DEVELOPMENTS IN GENETICS
Volume 2

Volume 1 Plasmids of Medical, Environmental and Commercial Importance
K.N. Timmis and A. Pühler editors

Volume 2 The Organization and Expression of the Mitochondrial Genome
A.M. Kroon and C. Saccone editors

Symbol design on cover by Gio Pomodoro
THE ORGANIZATION AND EXPRESSION OF THE MITOCHONDRIAL GENOME

Editors
A.M. KROON
and
C. SACCONC
CONTENTS

Introduction
E. Quagliariello

The organization and expression of the mitochondrial genome:
Introductory remarks and scope
C. Saccone and A.M. Kroon

MITOCHONDRIAL GENE ORGANIZATION

- **The kinetoplast DNA of *Trypanosoma brucei*: Structure, evolution, transcription, mutants**

- **The petite mutation: Excision sequences, replication origins and suppressivity**

- **Yeast mitochondria minilysates and their use to screen a collection of hypersuppressive ρ⁻ mutants**
B. Dujon and H. Blanc

- **Split genes on yeast mitochondrial DNA: Organization and expression**
L.A. Grivell, A.C. Arnberg, L.A.M. Hensgens, E. Roosendaal, G.J.B. van Ommen and E.F.J. van Bruggen

- **Sequence homologies between the mitochondrial DNAs of yeast and *Neurospora crassa***

- **Genetic organization of mitochondrial DNA of *Kluyveromyces lactis***
G.S.P. Groot and N. van Harten-Loosbroek

- **Mitochondrial mit⁻ mutations and their influence on spore formation in *Saccharomyces cerevisiae***
E. Pratje, S. Schnierer and G. Michaelis

- **Selection of a new class of cytoplasmic diuron-resistant mutations in *Saccharomyces cerevisiae*: Tentative explanation for unexpected genetic and phenotypic properties of the mitochondrial cytochrome b split gene in these mutants**
A.M. Colson and L. Wouters

- **Phenotypic and genetic changes in yeast cells transformed with mitochondrial DNA segments joint to 2-micron plasmid DNA**
P. Nagley, B.A. Atchison, R.J. Devenish, P.R. Vaughan and A.W. Linnane
The mitochondrial genome of *Aspergillus nidulans*
H. Küntzel, N. Basak, G. Imam, H. Köchel, C.M. Lazarus,
H. Lünsdorf, E. Bartnik, A. Bidermann and P.P. Stjepfić

Amplification of a common mitochondrial DNA sequence in three new ragged mutants of *Aspergillus amstelodami*
C.M. Lazarus and H. Küntzel

Senescence specific DNA of *Podospora anserina*
Its variability and its relation with mitochondrial DNA
C. Vierny, O. Begel, A.M. Keller, A. Raynal and L. Belcour

Cloning of senescent mitochondrial DNA from *Podospora anserina*: A beginning
D.J. Cummings, J.L. Laping and P.E. Nolan

The remarkable features of gene organization and expression of human mitochondrial DNA
G. Attardi, P. Cantatore, E. Ching, S. Crews, R. Gelfand,
C. Merkel, J. Montoya and D. Ojala

Two studies on mammalian mtDNA: Evolutionary aspects; enzymology of replication
F.J. Castora, G.G. Brown and M.V. Simpson

Variation in bovine mitochondrial DNAs between maternally related animals
P.J. Laipis and W.W. Hauswirth

Avian mtDNA: Structure, organization and evolution
K.R. Glaus, H.P. Zassenhaus, N.S. Fechheimer and P.S. Perlman

MITOCHONDRIAL GENE CHARACTERIZATION

Cytochrome *b* messenger RNA maturase encoded in an intron regulates the expression of the split gene: I. Physical location and base sequence of intron mutations
C. Jacq, J. Lazowska and P.P. Slonimski

Cytochrome *b* messenger RNA maturase encoded in an intron regulates the expression of the split gene: II. Trans- and cis-acting mechanisms of mRNA splicing
A. Lamouroux, P. Pajot, A. Kochko, A. Halbreich and P.P. Slonimski

Cytochrome *b* messenger RNA maturase encoded in an intron regulates the expression of the split gene: III. Genetic and phenotypic suppression of intron mutations
G. Dujardin, O. Groudinsky, A. Kruszewska, P. Pajot and P.P. Slonimski

Alternate forms of the cob/box gene: Some new observations
P.S. Perlman, H.R. Mahler, S. Dhawale, D. Hanson and N.J. Alexander
Processing of the mRNA for apocytochrome b in yeast depends on a product encoded by an intervening sequence
H. Bechmann, A. Haid, C. Schmelzer, R.J. Schweyen and F. Kaudewitz

Predicted secondary structures of the hypothetical box 3 RNA maturase
R.A. Reid and L. Skiera

Yeast mitochondrial cytochrome oxidase genes
A. Tzagoloff, S. Bonitz, G. Coruzzi, B. Thalenfeld and G. Macino

Transcripts of the oxi-1 locus are asymmetric and may be spliced
T.D. Fox and P. Boerner

The specification of var 1 polypeptide by the var 1 determinant
R.A. Butow, I.C. Lopez, H.-P. Chang and F. Farrelly

