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POSTTRANSLATIONAL TRANSPORT OF PROTEINS IN THE ASSEMBLY OF MITOCHONDRIAL
MEMBRANES

E.-M. NEHER, M.A. HARMEY, B. HENNIG, R. ZIMMERMANN AND W. NEUPERT
Institut fiir Physiologische Chemie, Universitdt Gottingen, Humboldtallee 7,
3400 Gottingen, Germany

INTRODUCTION

Assembly of the mitochondrion involves the transfer of a large number of
proteins from the cytosol to the various subcompartments of this organelle.
During the last years we have accumulated a body of evidence that this trans-
fer occurs by a posttranslational mechanism 1'9. Such a mechanism implies the
existence of extramitochondrial pools of precursor proteins. In order to under-
stand the transfer on a molecular basis, the overall reaction must be dissected
into a number of induvidual steps. Fﬁfthermore, the signals on the precursors
and the complementary structures on mitochondria which are responsiblie for the
specificity of intracellular traffic must be investigated. A number of repre-
sentative proteins should be studied to assess whether differences in the
assembly pathway exist for the various proteins, e.g. soluble vs. integral mem-
brane proteins, matrix vs. intermembrane proteins. We report here on the trans-
port of cytochrome c, a peripheral membrane protein at the c-side of the inner
membrane, on that of the ADP/ATP carrier, an integral transmembrane protein of
the inner membrane 10, and on that of "subunit 9" of the ATPase complex, also
an integral protein of the inner membrane.

RESULTS AND DISCUSSION

CYTOCHROME C. A peculiar step in the biosynthesis of cytochrome c is the
covalent attachement of the haem group to the apoprotein. The question whether
the haem group is added before or after completion of the polypeptide chain,
was answered in the following way. Neurospora cells were first labelled with
3 355 methionine at 8°C. At various
times after the pulse cells were frozen in liquid N2, disrupted and extracted.

H leucine and were then pulse labelled with

Antibodies specific for Neurospora apocytochrome c and holocytochrome c, re-
spectively, were employed to immunoprécibitate the two components from each of
the samples. Fig. 1 shows the labelling kinetics of apo- and holocytochrome c.
This data demonstrates that apocytochrome c is present in the cells and sug-
gests a precursor-product relationship between apo- and holocytochrome c.
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The haem group is linked in a reaction with occurs posttranslationally.
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Fig. 1. Kinetics of labelling of apo- and holocytochrome c in Neurospora cells.
Neurospora cells were labelled with 3H leucine after 12h growth. After further
2h cells were cooled to 8°C and after further lh 3°S methionine was added to
the culture. At the time points indicated, aliquots were withdrawn, the cells
rapidly harvested, frozen in liquid N3, broken by grinding and extracted with
Triton containing buffer. Then from each sample apo- and holocytochrome c were
immunoprecipitated with specific antibodies. Immunoprecipitates were analysed
by SDS gel electrophoresis and radioactivities in the cytochrome c peaks de-

termined.

In order to decide whether the apocytochrome c found in this experimental
system is the primary translation product or a component already processed,
apocytochrome ¢ was translated in cell free heterologous systems. The in vitro
product had the same size as the isolated apocytochrome ¢, and the amino ter-
minal sequence was identical to that of holocytochrome c 5. This is in agree-

ment with recent results on the DNA sequence of the coding region for iso-1-
cytochrcme ¢ from yeast 11.

To elucidate the intracellular pathway of apocytochrome c, the relation be-
tween synthesis and haem incorporation was investigated in reconstituted
systems. For this purpose protein synthesis was carried out in homologous and he-
terologous cell free systems, then postribosomal supernatants were prepared

and incupated with isolated mitochondria. Fig. 2 shows that apocytochrome ¢,
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Fig. 2. Protease resistance of cy-
tochrome ¢ transferred into mito-

chondria in vitro.

Neurospora poly (A)RNA was translated
in a reticulocyte lysate in the pre-
sence of 35S methionine and the post-
ribosomal supernatant prepared. Two
samples of this supernatant were in-
cubated with mitochondria (0.5 and 1
mg protein per ml, respectively) for
60 min. Then mitochondria were reiso-
lated by centrifugation and resus-
pended in sucrose buffer. One half of
each sample was treated with prote-
inase K for 60 min at 0-4°. Then
PMSF was added to all samples and
they were lysed with 1% Triton. Im-
munoprecipitation was carried out
with antibody against holocytochrome
c. Immunoprecipitates were subjected
to SDS gel electrophoresis and auto-
radiography. Arrow indicates positi-
on of stained holocytochrome c.
Proteinase K was shown in a seperate
experiment to digest holocytochrome
¢ in solution under the conditions
applied here.

