ergebnisse des spektralen
Clusterings mit dem mittleren Korrelationswert von 0.28675 dar. Dabei muss man aber
aufpassen, dass selbst stark positive mittlere Korrelation keinen Auskunft dariiber gibt,
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Mittlerer Dunn Index, Trainingsdatensatz
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Abbildung 4.8: Mittlerer Dunn Index

ob die Indizes gleiche Ergebnisse fiir alle drei Algorithmen liefern, ein gutes Beispiel dafiir

ist die Problematik von Dunn Index, die aus klar erkennbar wird.

Calinski-Harabasz Davies-Bouldin Dunn Silhouette

K-means 0.75048 -0.71502  -0.48020 0.66761
Complete Linkage 0.45561 -0.48580 -0.40524 0.46744
Spektrales Clus. 0.65098 -0.01452 -0.52238 0.45718

Tabelle 4.4: Mittlere Korrelationskoeffizienten zwischen internen Validierungsindizes (be-
rechnet auf dem Trainingsdatensatz) und Adjustierten Rand Indizes

Analoge Uberlegung gilt auch fiir die Korrelationen zwischen den internen Validierungsin-
dizes auf dem Trainingsdatensatz und dem Adjustierten Rand Index. Wie in ausfiihrlich
beschrieben wurde, erwarten wir betragsmiflig grofie Werte fiir Korrelatio-
nen im Fall wenn interne Validierungsindizes aussagekréftig sind und kein Data-Dredging-
Effekt vorliegt. Wir erwarten dabei grofle Werte fiir Calinski-Harabasz Index, Dunn Indes
und Average Silhouette Width und kleine Werte fiir Davies-Bouldin Index. Die Ergebnisse
werden in dargestellt. Wie wir sehen kénnen, bleiben Calinski-Harabasz Index
sowie Silhouette Width relativ stabil mit mittleren bis auf starken positiven Werten von
Korrelationskoeffizienten bei allen drei Algorithmen. Der Dunn Index weist wie im Fall
von einfacher Aufteilung des Datensatzes negative Korrelationen auf, somit kénnen wir
auch diesem Fall davon ausgehen, dass der Index bei der Analyse von Genexpressionsdaten
nicht aussagekriftig ist. Ebenso fraglich ist der mittlere Korrelationskoeffizient von Davies-
Bouldin Index beim spektralen Clustering, da der Wert nahe bei 0 besagt, dass es keinen
Zusammenhang zwischen den Ergebnissen von diesem Index und der Ubereinstimmung
der Clusteringergebnisse auf dem Trainings- und dem Testdatensatz gibt.

Die letzte Frage, die im Rahmen dieser Arbeit analysiert wurde, ist welche Werte im Mittel
der Adjustierte Rand Index fiir die Clusteringergebnisse annimmt, die die besten Werte
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Mittlerer ASW, Trainingsdatensatz
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Abbildung 4.9: Mittlerer Average Silhouette Width

fiir einzelne internen Validierungsindizes auf dem Trainingsdatensatz aufweisen. Es wird
also fiir jeden Split die Konstellation von Clustering-Algorithmus und Anzahl von Clustern
rausgesucht, fiir die der ausgewéhlte interne Validierungsindex, beispielsweise Silhouette
Width, den grofiten Wert annimmt. Weiterhin wird fiir jede der Kombinationen der Ad-
justierte Rand Index betrachtet, (also wie gut die Ergebnisse auf dem Trainingsdatensatz
mit denen auf dem Testdatensatz iibereinstimmen), und anschlieBend wird der mittlere
Adjustierte Rand Index {iiber alle Splits hinweg ermittelt. Zu erwarten dabei wére, dass
der mittlere ARI eher grofle Werte annimmt, da fiir "gute” Kombinationen von Algorith-
mus und Anzahl an Cluster die Ergebnisse auf den Trainingsdaten und auf den Testdaten
iibereinstimmen sollten und somit der ARI nahe bei 1 wére. Solche Analyse wurde fiir
zwei interne Validierungsindizes - den Calinski-Harabasz Index und den Silhouette Width
- durchgefiihrt. Die Ergebnisse werden in[Tabelle A.22|und [Tabelle A.23|dargestellt. Mitt-
lerer ARI fiir Average Silhouette Width nimmt den Wert von 0.64777 an. Man muss
anmerken, dass die Werte fiir ARI bei einzelnen Splits sehr stark variieren und somit Wer-
te zwischen 0.2 und 0.9 annehmen. Dadurch wird auch der nicht besonders hohe Werte fiir
Adjustierten Rand Index erklart. Bei dem Calinski-Harabasz Index schneidet der mittlere
ARI deutlich besser ab und nimmt den mittleren Wert von 0.8977 an. Eine wichtige Be-
sonderheit ist auch, dass der Calinski-Harabasz Index seinen grofiten Wert bei allen zehn
Splits fiir K-means Algorithmus und zwei Cluster annimmt.
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Mittlerer Jaccard Index
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Abbildung 4.10: Mittlere externe Validierungsindizes: Jaccard Index (oben) und Adjus-
tierter Rand Index (unten)
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5. Fazit

