

# DEVELOPMENTS IN GENETICS

## Volume 2

**Volume 1** Plasmids of Medical, Environmental and Commercial Importance  
K.N. Timmis and A. Pühler editors

**Volume 2** The Organization and Expression of the Mitochondrial Genome  
A.M. Kroon and C. Saccone editors

# THE ORGANIZATION AND EXPRESSION OF THE MITOCHONDRIAL GENOME

---

Proceedings of the 12th International Bari Conference on  
the Organization and Expression of the Mitochondrial  
Genome held in Martina Franca, Italy, 23-28 June, 1980

*Editors*

A.M. KROON  
*and*  
C. SACCOME



1980

ELSEVIER/NORTH-HOLLAND BIOMEDICAL PRESS  
AMSTERDAM · NEW YORK · OXFORD

© 1980 Elsevier/North-Holland Biomedical Press

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN for this volume: 0-444-80276-2

ISBN for the series: 0-444-80160-X

Published by:  
Elsevier/North-Holland Biomedical Press  
335 Jan van Galenstraat, P.O. Box 211  
Amsterdam, The Netherlands

Sole distributors for the USA and Canada:  
Elsevier North Holland Inc.  
52 Vanderbilt Avenue  
New York, N.Y. 10017

**Library of Congress Cataloging in Publication Data**

International Bari Conference on the Organization and  
Expression of the Mitochondrial Genome, 12th,  
Martina Franca, Italy, 1980.  
The organization and expression of the mitochondrial  
genome.

(Developments in genetics ; v. 2)  
Bibliography: p.  
Includes indexes.  
1. Mitochondria--Congresses. 2. Extrachromosomal  
DNA--Congresses. I. Kroon, A. M. II. Saccone, C.  
III. Title. IV. Series.  
QH603.M5154 1980 574.87'342 80-20398  
ISBN 0-444-80276-2 (Elsevier North Holland)

Printed in The Netherlands



## CONTENTS

|                                                                                                                                                                                                                                                                                            |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Introduction<br>E. Quagliariello                                                                                                                                                                                                                                                           | V  |
| The organization and expression of the mitochondrial genome:<br>Introductory remarks and scope<br>C. Saccone and A.M. Kroon                                                                                                                                                                | 1  |
| MITOCHONDRIAL GENE ORGANIZATION                                                                                                                                                                                                                                                            |    |
| The kinetoplast DNA of <i>Trypanosoma brucei</i> : Structure, evolution,<br>transcription, mutants<br>P. Borst, J.H.J. Hoeijmakers, A.C.C. Frasch, A. Snijders,<br>J.W.G. Janssen and F. Fase-Fowler                                                                                       | 7  |
| The petite mutation: Excision sequences, replication origins<br>and suppressivity<br>G. Bernardi, G. Baldacci, G. Bernardi, G. Faugeron-Fonty,<br>C. Gaillard, R. Goursot, A. Huyard, M. Mangin, R. Marotta<br>and M. de Zamaroczy                                                         | 21 |
| Yeast mitochondria minilysates and their use to screen a<br>collection of hypersuppressive $\rho$ mutants<br>B. Dujon and H. Blanc                                                                                                                                                         | 33 |
| Split genes on yeast mitochondrial DNA: Organization and<br>expression<br>L.A. Grivell, A.C. Arnberg, L.A.M. Hensgens, E. Roosendaal,<br>G.J.B. van Ommen and E.F.J. van Bruggen                                                                                                           | 37 |
| Sequence homologies between the mitochondrial DNAs of yeast and<br><i>Neurospora crassa</i><br>E. Agsteribbe, J. Samallo, H. De Vries, L.A.M. Hensgens<br>and L.A. Grivell                                                                                                                 | 51 |
| Genetic organization of mitochondrial DNA of <i>Kluyveromyces lactis</i><br>G.S.P. Groot and N. van Harten-Loosbroek                                                                                                                                                                       | 61 |
| Mitochondrial mit <sup>-</sup> mutations and their influence on spore formation<br>in <i>Saccharomyces cerevisiae</i><br>E. Pratje, S. Schnierer and G. Michaelis                                                                                                                          | 65 |
| Selection of a new class of cytoplasmic diuron-resistant mutations in<br><i>Saccharomyces cerevisiae</i> : Tentative explanation for unexpected<br>genetic and phenotypic properties of the mitochondrial cytochrome<br><i>b</i> split gene in these mutants<br>A.M. Colson and L. Wouters | 71 |
| Phenotypic and genetic changes in yeast cells transformed with<br>mitochondrial DNA segments joint to 2-micron plasmid DNA<br>P. Nagley, B.A. Atchison, R.J. Devenish, P.R. Vaughan and<br>A.W. Linnane                                                                                    | 75 |

|                                                                                                                                                                                                                                                            |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The mitochondrial genome of <i>Aspergillus nidulans</i><br>H. Küntzel, N. Basak, G. Imam, H. Köchel, C.M. Lazarus,<br>H. Lünsdorf, E. Bartrik, A. Bidermann and P.P. Stępień                                                                               | 79  |
| Amplification of a common mitochondrial DNA sequence in three new<br>ragged mutants of <i>Aspergillus amstelodami</i><br>C.M. Lazarus and H. Küntzel                                                                                                       | 87  |
| Senescence specific DNA of <i>Podospora anserina</i><br>Its variability and its relation with mitochondrial DNA<br>C. Vierry, O. Begel, A.M. Keller, A. Raynal and L. Belcour                                                                              | 91  |
| Cloning of senescent mitochondrial DNA from <i>Podospora anserina</i> :<br>A beginning<br>D.J. Cummings, J.L. Laping and P.E. Nolan                                                                                                                        | 97  |
| The remarkable features of gene organization and expression of<br>human mitochondrial DNA<br>G. Attardi, P. Cantatore, E. Ching, S. Crews, R. Gelfand,<br>C. Merkel, J. Montoya and D. Ojala                                                               | 103 |
| Two studies on mammalian mtDNA: Evolutionary aspects; enzymology<br>of replication<br>F.J. Castora, G.G. Brown and M.V. Simpson                                                                                                                            | 121 |
| Variation in bovine mitochondrial DNAs between maternally<br>related animals<br>P.J. Laipis and W.W. Hauswirth                                                                                                                                             | 125 |
| Avian mtDNA: Structure, organization and evolution<br>K.R. Glaus, H.P. Zassenhaus, N.S. Fechheimer and P.S. Perlman                                                                                                                                        | 131 |
| <b>MITOCHONDRIAL GENE CHARACTERIZATION</b>                                                                                                                                                                                                                 |     |
| Cytochrome <i>b</i> messenger RNA maturase encoded in an intron regulates<br>the expression of the split gene: I. Physical location and base<br>sequence of intron mutations<br>C. Jacq, J. Lazowska and P.P. Slonimski                                    | 139 |
| Cytochrome <i>b</i> messenger RNA maturase encoded in an intron regulates<br>the expression of the split gene: II. Trans- and cis-acting<br>mechanisms of mRNA splicing<br>A. Lamouroux, P. Pajot, A. Kochko, A. Halbreich and<br>P.P. Slonimski           | 153 |
| Cytochrome <i>b</i> messenger RNA maturase encoded in an intron regulates<br>the expression of the split gene: III. Genetic and phenotypic<br>suppression of intron mutations<br>G. Dujardin, O. Groudinsky, A. Kruszewska, P. Pajot and<br>P.P. Slonimski | 157 |
| Alternate forms of the cob/box gene: Some new observations<br>P.S. Perlman, H.R. Mahler, S. Dhawale, D. Hanson and<br>N.J. Alexander                                                                                                                       | 161 |