Lanes 1 and 3: 0.5 mg mitochondrial
protein per ml; lanes 2 and 4: 1 mg
mitochondrial protein per ml; lanes

1 and 2: control; lanes 3 and 4:
treated with proteinase K.

Fig. 3. Temperature dependence of
the formation of holocytochrome c
from apocytochrome ¢ in a reconsti-
tuted system.

A postmitochondrial supernatant of a
Neurospora homogenate was incubated
with 3H leucine for 10 min. Then a 1h
150000 x g supernatant was prepared
and incubated for 30 min with mito-
chondria isolated from unlabelled
cells at the temperatures indicated.
After incubation, the mixtures were
lysed with Triton and divided into
two equal portions. Immunoprecipita-
tion with antibodies specific for
apo- and holocytochrome ¢ was per-
formed, immunoprecipitates were ana-
lysed by SDS gel electrophoresis and
radioactivities in the cytochrome c
peaks determined.
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present in the supernatant of a reticulocyte lysate programmed with Neurospora
poly (A)RNA is transferred into added isolated Neurospora mitochondria and con-
verted to holocytochrome c. The newly formed holocytochrome ¢ is resistant to
added protease. This suggests translocation across the outer mitochondrial mem-
brane. The same observation was made when a supernatant of a homologous cell
free system was employed.

Fig. 3 shows the temperature dependence of the apo- to holocytochrome ¢ con-
version. There is an optimum at about 25°¢. Furthermore, this experiment gives
a quantitative evaluation, indicating that the conversion occurs with a high
efficiency. More than 90% of the apo form is converted to the holoprotein at
optimal temperature.

Intact mitochondria are a prerequisite for linkage (incorporation) of the
haem moiety with the apoprotein. Addition to the supernatant of haemin chloride,
of detergent-lysed mitochondria, sonicated mitochondria or hypotonically pre-
swollen mitochondria does not lead to the formation of holocytochromec (Fig. 4).
Excess apocytochrome ¢ from Neurospora but not excess holocytochrome ¢ can com-
pete for the transfer and conversion of apocytochrome c synthesized in the cell
free system.

— o--o Fig. 4. Dependence of transfer in
34 35s vitro of cytochrome ¢ on intact-
cpm cpm ness of isolated mitochondria.

A postmitochondrial supernatant of
a Neurospora homogenate was incu-
bated with °H leucine for 10 min.
Then a 1h 150000 x g supernatant
control mitochondria L 800 was prepared and incubated a)with

3 sup mitochondria isolated from cells
grown on S sulfate, b) with mi-
tochondria as in a, but preswollen
L 600 with 10 mM Tris HCl, c)without
added mitochondria, but with hae-
preswollen min chloride (30 puM). After incu-
mitochondria bation for 30 min, Triton was ad-
+3H sup 4,00 ded, immunoprecipitation and SDS

‘ gel electrophoresis of immunopre-

S cipitates were carried out. Gels
N were sliced and 3H and 35S radio-
I 1200 activities determined.
| -no mitochondria Arrow indicates position of co-
ﬁ +3nsup electrophoresed holocytochrome ¢

\ g ‘ on the gel.
PSSP § MORPYO,

30 S0 30 40 50 30 40 50
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On the basis of this data we propose the following assembly pathway for
cytochrome c. Apocytochrome c, synthesized on free polysomes is released into
the cytosolic compartment. Its conformation is such that it penetrates the
outer membrane with part of the molecule through a pore. An enzyme which cata-
lyses the formation of the thioether bridge between apocytochrome c and haem
acts in the intermembrane space. The addition of the prosthetic group triggers
the folding of the polypeptide chain in such a way, the molecule is completely
translocated across the outer membrane and bound to its functional site on the
inner membrane.