Clustervalidierung stellt ein grofles Problem in Clustering dar, da die Wahl der "richti-
gen” Kombination von Algorithmus und Inputparameter oft nicht einfach ist, da die wahre
Gruppenzugehorigkeit der Datenobjekte unbekannt ist. Im Fokus dieser Arbeit lag Unter-
suchung von Stabilitdt ausgewéhlter interner Validierungsindizes. Fiir diesen Zweck wurde
der Datensatz mehrfach zuféllig in Trainingsdatensatz und Testdatensatz aufgeteilt und
Ergebnisse der Validierungsindizes wurden auf den beiden Teildatenséitzen untereinander
verglichen.

Somit wurde festgestellt, dass Calinski-Harabasz Index und Average Silhouette Width fiir
verschiedene Splits sehr dhnliche Ergebnisse lieferten, was auf Stabilitdt dieser Indizes
hindeutet. Der Dunn Index zeichnete sich durch recht instabile Ergebnisse fiir mehrere
Aufteilungen des Datensatzes aus, somit sollte fiir weitere Genexpressionsdatensitze ge-
priift werden, ob die Verwendung von Dunn Index als Validierungsmethode fiir Clustering
von Genexpressionsdaten sinnvoll ist.

Weiterhin haben wir gesehen, dass Single Linkage sowie Average Linkage Verfahren fiir
unseren Datensatz keine sinnvollen Clusteringergebnisse liefern, da bei der Mehrheit von
Féllen Cluster mit jeweils einem Element entstanden sind, wobei alle anderen Datenob-
jekte einem Cluster zugeordnet wurden. Eine Analyse von solchen Partitionen ist nicht
wirklich sinnvoll, deswegen wurden fiir diese zwei Verfahren interne Validierungsindizes
nicht untersucht.

Eine weitere Klasse der internen Validierungsindizes bilden sogenannte Stabilitétsindizes,
wobei Figure of Merit (FOM) ein in der Analyse der Genexpressionsdaten besonders ver-
breiteter Index ist. Die Idee von Figure of Merit liegt daran, den durchschnittlichen Ab-
stand jedes Datenobjektes zu seinem Cluster Schwerpunkt auszurechnen, nachdem einzelne
Variablen (im Fall unseres Datensatzes die Patienten) aus dem Datensatz entfernt wurden.
Dabei wird die Methode bevorzugt, die kleinere Werte von FOM liefert. Das Problem von
Stabilitdtsindizes liegt daran, dass der Index mit der wachsenden Anzahl an Cluster ten-
denziell sinkt und somit das Minimum immer bei groieren Werten von k liegt. Somit wird
in Yeung et al| (2001 darauf hingewiesen, dass diese Statistik nur fiir relative Vergleiche
der Clusteringergebnisse von verschiedenen Algorithmen fiir ein festes k& verwendet werden
kann. Aus diesem Grund wurde das Figure of Merit im Rahmen dieser Arbeit nicht unter-
sucht. Im Allgemeinen wére die Analyse von Stabilititsindizes fiir deskriptives Clustering
von Genexpressionsdaten vom grofien Interesse. Dabei sollte aber ein weiteres inhaltliches
Kriterium tiberlegt werden, das einen Vergleich der Werte von Stabilitdtsindizes fiir unter-
schiedliche Werte von Anzahl der Cluster k erméglichen wiirde. Ein mogliches Kriterium
wére dabei ein fest gesetztes Threshold fiir relative Verdnderung des Index fiir steigendes
k.
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A. Tabellen

Dieser Anhang enthilt Tabellen mit den Ergebnissen sdmtlicher Analysen, die im Rahmen
dieser Arbeit durchgefiihrt wurden. Die Ergebnisse konnen mit Hilfe von den Daten sowie
des R-Codes, die sich in dem dieser Arbeit beigefiigten elektronischen Anhang befinden,
reproduziert werden.

