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POSTTRANSLATIONAL TRANSPORT OF PROTEINS IN THE ASSEMBLY OF MITOCHONDRIAL 

MEMBRANES 

E.-M. NEHER, M.A. HARMEY, B. HENNIG, R. ZIMMERMANN AND W. NEUPERT 

I n s t i t u t für Physiologische Chemie, Universität Göttingen, Humboldtallee 7, 

3400 Göttingen, Germany 

INTR0DUCTI0N 

Assembly of the mitochondrion involves the transfer of a large number of 

proteins from the cytosol to the various subcompartments of t h i s organelle. 

Düring the l a s t years we have accumulated a body of evidence that t h i s trans-
1 -9 

f e r occurs by a posttranslational mechanism . Such a mechanism implies the 

existence of extramitochondrial pools of precursor proteins. In order to under-

stand the transfer on a molecular basis, the overall reaction must be dissected 

into a number of induvidual steps. Furthermore, the Signals on the precursors 

and the complementary structures on mitochondria which are responsible for the 

s p e c i f i c i t y of i n t r a c e l l u l a r t r a f f i c must be investigated. A number of repre-

sentative proteins should be studied to assess whether differences in the 

assembly pathway e x i s t f o r the various proteins, e.g. soluble vs. integral mem-

brane proteins, matrix vs. intermembrane proteins. We report here on the trans-

port of cytochrome c, a peripheral membrane protein at the c-side of the inner 
membrane, on that of the ADP/ATP c a r r i e r , an integral transmembrane protein of 

10 

the inner membrane , and on that of "subunit 9" of the ATPase complex, also 

an integral protein of the inner membrane. 

RESULTS AND DISCUSSION 

CYTOCHROME C. A peculiar step in the biosynthesis of cytochrome c i s the 

covalent attachement of the haem group to the apoprotein. The question whether 

the haem group i s added before or a f t e r completion of the Polypeptide chain, 

was answered i n the following way. Neurospora c e l l s were f i r s t l a b e l l e d with 
3H leucine and were then pulse l a b e l l e d with ^ S methionine at 8°C. At various 

times a f t e r the pulse c e l l s were frozen i n l i q u i d N^» disrupted and extracted. 

Antibodies s p e c i f i c for Neurospora apocytochrome c and holocytochrome c_, re-

sp e c t i v e l y , were employed to immunoprecipitäte the two components from each of 

the samples. F i g . 1 shows the l a b e l l i n g k i n e t i c s of apo- and holocytochrome c. 

This data demonstrates that apocytochrome £ i s present in the c e l l s and sug-

gests a precursor-product r e l a t i o n s h i p between apo- and holocytochrome c. 
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The haem group i s linked in a reaction with occurs p o s t t r a n s l a t i o n a l l y . 

5 25 50 
Time [Min] 

Fig. 1. Kinetics of l a b e l l i n g of apo- and holocytochrome c_ in Neurospora c e l l s . 

Neurospora c e l l s were labelled with % leucine after 12h growth. After further 
2h c e l l s were cooled to 8°C and after further lh methionine was added to 
the culture. At the time points indicated, aliquots were withdrawn, the c e l l s 
rapidly harvested, frozen i n l i q u i d N2, broken by grinding and extracted with 
Triton containing buffer. Then from each sample apo- and holocytochrome £ were 
immunoprecipitated with s p e c i f i c antibodies. Immunoprecipitates were analysed 
by SDS gel electrophoresis and r a d i o a c t i v i t i e s in the cytochrome £ peaks de-
termined. 