ADP/ATP CARRIER

The synthesis of the ADP/ATP carrier protein can be observed in homologous
and heterologous cell free systems. The translation product (apparent molecular
weight 32000 ) in all cases has the same electrophoretic mobility on SDS poly-
acrylamide gels as the authentic protein in the inner membrane. The in vitro
translation product was found in the postribosomal supernatant. Analysis by
sucrose density gradient centrifugation and gel filtration showed that the in
vitro product occurs in the form of a higher molecular weight complex and that
it interacts with detergents.

Reconstitution experiments were carried out to demonstrate the transmem-
branous transfer in vitro. Reticulocyte lysates were programmed with Neurospora
mRNS and the postribosomal supernatant was separated after translation. Mito-
chondria were isolated from Neurospora spheroplasts. Supernatant and mitochon-
dria were incubated for various time periods, then they were separated again
by centrifugation. The mitochondrial samples were divided into two equal
portions. One part remained untreated and the other half was treated with
proteinase K at 0°C. The latter treatment leads to digestion of extramitochon-
drial ADP/ATP carrier but not, or only to a limited degree, of the carrier in
the intact mitochondria. ADP/ATP carrier was immunoprecipitated from the super-
natants, and from proteinase treated and control mitochondria. The immuno-
precipitates were analysed by SDS gel electrophoresis, and yielded one single
band (32 K) by autoradiography. The X-ray films were subjected to densitometry
and the extinction of the 32 K band was plotted vs. the time of incubation of
mitochondria with supernatant. The protein is rapidly bound to the mitochondria
(Fig. 5). In studies, in which the radioactivity was determined in sliced gels,
70 - 90% of the in vitro synthesized carrier was found to be bound to the mito-
chondrial fraction after 60 min incubation. The appearance of protease
resistant carrier is also shown in Fig. 5. It makes up ca. 20 - 30% of the
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total carrier synthesized in vitro.

These in vitro transfer experiments were also made in the presence of
carbonylcyanide-m-chlorophenyl-hydrazone (CCCP). As can be seen from Fig. 5,
CCCP does not inhibit the binding but it does inhibit transfer of the carrier
into a protease resistant position. A similar effect was observed, when the
temperature was lowered to 0 - 4°C. Inhibition of transfer of ADP/ATP carrier
by CCCP in intact cells has already been reported7. Furthermore, with yeast
cells it was found that CCCP does not inhibit the synthesis but the proteolytic
processing of a number of mitochondrial proteins which are synthesized as
larger precursors12.
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Fig. 5. Transfer of ADP/ATP carrier into mitochondria in vitro.

A reticulocyte lysate was programmed with Neurospora poly (A)RNA and, after in-
cubation of 3°s methionine, the postribosomal supernatant was prepared. Mito-
chondria isolated from Neurospora spheroplasts were resuspended in the super-
natant. After incubation for 60 min at 25°C, supernatant and mitochondria were
separated again by centrifugation. One half of the mitochondria were treated
with proteinase K at 0°C for 60 min. In a parallel experiment, incubation of
supernatant with mitochondria was carried out after addition of 12.5 pM CCCP.
Then Triton was added, the ADP/ATP carrier was immunoprecipitated from all
fractions, the immunoprecipitates were electrophoresed, the gels autoradio-
graphed and the X-ray films subjected to densitometry.

A: without CCCP; B: with CCCP. &_—@ : total ADP/ATP carrier bound to mitochon-
dria; -o--o-:proteinase K resistant ADP/ATP carrier in mitochondria.
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Isolation of the ADP/ATP carrier from the membrane includes as the most im-
portant step passage of Triton-solubilized mitochondria over hydroxyapatite10.
Only a few mitochondrial proteins pass through this bed, the major component
is the ADP/ATP carrier. When the postribosomal supernatant of a reticulocyte
lysate containing newly synthesized carrier and supplemented with Triton was
passed over hydroxyapatite, the ADP/ATP carrier protein was found to be com-
pletely retained (Fig. 6). However, when mitochondria after transfer in vitro
were lysed and subjected to the same procedure, part of the carrier was detec-
ted in the eluate. This finding supports the view that part of the carrier
after its interaction with the mitochondria, is actually integrated into the
membrane.

Fig. 6. Chromatography of ADP/ATP
1 2 3 4 carrier on hydroxyapatite before and
after transfer in vitro.

