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Abstract

The magnesium alloy LAE442 emerged as a possible bioresorbable bone substitute

over a decade ago. In the present study, using the investment casting process, scaf-

folds of the Magnesium (Mg) alloy LAE442 with two different and defined pore sizes,

which had on average a diameter of 400 μm (p400) and 500 μm (p500), were investi-

gated to evaluate degradation and osseointegration in comparison to a ß-TCP con-

trol group. Open-pored scaffolds were implanted in both greater trochanter of

rabbits. Ten scaffolds per time group (6, 12, 24, and 36 weeks) and type were ana-

lyzed by clinical, radiographic and μ-CT examinations (2D and 3D). None of the scaf-

folds caused adverse reactions. LAE442 p400 and p500 developed moderate gas

accumulation due to the Mg associated in vivo corrosion, which decreased from

week 20 for both pore sizes. After 36 weeks, p400 and p500 showed volume

decreases of 15.9 and 11.1%, respectively, with homogeneous degradation, whereas

ß-TCP lost 74.6% of its initial volume. Compared to p400, osseointegration for p500

was significantly better at week 2 postsurgery due to more frequent bone-scaffold

contacts, higher number of trabeculae and higher bone volume in the surrounding

area. No further significant differences between the two pore sizes became appar-

ent. However, p500 was close to the values of ß-TCP in terms of bone volume and

trabecular number in the scaffold environment, suggesting better osseointegration

for the larger pore size.
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1 | INTRODUCTION

The gold standard for larger bone defects is the use of autologous bone

grafts with the advantage of osteoinductive, osteoconductive, and

adapted mechanical properties (Yoshikawa & Myoui, 2005). However,

the associated risk factors are numerous (Prolo & Rodrigo, 1985).

Creating a second surgical site, limited availability and donor-site mor-

bidity represent an additional burden for the patient and limit the appli-

cability of bone grafts (Arrington, Smith, Chambers, Bucknell, & Davino,

1996; Banwart, Asher, & Hassanein, 1995; Younger & Chapman, 1989).

Commonly used alternatives are bone substitutes made of bio-

compatible, biodegradable ceramics (Nuss & von Rechenberg, 2008)
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or polymers (Agarwal, Curtin, Duffy, & Jaiswal, 2016). However,

ceramics such as ß-tricalcium phosphate (ß-TCP) are brittle and are

susceptible to fatigue fractures, which limits their use under load

(Ignatius et al., 2001). Studies have shown that the use of polymers

such as polyglycolides (PGA) and polylactides (PLA) can trigger foreign

body reactions while degrading (Bergsma, Rozema, Bos, & Bruijn,

1993; Böstman et al., 1989; Suganuma & Alexander, 1993). Due to a

lack of long-term stability, their use is also restricted to areas of the

bone that are not exposed to great stress (Agarwal et al., 2016).

In order to avoid or significantly reduce limited mechanical stabil-

ity and biocompatibility, more attention is being paid to bioresorbable

bone substitutes consisting of magnesium alloys (Agarwal et al.,

2016). The mechanical properties such as the Young's modulus

(E = 41–45 GPa) and the density (1.74–1.84 g/cm3) of magnesium

(Mg) are similar to bone (E = 15–25 GPa/density = 1.8–2.1 g/cm3)

(Staiger, Pietak, Huadmai, & Dias, 2006), so the use of Mg as a bio-

resorbable metal can ensure long-term stability during the healing

phase (Angrisani, Seitz, Meyer-Lindenberg, & Reifenrath, 2012). At

the beginning of the last century, investigations with Mg implants

were already being carried out on humans and animals to analyse the

degradation of pure Mg in the form of plates, screws, and pins

(Lambotte, 1932; Mcbride, 1938; Verbrugge, 1933; Verbrugge, 1934).

Due to too rapid degradation of implants made of pure Mg and the

resulting gas formation (Mg + 2H2O ! Mg(OH)2 + H2) these implants

have not yet found broad clinical application (Song & Atrens, 1999;

Staiger et al., 2006).