In order to decide whether the apocytochrome £ found in t h i s experimental 

System i s the primary t r a n s l a t i o n product or a component already processed, 

apocytochrome £ was translated in c e l l free heterologous Systems. The i n v i t r o 

product had the same size as the isolated apocytochrome £, and the amino t e r -
5 

minal sequence was i d e n t i c a l to that of holocytochrome £ . This i s in agree-
ment with recent results on the DNA sequence of the coding region f o r iso-1-

11 
cytochrome £ from yeast 

To elucidate the i n t r a c e l l u l a r pathway of apocytochrome £, the r e l a t i o n be­

tween synthesis and haem incorporation was investigated in reconstituted 

Systems. For t h i s purpose protein synthesis was carried out in homologous and he­

terologous c e l l free Systems, then postribosomal supernatants were prepared 

and incuoated with isolated mitochondria. Fig. 2 shows that apocytochrome £, 
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1 2 3 4 

Origin 

Fig. 2. Protease resistance of cy­
tochrome c_ transferred into mito-
chondria i n v i t r o . 
Neurospora poly(A)RNA was translated 
in a reticulocyte lysate i n the pre-
sence of 35$ methionine and the post-
ribosomal supernatant prepared. Two 
samples of this supernatant were i n -
cubated with mitochondria (0.5 and 1 
mg protein per ml, respectively) for 
60 min. Then mitochondria were reiso-
lated by centrifugation and resus-
pended in sucrose buffer. One half of 
each sample was treated with Prote­
inase K for 60 min at 0-4°. Then 
PMSF was added to a l l samples and 
they were lysed with 1% Triton. Im-
munoprecipitation was carried out 
with antibody against holocytochrome 
£. Immunoprecipitates were subjected 
to SDS gel electrophoresis and auto-
radiography. Arrow indicates P o s i t i ­
on of stained holocytochrome c_. 
Proteinase K was shown in a seperate 
experiment to digest holocytochrome 
£ i n Solution under the conditions 
applied here. 
Lanes 1 and 3: 0.5 mg mitochondrial 
protein per ml; lanes 2 and 4: 1 mg 
mitochondrial protein per ml; lanes 
1 and 2: control; lanes 3 and 4: 
treated with Proteinase K. 

3 H 

cpm 

1500-

1000-

500-

Apocytochrome c 

10 20 30 40 

Temperature (°C) 

— r -

50 

cpm 

-800 

500 

F i g . 3. Temperature dependence of 
the formation of holocytochrome c_ 
from apocytochrome £ i n a reconsti-
tuted system. 
A postmitochondrial supernatant of a 
Neurospora homogenate was incubated 
with 3ß leucine for 10 min. Then a lh 
150 000 x g supernatant was prepared 
and incubated for 30 min with mito­
chondria isolated from unlabelled 
c e l l s at the temperatures indicated. 
After incubation, the mixtures were 
lysed with Triton and divided into 
two equal portions. Immunoprecipita-
t i o n with antibodies s p e c i f i c for 
apo- and holocytochrome £ was per-
formed, immunoprecipitates were ana-
lysed by SDS gel electrophoresis and 
r a d i o a c t i v i t i e s i n the cytochrome c 
peaks determined. 
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p r e s e n t i n the supernatant of a r e t i c u l o c y t e l y s a t e programmed with Neurospora 

poly(A)RNA i s transferred into added i s o l a t e d Neurospora mitochondria and con-

verted to holocytochrome c. The newly formed holocytochrome £ i s r e s i s t a n t to 

added protease. This suggests translocation across the outer mitochondrial mem­

brane. The same O b s e r v a t i o n was made when a s u p e r n a t a n t of a homologous c e l l 

free System was employed. 

F i g . 3 shows the temperature dependence of the apo- to holocytochrome £ con-

version. There i s an optimum at about 25°C. Furthermore, t h i s experiment gives 

a quantitative evaluation, in d i c a t i n g that the conversion occurs with a high 

e f f i c i e n c y . More than 90% of the apo form i s converted to the holoprotein at 

optimal temperature. 

Intact mitochondria are a prerequisite for linkage (incorporation) of the 

haem moiety with the apoprotein. Addition to the supernatant of haemin Chloride, 

of detergent-lysed mitochondria, sonicated mitochondria or hypotonically pre-

swollen mitochondria does not lead to the formation of holocytochrome£(Fig. 4). 

Excess apocytochrome £ from Neurospora but not excess holocytochrome £ can com-

pete for the transfer and conversion of apocytochrome £ synthesized in the c e l l 

free System. 