|                                                                                                                                                                                          |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Processing of the mRNA for apocytochrome <i>b</i> in yeast depends on a product encoded by an intervening sequence<br>H. Bechmann, A. Haid, C. Schmelzer, R.J. Schweyen and F. Kaudewitz | 173 |
| Predicted secondary structures of the hypothetical box 3 RNA maturase<br>R.A. Reid and L. Skiera                                                                                         | 179 |
| Yeast mitochondrial cytochrome oxidase genes<br>A. Tzagoloff, S. Bonitz, G. Coruzzi, B. Thalenfeld and G. Macino                                                                         | 181 |
| Transcripts of the oxi-1 locus are asymmetric and may be spliced<br>T.D. Fox and P. Boerner                                                                                              | 191 |
| The specification of var 1 polypeptide by the <i>var 1</i> determinant<br>R.A. Butow, I.C. Lopez, H.-P. Chang and F. Farrelly                                                            | 195 |
| The nucleotide sequence of the tsm8-region on yeast mitochondrial DNA<br>W. Bandlow, U. Baumann and P. Schnittchen                                                                       | 207 |
| Further characterization of rat-liver mitochondrial DNA<br>C. Saccone, P. Cantatore, G. Pepe, M. Holtrop, R. Gallerani, C. Quagliariello, G. Gadaleta and A.M. Kroon                     | 211 |
| Nucleotide sequences of the cloned EcoA fragment of rat mitochondrial DNA<br>M. Kobayashi, K. Yaginuma, T. Seki and K. Koike                                                             | 221 |
| Sequence and structure of mitochondrial ribosomal RNA from hamster cells<br>D.T. Dubin and R.J. Baer                                                                                     | 231 |
| The adenine and thymine - rich region of <i>Drosophila</i> mitochondrial DNA molecules<br>D.R. Wolstenholme, C.M.R. Fauron and J.M. Goddard                                              | 241 |
| MITOCHONDRIAL REPLICATION, TRANSCRIPTION AND TRANSLATION                                                                                                                                 |     |
| Expression of the mitochondrial genome of yeast<br>A.W. Linnane, A.M. Astin, M.W. Beilharz, C.G. Bingham, W.M. Choo, G.S. Cobon, S. Marzuki, P. Nagley and H. Roberts                    | 253 |
| Transcription and processing of yeast mitochondrial RNA<br>D. Levens, A. Lustig, B. Ticho, R. Synenki, S. Merten, T. Christianson, J. Locker and M. Rabinowitz                           | 265 |
| Expression of the mouse and human mitochondrial DNA genome<br>J. Battey, P. Nagley, R.A. Van Etten, M.W. Walberg and D.A. Clayton                                                        | 277 |
| Mitochondrial DNA polymerase of eukaryotic cells<br>U. Bertazzoni and A.I. Scovassi                                                                                                      | 287 |
| Mitochondrial ribosome assembly and RNA splicing in <i>Neurospora crassa</i><br>A.M. Lambowitz                                                                                           | 291 |

|                                                                                                                                                                                                                                                       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Functional and structural roles of proteins in mammalian mitochondrial ribosomes<br>T.W. O'Brien, N.D. Denslow, T.O. Harville, R.A. Hessler<br>and D.E. Matthews                                                                                      | 301 |
| <i>Neurospora crassa</i> mitochondrial tRNAs: Structure, codon reading patterns, gene organization and unusual sequences flanking the tRNA genes<br>S. Yin, J. Heckman, J. Sarnoff and U.L. RajBhandary                                               | 307 |
| Nucleotide sequence and gene localization of yeast mitochondrial initiator tRNA <sup>Met</sup> and UGA-decoding tRNA <sup>Trp</sup><br>R.P. Martin, A.P. Sibler, R. Bordonné, J. Canaday and G. Dirheimer                                             | 311 |
| Partial purification of polysomal factors essential for optimal rates of yeast mitochondrial protein synthesis<br>E. Finzi and D.S. Beattie                                                                                                           | 315 |
| Biosynthesis of mitochondrial proteins in isolated hepatocytes<br>B.D. Nelson, J. Kolarov, V. Joste, A. Weilburski and I. Mendel-Hartvig                                                                                                              | 319 |
| DEVELOPMENTAL AND REGULATORY ASPECTS OF MITOCHONDRIAL BIOGENESIS                                                                                                                                                                                      |     |
| Biogenesis of cytochrome <i>c</i> oxidase in <i>Neurospora crassa</i> : Interactions between mitochondrial and nuclear regulatory and structural genes<br>H. Bertrand                                                                                 | 325 |
| Characterization of a mitochondrial "stopper" mutant of <i>Neurospora crassa</i> : Deletions and rearrangements in the mitochondrial DNA result in disturbed assembly of respiratory chain components<br>H. De Vries, J.C. De Jonge and P. Van't Sant | 333 |
| Characterization of an uncoupler resistant Chinese hamster ovary cell line<br>K. B. Freeman, R.W. Yatscoff and J.R. Mason                                                                                                                             | 343 |
| Release from glucose repression and mitochondrial protein synthesis in <i>Saccharomyces cerevisiae</i><br>M. Agostinelli, C. Falcone and L. Frontali                                                                                                  | 347 |
| Interactions between mitochondria and their cellular environment in a cytoplasmic mutant of <i>Tetrahymena pyriformis</i> resistant to chloramphenicol<br>R. Perasso, J.J. Curgy, F. Iftode and J. André                                              | 355 |
| Mitochondrial biogenesis in the cotyledons of <i>V. faba</i> during germination<br>L.K. Dixon, B.G. Forde, J. Forde and C.J. Leaver                                                                                                                   | 365 |
| Defect in heme <i>a</i> biosynthesis in <i>oxi</i> mutants of the yeast <i>Saccharomyces cerevisiae</i><br>E. Keyhani and J. Keyhani                                                                                                                  | 369 |