The nucleotide sequence of the tsm9-region on yeast mitochondrial DNA
W. Bandlow, U. Baumann and P. Schnittchen

Further characterization of rat-liver mitochondrial DNA

Nucleotide sequences of the cloned EcoA fragment of rat mitochondrial DNA
M. Kobayashi, K. Yaginuma, T. Seki and K. Koike

Sequence and structure of mitochondrial ribosomal RNA from hamster cells
D.T. Dubin and R.J. Baer

The adenine and thymine-rich region of Drosophila mitochondrial DNA molecules
D.R. Wolstenholme, C.M.R. Fauron and J.M. Goddard

MITOCHONDRIAL REPLICATION, TRANSCRIPTION AND TRANSLATION

Expression of the mitochondrial genome of yeast

Transcription and processing of yeast mitochondrial RNA
D. Levens, A. Lustig, B. Ticho, R. Syeneki, S. Merten, T. Christianson, J. Locker and M. Rabinowitz

Expression of the mouse and human mitochondrial DNA genome
J. Battey, P. Nagley, R.A. Van Etten, M.W. Walberg and D.A. Clayton

Mitochondrial DNA polymerase of eukaryotic cells
U. Bertazzoni and A.I. Scovassi

Mitochondrial ribosome assembly and RNA splicing in Neurospora crassa
A.M. Lambowitz
Functional and structural roles of proteins in mammalian mitochondrial ribosomes
T.W. O'Brien, N.D. Denslow, T.O. Harville, R.A. Hessler and D.E. Matthews 301

Neurospora crassa mitochondrial tRNAs: Structure, codon reading patterns, gene organization and unusual sequences flanking the tRNA genes
S. Yin, J. Heckman, J. Sarnoff and U.L. RajBhandary 307

Nucleotide sequence and gene localization of yeast mitochondrial initiator tRNA^{Met} and UGA-decoding tRNA^{Trp}
R.P. Martin, A.P. Sibler, R. Bordonné, J. Canaday and G. Dirheimer 311

Partial purification of polysomal factors essential for optimal rates of yeast mitochondrial protein synthesis
E. Finzi and D.S. Beattie 315

Biosynthesis of mitochondrial proteins in isolated hepatocytes
B.D. Nelson, J. Kolarov, V. Joste, A. Weiburski and I. Mendel-Hartvig 319

DEVELOPMENTAL AND REGULATORY ASPECTS OF MITOCHONDRIAL BIOGENESIS

Biogenesis of cytochrome c oxidase in *Neurospora crassa*:
Interactions between mitochondrial and nuclear regulatory and structural genes
H. Bertrand 325

Characterization of a mitochondrial "stopper" mutant of *Neurospora crassa*:
Deletions and rearrangements in the mitochondrial DNA result in disturbed assembly of respiratory chain components
H. De Vries, J.C. De Jonge and P. Van't Sant 333

Characterization of an uncoupler resistant Chinese hamster ovary cell line
K. B. Freeman, R.W. Yatscoff and J.R. Mason 343

Release from glucose repression and mitochondrial protein synthesis in *Saccharomyces cerevisiae*
M. Agostinelli, C. Falcone and L. Frontali 347

Interactions between mitochondria and their cellular environment in a cytoplasmic mutant of *Tetrahymena pyriformis* resistant to chloramphenicol
R. Perasso, J.J. Curgy, F. Iftode and J. André 355

Mitochondrial biogenesis in the cotyledons of V. faba during germination
L.K. Dixon, B.G. Forde, J. Forde and C.J. Leaver 365

Defect in heme a biosynthesis in *oxi* mutants of the yeast *Saccharomyces cerevisiae*
E. Keyhani and J. Keyhani 369
The assembly pathway of nuclear gene products in the mitochondrial ATPase complex
R. Todd, T. Griesenbeck, P. McAda, M. Buck and M. Douglas 375

Modified mitochondrial translation products in nuclear mutant of the yeast Schizosaccharomyces pombe lacking the β subunit of the mitochondrial F1 ATPase
M. Boutry and A. Gofféau 383

Regulation of the synthesis of mitochondrial proteins: Is there a repressor?
P. Van't Sant, J.F.C. Mak and A.M. Kroon 387

Regulation of mitochondrial genomic activity in sea urchin eggs
A.M. Rinaldi, I. Salcher-Cillari, M. Sollazzo and V. Mutolo 391

Effect of hypothyroidism on some aspects of mitochondrial biogenesis and differentiation in the cerebellum of developing rats
M.N. Gadaleta, G.R. Minervini, M. Renis, G. Zacheo, T. Bleve, I. Serra and A.M. Giuffrida 395

Assembly and structure of cytochrome oxidase in Neurospora crassa
S. Werner, W. Machleidt, H. Bertrand and G. Wild 399

Posttranslational transport of proteins in the assembly of mitochondrial membranes
E.M. Neher, M.A. Harmey, B. Hennig, R. Zimmermann and W. Neupert 413

A matrix-localized mitochondrial protease processing cytoplasmically-made precursors to mitochondrial proteins
P. Boehni, S. Gasser, C. Leaver and G. Schatz 423

