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Abstract

Background: Prognostic models based on high-dimensional omics data generated from clinical patient samples,
such as tumor tissues or biopsies, are increasingly used for prognosis of radio-therapeutic success. The model
development process requires two independent discovery and validation data sets. Each of themmay contain
samples collected in a single center or a collection of samples from multiple centers. Multi-center data tend to be
more heterogeneous than single-center data but are less affected by potential site-specific biases. Optimal use of
limited data resources for discovery and validation with respect to the expected success of a study requires
dispassionate, objective decision-making. In this work, we addressed the impact of the choice of single-center and
multi-center data as discovery and validation data sets, and assessed how this impact depends on the three data
characteristics signal strength, number of informative features and sample size.

Methods: We set up a simulation study to quantify the predictive performance of a model trained and validated on
different combinations of in silico single-center and multi-center data. The standard bioinformatical analysis workflow
of batch correction, feature selection and parameter estimation was emulated. For the determination of model
quality, four measures were used: false discovery rate, prediction error, chance of successful validation (significant
correlation of predicted and true validation data outcome) and model calibration.

Results: In agreement with literature about generalizability of signatures, prognostic models fitted to multi-center
data consistently outperformed their single-center counterparts when the prediction error was the quality criterion of
interest. However, for low signal strengths and small sample sizes, single-center discovery sets showed superior
performance with respect to false discovery rate and chance of successful validation.

Conclusions: With regard to decision making, this simulation study underlines the importance of study aims being
defined precisely a priori. Minimization of the prediction error requires multi-center discovery data, whereas
single-center data are preferable with respect to false discovery rate and chance of successful validation when the
expected signal or sample size is low. In contrast, the choice of validation data solely affects the quality of the
estimator of the prediction error, which was more precise on multi-center validation data.
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Background
Oncological treatment is based on surgery, radiother-
apy, chemotherapy and immunotherapy for reduction of
tumor burden and for improvement of local control of the
tumor. Of particular importance is radiotherapy, which
has been shown in numerous studies to improve local
control and overall survival of patients [1, 2]. Radiation
oncology treatment strives to optimize the reduction of
tumor cells while preserving the surrounding non-tumor
tissue. Effectiveness is influenced by a number of factors
such as radiation sensitivity, the anatomical borders and
immunogenic constitution of the tumor, and its environ-
ment [1]. The interplay between these factors is complex
and prediction of the radiation response and overall clin-
ical performance requires detailed measurement of the
underlying molecular state of the tissue. This is increas-
ingly attempted through the use of systemic multi-level
omics biology approaches [3, 4]. The complexity of the
interplay is consistently reflected in the heterogeneous
risks of subgroups of cancer patients in terms of local
and distant control and overall survival, e.g. in head and
neck cancer or glioblastoma [5, 6]. This heterogeneity is
a great challenge in oncology since it means that only
a subgroup of treated patients is likely to benefit from
standard therapy. Hence, the need for prognostic fac-
tors predicting individual response is great and a lot of
research effort has been invested in the past decade to
identify molecular prognostic markers from multi-level
omics data generated from clinical patient samples. Exam-
ples that have reached clinical practice are the diagnostic
assays OncotypeDX and Mammaprint, which predict the
risk of recurrence or metastasis in breast cancer [7, 8]. For
locally advanced head and neck cancer and glioblastoma,
prognostic gene and miRNA signatures predicting local
and distant control or overall survival have been recently
identified and are promising markers with the poten-
tial to allow substratification of standard-therapy treated
patients for alternative treatment strategies [9–11].
From a methodological point of view, molecular prog-

nostic models are specialized statistical regression models
that generate signatures from molecular data measured
in biological samples such as peripheral blood, resected
tumor tissue or tumor biopsies. A major task in prog-
nostic modeling using high-dimensional molecular data
is feature selection, which is often realized by the least
absolute shrinkage and selection operator, called the Lasso
[12]. The selected features with non-zero estimated coeffi-
cients in the prognostic model form a so-called signature.
Conceptually, the approach of using molecular informa-
tion for prognostic modeling is backed by the finding
that many cancer types are tremendously heterogeneous
and form subgroups of different prognosis or differ-
ent therapeutic accessibility [13–15]. Consequently, high-
dimensional measurements at the genome, transcriptome,

post-transcriptome and protein levels, individually or in
combination, were used to generate signatures for the
stratification of breast carcinomas [13, 16–20], glioblas-
toma [11, 21], gastric cancer [22, 23], lung adenocarcino-
mas [24], squamous cell cervical carcinoma [25] and head
and neck squamous cell carcinomas [10, 26, 27].
For all statistical models, the “predictive accuracy on

test sets is the criterion for how good the model is" [28]. In
other words, for prognosis the “usefulness is determined
by how well a model works in practice, not by how many
zeros there are in the associated P-values" [29]. Thus, with
respect to radiotherapy, the signature must predict satis-
factorily well the treatment outcome of patients other than
those the model was developed on. For prognostic mod-
els in the clinical context, external validation is commonly
considered as the most relevant form of validation [29].
Studies aiming at new prognostic signatures therefore
require two independent cohorts; the discovery cohort is
used to identify a signature from the high-dimensional
data and the validation cohort is used to measure its per-
formance. Note that split sample approaches (including
cross-validation with leave-one-out cross-validation as a
special case) are a form of internal validation and there-
fore are structurally insufficient for estimating the gen-
eralization performance of signatures; instead, external
validation is required. Systematic reviews retrospectively
enlighten the quality of validation strategies and indicate
potential lacks of thoroughness if present [30].
Collecting data sets suitable for molecular prognostic