|                                                                                                                                                                                                                            |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The assembly pathway of nuclear gene products in the mitochondrial ATPase complex<br>R. Todd, T. Griesenbeck, P. McAda, M. Buck and M. Douglas                                                                             | 375 |
| Modified mitochondrial translation products in nuclear mutant of the yeast <i>Schizosaccharomyces pombe</i> lacking the $\beta$ subunit of the mitochondrial F <sub>1</sub> ATPase<br>M. Boutry and A. Goffeau             | 383 |
| Regulation of the synthesis of mitochondrial proteins: Is there a repressor?<br>P. Van't Sant, J.F.C. Mak and A.M. Kroon                                                                                                   | 387 |
| Regulation of mitochondrial genomic activity in sea urchin eggs<br>A.M. Rinaldi, I. Salcher-Cillari, M. Sollazzo and V. Mutolo                                                                                             | 391 |
| Effect of hypothyroidism on some aspects of mitochondrial biogenesis and differentiation in the cerebellum of developing rats<br>M.N. Gadaleta, G.R. Minervini, M. Renis, G. Zacheo, T. Bleve, I. Serra and A.M. Giuffrida | 395 |
| Assembly and structure of cytochrome oxidase in <i>Neurospora crassa</i><br>S. Werner, W. Machleidt, H. Bertrand and G. Wild                                                                                               | 399 |
| Posttranslational transport of proteins in the assembly of mitochondrial membranes<br>E.M. Neher, M.A. Harmey, B. Hennig, R. Zimmermann and W. Neupert                                                                     | 413 |
| A matrix-localized mitochondrial protease processing cytoplasmically-made precursors to mitochondrial proteins<br>P. Boehni, S. Gasser, C. Leaver and G. Schatz                                                            | 423 |
| Protease and inhibitor resistance of aspartate aminotransferase sequestered in mitochondria and the FCCP - dependence of its uptake<br>E. Marra, S. Passarella, S. Doonan, E. Quagliariello and C. Saccone                 | 435 |
| Concluding remarks<br>C. Saccone and A.M. Kroon                                                                                                                                                                            | 439 |
| Author index                                                                                                                                                                                                               | 445 |
| Subject index                                                                                                                                                                                                              | 449 |

## POSTTRANSLATIONAL TRANSPORT OF PROTEINS IN THE ASSEMBLY OF MITOCHONDRIAL MEMBRANES

E.-M. NEHER, M.A. HARMY, B. HENNIG, R. ZIMMERMANN AND W. NEUPERT

Institut für Physiologische Chemie, Universität Göttingen, Humboldtallee 7,  
3400 Göttingen, Germany

### INTRODUCTION

Assembly of the mitochondrion involves the transfer of a large number of proteins from the cytosol to the various subcompartments of this organelle. During the last years we have accumulated a body of evidence that this transfer occurs by a posttranslational mechanism <sup>1-9</sup>. Such a mechanism implies the existence of extramitochondrial pools of precursor proteins. In order to understand the transfer on a molecular basis, the overall reaction must be dissected into a number of individual steps. Furthermore, the signals on the precursors and the complementary structures on mitochondria which are responsible for the specificity of intracellular traffic must be investigated. A number of representative proteins should be studied to assess whether differences in the assembly pathway exist for the various proteins, e.g. soluble vs. integral membrane proteins, matrix vs. intermembrane proteins. We report here on the transport of cytochrome c, a peripheral membrane protein at the c-side of the inner membrane, on that of the ADP/ATP carrier, an integral transmembrane protein of the inner membrane <sup>10</sup>, and on that of "subunit 9" of the ATPase complex, also an integral protein of the inner membrane.

### RESULTS AND DISCUSSION

CYTOCHROME C. A peculiar step in the biosynthesis of cytochrome c is the covalent attachment of the haem group to the apoprotein. The question whether the haem group is added before or after completion of the polypeptide chain, was answered in the following way. *Neurospora* cells were first labelled with <sup>3</sup>H leucine and were then pulse labelled with <sup>35</sup>S methionine at 8°C. At various times after the pulse cells were frozen in liquid N<sub>2</sub>, disrupted and extracted. Antibodies specific for *Neurospora* apocytochrome c and holocytochrome c, respectively, were employed to immunoprecipitate the two components from each of the samples. Fig. 1 shows the labelling kinetics of apo- and holocytochrome c. This data demonstrates that apocytochrome c is present in the cells and suggests a precursor-product relationship between apo- and holocytochrome c.

The haem group is linked in a reaction with occurs posttranslationally.



Fig. 1. Kinetics of labelling of apo- and holocytochrome c in *Neurospora* cells.

*Neurospora* cells were labelled with  $^3\text{H}$  leucine after 12h growth. After further 2h cells were cooled to  $8^\circ\text{C}$  and after further 1h  $^{35}\text{S}$  methionine was added to the culture. At the time points indicated, aliquots were withdrawn, the cells rapidly harvested, frozen in liquid  $\text{N}_2$ , broken by grinding and extracted with Triton containing buffer. Then from each sample apo- and holocytochrome c were immunoprecipitated with specific antibodies. Immunoprecipitates were analysed by SDS gel electrophoresis and radioactivities in the cytochrome c peaks determined.

In order to decide whether the apocytochrome c found in this experimental system is the primary translation product or a component already processed, apocytochrome c was translated in cell free heterologous systems. The *in vitro* product had the same size as the isolated apocytochrome c, and the amino terminal sequence was identical to that of holocytochrome c<sup>5</sup>. This is in agreement with recent results on the DNA sequence of the coding region for iso-1-cytochrome c from yeast<sup>11</sup>.

To elucidate the intracellular pathway of apocytochrome c, the relation between synthesis and haem incorporation was investigated in reconstituted systems. For this purpose protein synthesis was carried out in homologous and heterologous cell free systems, then postribosomal supernatants were prepared and incubated with isolated mitochondria. Fig. 2 shows that apocytochrome c,



Fig. 2. Protease resistance of cytochrome c transferred into mitochondria in vitro.