Protease and inhibitor resistance of aspartate aminotransferase sequestered in mitochondria and the FCCP - dependence of its uptake
E. Marra, S. Passarella, S. Doonan, E. Quagliariello and C. Saccone 435

Concluding remarks
C. Saccone and A.M. Kroon 439

Author index 445

Subject index 449
POSTTRANSLATIONAL TRANSPORT OF PROTEINS IN THE ASSEMBLY OF MITOCHONDRIAL MEMBRANES

E.-M. NEHER, M.A. HARMY, B. HENNIG, R. ZIMMERMANN AND W. NEUPERT
Institut für Physiologische Chemie, Universität Göttingen, Humboldttallee 7, 3400 Göttingen, Germany

INTRODUCTION

Assembly of the mitochondrion involves the transfer of a large number of proteins from the cytosol to the various subcompartments of this organelle. During the last years we have accumulated a body of evidence that this transfer occurs by a posttranslational mechanism. Such a mechanism implies the existence of extramitochondrial pools of precursor proteins. In order to understand the transfer on a molecular basis, the overall reaction must be dissected into a number of individual steps. Furthermore, the signals on the precursors and the complementary structures on mitochondria which are responsible for the specificity of intracellular traffic must be investigated. A number of representative proteins should be studied to assess whether differences in the assembly pathway exist for the various proteins, e.g. soluble vs. integral membrane proteins, matrix vs. intermembrane proteins. We report here on the transport of cytochrome c, a peripheral membrane protein at the c-side of the inner membrane, on that of the ADP/ATP carrier, an integral transmembrane protein of the inner membrane, and on that of "subunit 9" of the ATPase complex, also an integral protein of the inner membrane.

RESULTS AND DISCUSSION

CYTOCHROME C. A peculiar step in the biosynthesis of cytochrome c is the covalent attachment of the haem group to the apoprotein. The question whether the haem group is added before or after completion of the polypeptide chain, was answered in the following way. Neurospora cells were first labelled with \(^3H\) leucine and were then pulse labelled with \(^35S\) methionine at \(8^\circ \text{C}\). At various times after the pulse cells were frozen in liquid \(N_2\), disrupted and extracted. Antibodies specific for Neurospora apocytochrome c and holocytochrome c, respectively, were employed to immunoprecipitate the two components from each of the samples. Fig. 1 shows the labelling kinetics of apo- and holocytochrome c. This data demonstrates that apocytochrome c is present in the cells and suggests a precursor-product relationship between apo- and holocytochrome c.
The haem group is linked in a reaction with occurs posttranslationally.

Neurospora cells were labelled with 3H leucine after 12h growth. After further 2h cells were cooled to 8°C and after further 1h 35S methionine was added to the culture. At the time points indicated, aliquots were withdrawn, the cells rapidly harvested, frozen in liquid N$_2$, broken by grinding and extracted with Triton containing buffer. Then from each sample apo- and holocytochrome c were immunoprecipitated with specific antibodies. Immunoprecipitates were analysed by SDS gel electrophoresis and radioactivities in the cytochrome c peaks determined.

In order to decide whether the apocytochrome c found in this experimental system is the primary translation product or a component already processed, apocytochrome c was translated in cell free heterologous systems. The in vitro product had the same size as the isolated apocytochrome c, and the amino terminal sequence was identical to that of holocytochrome c. This is in agreement with recent results on the DNA sequence of the coding region for iso-1-cytochrome c from yeast.

To elucidate the intracellular pathway of apocytochrome c, the relation between synthesis and haem incorporation was investigated in reconstituted systems. For this purpose protein synthesis was carried out in homologous and heterologous cell free systems, then postribosomal supernatants were prepared and incubated with isolated mitochondria. Fig. 2 shows that apocytochrome c,
Neurospora poly(A)RNA was translated in a reticulocyte lysate in the presence of 35S methionine and the post-ribosomal supernatant prepared. Two samples of this supernatant were incubated with mitochondria (0.5 and 1 mg protein per ml, respectively) for 60 min. Then mitochondria were reisolated by centrifugation and resuspended in sucrose buffer. One half of each sample was treated with proteinase K for 60 min at 0-4°C. Then PMSF was added to all samples and they were lysed with 1% Triton. Immunoprecipitation was carried out with antibody against holocytochrome c. Immunoprecipitates were subjected to SDS gel electrophoresis and autoradiography. Arrow indicates position of stained holocytochrome c.

Proteinase K was shown in a separate experiment to digest holocytochrome c in solution under the conditions applied here.

Lanes 1 and 3: 0.5 mg mitochondrial protein per ml; lanes 2 and 4: 1 mg mitochondrial protein per ml; lanes 1 and 2: control; lanes 3 and 4: treated with proteinase K.

A postmitochondrial supernatant of a Neurospora homogenate was incubated with 3H leucine for 10 min. Then a 1h 150,000 x g supernatant was prepared and incubated for 30 min with mitochondria isolated from unlabelled cells at the temperatures indicated. After incubation, the mixtures were lysed with Triton and divided into two equal portions. Immunoprecipitation with antibodies specific for apo- and holocytochrome c was performed, immunoprecipitates were analysed by SDS gel electrophoresis and radioactivities in the cytochrome c peaks determined.
present in the supernatant of a reticulocyte lysate programmed with Neurospora poly(A)RNA is transferred into added isolated Neurospora mitochondria and converted to holocytochrome c. The newly formed holocytochrome c is resistant to added protease. This suggests translocation across the outer mitochondrial membrane. The same observation was made when a supernatant of a homologous cell free system was employed.