A.1 Einfache Berechnungen

A.1.1 K-means

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1075.49839 1.28391 0.12467 0.30004
3 773.55223 1.74172  0.10056 0.17669
4 991.85848 2.07022 0.15030 0.12813
) 480.79931 2.26496  0.14883 0.11421
6 411.84989 2.34933 0.16248 0.10039
7 362.33327 2.26800 0.16395 0.09257
8 322.42765 2.50358 0.16395 0.08048
9 290.79010 2.43954 0.16904 0.07771
10 265.55742 2.51038 0.17435 0.07328

Tabelle A.1: Interne Validierungsindizes fiir den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1067.95971 1.28742  0.12847 0.29951
3 766.33256 1.75630 0.10889 0.17479
4 589.09762 2.05417 0.15046 0.12932
5 481.23334 2.23430 0.10930 0.11912
6 411.47018 2.32413 0.17368 0.10250
7 361.82812 2.36770 0.16020 0.09040
8 321.35745 2.48475 0.14055 0.07998
9 290.56502 2.40677 0.15420 0.07740
10 266.49244 2.51584 0.15420 0.07796

Tabelle A.2: Interne Validierungsindizes fiir den Testdatensatz
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# Cluster Jaccard ARI
0.94140 0.93234
0.89105 0.90929
0.85691 0.89091
0.80563 0.86105
0.78144 0.84783
0.60368 0.70271
0.68113 0.77952
0.65569 0.76034
0.46597 0.58904
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Tabelle A.3: Externe Validierungsindizes

A.1.2 Complete Linkage

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 999.58320 1.34646 0.11571 0.27955
3 571.30328 1.27530 0.14356 0.23458
4 436.45423 1.83392 0.16375 0.19078
5 401.39202 2.19253 0.16492 0.08262
6 347.65481 2.49058 0.16924 0.06980
7 295.20167 2.50771 0.17277 0.06850
8 262.54957 2.75880 0.17471 0.06172
9 231.23132 2.67627 0.18391 0.06105
10 206.18277 2.44394 0.18657 0.06119

Tabelle A.4: Interne Validierungsindizes fiir den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 977.02745 1.30145 0.12393 0.29243
3 531.69518 1.24747  0.14492 0.25066
4 411.13748 1.76439 0.15132 0.19288
) 338.40730 1.99446 0.17198 0.11438
6 340.38374 2.28839 0.17571 0.08155
7 294.10854 2.24078 0.17583 0.08146
8 258.33378 2.77575  0.18273 0.06895
9 234.11895 3.02784 0.18393 0.04517
10 209.24832 3.10936  0.18782 0.04238

Tabelle A.5: Interne Validierungsindizes fiir den Testdatensatz
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# Cluster Jaccard ARI
0.73127 0.64626
0.72514  0.64407
0.71695 0.65657
0.41001 0.34430
0.48077 0.52672
0.47878 0.52550
0.42247 0.47623
0.43848 0.50833
0.43791 0.50795
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Tabelle A.6: Externe Validierungsindizes

A.1.3 Average Linkage

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 2.42512 0.61043 0.36349 0.27089
3 500.16116 1.01164 0.12990 0.30283
4 372.56346 1.12150 0.17278 0.25883
5 280.36042 1.01772  0.17278 0.25583
6 225.66047 0.98552 0.17278 0.25460
7 188.60413 0.93309 0.17278 0.19953
8 165.64516 1.22974  0.17278 0.18178
9 145.32890 1.17181 0.17278 0.17329
10 129.72076 1.19133 0.17278 0.16975

Tabelle A.7: Interne Validierungsindizes fiir den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

1 854.76177 1.18411 0.15944 0.31851
2 429.43307 0.97134 0.15944 0.27991
3 287.27365 0.88661 0.15944 0.22615
4 216.15747 0.84151 0.15944 0.20451
5 174.02182 0.86499 0.15944 0.19851
6 145.46197 0.83618 0.15944 0.16848
7 125.20734 0.96315 0.15944 0.15747
8 110.54698 1.12354 0.15944 0.14243
9 98.55303 1.07917 0.15944 0.13753

Tabelle A.8: Interne Validierungsindizes fiir den Testdatensatz
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# Cluster Jaccard ARI

2 0.69137 -0.00076
3 0.79434 0.67554
4 0.78745 0.66911
5 0.78751  0.66942
6 0.78787 0.67022
7 078775  0.67070
8 0.78648 0.67114
9 0.78624 0.67265
10 0.78673  0.67456

Tabelle A.9: Externe Validierungsindizes

A.1.4 Spektrales Clustering

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 490.93573 1.65931 0.14348 0.22687
3 512.16572 2.02893 0.07476 0.16281
4 451.19152 2.29758 0.11231 0.12145
) 395.79979 2.48658 0.07476 0.09489
6 309.00340 5.63551 0.10158 0.08202
7 279.01643 2.84020 0.10058 0.05243
8 272.12075 2.61241 0.11622 0.04947
9 244.71827 2.75301 0.13112 0.03695
10 214.50311 2.92600 0.09112 0.04916