Neurospora poly(A)RNA was translated in a reticulocyte lysate in the presence of  $^{35}\text{S}$  methionine and the postribosomal supernatant prepared. Two samples of this supernatant were incubated with mitochondria (0.5 and 1 mg protein per ml, respectively) for 60 min. Then mitochondria were reisolated by centrifugation and resuspended in sucrose buffer. One half of each sample was treated with proteinase K for 60 min at 0-4°. Then PMSF was added to all samples and they were lysed with 1% Triton. Immunoprecipitation was carried out with antibody against holocytochrome c. Immunoprecipitates were subjected to SDS gel electrophoresis and autoradiography. Arrow indicates position of stained holocytochrome c. Proteinase K was shown in a separate experiment to digest holocytochrome c in solution under the conditions applied here.

Lanes 1 and 3: 0.5 mg mitochondrial protein per ml; lanes 2 and 4: 1 mg mitochondrial protein per ml; lanes 1 and 2: control; lanes 3 and 4: treated with proteinase K.



Fig. 3. Temperature dependence of the formation of holocytochrome c from apocytochrome c in a reconstituted system.

A postmitochondrial supernatant of a Neurospora homogenate was incubated with  $^3\text{H}$  leucine for 10 min. Then a 1 h 150 000 x g supernatant was prepared and incubated for 30 min with mitochondria isolated from unlabelled cells at the temperatures indicated. After incubation, the mixtures were lysed with Triton and divided into two equal portions. Immunoprecipitation with antibodies specific for apo- and holocytochrome c was performed, immunoprecipitates were analysed by SDS gel electrophoresis and radioactivities in the cytochrome c peaks determined.

present in the supernatant of a reticulocyte lysate programmed with *Neurospora* poly(A)RNA is transferred into added isolated *Neurospora* mitochondria and converted to holocytochrome c. The newly formed holocytochrome c is resistant to added protease. This suggests translocation across the outer mitochondrial membrane. The same observation was made when a supernatant of a homologous cell free system was employed.

Fig. 3 shows the temperature dependence of the apo- to holocytochrome c conversion. There is an optimum at about 25°C. Furthermore, this experiment gives a quantitative evaluation, indicating that the conversion occurs with a high efficiency. More than 90% of the apo form is converted to the holoprotein at optimal temperature.

Intact mitochondria are a prerequisite for linkage (incorporation) of the haem moiety with the apoprotein. Addition to the supernatant of haemin chloride, of detergent-lysed mitochondria, sonicated mitochondria or hypotonically pre-swollen mitochondria does not lead to the formation of holocytochrome c (Fig. 4). Excess apocytochrome c from *Neurospora* but not excess holocytochrome c can compete for the transfer and conversion of apocytochrome c synthesized in the cell free system.



Fig. 4. Dependence of transfer in vitro of cytochrome c on intactness of isolated mitochondria.

A postmitochondrial supernatant of a *Neurospora* homogenate was incubated with  $^3\text{H}$  leucine for 10 min. Then a 1 h 150 000  $\times$  g supernatant was prepared and incubated a) with mitochondria isolated from cells grown on  $^{35}\text{S}$  sulfate, b) with mitochondria as in a, but preswollen with 10 mM Tris HCl, c) without added mitochondria, but with haemin chloride (30  $\mu\text{M}$ ). After incubation for 30 min, Triton was added, immunoprecipitation and SDS gel electrophoresis of immunoprecipitates were carried out. Gels were sliced and  $^3\text{H}$  and  $^{35}\text{S}$  radioactivities determined. Arrow indicates position of co-electrophoresed holocytochrome c on the gel.

On the basis of this data we propose the following assembly pathway for cytochrome c. Apocytochrome c, synthesized on free polysomes is released into the cytosolic compartment. Its conformation is such that it penetrates the outer membrane with part of the molecule through a pore. An enzyme which catalyses the formation of the thioether bridge between apocytochrome c and haem acts in the intermembrane space. The addition of the prosthetic group triggers the folding of the polypeptide chain in such a way, the molecule is completely translocated across the outer membrane and bound to its functional site on the inner membrane.

#### ADP/ATP CARRIER

The synthesis of the ADP/ATP carrier protein can be observed in homologous and heterologous cell free systems. The translation product (apparent molecular weight 32 000) in all cases has the same electrophoretic mobility on SDS polyacrylamide gels as the authentic protein in the inner membrane. The *in vitro* translation product was found in the postribosomal supernatant. Analysis by sucrose density gradient centrifugation and gel filtration showed that the *in vitro* product occurs in the form of a higher molecular weight complex and that it interacts with detergents.

Reconstitution experiments were carried out to demonstrate the transmembranous transfer *in vitro*. Reticulocyte lysates were programmed with *Neurospora* mRNS and the postribosomal supernatant was separated after translation. Mitochondria were isolated from *Neurospora* spheroplasts. Supernatant and mitochondria were incubated for various time periods, then they were separated again by centrifugation. The mitochondrial samples were divided into two equal portions. One part remained untreated and the other half was treated with proteinase K at 0°C. The latter treatment leads to digestion of extramitochondrial ADP/ATP carrier but not, or only to a limited degree, of the carrier in the intact mitochondria. ADP/ATP carrier was immunoprecipitated from the supernatants, and from proteinase treated and control mitochondria. The immunoprecipitates were analysed by SDS gel electrophoresis, and yielded one single band (32 K) by autoradiography. The X-ray films were subjected to densitometry and the extinction of the 32 K band was plotted vs. the time of incubation of mitochondria with supernatant. The protein is rapidly bound to the mitochondria (Fig. 5). In studies, in which the radioactivity was determined in sliced gels, 70 - 90% of the *in vitro* synthesized carrier was found to be bound to the mitochondrial fraction after 60 min incubation. The appearance of protease resistant carrier is also shown in Fig. 5. It makes up ca. 20 - 30% of the

total carrier synthesized in vitro.

These in vitro transfer experiments were also made in the presence of carbonylcyanide-*m*-chlorophenyl-hydrazone (CCCP). As can be seen from Fig. 5, CCCP does not inhibit the binding but it does inhibit transfer of the carrier into a protease resistant position. A similar effect was observed, when the temperature was lowered to 0 - 4°C. Inhibition of transfer of ADP/ATP carrier by CCCP in intact cells has already been reported<sup>7</sup>. Furthermore, with yeast cells it was found that CCCP does not inhibit the synthesis but the proteolytic processing of a number of mitochondrial proteins which are synthesized as larger precursors<sup>12</sup>.



Fig. 5. Transfer of ADP/ATP carrier into mitochondria in vitro.