Fig. 3 shows the temperature dependence of the apo- to holocytochrome c conversion. There is an optimum at about 25°C. Furthermore, this experiment gives a quantitative evaluation, indicating that the conversion occurs with a high efficiency. More than 90% of the apo form is converted to the holoprotein at optimal temperature.

Intact mitochondria are a prerequisite for linkage (incorporation) of the haem moiety with the apoprotein. Addition to the supernatant of haemin chloride, of detergent-lysed mitochondria, sonicated mitochondria or hypotonically pre-swollen mitochondria does not lead to the formation of holocytochrome c (Fig. 4). Excess apocytochrome c from Neurospora but not excess holocytochrome c can compete for the transfer and conversion of apocytochrome c synthesized in the cell free system.

Fig. 4. Dependence of transfer in vitro of cytochrome c on intactness of isolated mitochondria.

A postmitochondrial supernatant of a Neurospora homogenate was incubated with 3H leucine for 10 min. Then a 1h 150 000 x g supernatant was prepared and incubated a) with mitochondria isolated from cells grown on 35S sulfate, b) with mitochondria as in a, but preswollen with 10 mM Tris HCl, c) without added mitochondria, but with haemin chloride (30 μM). After incubation for 30 min, Triton was added, immunoprecipitation and SDS gel electrophoresis of immunoprecipitates were carried out. Gels were sliced and 3H and 35S radioactivities determined. Arrow indicates position of co-electrophoresed holocytochrome c on the gel.
On the basis of this data we propose the following assembly pathway for cytochrome c. Apocytochrome c, synthesized on free polysomes is released into the cytosolic compartment. Its conformation is such that it penetrates the outer membrane with part of the molecule through a pore. An enzyme which catalyses the formation of the thioether bridge between apocytochrome c and haem acts in the intermembrane space. The addition of the prosthetic group triggers the folding of the polypeptide chain in such a way, the molecule is completely translocated across the outer membrane and bound to its functional site on the inner membrane.

ADP/ATP CARRIER

The synthesis of the ADP/ATP carrier protein can be observed in homologous and heterologous cell free systems. The translation product (apparent molecular weight 32 000) in all cases has the same electrophoretic mobility on SDS polyacrylamide gels as the authentic protein in the inner membrane. The in vitro translation product was found in the postribosomal supernatant. Analysis by sucrose density gradient centrifugation and gel filtration showed that the in vitro product occurs in the form of a higher molecular weight complex and that it interacts with detergents.

Reconstitution experiments were carried out to demonstrate the transmembranous transfer in vitro. Reticulocyte lysates were programmed with Neurospora mRNS and the postribosomal supernatant was separated after translation. Mitochondria were isolated from Neurospora spheroplasts. Supernatant and mitochondria were incubated for various time periods, then they were separated again by centrifugation. The mitochondrial samples were divided into two equal portions. One part remained untreated and the other half was treated with Proteinase K at 0°C. The latter treatment leads to digestion of extramitochondrial ADP/ATP carrier but not, or only to a limited degree, of the carrier in the intact mitochondria. ADP/ATP carrier was immunoprecipitated from the supernatants, and from proteinase treated and control mitochondria. The immunoprecipitates were analysed by SDS gel electrophoresis, and yielded one single band (32 K) by autoradiography. The X-ray films were subjected to densitometry and the extinction of the 32 K band was plotted vs. the time of incubation of mitochondria with supernatant. The protein is rapidly bound to the mitochondria (Fig. 5). In studies, in which the radioactivity was determined in sliced gels, 70 - 90% of the in vitro synthesized carrier was found to be bound to the mitochondrial fraction after 60 min incubation. The appearance of protease resistant carrier is also shown in Fig. 5. It makes up ca. 20 - 30% of the
total carrier synthesized in vitro.

These in vitro transfer experiments were also made in the presence of carbonylcyanide-m-chlorophenyl-hydrazone (CCCP). As can be seen from Fig. 5, CCCP does not inhibit the binding but it does inhibit transfer of the carrier into a protease resistant position. A similar effect was observed, when the temperature was lowered to 0 - 4°C. Inhibition of transfer of ADP/ATP carrier by CCCP in intact cells has already been reported. Furthermore, with yeast cells it was found that CCCP does not inhibit the synthesis but the proteolytic processing of a number of mitochondrial proteins which are synthesized as larger precursors.