Tabelle A.10: Interne Validierungsindizes fiir den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 768.04520 1.48810 0.11153 0.25121
3 512.83408 1.90931 0.15546 0.15000
4 439.79106 2.34724  0.10520 0.12210
) 395.69238 2.42087 0.10250 0.10040
6 307.69643 5.03613 0.09334 0.08705
7 285.99640 2.66320 0.10520 0.06575
8 266.33056 2.66421 0.09392 0.03853
9 227.75152 2.93206 0.10947 0.04604
10 235.53496 2.68745 0.16906 0.04247

Tabelle A.11: Interne Validierungsindizes fiir den Testdatensatz
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# Cluster Jaccard ARI
0.72907 0.59161
0.88195 0.88100
0.83356 0.86816
0.75066 0.81236
0.73575 0.80134
0.42537 0.51558
0.38406 0.47472
0.39897 0.50245
0.52870  0.64982
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Tabelle A.12: Externe Validierungsindizes

A.2 Mehrfache Berechnungen

A.2.1 K-means

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1071.95154 1.28790 0.12252 0.29907
3 770.02880 1.73911 0.10987 0.17681
4 589.81662 2.06870 0.15596 0.12839
5 479.58576 2.26258 0.14347 0.11464
6 410.66436 2.34267 0.16298 0.09958
7 361.10795 2.33156  0.15593 0.08985
8 321.20162 2.50737 0.16240 0.07988
9 289.78438 2.45596 0.14955 0.07755
10 264.87291 2.49022 0.15369 0.07373

Tabelle A.13: Mittlere interne Validierungsindizes fiir den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 1087.37836 1.28075 0.11289 0.30032
3 784.10926 1.71542 0.10867 0.18022
4 599.84928 2.07080 0.13952 0.12785
5 488.19245 2.24701 0.14509 0.11481
6 417.67465 2.33458 0.15698 0.09867
7 367.60789 2.31912  0.14816 0.09121
8 327.25780 2.47197 0.13965 0.08093
9 295.35328 2.47644 0.14593 0.07515
10 269.59868 2.51272  0.15422 0.07296

Tabelle A.14: Mittlere interne Validierungsindizes fiir den Testdatensatz
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# Cluster Jaccard ARI
0.91245 0.89770
0.86228 0.88248
0.81436 0.85421
0.70669 0.77207
0.68717 0.76619
0.62552 0.71950
0.56624 0.65755
0.47441 0.57650
0.42358 0.53338
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Tabelle A.15: Mittlere externe Validierungsindizes

A.2.2 Complete Linkage

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 808.82762 1.15573  0.14086 0.31932
3 977.51068 1.60205 0.15607 0.21514
4 434.54962 1.86484 0.17265 0.17121
5 381.13467 2.14162 0.17992 0.11386
6 319.68571 2.27687 0.18610 0.08628
7 284.78210 2.52825 0.18955 0.07104
8 255.86335 2.53616 0.19311 0.06785
9 230.28531 2.46578 0.19659 0.06519
10 209.59778 2.49392 0.19841 0.06235

Tabelle A.16: Mittlere interne Validierungsindizes fiir den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 887.80434 1.21876 0.13200 0.30620
3 594.53385 1.48516 0.15099 0.22127
4 468.03219 1.96509 0.16085 0.14980
) 387.67074 2.32439 0.16700 0.11464
6 329.48149 2.43352 0.17262 0.08214
7 287.58599 2.51028 0.17369 0.07239
8 257.89951 2.54172  0.17738 0.07384
9 238.04138 2.61787 0.18075 0.06472
10 216.37693 2.54670 0.18640 0.06105

Tabelle A.17: Mittlere interne Validierungsindizes fiir den Testdatensatz
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# Cluster Jaccard ARI
0.73681 0.53331
0.69358 0.59511
0.63864 0.57820
0.48116 0.43935
0.41757 0.38564
0.37207 0.36102
0.38268 0.39423
0.38480 0.42026
0.38317 0.42318
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Tabelle A.18: Mittlere externe Validierungsindizes

A.2.3 Spektrales Clustering

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 508.13972 1.64333 0.12352 0.22902
3 512.32429 2.00433 0.07814 0.15940
4 446.94697 2.32642 0.10821 0.12204
5 394.99255 2.49378 0.07798 0.09532
6 310.84047 6.03936  0.09904 0.07740
7 278.96445 2.80574 0.10830 0.05423
8 251.72023 3.19877 0.10799 0.04706
9 230.97833 2.91545 0.10311 0.04276
10 215.89558 2.86539 0.09819 0.04723