A reticulocyte lysate was programmed with *Neurospora* poly(A)RNA and, after incubation of  $^{35}\text{S}$  methionine, the postribosomal supernatant was prepared. Mitochondria isolated from *Neurospora* spheroplasts were resuspended in the supernatant. After incubation for 60 min at 25°C, supernatant and mitochondria were separated again by centrifugation. One half of the mitochondria were treated with proteinase K at 0°C for 60 min. In a parallel experiment, incubation of supernatant with mitochondria was carried out after addition of 12.5  $\mu\text{M}$  CCCP. Then Triton was added, the ADP/ATP carrier was immunoprecipitated from all fractions, the immunoprecipitates were electrophoresed, the gels autoradiographed and the X-ray films subjected to densitometry.

A: without CCCP; B: with CCCP.  $\bullet$ — $\bullet$ : total ADP/ATP carrier bound to mitochondria;  $-o--o-$ : proteinase K resistant ADP/ATP carrier in mitochondria.

Isolation of the ADP/ATP carrier from the membrane includes as the most important step passage of Triton-solubilized mitochondria over hydroxyapatite<sup>10</sup>. Only a few mitochondrial proteins pass through this bed, the major component is the ADP/ATP carrier. When the postribosomal supernatant of a reticulocyte lysate containing newly synthesized carrier and supplemented with Triton was passed over hydroxyapatite, the ADP/ATP carrier protein was found to be completely retained (Fig. 6). However, when mitochondria after transfer *in vitro* were lysed and subjected to the same procedure, part of the carrier was detected in the eluate. This finding supports the view that part of the carrier after its interaction with the mitochondria, is actually integrated into the membrane.



Fig. 6. Chromatography of ADP/ATP carrier on hydroxyapatite before and after transfer *in vitro*.

After translation of poly(A)RNA in a reticulocyte lysate in the presence of <sup>35</sup>S methionine, one aliquot of the postribosomal supernatant was made 1% Triton and passed over hydroxyapatite (lane 2). To a second aliquot, Carboxyatractyloside (CAT) was added and the sample was treated in the same way as in 2 (lane 1). A third aliquot was incubated with isolated mitochondria, mitochondria were reisolated and incubated with CAT; then one half was treated with proteinase K (lane 3) one half remained untreated (lane 4). Mitochondria were solubilized and passed over hydroxyapatite. The eluates were subjected to immunoprecipitation; the immunoprecipitates were analysed by electrophoresis and autoradiography.

These results show that there is an extramitochondrial (cytosolic) precursor form of the ADP/ATP carrier which is transferred into mitochondria *in vitro*. They clearly confirm earlier conclusions derived from *in vivo* experiments, that the intracellular translocation of this protein occurs via a posttranslational mechanism<sup>1,7</sup>. They further show that integral membrane proteins can have precursors existing in the cytosol compartment without a "signal extension" in their amino acid sequence which is cleaved upon membrane insertion. The complicated assembly pathway can be divided into at least two steps: binding to the outer membrane and integration into the inner membrane. We envision that the first

step entails a "receptor" type molecule at the surface of the outer membrane. The second, rather complex, step is apparently dependent on energy, e.g. in the form of a membrane potential.

#### "SUBUNIT 9" OF ATPASE COMPLEX

This integral membrane protein is synthesized as a precursor possessing a larger apparent molecular weight, as first shown by translation of *Neurospora* poly(A)RNA in a wheat germ extract<sup>13</sup>. Fig. 7 shows a comparison of the protein isolated from the membrane with that obtained by translation in a reticulocyte lysate. The apparent molecular weight difference is ca. 6 000. "Subunit 9" shares the property of being synthesized as a larger precursor with a number of other mitochondrial proteins<sup>9, 14-18</sup>.



Fig. 7. Synthesis in vitro of "subunit 9" of ATPase complex and transfer in vitro to mitochondria.

A reticulocyte lysate was incubated with poly(A)RNA and <sup>35</sup>S methionine for 60 min and the postribosomal supernatant was prepared. From an aliquot "subunit 9" was immunoprecipitated (lane 2). A second aliquot was incubated with isolated mitochondria, then "subunit 9" immunoprecipitated from the reisolated mitochondria (lane 3). "Subunit 9" was also immunoprecipitated from mitochondria isolated from cells grown on <sup>35</sup>S sulfate (lane 1). Immunoprecipitates were analysed by SDS gel electrophoresis and autoradiography.

We have also evaluated for this precursor, where and how it is present in the reticulocyte lysate. Similar to the ADP/ATP carrier it was found in the postribosomal supernatant, not as a monomer but with an apparent size larger or comparable to haemoglobin. In vitro transfer was also accomplished by incubating the reticulocyte supernatant with isolated mitochondria. Not only was "subunit 9" then found associated with mitochondria, it was also processed to the size of the authentic membrane protein (Fig. 7).

## CONCLUSIONS

The three proteins investigated appear to have some common characteristics with regard to their assembly pathway, but they also show significant differences. A first common feature is that they are translocated by a posttranslational mechanism; a second one is that the extramitochondrial precursors differ in their properties, in particular in their conformation, from the functional products; a third one is that the extramitochondrial precursors pass through the cytosolic compartment.

The type of conformational change which leads to the final product apparently differs among the three proteins. In case of cytochrome *c* it is the covalent linkage of the haem group which leads to a drastic refolding of the molecule; in case of the ADP/ATP carrier refolding may occur in the step in which the precursor, bound to the outer membrane, is inserted into the inner membrane; and "subunit 9" probably experiences a conformational change when the additional sequence is cleaved. An additional sequence is not necessary for the construction of a precursor molecule; and it can be concluded that the signalling device which directs a precursor protein to its organelle may lie in the tertiary structure ("signal structure"). Those proteins which do have a larger precursor would then contain a "signal structure" which may or may not reside in the additional sequence.

Thus, in several respects posttranslational transfer into mitochondria (and chloroplasts<sup>19</sup>) appears to differ from cotranslational membrane transfer of secretory proteins according to the "signal hypothesis"<sup>20</sup>.

## ACKNOWLEDGEMENTS

We want to thank Heidi Bliedung, Sabine Krull, Sabine Pitzel and Leopoldine Sander for skilful technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft, Ne 101/17.