F i g . 4. Dependence of transfer i n 
v i t r o of cytochrome £ on intact-
ness of isolated mitochondria. 
A postmitochondrial supernatant of 
a Neurospora homogenate was incu­
bated wi\:h % leucine for 10 min. 
Then a lh 150 000 x g supernatant 
was prepared and incubated a)with 
mitochondria isolated from c e l l s 
grown on ^ S sul f a t e , b) with mi­
tochondria as in a, but preswollen 
with 10 mM T r i s HCl, c)without 
added mitochondria, but with hae­
min Chloride (30 uM)• After incu­
bation for 30 min, Trito n was ad­
ded, immunoprecipitation and SDS 
gel electrophoresis of immunopre­
c i p i t a t e s were carr i e d out. Gels 
were s l i c e d and 3H and 3 5 S radio-
a c t i v i t i e s determined. 
Arrow indicates po s i t i o n of co-
electrophoresed holocytochrome £ 
on the gel. 
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On the basis of t h i s data we propose the following assembly pathway f o r 

cytochrome c_. Apocytochrome _c, synthesized on free polysomes i s released i n t o 

the c y t o s o l i c compartment. Its conformation i s such that i t penetrates the 

outer membrane with part of the molecule through a pore. An enzyme which cata-

lyses the formation of the thioether bridge between apocytochrome c_ and haem 

acts in the intermembrane space. The addition of the prosthetic group t r i g g e r s 

the f o l d i n g of the Polypeptide chain i n such a way, the molecule i s completely 

translocated across the outer membrane and bound to i t s functional s i t e on the 

inner membrane. 

ADP/ATP CARRIER 

The synthesis of the ADP/ATP c a r r i e r protein can be observed in homologous 

and heterologous c e l l free Systems. The t r a n s l a t i o n product (apparent molecular 

weight 32 000 ) i n a l l cases has the same electrophoretic mobility on SDS Poly­

acrylamide gels as the authentic protein i n the inner membrane. The in v i t r o 

t r a n s l a t i o n product was found in the postribosomal supernatant. Analysis by 

sucrose density gradient centrifugation and gel f i l t r a t i o n showed that the i n 

v i t r o product occurs in the form of a higher molecular weight complex and that 

i t i n t e r a c t s with detergents. 

Reconstitution experiments were c a r r i e d out to demonstrate the transmem-

branous transfer in v i t r o . Reticulocyte lysates were programmed with Neurospora 

mRNS and the postribosomal supernatant was separated a f t e r t r a n s l a t i o n . Mito­

chondria were isolated from Neurospora spheroplasts. Supernatant and mitochon­

d r i a were incubated for various time periods, then they were separated again 

by centrifugation. The mitochondrial samples were divided into two equal 

portions. One part remained untreated and the other half was treated with 

Proteinase K at 0°C. The l a t t e r treatment leads to digestion of extramitochon­

d r i a l ADP/ATP c a r r i e r but not, or only to a l i m i t e d degree, of the c a r r i e r i n 

the i n t a c t mitochondria. ADP/ATP c a r r i e r was immunoprecipitated from the super-

natants, and from Proteinase treated and control mitochondria. The immuno­

prec i p i t a t e s were analysed by SDS gel electrophoresis, and yielded one Single 

band (32 K) by autoradiography. The X-ray f i l m s were subjected to densitometry 

and the e x t i n c t i o n of the 32 K band was plotted vs. the time of incubation of 

mitochondria with supernatant. The protein i s r a p i d l y bound to the mitochondria 

(Fig. 5). In studies, in which the r a d i o a c t i v i t y was determined in s l i c e d g e l s , 

70 - 90% of the in v i t r o synthesized c a r r i e r was found to be bound to the mito­

chondrial f r a c t i o n a f t e r 60 min incubation. The appearance of protease 

r e s i s t a n t c a r r i e r i s also shown in F i g . 5. I t makes up ca. 20 - 30% of the 
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t o t a l c a r r i e r synthesized in v i t r o . 