modeling is a tedious task for several reasons. Firstly, the
number of patients that are homogeneous with respect
to cancer subtype and clinical factors is very limited in
most clinical sites. Secondly, each clinical sample is gen-
erated from tumor tissue, biopsies or blood samples of
a patient. As a consequence, data sets of sufficient size
either come from a large single clinical site (single-center
(SC) data, e.g. Clinical Cooperation Group [5]), are col-
lected from multiple clinical sites (multi-center (MC)
data, e.g. German Cancer Consortium [31]) or are taken
from large databases (MC, e.g. The Cancer Genome Atlas
[15]). Even if cases are assumed to be homogeneous across
centers, there is evidence that site-specific factors influ-
encemolecular high-throughput data despite all standard-
ization efforts being made across clinical sites [32–34].
Therefore, SC data is more homogeneous, whereas, as a
general hypothesis, MC data shows better generalizabil-
ity. Moreover, it has been observed that SC studies are
overoptimistic in terms of estimated effect sizes [35]. Fur-
thermore, center-heterogeneity is sometimes viewed as a
potential reason for failed validation inmono-institutional
validation studies [36].
Shared noise patterns among samples, independent

of the biological factor of interest, are called batch
effects and mask information. They occur particularly
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with complex measurement techniques that process many
probes at a time; in microarray experiments, samples
being processed on the same multiwell plate form batches
that share various noise patterns [37]. Therefore, cen-
ter effects are structurally a mixture of batch effects and
case mix effects, the latter describing effects caused by
differences regarding the case-composition of the center-
wise patient cohorts. Since batch effects occur regularly in
microarray-based studies, strategies for batch correction
are well analyzed and discussed with respect to sample
size and effect size [37–40]. The dominant strategies for
batch correction are methods of location and scale adjust-
ment or matrix factorization [38]. Although batch correc-
tion can mitigate the deranging influence, no method can
spirit away the effect completely. Thus, prognostic models
for tumor samples have to deal with the batch patterns of
the clinical centers involved.
For prognostic modeling, two data sets are required.

When a SC and a MC data set are available, this raises
questions about how to make best use of the data. Which
data should be used for discovery and which for val-
idation? Both strategies (i.e. using the SC data set for
discovery and MC data set for validation, or the other way
around) have been applied recently for prognostic model-
ing of radiotherapy treatment outcomes using molecular
data [10, 11]. More generally, the question arises about
whether a researcher should aim for SC orMC data, when
using resources for data acquisition.
In this article, we address decision making regarding

the choice of SC or MC data for discovery and validation
cohorts for prognostic modeling–as this is often needed
in studies for predicting the outcome of radiotherapy from
high-dimensional molecular data. In addition to the sce-
nario where an SC and an MC data set are available and
have to be assigned to either discovery or validation, we
also consider two scenarios in which only SC or only MC
data are used for both discovery and validation. We use
the Hornung model to simulate gene expression data sets
representing different centers affected by batch effects
[39]. We vary the model parameters signal strength, num-
ber of informative genes, and sample size and show their
impact on the best choice.
To our knowledge, there is no systematic study that

investigates the performance of feature selection pro-
cedures of regression models in the presence of batch
effects. We present a study based on simulated gene
expression data that focuses on batch-type center-effect
while ignoring case mix effect.

Methods
The heterogeneity of microarray data from different clin-
ical sites was modelled by the Hornung batch model [39].
We chose to focus on the multiple linear regression model
to avoid problems related censored survival times and

estimation of the baseline hazard function, which would
only distract from the actual issue of interest and poten-
tially blur the simulation results. Our simulation study
compares the four possible combinations of SC and MC
data for discovery and validation of prognostic models.
The parameters (i) signal strength, (ii) number of informa-
tive genes and (iii) sample size were systematically varied
in three separate scenarios.
In each scenario, the comparison of the four data set

combinations – (SC discovery, SC validation), (SC,MC),
(MC,SC) and (MC,MC) – is based on four performance
scores that were calculated from 1000 iterations (per
parameter set) of data generation, model fitting and val-
idation. Considering the (small) width of the confidence
intervals of the simulation results (see “Results” section),
this number was considered to be a good compromise
between computing time and precision. In each realiza-
tion we first generated high-dimensional data matrices for
SC andMC discovery and validation data according to the
Hornung model. This means that for sample i of center j a
true state aij, an observed state yij as well as for every gene
g an expression value xijg were calculated, the latter being
composed of the signal (i.e. expression levels caused by the
true state), a center-specific batch pattern and noise. After
normalization and batch effect correction using ComBat,
we then regressed the observed state vector on the gene
expression matrix using the Lasso method and obtained
candidate signatures for the SC and MC discovery data.
This means that the observed states are used as dependent
variable in the lasso regression and the true states can be
seen as this variable without measurement error. The can-
didate signatures were then applied to the gene expression
matrices of the validation data in order to predict the cor-
responding observed states in the validation data. Finally,
we calculated the performance scores from the deviations
of the predicted from the observed states of the valida-
tion data. An overview of the simulation scheme is given
in Fig. 1. Case mix effects and similar sources of hetero-
geneity, like batch-wise varying signal strength, were not
considered.

Generation of data by Hornungmodel
Hornung et al. [39] presented a model to generate data
affected by batch effects by setting the measured expres-
sion level of gene g for sample i of batch j to:

xijg = αg + aijβ̃g + γjg +
mj∑

l=1
bjglZijl + δjgεijg .