Fig. 5. Transfer of ADP/ATP carrier into mitochondria in vitro.
A reticulocyte lysate was programmed with Neurospora poly(A)RNA and, after incubation of 35S methionine, the postribosomal supernatant was prepared. Mitochondria isolated from Neurospora spheroplasts were resuspended in the supernatant. After incubation for 60 min at 25°C, supernatant and mitochondria were separated again by centrifugation. One half of the mitochondria were treated with proteinase K at 0°C for 60 min. In a parallel experiment, incubation of supernatant with mitochondria was carried out after addition of 12.5 μM CCCP. Then Triton was added, the ADP/ATP carrier was immunoprecipitated from all fractions, the immunoprecipitates were electrophoresed, the gels autoradiographed and the X-ray films subjected to densitometry. A: without CCCP; B: with CCCP. •••••: total ADP/ATP carrier bound to mitochondria; o--o--o: proteinase K resistant ADP/ATP carrier in mitochondria.
Isolation of the ADP/ATP carrier from the membrane includes as the most important step passage of Triton-solubilized mitochondria over hydroxyapatite. Only a few mitochondrial proteins pass through this bed, the major component is the ADP/ATP carrier. When the postribosomal supernatant of a reticulocyte lysate containing newly synthesized carrier and supplemented with Triton was passed over hydroxyapatite, the ADP/ATP carrier protein was found to be completely retained (Fig. 6). However, when mitochondria after transfer in vitro were lysed and subjected to the same procedure, part of the carrier was detected in the eluate. This finding supports the view that part of the carrier after its interaction with the mitochondria, is actually integrated into the membrane.

Fig. 6. Chromatography of ADP/ATP carrier on hydroxyapatite before and after transfer in vitro.

After translation of poly(A)RNA in a reticulocyte lysate in the presence of 35S methionine, one aliquot of the postribosomal supernatant was made 1% Triton and passed over hydroxyapatite (lane 2). To a second aliquot, Carboxyatractyloside (CAT) was added and the sample was treated in the same way as in 2 (lane 1). A third aliquot was incubated with isolated mitochondria, mitochondria were reisolated and incubated with CAT; then one half was treated with proteinase K (lane 3) one half remained untreated (lane 4). Mitochondria were solubilized and passed over hydroxyapatite. The eluates were subjected to immunoprecipitation; the immunoprecipitates were analysed by electrophoresis and autoradiography.

These results show that there is an extramitochondrial (cytosolic) precursor form of the ADP/ATP carrier which is transferred into mitochondria in vitro. They clearly confirm earlier conclusions derived from in vivo experiments, that the intracellular translocation of this protein occurs via a posttranslational mechanism. They further show that integral membrane proteins can have precursors existing in the cytosol compartment without a "signal extension" in their amino acid sequence which is cleaved upon membrane insertion. The complicated assembly pathway can be divided into at least two steps: binding to the outer membrane and integration into the inner membrane. We envision that the first
Step entails a "receptor" type molecule at the surface of the outer membrane. The second, rather complex, step is apparently dependent on energy, e.g. in the form of a membrane potential.

"SUBUNIT 9" OF ATPASE COMPLEX

This integral membrane protein is synthesized as a precursor possessing a larger apparent molecular weight, as first shown by translation of Neurospora poly(A)RNA in a wheat germ extract. Fig. 7 shows a comparison of the protein isolated from the membrane with that obtained by translation in a reticulocyte lysate. The apparent molecular weight difference is ca. 6000. "Subunit 9" shares the property of being synthesized as a larger precursor with a number of other mitochondrial proteins.

We have also evaluated for this precursor, where and how it is present in the reticulocyte lysate. Similar to the ADP/ATP carrier it was found in the postribosomal supernatant, not as a monomer but with an apparent size larger or comparable to haemoglobin. In vitro transfer was also accomplished by incubating the reticulocyte supernatant with isolated mitochondria. Not only was "subunit 9" then found associated with mitochondria, it was also processed to the size of the authentic membrane protein (Fig. 7).
CONCLUSIONS

The three proteins investigated appear to have some common characteristics with regard to their assembly pathway, but they also show significant differences. A first common feature is that they are translocated by a posttranslational mechanism; a second one is that the extramitochondrial precursors differ in their properties, in particular in their conformation, from the functional products; a third one is that the extramitochondrial precursors pass through the cytosolic compartment.

The type of conformational change which leads to the final product apparently differs among the three proteins. In case of cytochrome c it is the covalent linkage of the haem group which leads to a drastic refolding of the molecule; in case of the ADP/ATP carrier refolding may occur in the step in which the precursor, bound to the outer membrane, is inserted into the inner membrane; and "subunit 9" probably experiences a conformational change when the additional sequence is cleaved. An additional sequence is not necessary for the construction of a precursor molecule; and it can be concluded that the signalling device which directs a precursor protein to its organelle may lie in the tertiary structure ("signal structure"). Those proteins which do have a larger precursor would then contain a "signal structure" which may or may not reside in the additional sequence.

Thus, in several respects posttranslational transfer into mitochondria (and chloroplasts) appears to differ from cotranslational membrane transfer of secretory proteins according to the "signal hypothesis".

ACKNOWLEDGEMENTS

We want to thank Heidi Bliedung, Sabine Krull, Sabine Pitzel and Leopoldine Sander for skilful technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft, Ne 101/17.