Recently, Mg was reintroduced as an implant material. The corro-

sion behavior of Mg could be slowed down by adding various ele-

ments such as aluminum (Al), zinc (Zn), lithium (Li), and rare earth

elements (SE). This resulted in better primary stability with good bio-

compatibility (Angrisani et al., 2012; Angrisani et al., 2016; Hampp

et al., 2013; Höh et al., 2009; Lalk et al., 2013; Lalk, Reifenrath,

Rittershaus, Bormann, & Meyer-Lindenberg, 2010; Meyer-Lindenberg

et al., 2010; Rossig et al., 2015; Thomann et al., 2009; Witte et al.,

2005; Witte et al., 2006; Witte et al., 2010). Compared with Al-Zn

alloys (AZ91, AZ31) and an alloy with yttrium and rare earths (WE43)

(Witte et al., 2005), the Mg alloy LAE442 (90 wt% Mg, 4 wt% Li, 4 wt

% Al, 2 wt%) has proven to be a promising implant in various animal

studies with regard to its good mechanical stability and biocompatibil-

ity (Angrisani et al., 2012; Angrisani et al., 2016; Hampp et al., 2013;

Meyer-Lindenberg et al., 2010; Reifenrath et al., 2010; Rossig et al.,

2015; Witte et al., 2005; Witte et al., 2006; Witte et al., 2010).

The ideal bone substitute material should not only retain its

mechanical stability, but also degrade over time in a controlled manner

as new bone grows into the substitute (Phemister, 1935). Pores were

incorporated into biodegradable bone substitutes in order to adapt to

the structure of bone and promote the ingrowth of blood vessels and

migration of bone progenitor cells (Kuboki et al., 1998). The size spec-

trum of the pores ranged from micropores (<100 μm) to macropores

(up to about 1000 μm) and different porosities of the material were

employed. Pore sizes in a range of 100–500 μm for ceramics as well

as for metals proved to be beneficial for osseointegration (Bobyn,

Pilliar, Cameron, & Weatherly, 1980; Bohner et al., 2017; Cheng et al.,

2016; Galois & Mainard, 2004; Hofmann et al., 2013; Hulbert et al.,

1970; Itälä, Ylänen, Ekholm, Karlsson, & Aro, 2001; Karageorgiou &

Kaplan, 2005; Klenke et al., 2008; von Doernberg et al., 2006).

In a preliminary study, the MgF2 coated alloy AX30 used as

a porous sponge with inhomogeneously distributed pores showed

good osseointegration in a rabbit model, but its degradation was

still too fast (Lalk et al., 2013). The objective of the present

study was to investigate the slow degrading LAE442 alloy for the

first time as reproducible, porous scaffolds, instead of solid bod-

ies used as bone substitute material in former investigations

(Angrisani et al., 2016; Hampp et al., 2013; Meyer-Lindenberg

et al., 2010; Reifenrath et al., 2010; Rossig et al., 2015; Witte

et al., 2005; Witte et al., 2006). Since pore sizes of a bone sub-

stitute also play an important role in the formation of new bone

tissue (Karageorgiou & Kaplan, 2005), the osteoconductive prop-

erties of two different pore sizes of LAE442 were also compared

in the present study.

2 | MATERIALS AND METHODS

2.1 | Magnesium alloy and scaffold structure

The magnesium alloy LAE442 (4 wt% lithium, 4 wt% aluminum, 2 wt%

rare earths) was produced using the manufacturing process suggested

by Seitz et al. (2011).

To produce the porous scaffolds, exact models of the scaffolds

were created using the fused deposition modeling process with indi-

vidual successive layers of wax on a 3D printer (Solidscape, Inc., Mer-

rimack) (Julmi, Klose, Krüger, Wriggers, & Maier, 2017). For the

following investment casting process, the resulting single wax cylin-

ders were attached together to a model wax tree. A subsequent

dipping process of this wax tree in gypsum (Gilcast AM, BK Giulini

GmbH, Ludwigshafen, Germany) produced the final casting mold

for the scaffolds. The subsequent firing process hardened the cast-

ing mold and melted out the pattern material. Two versions of the

cylindrical LAE442 scaffolds (Ø 4 mm, height 5 mm, n = 40 per ver-

sion) were manufactured. Both scaffold models had homoge-

neously arranged interconnecting pores. The first model featured

an average pore size of 400 μm (p400) with intermediate strut ele-

ments of 0.4 and 0.3 mm, a porosity of 43% and a volume of

37 mm3. The second model had an average pore size of 500 μm

(p500), strut elements of 0.4 and 0.5 mm, a porosity of 41% and

a volume of 38 mm3 (Figure 1). The cast scaffolds were coated

with a MgF2 layer using the “conversion coating method” (Julmi

et al., 2019).