## REFERENCES

1. Hallermayer, G. et al. (1977) Eur. J. Biochem. 81, 523-532.
2. Harmey, M.A. et al. (1977) Eur. J. Biochem. 81, 533-544.
3. Korb, H. & Neupert, W. (1978) Eur. J. Biochem. 91, 609-620.
4. Zimmermann, R. et al. (1979) Eur. J. Biochem. 99, 247-252.
5. Zimmermann, R. et al. (1979) FEBS Lett. 108, 141-151.
6. Zimmermann, R. & Neupert, W. (1980) Eur. J. Biochem. in press.
7. Hallermayer, G. & Neupert, W. (1976) Genetics and Biogenesis of Chloroplasts and Mitochondria, North-Holland, Amsterdam, pp. 807-812.

8. Harmey, M.A. et al. (1976) *Genetics and Biogenesis of Chloroplasts and Mitochondria*, North-Holland, Amsterdam, pp. 813-818.
9. Harmey, M.A. & Neupert, W. (1979) *FEBS Lett.* 108, 385-389.
10. Klingenberg, M. (1976) *The Enzymes of Biological Membranes: Membrane Transport*, vol. 3., Plenum Publishing Corp., New York, pp. 383-438.
11. Smith, M. et al. (1979) *Cell* 16, 753-761.
12. Nelson, N. & Schatz, G. (1979) *Proc. Natl. Acad. Sci. U.S.A.* 76, 4365-4369.
13. Michel, R. et al. (1979) *FEBS Lett.* 101, 373-376.
14. Maccechini, M.-L. et al. (1979) *Proc. Natl. Acad. Sci. U.S.A.* 76, 343-347.
15. Schatz, G. (1979) *FEBS Lett.* 103, 201-211.
16. Raymond, Y. & Shore, G.S. (1979) *J. Biol. Chem.* 254, 9335-9338.
17. Mori, M. et al. (1979) *Proc. Natl. Acad. Sci. U.S.A.* 76, 5071-5075.
18. Conboy, J.G. et al. (1979) *Proc. Natl. Acad. Sci. U.S.A.* 76, 5724-5727.
19. Chua, N.-H. & Schmidt, G.W. (1979) *J. Cell Biol.* 81, 461-483.
20. Blobel, G. & Dobberstein, B. (1975) *J. Cell Biol.* 67, 835-851 and 852-862.

## SUBJECT INDEX

## A

ADP/ATP carrier 419-420  
 aminoacyl tRNA synthetase 387  
 amplification 88, 338, 340  
 antibiotic resistance 76  
 antisera, subunit specific 377  
 aspartate aminotransferase 435  
*Aspergillus anstelodami* 87-90  
*Aspergillus nidulans* 79-86  
 assembly of mt-membrane complexes 336, 340, 376, 378, 399-412, 413-422  
 asymmetric transcripts 191  
 ATPase (mt) 253-255, 375-381, 383-386, 420, 421, 423-433  
 ATPase, subunit 9, 420, 421  
 AT-rich region 241-250  
 avian mtDNA 131-135

## B

Box 47, 72, 73, 161-170, 179, 385  
 Box 3 161-170, 179  
 Box 7 161-179  
 Box effect 47, 385  
 Box phenotype 161, 163, 170  
 bovine mtDNA 125-130  
 brain development 395-398

## C

chicken mtDNA 131  
 chloramphenicol binding site 304  
 chloramphenicol resistance 356, 388  
 circular RNA 41, 45, 155  
 cloning 79, 122, 222  
 Cob/Box gene 139-152, 153-156, 157-160, 161-172, 173-177  
 codon reading patterns 307

common amplified sequence 8  
 complementation 153  
 conservation of genes 58, 64  
 control of expression of mt genome 353  
 cytochromes 359, 397  
 cytochrome *aa3* 326  
 cytochrome *b* 37  
 cytochrome *b*, mRNA of 110  
 cytochrome *b*, split gene of 72  
 cytochrome *c* 413-417  
 cytochrome *c* oxidase, 320, 325-332, 369-374, 399-413, 423  
 cytochrome *c* oxidase, genes of 181-190  
 cytochrome *c* oxidase, precursors of 273, 274  
 cytoplasmic inheritance 249, 355  
 cytoplasmic segregation 380

## D

deletions in mtDNA 16, 121, 338, 340  
 derepression 272, 274, 275  
 diuron-resistant mutants 71-74  
 DNA, mapping of 34  
 DNA polymerase  $\gamma$  287-290, 396  
 double stranded RNA 260  
*Drosophila* 241-350  
 duplication of mitochondria 393  
 dyskinetoplasty 16

## E

elongation factors 304  
 endgroup analysis 379  
 evolution of mtDNA 17, 121, 135, 238  
 excision 21  
 extranuclear mutants 335

## F

feed-back regulation 150

## G

gene localization 51-60, 62

genetic code 307

genetics, mitochondrial 71

germination 365-368

guanylyl transferase 267-270

## H

hamster cells 343-346

hamster mtRNA 231-240

heme  $\alpha$  370

hepatocytes 319

heterogeneity, interspecific 248

heterogeneity, intraspecific 248

heterogeneity of mtDNA 212

heterogeneity, terminal 233

human mtDNA 103-119, 277-286

## I

inheritance, cytoplasmic/maternal 97, 249, 355

insertion in mtDNA 121

intervening sequence : see intron

intron 38, 47, 82, 161, 162, 167, 168, 170

intron function 154

intron mutation 139-152, 157

## K

kinetoplast DNA 7-19

*Kluyveromyces lactis* 61-64

## L

leadersequence 40

## M

mammalian mtDNA 103-119, 121-124, 125-130, 211-219, 221-229, 277-286

marker rescue 77

maternal inheritance 97, 249

maturase 149, 155, 157, 165, 169, 179

meiosis 69

mevalonic acid 371

mini-circles 10

minilysates of mitochondria 33

mit<sup>-</sup> mutation 60, 257

mitochondrial genetics 71

mitoribosomes : see ribosomes

modification of RNA 232

mouse mtDNA 277-286

mRNAs 105, 108, 110, 111, 149, 155, 157, 179, 283

mutations in introns 174

mutants defective in mt ribosome assembly 298

## N

*Neurospora crassa* 51-60, 291-300, 307-310, 325-332, 333-342, 387-390, 399-411*Neurospora crassa*, slime mutant of 387