REFERENCES
SUBJECT INDEX

A
- ADP/ATP carrier 419-420
- aminoacyl tRNA synthetase 387
- amplification 88, 338, 340
- antibiotic resistance 76
- antisera, subunit specific 377
- aspartate aminotransferase 435
- *Aspergillus amstelodami* 87-90
- *Aspergillus nidulans* 79-86
- assembly of mt-membrane complexes 336, 340, 376, 378, 399-412, 413-422
- asymmetric transcripts 191
- ATPase (mt) 253-255, 375-381, 383-386, 420, 421, 423-433
- ATPase, subunit 9, 420, 421
- AT-rich region 241-250
- avian mtDNA 131-135

B
- Box 47, 72, 73, 161-170, 179, 385
- Box 3 161-170, 179
- Box 7 161-179
- Box effect 47, 385
- Box phenotype 161, 163, 170
- bovine mtDNA 125-130
- brain development 395-398

C
- chicken mtDNA 131
- chloramphenicol binding site 304
- chloramphenicol resistance 356, 388
- circular RNA 41, 45, 155
- cloning 79, 122, 222
- Cob/Box gene 139-152, 153-156, 157-160, 161-172, 173-177
- codon reading patterns 307
- common amplified sequence 8
- complementation 153
- conservation of genes 58, 64
- control of expression of mt genome 353
- cytochromes 359, 397
- cytochrome aa3 326
- cytochrome b 37
- cytochrome b, mRNA of 110
- cytochrome b, split gene of 72
- cytochrome c 413-417
- cytochrome c oxidase, 320, 325-332, 369-374, 399-413, 423
- cytochrome c oxidase, genes of 181-190
- cytochrome c oxidase, precursors of 273, 274
- cytoplasmic inheritance 249, 355
- cytoplasmic segregation 380

D
- deletions in mtDNA 16, 121, 338, 340
- derepression 272, 274, 275
- diuron-resistant mutants 71-74
- DNA, mapping of 34
- DNA polymerase γ 287-290, 396
- double stranded RNA 260
- *Drosophila* 241-350
- duplication of mitochondria 393
- dyskinetoplasmy 16

E
- elongation factors 304
- endgroup analysis 379
- evolution of mtDNA 17, 121, 135, 238
- excision 21
- extranuclear mutants 335
F
feed-back regulation 150

G
gene localization 51-60, 62
genetic code 307
genetics, mitochondrial 71
germination 365-368
guanylyl transferase 267-270

H
hamster cells 343-346
hamster mtRNA 231-240
heme a 370
hepatocytes 319
heterogeneity, interspecific 248
heterogeneity, intraspecific 248
heterogeneity of mtDNA 212
heterogeneity, terminal 233
human mtDNA 103-119, 277-286

I
inheritance, cytoplasmic/maternal 97, 249, 355
insertion in mtDNA 121
intervening sequence : see intron
intron 38, 47, 82, 161, 162, 167, 168, 170
intron function 154
intron mutation 139-152, 157

K
kinetoplast DNA 7-19
Kluyveromyces lactis 61-64

L
leader sequence 40

M
mammalian mtDNA 103-119, 121-124, 125-130, 211-219, 221-229, 277-286
marker rescue 77
maternal inheritance 97, 249
maturase 149, 155, 157, 165, 169, 179
meiosis 69
mevalonic acid 371
mini-circles 10
minilysates of mitochondria 33
mit- mutation 60, 257
mitochondrial genetics 71
mitoribosomes : see ribosomes
modification of RNA 232
mouse mtDNA 277-286
mRNAs 105, 108, 110, 111, 149, 155, 157, 179, 283
mutations in introns 174
mutants defective in mt ribosome assembly 298

N
Neurospora crassa, slime mutant of 387
nuclear coded 345, 346
nuclear control 157-160, 331, 393
nuclear mutations 383
nucleotide sequence : see sequencing