Thus, each data point xijg is constructed as the sum of a
basal gene level αg , the product of the effect size β̃g and the
individual true state aij (representing the signal for sample
i from batch j in gene g), a batch-specific shift on each gene
γjg , the weighted sum of mj random latent factors with
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Fig. 1 Simulation scheme for the computation of performance scores of molecular prognostic models with center effects. For each parameter set
1000 Monte-Carlo runs are performed. In single-center (SC) and multi-center (MC) data sets, independent variables X and dependent variables Y are
generated from a true state a, noise and the center batch pattern. Each center shares realizations of randomly sampled batch-specific parameters
among its samples. MC data sets are batch corrected, a signature is fitted to the discovery data and used for prediction of validation data.
Performance scores are calculated to measure the average quality of prediction

coefficients bjgl (representing unobserved environmental,
demographic and technical factors [41] that introduce
center-wise correlation patterns among the features and
are uncorrelated to the true state) and individual weights
Zijl, and the product of noise εijg and a batch- and gene
specific scaling factor δjg . In contrast to the original use
of the model for binary target variables, we used continu-
ous true states aij that were measured with additive noise,
such that the target was modelled as yij = aij + ηij, with
ηij ∼ N (0, σ 2

y ). Note that, in contrast to the commonly
considered modeling of a target variable y (representing
the outcome in a multiple linear regression) as a noisy
function of the multidimensional variable x, in the Hor-
nung model, x and y are both modelled as functions of an
unobserved true state a.
Default parameter settings
Unless specified differently, Ns = 100 samples were gen-
erated per data set (i ∈ {1, ..,Ns}). For MC settings, the

samples were distributed randomly to Nc = 8 centers
(j ∈ {1, ..,Nc}) [10]. Thereby, the number of samples was
constrained by a minimum of nmin = 10 samples per
center (realized by assigning nmin samples to all centers
and subsequently distributing the remaining samples with
equal probability).
In our simulations, we chose normally distributed gene

wise basal expression levels (αg ∼ N (0, 1)). The true state
was also chosen to be normally distributed (aij ∼ N (0, 1)).
The target variable yij was modelled as a realization of the
true state aij distorted by additive noise with a standard
deviation of 0.1:

yij = aij + ηij, ηij ∼ N (0, 0.12).

Following Hornung et al. [39], samples consist of Ng =
1000 genes (g ∈ {1, ..,Ng}). A fraction of 30% of the
genes was considered to be informative (ninf = 0.3 · Ng),
which means—without loss of generality, that β̃g �= 0 for
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g ≤ ninf [39]. The effect size for an informative gene
g was chosen to be graded linearly with average β̃ as
β̃g = 2β̃

(
1 − g

ninf +1

)
, non-informative genes were given

an effect size of zero. Batch specific shifts were normally
distributed (γjg ∼ N (0, 1)). Following Hornung et al., we
used mj = 5 latent factors [39]. We drew the coefficients
as bjgl ∼ N (0, 1). Noise terms δjg and εijg were also nor-
mally distributed with mean 0 and variance 1. In each
run, for every center a unique batch pattern was gener-
ated following the model with the parameters specified in
Table 1.

Scenarios: systematic parameter variation
The main goal of the simulation study was to investigate
the influences of three different factors (signal strength,
number of informative genes and sample size) on the per-
formances measured when using SC data and MC data
for discovery and validation. To this end, three differ-
ent scenarios were considered; in each of these a single
factor was varied systematically to investigate its influ-
ence and discern this from the influences of the other
two factors. For each of the three scenarios, the val-
ues of the parameters not explicitly mentioned in the
following descriptions were fixed to the values given in
“Default parameter settings” section.

(i) signal strength
Taking the variable aij as the biological true state, the
parameter β̃g defines the impact of the true state on the

Table 1 Parameters of simulations

Sc1 Sc2 Sc3

signal strength β̃ = [0; 0.5] 0.25 0.125

number of genes, informative ninf = 300 [ 1; 1000] 300

sample size Ns = 100 100 [40 500]

number of genes, total Ng = 103 103 103

number of centers in MC Nc = 8 8 8

minimum samples per center nmin = 10 10 5

basal level gene g αg ∼ N (0, 1) N (0, 1) N (0, 1)

target aij ∼ N (0, 1) N (0, 1) N (0, 1)

fixed batch effect gene g γjg ∼ N (0, 1) N (0, 1) N (0, 1)

number of latent factors mj = 5 5 5

factor loadings bjgl ∼ N (0, 1) N (0, 1) N (0, 1)

impact of factor l on sample i Zijl ∼ N (0, 1) N (0, 1) N (0, 1)

noise scaling of gene g in batch j δjg ∼ N (0, 1) N (0, 1) N (0, 1)

noise εijg ∼ N (0, 1) N (0, 1) N (0, 1)

standard deviation of observation noise σy = 0.1 0.1 0.1

Each column shows the parameter set for one of three simulated scenarios. The
intervals indicate the ranges in which the parameter values were varied in the
respective scenarios. Fixed parameters are indicated by ‘=’, while sources of
heterogeneity as signal, noise and batch effects are characterized by the parameters
of their densities, indicated by the ’∼’ symbol

measured expression level xijg . Thus, larger values of β̃g
increase the signal in the covariates, without changing
the variance of the outcome variable across simulations.
Strictly speaking, this parameter describes to what extent
a true state aij influences the measured expression level
xijg , which reflects the effectiveness. For the sake of sim-
plicity, we denote it as signal strength. In this scenario, β̃
was stepwise increased from 0 to 0.5 (taking the values {0,
1, .., 9}/50, {8, 9, .., 15}/40, {40, 43, 46, 50 }/100). The num-
ber of informative genes was kept constant at 300, which
is the same value used by Hornung et al. [39]. The sam-
ple size was set to 100, which corresponds to the order of
magnitude of the MC and SC data of Hess et al. [10].