The control group consisted of commercially available resorbable

ß-TCP (Cerasorb M, Curasan AG, Kleinostheim, Germany), which was

produced in corresponding dimensions (Ø 4 mm, height 5 mm) for

this study with a porosity of 65% (micro-, meso- and macropores

≤500 μm). Prior to implantation, the scaffolds were sterilized by

gamma rays of >29 Gry (BBF-Sterilisations service GmbH, Kernen,

Germany).
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2.2 | Animal model

The animal experiments were approved with the reference number

ROB 55.2-1-54-2532-181-2015 by the regional government of Upper

Bavaria, under paragraph 8 of the Animal Welfare Act. Sixty adult

female ZIKA rabbits (Assamhof, Kissing, Germany) with an average

weight of 3.93 kg (± 0.27 kg) were used for this study. The animals

were randomly divided into scaffold and time groups. According to

the study by Lalk et al. (2010), two scaffolds (one per hind limb) were

implanted per rabbit in the cancellous part of the greater trochanter

of the femur (Figure 2a). In all three groups (p400, p500, and ß-TCP) a

total of 40 scaffolds were used. These remained for investigation

periods of 6, 12, 24, and 36 weeks respectively, so that a total of

10 scaffolds per time group were examined. The animals were kept in

accordance with the European Convention for the protection of ver-

tebrate animals used for experimental and other scientific purposes

(Appendix A, ETS 123). In addition to rationed commercial pellet feed

(Kanin Kombi, Rieder Asamhof GmbH & Co KG, Kissing, Germany),

hay and water were provided ad libitum.

2.3 | Operation

Anaesthesia was induced intramuscularly with 0.15 mg/kg ketamine

(Anesketin® 100 mg/ml, Albrecht GmbH, Aulendorf, Germany) and

0.25 mg/kg medetomidine (Dorbene vet® 1 mg/ml, Zoetis Deutsch-

land GmbH, Berlin, Germany). A venous catheter was placed in the

auricular vein of the animals. The animals were intubated and the

F IGURE 1 Scaffold types
used (a) LAE442 p400,
(b) LAE442 p500, (c) ß-TCP

F IGURE 2 (a) Scaffold position after
implantation in a rabbit femur; D,
medullary canal; G, greater trochanter; H,
femur head; asterisks, cancellous bone;
scale bar: 5 mm; (b) μ-CT longitudinal
section of a LAE442 p500 scaffold:
starting from the drill hole side, six
consecutive strut and pore cross sections
were examined for bone-scaffold contacts
in each scaffold sample, scale bar: 1 mm;
(c) strut cross section, (d) pore cross
section shown within a LAE442 p500
scaffold, scale bar: 1 mm
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surgical field was aseptically prepared. Anaesthesia was maintained