O
Oli 1 region 56
Oli 2 locus 254
Open reading frame 147
origin of replication 33, 88, 133, 224, 280
Oxi 1 110, 181-190, 191-194
Oxi 2 52, 181-190
Oxi 3 39, 41, 46, 47, 55, 117, 162-170, 181-190
Oxi-mutants 46, 369-374
oxidative phosphorylation 255-257
p
p 42.5 species (protein) 166, 168, 169
palindromic sequences 309
paromomycin 158
pedigree analysis 126
peptidyl transferase 218, 303
petite mutation 21-31
o-phenanthrolin 424-429
pho mutation 69
physical man of mtDNA 62, 214, 216, 218
plant mtDNA 365-368
pleiotropic mutations 258
Podospora anserina 91-95, 97-102
polar effect 154
polymorphism of mtDNA 121
polypeptide, hypothetical structure of 179
porphyrin α 370
postpolysomal factors for mt protein synthesis 315-318
posttranslational modification 389
posttranslational transfer 413-422
precursor polypeptides 380, 400, 424-429
processing of polypeptides 425-429
promoter 105
proteases 423-433, 436
protein synthesis, mitochondrial 315-318, 319-322, 366
protein transport/import 413-422, 423-433, 435-438
proteolipid 84
R
ragged mutants 87-90
rat mitochondria 395-398, 435-438
rat mtDNA 121-124, 211-220, 221-229
recombinant DNA 75-78, 97-102, 221
regulation 329-332
regulation of mt-ribosome assembly 297
repeat sequences 309
replication 25, 249, 393 (see also origin)
repression (glucose) 347-354
repressor 387-390
resistance to uncouplers 343
respiratory deficiency 66
respiratory induction 349
restriction maps 89, 122, 132, 243
rho- mutants 34
ribosomal proteins (mt) 293, 296, 301, 362
ribosomal RNA genes (mt) 83, 213-215, 225, 308
ribosomal RNAs (mt) 14, 132, 214, 232, 235-237, 278, 279, 293, 296
ribosomal RNAs (mt), 21S 265-270
ribosomal RNAs (mt), 5S 231, 236
ribosomes (mt) 291-300, 301-305, 360, 361
RNA, double stranded 260
RNA, 5' end of 108, 114
RNA, messenger for maturase (mt) 149, 155, 157, 179
RNA polymerase 265, 270-275
RNA processing 39, 41, 154, 173, 176, 265-276, 291
S
Schizosaccharomyces pombe 383-386
sea urchin eggs 391-394
segregation, cytoplasmic 380
senescence 91-95, 97-102
sequence analysis 122, 146, 209, 215, 217, 222, 235-238
sequence divergence 122, 127, 128, 134
sequence homology 51-60
Southern hybridization 34, 93
slime mutant of Neurospora crassa 387
spheroplast regeneration 76
splicing : see RNA processing
split genes 37-49, 72, 146, 153-156, 157-160, 173
sporulation 65, 66
"stopper" mutant 333-342
structure of cytochrome c oxidase subunits 401, 406, 408, 410
structure of mitochondria 397
structure of RNA 231-240
subunits of cytochrome oxidase : see Oxi 1-3
subunit stoichiometry 376
sulphatation 389
suppression, genetic 157
suppression of mit" 258
suppression, phenotypic 159
suppressivity (suppressiveness) 28, 33-36, 93, 101
transcription maps (mt) 13, 79, 105, 108, 111, 200-211, 283, 284
transcripts, spliced 191
transformation 75
translation products (mt) 58, 68, 101, 116, 175, 350-352, 367, 384, 388, 390
tRNA genes (mt) 82, 100, 225, 227, 309, 313
tRNAs (mt) 209, 281, 307-310, 311, 312
Trypanosoma brucei 7-19
tsm8-mutation 207-210
U
UGA-decoding 312
uncouplers 344
URF (unidentified reading frame) 112, 113
V
var 1 determinant 195-205, 353
var 1 polypeptide 195-205
variation, rapid 125
vegetative death 87
Vicia faba 365-368
Y
yeast plasmid 76

T

tandem reiterations 89
Tetrahymena pyriformis 355-363
thiostrepton 303
thyroid hormone 321, 396
topoisomerase 121
transcription (mt) 181-190
258, 392
AUTHOR INDEX