(ii) number of informative features
In the second scenario, the impact of the signal spiki-
ness was analysed. The performance of prognostic models
using SC and/or MC data consisting of 1000 features with
only a few features carrying strong signals was contrasted
to the performance in the case of many informative fea-
tures carrying weak signals. Taking ι = ∑ninf

g=1 |β̃g | as a
measure for information in the data, we kept ι constant
throughout all settings of this scenario and varied β̃g as
a function of ninf . For the default number of 300 infor-
mative features, we chose a signal strength of β̃ = 0.25,
which is just the middle of the covered parameter interval
of scenario (i). The information value ι was kept constant
at 300·0.25 over all settings and the signal strength param-
eter value in each setting was calculated according to the
respective number of informative features. The number of
informative features ninf was varied from 1 to 1000 (tak-
ing the values 1, 5, 10, 25, 50, 75, 100, 150, 200, 250, 300,
350, 400, 450, 500, 550, 600, 670, 750, 850, and 1000). The
sample size was again set to 100, in order to match the first
scenario.

(iii) sample size
The sample size obviously plays a major role in identifying
signals in noisy settings. Therefore, the sample size was
varied from 40 to 500 (taking values 40, 45, 50, 60, 80, 100,
125, 150, 200, 250, 350, and 500). In this scenario, the min-
imumnumber of samples per center nmin was reduced to 5
in order to allow for sample sizes as low as 40. The number
of informative features was again set to the default value
of ninf = 300, whereas the signal strength was reduced to
β̃ = 0.125 in order to prevent unrealistically strong signals
in the cases of the larger sample sizes.

Normalization and batch correction
Initially every generated sample was normalized to have
zero mean and unit standard deviation. After normaliza-
tion, MC data sets were batch corrected using standard
tool ComBat [37]. For all following analyses, readily pro-
cessed (normalized and batch-corrected) discovery and
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validation data are denoted as Xc,disc and Xc,val, respec-
tively, with c ∈ {MC, SC} indicating whether data was
generated from one or more centers.

Model fitting
To identify a signature β̂c, a linear model

Yc,disc = β0 + Xc,discβ + ε; ε ∼ N (0, σ 2
e )

was fitted to the discovery data using the Lasso method
[12], as implemented in the R package glmnet (cv.glmnet
function) [42]. In Lasso regression, the criterion to be
minimized is the sum of squared errors plus a penalty
term that penalizes the absolute values of β . By constrain-
ing the coefficients in this way, some coefficients (hope-
fully those of non-informative genes) are pushed to zero
and the remaining genes—with non-zero coefficients—
are considered selected and form the signature defining
the prognostic model. Lasso regression involves a tun-
ing parameter called λ that has to be chosen. A common
approach, implemented in the function predict.cv.glmnet
(through the option ‘s = lambda.1se’) and adopted here,
is to use a slightly more strongly penalizing λ value than
the one obtained from minimizing the cross-validated
prediction error.

Performance scores
Four performance scores were calculated from 1000 runs
(Nsim = 103). The mean values of the four scores and the
corresponding standard errors of the mean are reported.
For visualization, the mean values and the corresponding
99% confidence intervals are plotted.
We included the results obtained for all simulation

iterations in the evaluation. Thus, we also included the
iterations in which lasso did not select any variable, even
though it would not be meaningful to use empty signa-
tures in practice. Excluding these iterations would have
potentially biased the results; it is important to keep the
evaluation of simulation studies neutral by considering
each simulation iteration instead of letting the results
influence the decision on whether or not to include the
individual iterations. Nevertheless, we also analyzed the
performance of non-empty signatures separately and the
results did not change substantially (data not shown).
The 99% confidence intervals contain the true means

with probability 0.99. Thus, non-overlapping confidence
bands are a strong indication for systematic differences
between the data usage settings.
Performance scores were calculated by the following

procedure. The two signatures β̂MC and β̂SC were used
to predict the target variable Yp,val of the independent
validation data sets from their expression data Xp,val by

Ŷp,c = β̂0 + Xp,valβ̂c; p, c ∈ {MC, SC}.

Four performance scores were computed in every iter-
ation based on the estimated signature β̂c and on the
deviation of the prediction Ŷp,c from the true values Yp,val
of the target variable in the validation data.

(A) false discovery rate: FDR
Usefulness of a signature is connected with the identifica-
tion of informative features. Particularly, any element of
the gene set returned by model fitting should be unlikely
to be a false positive finding.
The FDR returns the proportion of features in a signa-

ture, that are actually non-informative.
In empty signatures, this proportion does not exist. The

FDR of empty signatures was set to 1. The rationale for
assigning the worst score is that in all simulations (with
β̃ �= 0) truly was signal in the data, which was completely
missed by the model fitting in those realizations. Miss-
ing all existing information in prognostic modeling is a
clear failure and far from the goal of signatures built of
informative features.

(B) mean square prediction error: MSPE
The most common and most important performance
score is the expected prediction error. Particularly for clin-
ical applications, the prognosis should be as close to the
true outcome as reasonably achievable.
The MSPE of a signature in a validation data set is an

estimator for the expected squared prediction error of
single future samples. Because batch correction is not pos-
sible in single sample prediction, the batch correction of
the validation data is removed for calculating the MSPE
(in contrast to the other performance scores). The MSPE
is defined as

MSPEp,c = 1
Ns

Ns∑

i=1

(
(Ŷp,c)i − (Yp,val)i

)2
,

where (Ŷp,c)i and (Yp,val)i denote the predicted and true
values of the target variable of sample i in the validation
data set. In case of empty signatures, the prediction Ŷp,c
equals the baseline β̂0 and the MSPE is calculated accord-
ingly. The expectation of MSPEp,c equals the expectation
of (Ŷc −Y )2 of single future samples. Analysis of the qual-
ity of these estimators (MSPE of SC and MC validation
data) compared to the true MSPE-value of a signature is
shown in Table 2.