These in v i t r o transfer experiments were also made i n the presence of 

carbonylcyanide-m-chlorophenyl-hydrazone (CCCP). As can be seen from Fig. 5, 

CCCP does not i n h i b i t the binding but i t does i n h i b i t t r a n s f e r of the c a r r i e r 

into a protease resistant p o s i t i o n . A s i m i l a r e f f e c t was observed, when the 

temperature was 1 owered to 0 - 4°C. In h i b i t i o n of transfer of ADP/ATP c a r r i e r 

by CCCP in intact c e l l s has already been reported^. Furthermore, with yeast 

c e l l s i t was found that CCCP does not i n h i b i t the synthesis but the p r o t e o l y t i c 

processing of a number of mitochondrial proteins which are synthesized as 
12 

larger precursors . 

time of incubation (min) 

Fig. 5. Transfer of ADP/ATP c a r r i e r into mitochondria in v i t r o . 
A reticulocyte lysate was prograramed with Neurospora poly(A)RNA and, after i n ­
cubation of 35g methionine, the postribosomal supernatant was prepared. Mito­
chondria isolated from Neurospora spheroplasts were resuspended i n the super­
natant. After incubation for 60 min at 25°C, supernatant and mitochondria were 
separated again by centrifugation. One half of the mitochondria were treated 
with Proteinase K at 0°C for 60 min. In a p a r a l l e l experiment, incubation of 
supernatant with mitochondria was carried out after addition of 12.5 \M CCCP. 
Then Triton was added, the ADP/ATP c a r r i e r was immunoprecipitated from a l l 
fractions, the immunoprecipitates were electrophoresed, the gels autoradio-
graphed and the X-ray films subjected to densitometry. 
A: without CCCP; B: with CCCP. -• : t o t a l ADP/ATP c a r r i e r bound to mitochon­
d r i a ; -o—o-:Proteinase K resistant ADP/ATP c a r r i e r i n mitochondria. 
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Iso l a t i o n of the ADP/ATP c a r r i e r from the membrane includes as the most im-

portant step passage of T r i t o n - s o l u b i l i z e d mitochondria over hydroxyapatite^. 

Only a few mitochondrial proteins pass through t h i s bed, the major component 

i s the ADP/ATP c a r r i e r . When the postribosomal supernatant of a r e t i c u l o c y t e 

lysate containing newly synthesized c a r r i e r and supplemented with Triton was 

passed over hydroxyapatite, the ADP/ATP c a r r i e r protein was found to be com-

pl e t e l y retained (Fig. 6). However, when mitochondria a f t e r transfer i n v i t r o 

were lysed and subjected to the same procedure, part of the c a r r i e r was detec-

ted in the eluate. This f i n d i n g supports the view that part of the c a r r i e r 

a f t e r i t s i n t e r a c t i o n with the mitochondria, i s a c t u a l l y integrated i n t o the 

membrane. 

Fig. 6. Chromatography of ADP/ATP 
ca r r i e r on hydroxyapatite before and 
after transfer i n v i t r o . 
After translation of poly(A)RNA i n a 
reticulocyte lysate i n the presence of 
35s methionine, one aliquot of the 
postribosomal supernatant was made 
1% Trito n and passed over hydroxyapa­
t i t e (lane 2). To a second aliquot, 
Carboxyatractyloside (CAT) was added 
and the sample was treated i n the same 
way as i n 2 (lane 1). A t h i r d aliquot 
was incubated with isolated mitochon­
d r i a , mitochondria were reis o l a t e d and 
incubated with CAT; then one half was 
treated with Proteinase K (lane 3) 
one half remained untreated (lane 4). 
Mitochondria were s o l u b i l i z e d and 
passed over hydroxyapatite. The elu-
ates were subjected to immunoprecipi-
tation; the immunoprecipitates were 
analysed by electrophoresis and auto-
radiography. 

These re s u l t s show that there i s an extramitochondrial ( c y t o s o l i c ) precur-

sor form of the ADP/ATP c a r r i e r which i s transferred into mitochondria in v i t r o . 