nuclear coded 345, 346

nuclear control 157-160, 331, 393

nuclear mutations 383

nucleotide sequence : see sequencing

## O

Oli 1 region 56

Oli 2 locus 254

Open reading frame 147

origin of replication 33, 88, 133, 224, 280

Oxi 1 110, 181-190, 191-194

Oxi 2 52, 181-190

oxi 3 39, 41, 46, 47, 55, 117, 162-170, 181-190

oxi-mutants 46, 369-374

oxidative phosphorylation 255-257

P

p 42.5 species (protein) 166, 168, 169

palindromic sequences 309

paromomycin 158

pedigree analysis 126

peptidyl transferase 218, 303

petite mutation 21-31

o-phenanthroline 424-429

pho mutation 69

physical map of mtDNA 62, 214, 216, 218

plant mtDNA 365-368

pleiotropic mutations 258

*Podospora anserina* 91-95, 97-102

polar effect 154

polymorphism of mtDNA 121

polypeptide, hypothetical structure of 179

porphyrin  $\alpha$  370

postpolysomal factors for mt protein synthesis 315-318

posttranslational modification 389

posttranslational transfer 413-422

precursor polypeptides 380, 400, 424-429

processing of polypeptides 425-429

promoter 105

proteases 423-433, 436

protein synthesis, mitochondrial 315-318, 319-322, 366

protein transport/import 413-422, 423-433, 435-438

proteolipid 84

R

ragged mutants 87-90

rat mitochondria 395-398, 435-438

rat mtDNA 121-124, 211-220, 221-229

recombinant DNA 75-78, 97-102, 221

regulation 329-332

regulation of mt-ribosome assembly 297

repeat sequences 309

replication 25, 249, 393 (see also origin)

repression (glucose) 347-354

repressor 387-390

resistance to uncouplers 343

respiratory deficiency 66

respiratory induction 349

restriction maps 89, 122, 132, 243

$\rho$  mutants 34

ribosomal proteins (mt) 293, 296, 301, 362

ribosomal RNA genes (mt) 83, 213-215, 225, 308

ribosomal RNAs (mt) 14, 132, 214, 232, 235-237, 278, 279, 293, 296

ribosomal RNAs (mt), 21S 265-270

ribosomal RNAs (mt), 5S 231, 236

ribosomes (mt) 291-300, 301-305, 360, 361

RNA, double stranded 260

RNA, 5' end of 108, 114

RNA, messenger for maturase (mt) 149, 155, 157, 179

RNA polymerase 265, 270-275

RNA processing 39, 41, 154, 173, 176, 265-276, 291

S

*Saccharomyces cerevisiae* 37-49, 53, 65-74, 139-210, 253-286, 311-314, 347-354, 369-381, 423-433

*Schizosaccharomyces pombe* 383-386  
 sea urchin eggs 391-394  
 segregation, cytoplasmic 380  
 senescence 91-95, 97-102  
 sequence analysis 122, 146, 209, 215, 217, 222, 235-238  
 sequence divergence 122, 127, 128, 134  
 sequence homology 51-60  
 Southern hybridization 34, 93  
 slime mutant of *Neurospora crassa* 387  
 spheroplast regeneration 76  
 splicing : see RNA processing  
 split genes 37-49, 72, 146, 153-156, 157-160, 173  
 sporulation 65, 66  
 "stopper" mutant 333-342  
 structure of cytochrome *c* oxidase subunits 401, 406, 408, 410  
 structure of mitochondria 397  
 structure of RNA 231-240  
 subunits of cytochrome oxidase : see Oxi 1-3  
 subunit stoichiometry 376  
 sulphatation 389  
 suppression, genetic 157  
 suppression of mit<sup>-</sup> 258  
 suppression, phenotypic 159  
 suppressivity (suppressiveness) 28, 33-36, 93, 101

transcription maps (mt) 13, 79, 105, 108, 111, 200, 211, 283, 284  
 transcripts, spliced 191  
 transformation 75  
 translation products (mt) 58, 68, 101, 116, 175, 350-352, 367, 384, 388, 390  
 tRNA genes (mt) 82, 100, 225, 227, 308, 313  
 tRNAs (mt) 209, 281, 307-310, 311, 312  
*Trypanosoma brucei* 7-19  
 tsm8-mutation 207-210

U

UGA-decoding 312  
 uncouplers 344  
 URF (unidentified reading frame) 112, 113

V

var 1 determinant 195-205, 353  
 var 1 polypeptide 195-205  
 variation, rapid 125  
 vegetative death 87  
*Vicia faba* 365-368

Y

yeast plasmid 76

T

tandem reiterations 89  
*Tetrahymena pyriformis* 355-363  
 thiostrepton 303  
 thyroid hormone 321, 396  
 topoisomerase 121  
 transcription (mt) 181-190  
 258, 392

## AUTHOR INDEX

Agostinelli, M. 347-354  
 Agsteribbe, E. 51-60  
 Alexander, N.J. 161-172  
 André, J. 355-363  
 Arnberg, A.C. 37-49  
 Astin, A.M. 253-263  
 Atchison, B.A. 75-78  
 Attardi, G. 103-119  
 Baer, R.J. 231-240  
 Baldacci, G. 21-31  
 Bandlow, W. 207-210  
 Bartnik, E. 79-86  
 Basak, N. 79-86  
 Battey, J. 277-286  
 Baumann, U. 207-210  
 Beattie, D.S. 315-318  
 Bechmann, H. 173-177  
 Begel, O. 91-95  
 Beilharz, M.W. 253-263  
 Belcour, L. 91-95  
 Bernardi, G. (Giorgio) 21-31  
 Bernardi, G. (Gregorio) 21-31  
 Bertazzoni, U. 287-290  
 Bertrand, H. 325-332, 399-411  
 Bidermann, A. 79-86  
 Bingham, C.G. 253-263  
 Blanc, H. 33-36  
 Bleve, T. 395-398  
 Boehni, P. 423-433  
 Boerner, P. 191-194  
 Bonitz, S. 181-190  
 Bordonné, R. 311-314  
 Borst, P. 7-19  
 Boutry, M. 383-386  
 Brown, G.G. 121-124  
 Buck, M. 375-381  
 Butow, R.A. 195-205  
 Canaday, J. 311-314  
 Cantatore, P. 103-119, 211-220  
 Castora, F.J. 121-124  
 Chang, H.-P. 195-205  
 Ching, E. 103-119  
 Choo, W.M. 253-263  
 Christianson, T. 265-276  
 Clayton, D.A. 277-286  
 Cobon, G.S. 253-263  
 Colson, A.M. 71-74  
 Coruzzi, G. 181-190  
 Crews, S. 103-119  
 Cummings, D.J. 97-102  
 Curgry, J.J. 355-363  
 De Jonge, J.C. 333-342  
 Denslow, N.D. 301-305  
 Devenish, R.J. 75-78  
 De Vries, H. 51-60, 333-342  
 de Zamaroczy, M. 21-31  
 Dhawale, S. 161-172  
 Dirheimer, G. 311-314  
 Dixon, L.K. 365-368  
 Doonan, S. 435-438  
 Douglas, M. 375-381  
 Dubin, D.T. 231-240  
 Dujardin, G. 157-160  
 Dujon, B. 33-36  
 Falcone, C. 347-354  
 Farrelly, F. 195-205  
 Fase-Fowler, F. 7-19  
 Faugeron-Fonty, G. 21-31  
 Fauron, C.M.R. 241-250  
 Fechheimer, N.S. 131-135  
 Finzi, E. 315-318  
 Forde, B.G. 365-368  
 Forde, J. 365-368  
 Fox, T.D. 191-194  
 Frasch, A.C.C. 7-19  
 Freeman, K.B. 343-346  
 Frontali, L. 347-354  
 Gadaleta, G. 211-220  
 Gadaleta, M.N. 395-398  
 Gaillard, C. 21-31  
 Gallerani, R. 211-220  
 Gasser, S. 423-433  
 Gelfand, R. 103-119  
 Giuffrida, A.M. 395-398  
 Glaus, K.R. 131-135  
 Goddard, J.M. 241-250  
 Goffeau, A. 383-386  
 Goursot, R. 21-31  
 Griesenbeck, T. 375-381  
 Grivell, L.A. 37-29, 51-60  
 Groot, G.S.P. 61-64  
 Groudinsky, O. 57-160  
 Haid, A. 173-177  
 Halbreich, A. 153-156  
 Hanson, D. 161-172  
 Harmey, M.A. 413-422  
 Harville, T.O. 301-305  
 Hauswirth, W.W. 125-130  
 Heckman, J. 307-310  
 Hennig, B. 413-422  
 Hensgens, L.A.M. 37-49, 51-60