(C) successful validation: SV
The lowest requirement of a signature is a performance
on independent validation data significantly better than a
random prediction. This is indicated by a positive (signifi-
cantly larger than zero) correlation between the predicted
values of the target variable Ŷp,c and the true values of the
target variable Yp,val in the validation data (sample size
identical with that of the corresponding discovery data).
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Table 2 Quality of MSPE-estimation by SC and MC validation data sets

Signature approx. MSPE SEM Validation estim. MSPE SEM squared error SEM

SC 5.74 0.14 SC 5.49 0.17 15.68 2.04

MC 5.49 0.12 2.73 0.31

MC 0.87 <0.01 SC 0.87 0.01 0.06 <0.01

MC 0.88 0.01 0.02 <0.01

The average true MSPE value of a signature discovered in SC or MC data is approximated in 1000 iterations by 105 sample data sets with different random batch patterns on
each sample. The approximated MSPE-value is reported with its standard error of the mean as well as the MSPE estimated in the validation data and its standard error. The
average squared error of this estimator ((MSPEestim − MSPEapprox)2) was calculated from 1000 discovery data sets with 100 independent validation data sets each

SV equals 1 if p (the p-value of a one-sided correlation
test on (Ŷp,c,Yp,val)) is smaller than 0.05, and 0 otherwise.
For empty signatures, there is no successful validation

possible and therefore SV is set to 0.
Note that statistical significance is a problematic per-

formance score. Firstly, in real data applications anything
will be significant with sufficient sample size, regardless of
the true effect size. Secondly, the goal of clinical biomark-
ers is not merely to perform slightly better than a random
prediction. Nevertheless, at least for candidate screening
studies, successful validation is an important milestone.

(D) calibration slope: CS
CS is a common measure of prediction quality. It is calcu-
lated as the slope in a simple linear model regressing the
validation data outcome on the predicted values. Yp,val =
a + c · Ŷp,c + ε with ε ∼ N (0, σ 2

c ). Let ĉ denote the esti-
mated coefficient c, then CSp,c = ĉ. Since constants are
uncorrelated with any data, the CS of empty signatures is
set to 0. Note that CS indicates an association of the pre-
dicted with the observed data on average, not regarding
the variance, and it is precisely this variance that can be
very harmful in single sample prognosis.

Results
In three different simulation scenarios, the factors sig-
nal strength, number of informative genes and sample
size were analyzed, one at a time. Their influence on the
predictive performances achieved, when using different
combinations of SC andMC data for discovery and valida-
tion, are reported in the following. Data generating code,
data files as well as functions for reporting the numbers
and creating the figures can be downloaded via this link. 1

Scenario 1: signal strength
The true state aij affects the raw gene expression data
xijg of a gene g through the parameter β̃g . The average
parameter value of the informative genes is denoted β̃

and called signal strength. In the first scenario, the signal
strength was varied systematically from 0 to 0.5, while all
other parameters were kept constant at values provided
1https://www.helmholtz-muenchen.de/fileadmin/ZYTO/other/
onlMatSamaga.zip

in Table 1. The average performance scores according to
simulation scenario 1 are presented in Fig. 2.
For signal strengths of β̃ lower than 0.1, the average

FDR was higher than 0.9 for both MC and SC discovery
data, indicating that the signal was too low for prognos-
tic modeling under the given parameters independently
of the data type. For β̃ between 0.1 and 0.2, the FDR
in SC signatures was significantly lower than the one of
MC signatures (e.g. β̃ = 0.14: mean FDR in SC signa-
tures 0.429 ± 0.003 SEM; mean FDR in MC signatures
0.885 ± 0.008).
At the same β̃ of 0.14, the averageMSPE of the prognos-

tic models trained on SC data and validated on MC data
was 8.51 (±0.32), in contrast to the average of 1.03 (±0.01)
in the setting, where MC data was used for discovery and
SC data was used for validation.
Thus, the low FDR of SC signatures was accompanied by

a high MSPE. This discrepancy in the two scores under-
lines the multidimensional nature of quality concepts for
prognostic models; data usage strategies may perform bet-
ter with respect to one score but worse with respect to the
other. To examine the role of empty candidate signatures
in the reported performance scores, we conducted further
simulations and analyzed the chance to discover a non-
empty candidate signature, the mean signature length as
well as the performance scores of the prognostic model,
under the exclusion of those cases where no signature
was discovered at all (see supplementary information).
Heterogeneous batch patterns of MC data, for instance,
bury weak signals (β̃ < 0.15) and thus no informa-
tive features enter the signature. At the same time the
prediction error stays in the range of random predic-
tions unless the signal is strong enough to systematically
reduce this error (β̃ > 0.2). In contrast, homogeneous
batch patterns of SC data sometimes allow identification
of informative features, but the predictions are of low
accuracy and accompanied by a dramatic increase in the
MSPE. Therefore, at β̃ = 0.15 with respect to quality cri-
terion A, SC discovery was the best choice, while with
respect to quality criterion B, MC discovery was the best
choice.
We also investigated the dramatic increase of the MSPE