with isofluoran (1.5–2 vol% with simultaneous oxygen supply of 1 L/

min) and analgesia was ensured with a fentanyl infusion of 10 μg/ml

(Fentadon®, 50 μg/ml, CP-Pharma Handelsgesellschaft mbH,

Burgdorf, Germany). The greater trochanter was accessed through

~2 cm long skin incision. Subcutaneous fat tissue and underlying mus-

culature were prepared in order to expose the bone using a periosteal

elevator. A 6 mm deep hole was drilled into the greater trochanter

using a surgical power tool (Colibrii II, Synthes GmbH, Oberdorf, Swit-

zerland) with a Ø 4 mm drill bit. The resulting drilling residues were

eliminated by suction. The scaffold was placed approximately 1 mm

below the outer contour of the bone (Figure 2a). The wound was then

sutured in layers with absorbable sutures (Monosyn® 4/0, B. Braun

Surgical S.A., Rubi, Spain) and the overlying skin was closed with non-

absorbable sutures (Optilene® 4/0, B. Braun Surgical S.A.). Postopera-

tively, each animal received a single intravenous dose of 20 μg/kg

buprenorphine (Bupresol®, 0.3 mg/ml, CP-Pharma Hand-

elsgesellschaft mbH, Burgdorf, Germany). From the time of surgery up

to the fifth day postoperative, 10 mg/kg/day enrofloxacin

(Enrobactin®, 25 mg/ml, CP-Pharma Handelsgesellschaft mbH,

Burgdorf, Germany) and 0.3 mg/kg/day meloxicam (Rheumocam®,

1.5 mg/ml, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim

am Rhein, Germany) were given orally. A general examination of the

animals as well as wound and lameness examinations were carried out

daily.

2.4 | X-ray investigations

The pelvis and the femora were X-rayed in ventrodorsal position

directly after surgery, in the further course every 2 weeks until week

12, then every 4 weeks until week 36 (Multix Secret DR, Siemens,

Erlangen, Germany, 4.5 mA s, 55 kV). The evaluation was carried out

with the software dicomPACS® vet (version 8.3.20; Oehm und

Rehbein GmbH, Rostock, Germany). Based on a study by Lalk et al.

(2010), a semiquantitative scoring system was used to determine the

following parameters: gas outside the bone (descriptive), periosteal

bone formation in the region of the implant site (mm), bone-like struc-

tures in the surrounding muscle tissue (number and size in mm). The

scores ranged from 0 (unchanged state) to 2 (clearly altered). In addi-

tion, the visibility of the scaffolds was evaluated with the score values

0 (visible) and 1 (not visible) (Table 1).

2.5 | In vivo μ-CT investigation

The μ-computer tomography examinations (XtremeCT II, Scanco Med-

ical, Zurich, Switzerland) were also performed directly after surgery

and subsequently at the same times as the X-ray examinations. The

following settings were used: isotropic voxel size: 30.3 μm, tube volt-

age: 68 kV, current: 1470 μA, projections: 1000/180�, integration

time: 200 ms. For the μ-CT scans the animals were given an intramus-

cular anaesthesia (0.15 mg/kg ketamine, Anesketin® 100 mg/ml,

Albrecht GmbH, Aulendorf, Germany; 0.25 mg/kg medetomidine,

Dorbene vet® 1 mg/ml, Zoetis Deutschland GmbH, Berlin, Germany).

The scanning area was defined from just below the lesser trochanter

to about 5 mm above the greater trochanter. The μ-CT analyses were

performed in two and three dimensions.

2.5.1 | Semiquantitative in vivo 2D evaluation in
scaffold longitudinal and cross section

Evaluation of gas formation and bony reactions in the scaffold

longitudinal section

The evaluation of the 2D cross-sectional images was based on the

established semiquantitative scoring system by Lalk et al. (2010)

(Table 2). In the longitudinal sections of the scaffolds, the following

parameters were evaluated: location of the scaffolds, gas formation in

the bone in three different locations (within the scaffold/around the

scaffold/in the medullary canal), periosteal bone formation (length in

mm), bone-like structures in the surrounding musculature (number and

size in mm) and drill hole closure. Scores for the scaffold location ranged

from score 0 (completely embedded in cancellous bone) to 2 (mainly in

medullary canal or penetrating through corticalis) and were evaluated in

the first scan. The other score parameters ranged from 0 (unchanged

state/not existing) to 2 (clearly altered). The scores of gas accumulation

in the different bone locations were added up to give a total score.

Evaluation of the bone-scaffold contacts in the scaffold cross section

To obtain uniform cross-sectional views for the evaluation of the scaf-

folds, the scaffold longitudinal sections were manually contoured and

reoriented using the μ-CT evaluation program V 6.4-2 (Scanco Medi-

cal, Zurich, Switzerland). Bone-scaffold contact was determined

according to the protocols used by Lalk et al. (Lalk et al., 2010; Lalk

et al., 2013) (Table 2). Six central cross sections per scaffold were

evaluated, which were located in the cancellous area of the greater

trochanter (Figure 2).