Tabelle A.19: Mittlere interne Validierungsindizes fiir den Trainingsdatensatz

# Cluster Calinski-Harabasz Davies-Bouldin Dunn Silhouette Width

2 762.39729 1.45765 0.10943 0.25997
3 523.54508 1.96441 0.09059 0.16134
4 455.49628 2.28639 0.11044 0.12333
) 409.21816 2.39410 0.09680 0.09865
6 320.08564 4.99986 0.08707 0.07873
7 275.38058 4.33186 0.09736 0.05847
8 260.60936 2.93759 0.10612 0.04648
9 238.99934 2.82799 0.10233 0.04173
10 220.74084 3.08206 0.10074 0.05028

Tabelle A.20: Mittlere interne Validierungsindizes fiir den Testdatensatz
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# Cluster Jaccard ARI
0.77964 0.65874
0.89700 0.89775
0.77873 0.81783
0.72376 0.78842
0.70785 0.77609
0.41578 0.49741
0.39638 0.48654
0.47014 0.57810
0.51013 0.62658
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Tabelle A.21: Mittlere externe Validierungsindizes

A.2.4 ARI-Werte fiir Kombinationen mit besten Ergebnissen von inter-
nen Validierungsindizes

Split Algorithmus # Cluster Silhouette (train) ARI
1 Complete Link 2 0.33828 0.32679
2 Complete Link 2 0.32512 0.20077
3 Complete Link 2 0.34064 0.29725
4 Complete Link 2 0.32977 0.66244
5 K-means 2 0.30307 0.86533
6 K-means 2 0.29970 0.89380
7 K-means 2 0.29892 0.91489
8 Complete Link 2 0.33942 0.70866
9 Complete Link 2 0.31024 0.72979

10 Complete Link 2 0.32899 0.87800

Mittlerer ARI = 0.64777

Tabelle A.22: Clustering mit bestem Average Silhouette Width fiir jede Aufteilung der
Daten
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Split  Algorithmus # Cluster Calinski-Harabasz (train) ARI

1 K-means 2 1065.01087 0.90712
2 K-means 2 1062.76153 0.82641
3 K-means 2 1071.14714 0.92844
4 K-means 2 1067.05470 0.92069
5 K-means 2 1089.03708 0.86533
6 K-means 2 1063.07367 0.89380
7 K-means 2 1068.62174 0.91489
8 K-means 2 1080.30571 0.87308
9 K-means 2 1084.15166 0.92655
10 K-means 2 1068.35134 0.92071

Mittlerer ARI = 0.89770

Tabelle A.23: Clustering mit bestem Calinski-Harabasz Index fiir jede Aufteilung der Da-
ten
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B. Implementierungen

In diesem Anhang sind Informationen iiber Implementierungen der Analysen sowie die
dafiir verwendeten Pakete enthalten. Der Code wurde mit Hilfe der freien statistischen
Software R erstellt.

B.1 R-Pakete

Es wurden fiir die Analyse des im beschriebenen Datensatzes folgende Pakete
benutzt:

e cluster (Maechler et al. 2019)

e kknn (Schliep and Hechenbichler] 2016)
e clusterCrit (Desgraupes, [2018)

e mclust (Scrucca et all 2016)

e clusteval (Ramey, 2012)

e reshape2 (Wickham, [2007)

e ggplot2 (Wickham, 2016)

Somit sind alle Funktionen, die im Code verwendet wurden, in den oben aufgelisteten
Paketen sowie im Standard-Paket stats (R Core Team, |2019) zu finden.

B.2 R-Code

Der R-Code ist in dem dieser Arbeit beigefiigten elektronischen Anhang als Datei code BA.R
enthalten.
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C. Elektronischer Anhang

Dieser Arbeit ist eine CD beigefiigt, die unter anderem den fiir die Analyse verwendeten
Datensatz sowie den R-Code enthélt. Der Inhalt ist wie folgt strukturiert:

e data_original
Der fiir die Analyse verwendete Datensatz (log2-CPM Werte wurden berechnet)

e data_processed
Teildatensétze, die via code BA.R erzeugt wurden

e plots
Im Rahmen der Analyse mit Hilfe des R-Codes erzeugte Grafiken

e code BA.R
R-Code, der fiir die Analyse des Datensatzes verwendet wurde und sdmtliche Er-
gebnisse reproduziert

e BA Holovchak.pdf
PDF-Version der Arbeit
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