of SC signatures, which turned out to be a result of the

https://www.helmholtz-muenchen.de/fileadmin/ZYTO/other/onlMatSamaga.zip
https://www.helmholtz-muenchen.de/fileadmin/ZYTO/other/onlMatSamaga.zip
https://www.helmholtz-muenchen.de/fileadmin/ZYTO/other/onlMatSamaga.zip
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Fig. 2 Performance scores under varying signal strength. Performance scores and 99%-confidence bands for a “expected fraction of false findings in
signature” FDR, b “expected error on single future predictions” MSPE, c “chance of successful validation" SV, and d “average calibration slope” CS
calculated from 103 simulation runs. The parameter values are given in Table 1, signal strength is varied in terms of the parameter β̃

disturbing effect of the homogeneous batch pattern on the
precision of Lasso parameter estimation (data not shown).
The chance to successfully validate a signature was

higher for SC than MC discovery for all intermediate
signal strengths (β̃ between 0.08 and 0.25). This range
corresponds to a lower mean FDR and a higher mean
MSPE of SC settings, reflecting that the prediction values
showed an increased variance but are nonetheless corre-
lated with the true outcome to a verifiable degree. For
weaker signals the success rate was zero for all settings,
whereas for stronger signals confirmation of association
was certain.
The calibration slope was zero in all SC-MC combi-

nations for β̃ < 0.08. At lower intermediate signals (β̃
between 0.1 and 0.2), the average calibration was better
for signatures trained on SC data.
For stronger signals (β̃ > 0.3), MC discovery out-

performed SC discovery in all measured scores. Mixed
designs (i.e. SC discovery data validated on MC data and
vice versa) had consistently similar performance scores
as the homogeneous designs when considering the same
type of discovery data (see Fig. 2). In other words, with
respect to signal strength, there were no notable differ-
ences in performance between validation on SC data or
MC data, independent of where the signature was discov-
ered.
The quality of the MSPE-estimator itself using SC or

MC data is shown in Table 2, where in 1000 iterations,
huge data sets of 105 samples were generated for approx-
imation of the true MSPE expectation for future single
samples at a signal strength of β̃ = 0.25. Both SC and

MC validation data lead to unbiased estimation of the
true MSPE. The average squared error of the estimated
MSPE, however, was considerably larger in SC valida-
tion data. Results were similar for other scenarios (data
not shown). Therefore, MC validation outperformed SC
validation considering the same discovery data.
Taking the perspective of an increasing signal strength

and focusing on the FDR, it was the SC setting that first
dropped, indicating the successful identification of infor-
mative genes among the 1000 measured features. The
MC setting did not catch up unless the signal reached a
strength at which both settings had FDR values lower than
0.25 and showed similar FDR values for further increas-
ing signal strengths. From this point of view, it is always
advisable to discover on SC data. But the expected quality
of the prediction contradicts this advice. With respect to
the MSPE, MC discovery was the dominant strategy and
with respect to the calibration slope, SC is only the bet-
ter strategy for low signals, where the prediction quality
was poor anyway. Starting at an effect size of β̃ = 0.225
the MC setting outperformed the SC setting with respect
to all considered performance scores. Interestingly, this
turning point coincided with the point for which the MC
setting reached an expected success rate of 0.8, which cor-
responds to the targeted success rate of common sample
size calculations.

Scenario 2: number of informative features
In a second scenario, the number of informative features
was varied from 1 to 1000, while the total number of fea-
tures was kept constant at 1000. An informative feature
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is a gene g with a true βg �= 0. The signal strength of
β̃ = 0.25 was therefore distributed over varying numbers
of informative genes, while the sum of coefficients was
kept constant. In the extreme cases, one feature carried
the whole signal or the signal was spread over all features.
The average performance scores according to simulation
scenario 2 are presented in Fig. 3.
For 250 informative features or less, the mean FDR of

MC signatures was lower than for SC signatures, with a
maximum difference of 0.063 ± 0.005 measured at ninf =
10. For 300 or more informative genes, the average FDR
was higher for MC signatures than for SC signatures, with
a maximum difference of 0.528±0.010measured at ninf =
600. Note that high FDR values also indicate empty signa-
tures, which stem from unsuccessful discovery attempts
in spite of existing signal.
Analogously to the first scenario, the most important

performance criterion MSPE was higher for the signa-
tures discovered in SC data compared to the MSPE of MC
signatures.
Nonetheless, successful validation was more likely when

following the strategy associated with the higher MSPE
values for a number of informative genes between 350 and
750.
Most interestingly, the mean calibration slope was

higher for MC signatures when the information contained
in β̃ was spread across fewer than 350 features and lower
otherwise.
Thus, according to the MSPE, the MC discovery set-

ting was superior. With respect to the other performance

criteria at the cost of high MSPE values, there was bene-
fit in SC discovery when the signal was spread over many
features. Consistently with the first scenario, the choice of
validation data was meaningless apart from the quality of
the MSPE estimation.

Scenario 3: number of samples
In a third scenario, the number of samples was varied.
This is the most common and easy to adjust parameter
when planning a study. In order to unravel the influence of
sample size, a low signal strength of β̃ = 0.125 was chosen.
The average performance scores according to simulation
scenario 3 are presented in Fig. 4.
In concordance with the first scenario, the FDR in sig-

natures found in SC data was lower than the FDR of
MC signatures when the sample size was low. A sam-
ple size of at least 200 was required for this weak sig-
nal to obtain mean FDR values that were lower in MC
signatures than in SC signatures. The maximum gap
between the two settings was observed at 100 sam-
ples (SC FDR: 0.47 ± 0.15 standard deviation; MC FDR
0.94 ± 0.20).
Consistently with the previous two scenarios, the SC

discovery scenario lead to systematically higherMSPE val-
ues and the choice of validation data made no difference.
This gap between the MSPE values of single- and MC
signatures even grew with sample size, as more and more
features entered the signature.
For sample sizes up to 150 samples, the rate of success-

ful validation in SC signatures was higher than for MC

Fig. 3 Performance scores under varying number of informative genes. Performance scores and 99%-confidence bands for a “expected fraction of
false findings in signature" FDR, b “expected error on single future predictions” MSPE, c “chance of successful validation" SV, and d “average
calibration slope” CS calculated from 103 simulated prognostic modeling iterations. The parameter values are given in Table 1 and the number of
informative genes is varied. Note that the overall signal (