Agostinelli, M. 347-354
Agsteribbe, E. 51-60
Alexander, N.J. 161-172
Andrè, J. 355-363
Arnberg, A.C. 37-49
Astin, A.M. 253-263
Atechison, B.A. 75-78
Attardi, G. 103-119
Baer, R.J. 231-240
Baldacci, G. 21-31
Bandlow, W. 207-210
Bartnik, E. 79-86
Basak, N. 79-86
Battey, J. 277-286
Baumann, U. 207-210
Beattie, D.S. 315-318
Belcour, L. 91-95
Bernardi, G. (Giorgio) 21-31
Bertrand, H. 325-332, 399-411
Bidermann, A. 195-205
Bing, C.G. 253-263
Blanc, H. 33-36
Bleve, T. 395-398
Boehni, P. 423-433
Boerger, P. 191-194
Bonitz, S. 181-190
Bordonnè, R. 311-314
Borst, P. 7-19
Boutry, M. 383-386
Brown, G.G. 121-124
Buck, M. 375-381
Butow, R.A. 195-205
Canaday, J. 311-314
Cantatore, P. 103-119, 211-220
Castora, F.J. 121-124
Chang, H.-P. 195-205
Ching, E. 103-119
Choo, W.M. 253-263
Christianstion, T. 265-276
Clayton, D.A. 277-286
Cobon, G.S. 253-263
Colson, A.M. 71-74
Coruzzi, G. 181-190
Crews, S. 103-119
Cummings, D.J. 97-102
Curgy, J.J. 355-363
De Jonge, J.C. 333-342
Denslow, N.D. 301-305
Devenish, R.J. 75-78
De Vries, H. 51-60, 333-342
de Zamaroczy, M. 21-31
Dhawale, S. 161-172
Dirheimer, G. 311-314
Dixon, L.K. 365-368
Doonan, S. 435-438
Douglas, M. 375-381
Dubin, D.T. 231-240
Dujardin, G. 157-160
Dujon, B. 33-36
Falcone, C. 347-354
Farrelly, F. 195-205
Fase-Fowler, F. 7-19
Fauron-Fonty, G. 21-31
Fauron, C.M.R. 241-250
Feuchheimer, N.S. 131-135
Finzi, E. 315-318
Forde, B.G. 365-368
Forde, J. 365-368
Fox, T.D. 191-194
Frach, A.C.C. 7-19
Freeman, K.B. 343-346
Frontali, L. 347-354
Gadaletta, G. 211-220
Gadaletta, M.N. 395-398
Gaillard, C. 21-31
Gallerani, R. 211-220
Gasser, S. 423-433
Gelfand, R. 103-119
Giuffrida, A.M. 395-398
Glaub, K.R. 131-135
Goddard, J.M. 241-250
Goffeau, A. 383-386
Goursot, R. 21-31
Griesenbeck, T. 375-381
Grivell, L.A. 37-29, 51-60
Groot, G.S.P. 61-64
Groudninsky, O. 57-160
Haid, A. 173-177
Halbreich, A. 153-156
Hanson, N. 161-172
Harmey, M.A. 413-422
Harville, T.O. 301-305
Hauswirth, W.W. 125-130
Heckman, J. 307-310
Henning, B. 413-422
Hensgens, L.A.M. 37-49, 51-60
Hessler, R.A. 301-305
Hoeijmakers, J.H.J. 7-19
Holtrop, M. 211-220
Huyard, A. 21-31
Iftode, F. 355-363
Imam, G. 79-86
Jacq, C. 139-152
Janssen, J.W.G. 7-19
Jost, V. 319-322
Kaudewitz, F. 173-177
Keller, A.M. 91-95
Keyhani, E. 369-374
Keyhani, J. 369-374
Kobayashi, M. 221-229
Kochel, H. 79-86, 87-90
Kochko, A. 153-156
Kotke, K. 221-229
Kolarov, J. 319-322
Kroon, A.M. 1-4, 211-220, 389-390, 439-444
Kruszewska, A. 157-160
Küntzel, H. 79-86, 87-90
Laips, P.J. 125-130
Lambowitz, A.M. 291-300
Lamouroux, A. 153-156
Laping, J.L. 97-102
Lazarus, C.M. 79-86, 87-90
Lazowska, J. 139-152
Leaver, C.J. 365-368, 423-433
Levens, D. 265-276
Linnane, A.W. 75-78, 253-263
Locke, J. 265-276
Lopez, I.C. 195-205
Luinsdcrf, H. 79-86, 87-90
Lustig, A. 265-276
Machleidt, W. 399-411
Macino, G. 181-190
Mahler, H.R. 161-172
Mak, J.F.C. 387-390
Mangin, M. 21-31
Marotta, R. 21-31
Marra, E. 435-438
Martin, R.P. 311-314
Marzuki, S. 253-263
Mason, J.R. 343-346
Matthews, D.E. 301-305
McAda, P. 375-381
Mendel-Hartvig, I. 319-322
Merkel, C. 103-119
Merten, S. 265-276
Michaelis, G. 65-69
Minervini, G.R. 395-398
Montoya, J. 103-119
Muto, V. 391-394
Nagley, P. 75-78, 253-263, 277-286
Neher, E.M. 413-422
Nelson, B.D. 310,322
Neupert, W. 413-422
Nolan, P.E. 97-102
O'Brien, T.W. 301-305
Ojala, D. 103-119
Pajot, P. 153-156, 157-160
Passarella, S. 435-438
Pepe, G. 211-220
Perasso, R. 355-363
Perlman, P.S. 131-135, 161-172
Pratje, E. 65-69
Quagliariello, C. 211-220
Quagliariello, E. 435-438
Rabinowitz, M. 265-276
RajBhandary, U.L. 307-310
Raynal, A. 91-95
Reid, R.A. 179-180
Reni, M. 395-398
Rinaldi, A.M. 391-394
Roberts, H. 253-263
Roosendaal, E. 37-49
Saccone, C. 1-4, 211-220, 435-438, 439-444
Saliher-Cillari, I. 391-394
Samalio, J. 51-60
Sarnoff, J. 307-310
Schatz, G. 423-433
Schmelzer, C. 173-177
Schnierer, S. 65-69
Schnittchen, P. 207-210
Schweyen, R.J. 173-177
Scovassi, A.I. 287-290
Seki, T. 221-229
Serra, I. 395-398
Silber, A.P. 311-314
Simpson, M.V. 121-124
Ski, L. 179-180
Slonimski, P.P. 138-152,153-156,157-160
Snijders, A. 7-19
Sollazzo, M. 391-394
Stgpieff, P.P. 79-86
Synenki, R. 265-276
Thalenfeld, B. 181-190
Ticho, B. 265-276
Todd, R. 375-381
Tzagoloff, A. 181-190
Van Bruggen, E.F.J. 37-49
Van Etten, R.A. 377-386
Van Harten-Loosbroek, N. 61-64
Van Ommen, G.J.B. 37-49
Van't Sant, P. 333-342, 387-390
Vaughan, P.R. 75-78
Vierny, C. 91-95

Walberg, M.W. 277-286
Weilburski, A. 319-322
Werner, S. 399,411
Wild, G. 399-411
Wolstenholme, D.R. 241-250
Wouters, L. 71-74

Yaginuma, K. 221-229
Yatscoff, R.W. 343-346
Yin, S. 307-310
Zacheo, G. 395-398
Zassenhaus, H.P. 131-135
Zimmermann, R. 413-422