TABLE 1 Scoring system used for evaluation of bone and scaffold
related changes at the implantation site as observed on radiographs in
ventrodorsal position

Parameter Score 0 Score 1 Score 2

Gas None Few or diffuse Clear and

measurable

bubbles

Bone-like

structures in

surrounding

muscles

None 1–3 structures of

≤2 mm

1–3 structures

>2 mm or > 3

structures

Periosteal bone

formation

None ≤ 7 mm in length

and ≤ 2 mm wide

>7 mm in length

and >2 mm wide

Visibility of the

scaffold

Yes No –
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2.5.2 | Quantitative in vivo 3D evaluation

For the quantitative 3D evaluation, it was necessary to determine the

respective threshold for LAE442 (146), ß-TCP (148), and for cancellous

bone (120). Five femora of healthy rabbits of the same breed and age

were scanned without scaffolds to determine the threshold of cancel-

lous bone in the greater trochanter. Two “regions of interest” (ROI)

were defined for the evaluation of scaffold degradation and

osseointegration in vivo.

Evaluation of scaffold degradation

The first ROI was determined by placing a standardized cylinder in the

middle part of the scaffold with a diameter of 132 voxels (equivalent

to 3.99 mm). The height of the cylinder was 50 slices (equivalent to

1.52 mm) for p400 and 60 slices for p500 and ß-TCP (equivalent to

1.82 mm) (Xu et al., 2018). The different heights resulted from the two

different pore sizes of the LAE442 scaffolds and were chosen for both

types of the scaffolds so that the same two pore and strut sections

were always included in the calculations (Figure 3a,b). The scaffold

density (mg HA/cm3) and the scaffold volume (mm3) were determined

each time. To compare the scaffold volumes despite the differing pore

sizes, the percentage scaffold volume share (%) was additionally calcu-

lated. To calculate the in vivo corrosion rate, the scaffold volume

(mm3) and the scaffold surface (mm2) were determined.

Evaluation of osseointegration in the scaffold surroundings

The second ROI, a double ring around the first ROI, was set to analyse

bone growth behavior (Bissinger et al., 2017). For all scaffold groups,

the inner circle of the double ring had a diameter of 134 voxels

(corresponding to 4.06 mm) and a distance of 400 μm to the outer cir-

cle with 159 voxels (corresponding to 4.82 mm) (Figure 3c). Within

the second ROI, bone density (mg HA/cm3), bone volume fraction (%),

trabecular number (1/mm), trabecular thickness (mm), and trabecular

separation (mm) were determined.

2.5.3 | In vivo corrosion rate of the scaffolds

The determined μ-CT data sets were used to calculate the in vivo cor-

rosion rates of the scaffolds as a function of volume loss and implant

duration using CR = ΔV/(A × t) (Witte et al., 2006). CR represents the

in vivo corrosion rate (mm/year), ΔV is the difference between the ini-

tial volume and the residual volume, A is the scaffold surface (mm2) of

the implant and t is the exposure time in days.

2.6 | Statistics

The mean values and their standard deviations were calculated from

the data. The statistical evaluation was carried out with Microsoft

Office Excel® Version 2016 (Microsoft Office XP, Microsoft Corpora-

tion, Redmond) and SPSS® Version 25.0 (SPSS, IBM Company, Chi-

cago). Distribution characteristics were determined by using the

Shapiro–Wilk test and histograms. Since the data did not show normal

distribution, the groups were tested for significance by using the non-

parametric Kruskal-Wallis test with a one-way analysis of variance

(ANOVA) and subsequent Bonferroni post hoc comparison. Statisti-

cally significant differences were defined as p < .05.

3 | RESULTS

3.1 | Clinical examinations

Overall, none of the animals exhibited clinical adverse reactions.