∑
g β̃g ≡ β · ninf ) is kept constant by adapting β̃ to the number of informative features ninf
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signatures. For 200 samples or more, the MC discovery
setting showed a higher success rate.
The same tendency was found in the average calibra-

tion slope. While for up to 150 samples the SC scenario
had higher average slope, the average calibration slope did
not increase notably with larger samples sizes (SC discov-
ery, MC validation: 150 samples: CS = 0.217 ± 0.003; 500
samples: CS = 0.224 ± 0.002). In contrast, in the MC
discovery setting the performance increased substantially
within this range (MC discovery, SC validation: 150 sam-
ples: CS = 0.146 ± 0.005; 500 samples: CS = 0.521 ±
0.003).
Thus, except for low- to under-powered studies, where

SC signatures had a lower FDR, SV and CS, MC settings
clearly outperformed the SC approach. In particular, MC
discovery had lower expected prediction error than SC
discovery, independently of the sample size.

Discussion
Summary
In this article, we investigate how to make best use of SC
and MC gene expression data sets for prognostic model-
ing, where our results are particularly relevant for the pre-
diction of therapeutic success of radiotherapy. To mimic
the process of discovery and validation ofmolecular signa-
tures, we generated in silico high-dimensional continuous
data carrying signal, white noise and center specific noise
patterns. The computer generated data sets were then
processed in an analysis flow that would also be appli-
cable to gene expression data in everyday experiments:
First, ComBat batch correction was applied, subsequently
prognostic models were built using Lasso followed by
determining the performance using various scores.
Comparing the quality of two prognostic models is

a complex task, since quality refers to many different
aspects of a model and hence is a multidimensional con-
cept. For quality measures of clinical trials, which face
the same difficulty, it is known that the use of summary
scores is problematic [43]. In particular, a model should
be evaluated in reference to the task for which it was
designed [29]. Overviews of available scores and their
applications can be found in various articles [29, 44–48].
These performance scores all have in common that the
performance of a signature is evaluated in light of new
data with known outcomes. When variable selection steps
are implemented in the model fitting procedure, their
quality can be addressed separately as well [30]. Conse-
quently, in our analyses for evaluating the quality of the
choice of data usage in molecular prognostic modeling,
four performance scores are used, where each of these
addresses a specific aspect of success. Interestingly, there
is no dominant strategy in terms of one type of data out-
performing the other independently of the signal strength
and sample size.

To understand why the lines of performance scores
(FDR, SV, CS) cross forMC and SC discovery, consider the
following two situations: First, if the signal strength or the
sample size is low or if the signal is diffused by being dis-
tributed over many variables (high number of informative
features), the signal in MC discovery data gets lost among
the various batch patterns of the different parts consti-
tuting this data. In this situation, using SC discovery data
can be advantageous, because the signal detection on the
discovery data works better as the whole discovery data
set shares the same batch effect pattern for SC discovery.
Second, in contrast, if the signal is strong, the sample size
large, or if the signal concentrates in few variables with
strong influences (small number of informative features),
MC discovery data is advantageous. In the just described
situations the signal in MC discovery data is no longer
buried among the various batch patterns associated with
MC data. The fact that the SC data carries only a single
batch effect pattern is a disadvantage of SC discovery in
these situations, because the resulting signature is overly
well adjusted to the discovery data associated with this
specific batch effect pattern.
The results of our simulation study show that the deci-

sion on which data to use for discovery of a signature is
connected with the intention of the study the molecular
prognostic model is built for. If the study is designed to
produce a gene signature that can be instantly applied to
decisionmaking about radiotherapeutic options, the focus
lies on the minimization of the expected prediction error
and thus the precise parameter estimation of the signa-
ture coefficients. In this case, FDR, SV and CS are not
the parameters of interest and therefore our simulation
results clearly advise the use of MC discovery data and, if
available, the use of MC data also for validation.
In contrast, if the study is designed to identify candi-

date biomarkers in an exploratory project, the focus lies
on the successful identification of information carrying
genes. In this case FDR and SV are the performance scores
of interest rather than minimizing the MSPE. Therefore
our simulation results indicate advantages of SC discovery
over MC discovery, if the anticipated signal-to-noise ratio
and the sample size are small. Again, it is advisable to aim
for MC validation data.
This dependency of the data usage advice on the

intention of the study nicely fits into the scene presented
by Altman and Royston, who examined the complexity
of the validity concept for prognostic models and its
dependence on the model purpose, which is reflected
in a context-dependent definition of performance
adequacy [29].