Iheyclearly confirm e a r l i e r conclusions derived from in vivo experiments, that 

the i n t r a c e l l u l a r translocation of t h i s protein occurs via a posttranslational 
1 7 

mechanism ' . They further show that integral membrane proteins can have precur-

sors e x i s t i n g in the cytosol compartment without a "signal extension" i n t h e i r 

amino acid sequence which i s cleaved upon membrane i n s e r t i o n . The complicated 

assembly pathway can be divided into at least two Steps: binding to the outer 

membrane and Integration into the inner membrane. We envision that the f i r s t 
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Step e n t a i l s a "receptor" type molecule at the surface of the outer membrane. 

The second, rather complex, step i s apparently dependent on energy, e.g. in 

the form of a membrane p o t e n t i a l . 

"SUBUNIT 9" OF ATPASE COMPLEX 

This integral membrane protein i s synthesized as a precursor possessing a 

larger apparent molecular weight, as f i r s t shown by t r a n s l a t i o n of Neurospora 
13 

poly(A)RNA in a wheat germ extract . Fig. 7 shows a comparison of the protein 

isolated from the membrane with that obtained by t r a n s l a t i o n in a r e t i c u l o c y t e 

lysate. The apparent molecular weight difference i s ca. 6 000. "Subunit 9" 

shares the property of being synthesized as a larger precursor with a number of 
9 14-18 

other mitochondrial proteins * 

F i g . 7. Synthesis in v i t r o of "subunit 
9" of ATPase complex and transfer i n v i ­
tro to mitochondria. 
A reticulocyte lysate was incubated with 
poly(A)RNA and ^5g methionine for 60 min 
and the postribosomal supernatant was 
prepared. From an aliquot "subunit 9 " 
was immunoprecipitated (lane 2). A 
second aliquot was incubated with i s o ­
lated mitochondria, then "subunit 9 " 
immunoprecipitated from the reisolated 
mitochondria (lane 3). "Subunit 9 " was 
also immunoprecipitated from mitochon­
d r i a isolated from c e l l s grown on^S 
sulfate (lane 1 ) . Immunoprecipitates 
were analysed by SDS gel electrophoresis 
and autoradiography. 

We have also evaluated f o r t h i s precursor, where and how i t i s present in 

the r e t i c u l o c y t e lysate. Similar to the ADP/ATP c a r r i e r i t was found i n the 

postribosomal supernatant, not as a monomer but with an apparent size larger or 

comparable to haemoglobin. In v i t r o t r ansfer was also accomplished by incubating 

the r e t i c u l o c y t e supernatant with isola t e d mitochondria. Not only was "subunit 

9" then found associated with mitochondria, i t was also processed to the size 

of the authentic membrane protein (Fig. 7). 
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CONCLUSIONS 

The three proteins investigated appear to have some common c h a r a c t e r i s t i c s 

with regard to t h e i r assembly pathway, but they also show s i g n i f i c a n t d i f f e r e n -

ces. A f i r s t common feature i s that they are translocated by a posttranslational 

mechanism; a second one i s that the extramitochondrial precursors d i f f e r in 

th e i r properties, in p a r t i c u l a r in t h e i r conformation, from the functional 

products; a t h i r d one i s that the extramitochondrial precursors pass through 

the cytosolic compartment. 

The type of conformational change which leads to the f i n a l product apparently 

d i f f e r s among the three proteins. In case of cytochrome c i t i s the covalent 

linkage of the haem group which leads to a d r a s t i c r e f o l d i n g of the molecule; 

in case of the ADP/ATP c a r r i e r refolding may occur i n the Step i n which the 

precursor, bound to the outer membrane, i s inserted into the inner membrane; 

and "subunit 9" probably experiences a conformational change when the a d d i t i o -

nal sequence i s cleaved. An additional sequence i s not necessary f o r the 

construction of a precursor molecule; and i t can be concluded that the Sig­

nal l i n g device which d i r e c t s a precursor protein to i t s organelle may l i e i n 

the t e r t i a r y strueture ("signal strueture"). Those proteins which do have a 

larger precursor would then contain a "signal strueture" which may or may not 

reside in the additional sequence. 

Thus, in several respects posttranslational transfer into mitochondria 
19 

(and chloroplasts ) appears to d i f f e r from cot r a n s l a t i o n a l membrane transfer 
20 

of secretory proteins aecording to the "signal hypothesis" . 
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