According to a physiological healing process, mild swelling and slight

redness occurred around the surgical site. These disappeared in all

cases within the first days after surgery and did not lead to any

impairment of the animals. There was no evidence of infection of the

bone or soft tissue. Lameness and signs of pain could not be detected

TABLE 2 Scoring system employed for in vivo μ-computer tomography (XtremeCT II)

Parameter Score 0 Score 1 Score 2

Location of the scaffolds (at first

scan directly postsurgery)

Completely embedded in

cancellous bone

Mainly in cancellous bone Mainly in medullary canal or penetrating

through corticalis

Gas*

-Within scaffold

-Around scaffold

-In medullary canal

None Few or diffuse Clear and measurable bubbles

Bone-like structures in

surrounding muscles

None 1–3 structures of ≤2 mm 1–3 structures >2 mm or >3 structures

Periosteal bone formation None ≤ 7 mm in length and ≤2 mm wide >7 mm in length and > 2 mm wide

Drill hole closure Closed Partially closed Open

Bone-scaffold contact Many direct contact points

to trabecular bone, only

isolated gaps in between

Trabecular bone in surrounding

but only few contacts points,

clear gaps in between

No contact to trabecular bone, complete

gap around the scaffold

Note: Parameters were evaluated over the entire scan area, while the bone-scaffold contact was evaluated in six cross sections through the scaffolds

(starting from the drill hole direction: 3× pore-section, 3× strut-section alternately), cross sections shown in Figure 2(c) and (d). The individual gas values (*)

were summed up to a total score.

2780 AUGUSTIN ET AL.



in any animal. Emphysematous swellings were not present over the

whole investigation period.

3.2 | Radiological evaluation

There was no gas accumulation in the surrounding soft tissue for p400

and ß-TCP at any time except immediately after surgery. In the p500

scaffold group, two animals showed a mild gas accumulation in the soft

tissue close to the implant site up to week 4 and week 6, respectively.

All scaffolds of p400 and p500 were clearly visible over the entire

36-week period. Single ß-TCPs were no longer recognizable from

week 10 and were no longer visible at all from week 24 onwards.

Postoperatively, periosteal bone formation was found in the area

of the implant site, which steadily increased in size over time and

reached an average length of >7 mm in all scaffold groups up to week

36. In addition, smaller bone-dense structures were found in the mus-

cle tissue near the implant site, which increased in size over time.

3.3 | Semiquantitative in vivo μ-CT evaluations

3.3.1 | Results of gas formation and bone
reactions in the 2D scaffold longitudinal section

All scaffolds were precisely inserted into the intended cancellous part

of the greater trochanter (Figure 4a). Gas formation was observed for

p400 and p500 over the entire duration of the study. The highest

increase in gas was noted directly postoperative up to week 2. At that

time, p400 showed significantly more gas than p500 (p = .047). In

comparison, the presence of gas was only noted directly postopera-

tive in the ß-TCP group. Overall, p500 showed less gas accumulation

than p400. The two LAE442 scaffolds increased their gas formation

until week 20 and subsequently decreased to a moderate amount in

week 36 (Figure 4b).

Small periosteal bone formations around the implant site were

already detected in week 2 in all scaffolds. These increased in size and

reached maximum values of 19.1 mm × 3.3 mm in the p400 group

(week 28), 19.4 mm × 2.7 mm in the p500 group (week 24) and

23.6 mm × 5.9 mm in the ß-TCP group (week 16). Small, bone-like

structures were also found in the surrounding muscle tissue, which

became larger over time (Figure 4c,d).

The fastest drill hole closure was detected with the ß-TCP scaf-

folds (Figure 4e). In week 6 85% of the 40 ß-TCPs showed a compact,

bony layer above the drill site. In p400 63.3% of the scaffolds showed

a drill hole closure at week 12, and in p500 76.6% of the drill holes

were closed at week 12. One drill hole in both p400 and p500 scaffold

groups stayed incompletely covered with bone until the end of the

36-week investigation period.

3.3.2 | Bone-scaffold contact in 2D scaffold cross
sections

In the initial stage, the two pore sizes of the LAE442 scaffolds

showed only isolated bone-scaffold contacts. After week 12 (p400)

and 16 (p500) the number of detected contacts increased until week

36. Although p500 always showed more bone-scaffold contacts than

F IGURE 3 (a) Longitudinal section of scaffold, green box, area of quantitative 3D measurements; D, periosteal bone formation; H, femur
head; J, hip joint and acetabulum; S, scaffold; arrows, trabecular meshwork with scaffold contacts; asterisk, medullary cavity; (b) first ROI for
scaffold degradation; (c) second ROI within a 400 μm wide double ring around the scaffold where bone values were measured
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p400 based on the scores, differences between both pore sizes were

significant only in week 2 (p = .007). In comparison, ß-TCP already

showed numerous bone-scaffold contacts in week 2, which

increased in number by week 36. ß-TCP showed therefore signifi-

cant differences to p400 and p500 at any time (p = <.05) (Figures 4f

and 5).