Limitations of the study
In general, the partial lack of transferability of a simula-
tion study limits its benefit. Four limitations of our study
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design are discussed in the following, to make the scope of
our results more transparent.
First of all, we use a microarray batch effect model to

mimic variation between centers and batch effects gen-
erally characterize biases of separately generated parts of
the same data. If this model captures center effects in gene
expression data of tumor tissue insufficiently, all findings
only apply to studies affected by batch effects rather than
center effects. To critically assess this assumption of cen-
ter heterogeneity being adequately modelled by the Hor-
nung batch model, two questions need to be answered:
(I) “Does the Hornung model generate heterogeneity pat-
terns as found in gene expression data from different
clinical sites?" and (II) “Are all aspects of heterogeneity of
clinical sites covered by the Hornung model?"
With regard to question (I), microarray samples of the

same center share the specific tissue sampling procedure
that unavoidably introduces variation between centers
beyond all standard operating protocols [38]. It has been
reported that the list of center-specific factors that affect
microarray data is surprisingly long [32–34]. All center-
wise factors that introduce shared errors in terms of mean
shifts, correlations or scaling effects are captured by the
Hornungmodel. Therefore, we argue that the batchmodel
of Hornung et al. [39] adequately generates heterogeneity
characteristics as expected in MC microarray data.
With regard to question (II), we underline that there

are further sources of heterogeneity, which we did not
model explicitly. Certainly, case mix and varying signal
strength are two factors that introduce further hetero-
geneity between centers that is not included in the noise-
terms of the Hornung model. In order to mimic these
effects, either the signal vector or distribution parameters
(e.g., the standard deviation of normally distributedmodel
parameters) must be varied between centers, thereby
implicitly enlarging the list of assumptions and parame-
ters substantially.
Thus, we argue that the Hornung model generates het-

erogeneity patterns that are well suited to study the perfor-
mance of prognostic models using populations of patients
that are homogenous with respect to biology.
Second, we discuss the performance of a multiple

regression model with a continuous response variable
instead of censored survival data. Most prognostic models
in cancer research are Cox proportional hazard mod-
els or, in the case of binary response variables, logistic
regression models. Prediction of a continuous outcome
from microarray data is rarely seen in practice. Yet,
there are established linear predictive models in radia-
tion oncology. For example, the so-called "radiation sen-
sitivity index" successfully predicts tumor radiosensitivity
in breast cancer [49]. However, the conclusions drawn
from the simulation study can be transferred to types of
response variable other than continuous outcomes. The

structure of the center effects does not depend on the type
of the response variable. Moreover, there seems to be no
plausible reason why the general procedures of ‘variable
selection’/‘parameter estimation’ and ‘prediction’ would
be influenced differently for different types of response
variables by the general factors ‘signal strength’, ‘num-
ber of informative genes’, and ‘sample size’ [50]. Linear
regression is a very basic model and was thus a suitable
choice for the simulation study in order to not complicate
its design unnecessarily. Nevertheless, there are complex
structural differences in MC studies with different types
of response variables. For example, in MC studies that
feature binary response variables and use logistic regres-
sion, marginal effects and effects conditional on center
are not the same; for methodological work on logistic
regression in MC studies with binary response variables,
see Wynants et al. (2018) and Meisner et al. (2019)
who include the center effect in the model equations
instead of applying batch correction to the MC data
beforehand [51, 52].
Third, the choice of scenarios and chosen parameters

shapes the outcome of the analysis. Therefore, we took as
many parameters as possible directly from Hornung et al.
[39] and adapted sample size and number of centers to a
real MC data set recently used for a genomic prognostic
model [10]. The measurement error of the true state was
kept at 10% of the variation over all samples. The remain-
ing parameters were standard normally distributed and
thus did not add so-called researcher degrees of freedom,
which refers to themany choices researchers have tomake
during data analysis, thereby increasing the risk of finding
over-specific and irrelevant or at worst even false positive
results [53]. The choices of the model parameters signal
strength, spreading of the signal over many genes as well
as the considered sample size were based on our experi-
ences working with real gene expression data sets. There is
no doubt that various other settings would also have been
of interest.
Fourth, we did not use real tumor data to validate

the results from our simulation study. Simulated effect
curves gain persuasive power when data points obtained
from real data examples are added to the trajectories
and match the simulation results. However, the result
obtained with a real data example is but a single point
in the space of the possible results, which does not allow
to draw conclusions on further points (i.e. on the results
one would obtain with other data sets). Single obser-
vations are expected to differ from the presented lines;
they never contradict expected mean values without con-
sidering the variance. Furthermore, the true state (i.e.
corresponding set of parameter values for the Hornung
model) is not known in real tumor data, which is why
all model parameters have to be estimated, particularly
the signal strength and the number of informative genes.
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Fig. 4 Performance scores under varying sample size. Performance scores and 99%-confidence bands for a “expected fraction of false findings in
signature" FDR, b “expected error on single future predictions" MSPE, c “chance of successful validation" SV, and d “average calibration slope” CS
calculated from 103 simulated prognostic modeling iterations. The parameter values are given in Table 1 and the sample size is varied

These estimated parameter values can be unreliable or
biased and therefore the coordinate of a real data perfor-
mance score in the presented plots is associated with large
uncertainty.
To sum up, given the generality of the simulation design,

we are confident that the presented effects are widely
applicable to molecular prognostic modeling in various
disciplines. To our knowledge, there are no studies that
analyzed the performance of feature selection and prog-
nostic modeling approaches in MC settings.

Conclusion
The simulations clearly show that decisionmaking regard-
ing the choice of multi-center or single-center data for
prognostic modeling must consider the study aim and
thus the performance criterion of interest. If the study is
designed to build a prognostic model for direct applica-
tion to radiotherapeutic decision making, minimization
of the prediction error will have highest priority and thus
we recommend use of multi-center discovery data. In
contrast, if the study is designed to identify informative
genes for future investigations, minimization of the false
discovery rate and maximization of the chance of suc-
cessful validation will have highest priority and thus we
recommend use of single-center discovery, if the antici-
pated signal-to-noise ratio and the sample size are small.
Even though multi-center validation data returns better
estimates for the true prediction error, we consider this
aspect less important than the effect of the choice of
the discovery data on the signature’s performance. This
simple decision rule may support anybody involved in

study design regarding data usage for genomic prognostic
models.
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