Hessler, R.A. 301-305  
 Hoeijmakers, J.H.J. 7-19  
 Holtrop, M. 211-220  
 Huyard, A. 21-31  
 Iftode, F. 355-363  
 Imam, G. 79-86  
 Jacq, C. 139-152  
 Janssen, J.W.G. 7-19  
 Joste, V. 319-322  
 Kaudewitz, F. 173-177  
 Keller, A.M. 91-95  
 Keyhani, E. 369-374  
 Keyhani, J. 369-374  
 Kobayashi, M. 221-229  
 Köchel, H. 79-86, 87-90  
 Kochko, A. 153-156  
 Koike, K. 221-229  
 Kolarov, J. 319-322  
 Kroon, A.M. 1-4, 211-220, 389-390, 439-444  
 Kruszewska, A. 157-160  
 Küntzel, H. 79-86, 87-90  
 Laipis, P.J. 125-130  
 Lambowitz, A.M. 291-300  
 Lamouroux, A. 153-156  
 Laping, J.L. 97-102  
 Lazarus, C.M. 79-86, 87-90  
 Lazowska, J. 139-152  
 Leaver, C.J. 365-368, 423-433  
 Levens, D. 265-276  
 Linnane, A.W. 75-78, 253-263  
 Locker, J. 265-276  
 Lopez, I.C. 195-205  
 Lünsdcrf, H. 79-86, 87-90  
 Lustig, A. 265-276  
 Machleidt, W. 399-411  
 Macino, G. 181-190  
 Mahler, H.R. 161-172  
 Mak, J.F.C. 387-390  
 Mangin, M. 21-31  
 Marotta, R. 21-31  
 Marra, E. 435-438  
 Martin, R.P. 311-314  
 Marzuki, S. 253-263  
 Mason, J.R. 343-346  
 Matthews, D.E. 301-305  
 McAda, P. 375-381  
 Mendel-Hartvig, I. 319-322  
 Merkel, C. 103-119  
 Merten, S. 265-276  
 Michaelis, G. 65-69  
 Minervini, G.R. 395-398  
 Montoya, J. 103-119  
 Mutolo, V. 391-394  
 Nagley, P. 75-78, 253-263, 277-286  
 Neher, E.M. 413-422  
 Nelson, B.D. 310,322  
 Neupert, W. 413-422  
 Nolan, P.E. 97-102  
 O'Brien, T.W. 301-305  
 Ojala, D. 103-119  
 Pajot, P. 153-156, 157-160  
 Passarella, S. 435-438  
 Pepe, G. 211-220  
 Perasso, R. 355-363  
 Perlman, P.S. 131-135, 161-172  
 Pratje, E. 65-69  
 Quagliariello, C. 211-220  
 Quagliariello, E. 435-438  
 Rabinowitz, M. 265-276  
 RajBhandary, U.L. 307-310  
 Raynal, A. 91-95  
 Reid, R.A. 179-180  
 Renis, M. 395-398  
 Rinaldi, A.M. 391-394  
 Roberts, H. 253-263  
 Roosendaal, E. 37-49  
 Saccone, C. 1-4, 211-220, 435-438, 439-444  
 Salcher-Cillari, I. 391-394  
 Samallo, J. 51-60  
 Sarnoff, J. 307-310  
 Schatz, G. 423-433  
 Schmelzer, C. 173-177  
 Schnierer, S. 65-69  
 Schnittchen, P. 207-210  
 Schweyen, R.J. 173-177  
 Scovassi, A.I. 287-290  
 Seki, T. 221-229  
 Serra, I. 395-398  
 Silber, A.P. 311-314  
 Simpson, M.V. 121-124  
 Skiera, L. 179-180  
 Slonimski, P.P. 138-152, 153-156, 157-160  
 Snijders, A. 7-19  
 Sollazzo, M. 391-394  
 Stepien, P.P. 79-86  
 Synenki, R. 265-276  
 Thalenfeld, B. 181-190  
 Ticho, B. 265-276  
 Todd, R. 375-381  
 Tzagoloff, A. 181-190

Van Bruggen, E.F.J. 37-49  
Van Etten, R.A. 377-386  
Van Harten-Loosbroek, N. 61-64  
Van Ommen, G.J.B. 37-49  
Van't Sant, P. 333-342, 387-390  
Vaughan, P.R. 75-78  
Vierny, C. 91-95

Yaginuma, K. 221-229  
Yatscoff, R.W. 343-346  
Yin, S. 307-310

Zacheo, G. 395-398  
Zassenhaus, H.P. 131-135  
Zimmermann, R. 413-422

Walberg, M.W. 277-286  
Weilburski, A. 319-322  
Werner, S. 399,411  
Wild, G. 399-411  
Wolstenholme, D.R. 241-250  
Wouters, L. 71-74