— After translation of poly(A)RNA in a
0r|g|n reticulocyte lysate in the presence of
355 methionine, one aliquot of the
postribosomal supernatant was made
1% Triton and passed over hydroxyapa-
tite (lane 2). To a second aliquot,
Carboxyatractyloside (CAT) was added
and the sample was treated in the same
‘ way as in 2 (lane 1). A third aliquot
A— was incubated with isolated mitochon-
. ) dria, mitochondria were reisolated and
T incubated with CAT; then one half was
& i treated with proteinase K (lane 3)
one half remained untreated (lane 4).
Mitochondria were solubilized and
passed over hydroxyapatite. The elu-
ates were subjected to immunoprecipi-
tation; the immunoprecipitates were
! analysed by electrophoresis and auto-
I radiography.

These results show that there is an extramitochondrial (cytosolic) precur-
sor form of the ADP/ATP carrier which is transferred into mitochondria in vitro.
They clearly confirm earlier conclusions derived from in vivo experiments, that
the intracellular translocation of this protein occurs via a posttranslational
mechanism1’7. They further show that integral membrane proteins can have precur-
sors existing in the cytosol compartment without a "signal extension" in their
amino acid sequence which is cleaved upon membrane insertion. The complicated
assembly pathway can be divided into at least two steps: binding to the outer

membrane and integration into the inner membrane. We envision that the first
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step entails a "receptor" type molecule at the surface of the outer membrane.
The second, rather complex, step is apparently dependent on energy, e.g. in
the form of a membrane potential.

"SUBUNIT 9" OF ATPASE COMPLEX

This integral membrane protein is synthesized as a precursor possessing a
larger apparent molecular weight, as first shown by translation of Neurospora
poly(A)RNA in a wheat germ extract13. Fig. 7 shows a comparison of the protein
isolated from the membrane with that obtained by translation in a reticulocyte
lysate. The apparent molecular weight difference is ca. 6 000. "“Subunit 9"

shares the property of being synthesized as a larger precursor with a number of

other mitochondrial proteins % 14-18.

Fig. 7. Synthesis in vitro of "subunit
9" of ATPase complex and transfer in vi-
tro to mitochondria.

A reticulocyte lysate was incubated with
poly (A)RNA and 35S methionine for 60 min
and the postribosomal supernatant was
prepared. From an aliquot "subunit 9"
was immunoprecipitated (lane 2). A
second aliquot was incubated with iso-
lated mitochondria, then "subunit 9"
immunoprecipitated from the reisolated
mitochondria (lane 3). "Subunit 9" was
also immunoprecipitated from mitochon-
dria isolated from cells grown on3ss
sulfate (lane 1). Immunoprecipitates
were analysed by SDS gel electrophoresis
and autoradiography.

We have also evaluated for this precursor, where and how it is present in
the reticulocyte lysate. Similar to the ADP/ATP carrier it was found in the
postribosomal supernatant, not as a monomer but with an apparent size larger or
comparable to haemoglobin. In vitro transfer was also accomplished by incubating
the reticulocyte supernatant with isolated mitochondria. Not only was "subunit
9" then found associated with mitochondria, it was also processed to the size
of the authentic membrane protein (Fig. 7).
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CONCLUSIONS

The three proteins investigated appear to have some common characteristics
with regard to their assembly pathway, but they also show significant differen-
ces. A first common feature is that they are translocated by a posttranslational
mechanism; a second one is that the extramitochondrial precursors differ in
their properties, in particular in their conformation, from the functional
products; a third one is that the extramitochondrial precursors pass through
the cytosolic compartment.

The type of conformational change which leads to the final product apparently
differs among the three proteins. In case of cytochrome ¢ it is the covalent
Tinkage of the haem group which leads to a drastic refolding of the molecule;
in case of the ADP/ATP carrier refolding may occur in the step in which the
precursor, bound to the outer membrane, is inserted into the inner membrane;
and "subunit 9" probably experiences a conformational change when the additio-
nal sequence is cleaved. An additional sequence is not necessary for the
construction of a precursor molecule; and it can be concluded that the sig-
nalling device which directs a precursor protein to its organelle may lie in
the tertiary structure ("signal structure"). Those proteins which do have a
larger precursor would then contain a "signal structure" which may or may not
reside in the additional sequence.

Thus, in several respects posttranslational transfer into mitochondria
(and chloroplasts 19) appears to differ from cotranslational membrane transfer
of secretory proteins according to the "signal hypothesis"zo.
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