F IGURE 4 2D semiquantitative evaluation of the in vivo μ-CT parameters (a) location of the scaffolds; (b) gas accumulation; (c) periosteal

bone formation; (d) bone-like structures in the surrounding musculature; (e) drill hole closure; (f) bone-scaffold contact. (a)–(e) were evaluated
using the longitudinal view of scaffolds, (f) was evaluated using the cross-sectional view of scaffolds

F IGURE 5 Osseointegration behavior based on reoriented scaffold cross sections: one sample per scaffold group over the study period post
op, 6, 12, 24, and 36 weeks with increasing number of bone-scaffold contacts. (b)–(e) and (g)–(j): gas accumulation (black areas around both types
of the LAE442 scaffolds)
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3.4 | Quantitative in vivo 3D evaluation

3.4.1 | Results of scaffold degradation

The density of LAE442 scaffolds decreased only slightly with 2% for

p400 and 1.8% for p500 after week 36, respectively, regardless of

pore size, whereas ß-TCP showed a density loss of 6.4% after week

36 (Figure 6a). The calculated scaffold volume decreased by a total of

15.9% for p400 and 11.1% for p500 by week 36. The largest volume

loss occurred between the time directly postoperative and week 2 for

p400 with 7.5% and p500 with 6%. In contrast, the volume of ß-TCP

was reduced by more than half after week 12 and dropped to 25.4%

of the original volume by week 36 (Figure 6b).

Both LAE442 scaffolds showed the fastest in vivo corrosion rate

between directly postoperative and week 2, with 3.76 × 10−1 mm/year

for p400 and 2.86 × 10−1 mm/year for p500. Subsequently both slowed

down to an average rate of 4.55 × 10−2 mm/year for p400 and

3.71 × 10−2 mm/year for p500 after 36 weeks. ß-TCP degraded fastest

from week 4 to week 6 with 2.09 mm/year and had significantly higher

in vivo corrosion rates than the LAE442 scaffolds at any time.

3.4.2 | Results of bone remodeling in the scaffold
surroundings

Bone density increased in both pore sizes after surgery and exceeded

the comparison values of cancellous rabbit bones (733.3 mg HA/cm3)

at weeks 16 (p400) and 24 (p500). ß-TCP also showed an overall

increase in bone density in the immediate vicinity of the scaffolds,

which exceeded the comparison values of cancellous bone in the

greater trochanter at week 6 and remained highest of all material

groups (Figure 7a). The bone volume fraction in the scaffold environ-

ment was similar for all three scaffold groups. After an initial

increase, the volumes leveled to values in the cancellous bone area

from week 8. In week 2, a significantly higher bone volume was

determined for p500 compared to p400 (p = .026). Later, p400 also

showed the lowest bone volume fraction compared to p500 and ß-

TCP (Figure 7b).

In accordance with the bone volume, the number of trabeculae

for p500 and ß-TCP also increased at the beginning. From week

8 onwards, the number of trabeculae corresponded to the comparison

values of cancellous bone. From week 16, p500 had a slightly higher

number of trabeculae than ß-TCP. The smaller pore size p400, on the

other hand, had a significantly lower trabecular number in week 2 than

p500 and ß-TCP (p ≤.007) and was also behind in later measurements

(Figure 8a).

The trabecular thickness of the LAE442 scaffolds was slightly less

pronounced than that with ß-TCP. However, from week 28 onwards,

p500 again reached values corresponding to the cancellous bone of

nonoperated, healthy rabbits, whereas p400 showed no improvement

in trabecular thickness at later points in time. The measured distances

between individual trabeculae increased over time for all scaffold

groups. The largest trabecular separation was always determined for

p400, followed by p500 and finally ß-TCP (Figure 8a,b).

F IGURE 6 3D quantitative evaluation of the in vivo μ-CT:
(a) scaffold density (mg HA/cm3) and (b) percentage scaffold volume
share (%) were calculated over a study duration up to 36 weeks (ROI
for measuring the scaffold degradation)

F IGURE 7 3D quantitative evaluation of the in vivo μ-CT:
(a) bone density (mg HA/cm3) and (b) bone volume (%) were measured
during the implantation period up to 36 weeks in the ROI within a
400 μm wide double ring around the scaffolds
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4 | DISCUSSION

The LAE442 alloy has already been classified by in vivo studies as a

biocompatible and slowly degrading bone substitute (Angrisani et al.,

2012; Angrisani et al., 2016; Hampp et al., 2013; Meyer-Lindenberg

et al., 2010; Reifenrath et al., 2010; Rossig et al., 2015; Thomann

et al., 2009; Witte et al., 2005; Witte et al., 2006). So far, however,

only solid implants from LAE442 have been investigated (Angrisani

et al., 2016; Hampp et al., 2013; Krause et al., 2009; Meyer-

Lindenberg et al., 2010; Reifenrath et al., 2010; Rossig et al., 2015;

Thomann et al., 2009; Witte et al., 2005; Witte et al., 2006; Witte

et al., 2010; Wolters et al., 2013). LAE442 was investigated in this

study for the first time as an open-pored scaffold with a reproducible

arrangement of defined pores in rabbit femur. It is known that bone

substitute materials with pores as a structural factor favor the

ingrowth of blood vessels and cell migration and thus promote

osteogenesis (Karageorgiou & Kaplan, 2005; Klenke et al., 2008). Lalk

et al. (2013) already investigated the Mg alloy AX30 with inhomoge-

neous pore distribution and size in preliminary studies in rabbits.

Despite good osseointegration, the cylindrical Mg sponge structures

degraded too quickly. For the current study, scaffolds of the Mg alloy

LAE442 with uniform defined pore sizes and the ceramic ß-TCP as

control group were investigated in the cancellous part of the greater

trochanter of rabbits. The animals were examined clinically and

with imaging techniques (RX, μ-CT) over a period up to 36 weeks and

the implanted scaffolds were analyzed for their degradation and

osseointegration behavior.

The implantation-related surgical wounds healed without any

clinical complications. Subcutaneous emphysema, which occurred in

previous studies in LAE442 near the implant site (Hampp et al., 2013;

Witte et al., 2005; Wolters et al., 2013), was not observed in the pre-

sent study. Accordingly, LAE442 scaffolds p400 and p500 were

0.5

0.8

1.0

1.3

1.5

1.8

2.0

2.3

2.5

2.8

3.0

3.3

3.5
T

ra
b

e
c
u

la
r 

n
u

m
b

e
r

[1
/m

m
]

Implantation period [weeks]

p400

p500

ß-TCP

Spongiosa

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

T
ra

b
e
c
u
la

r 
th

ic
k
n
e
s
s

[m
m

]

Implantation period [weeks]

p400

p500

ß-TCP

Spongiosa

0

0.5

1

1.5

2

2.5

3

OP 2 4 6 8 10 12 16 20 24 28 32 36

OP 2 4 6 8 10 12 16 20 24 28 32 36

OP 2 4 6 8 10 12 16 20 24 28 32 36

T
ra

b
e

c
u

la
r 

s
e

p
a

ra
ti
o

n

[m
m

]

Implantation period [weeks]

p400

p500

ß-TCP

Spongiosa

(a)

(b)

(c)

F IGURE 8 3D quantitative evaluation
of trabecular values from in vivo μ-CT
during the implantation period:
(a) trabecular number (1/mm),
(b) trabecular thickness (mm), and
(c) trabecular separation (mm) for an ROI
within a 400 μm wide double ring around
the scaffolds

2784 AUGUSTIN ET AL.



tolerated clinically as well as ß-TCP. No animal showed lameness or

signs of pain. These results are consistent with previous in vivo stud-

ies, which also investigated the degradation behavior of LAE442 over

longer time periods (Angrisani et al., 2016; Meyer-Lindenberg et al.,

2010; Rossig et al., 2015).

Periosteal bone formation and smaller bone-like structures in the

surrounding soft tissue close to the implant site were visible in x-ray

and in vivo μ-CT of all three scaffold groups. These observations were

also described by Lalk et al. (2013) who examined AX30 sponge struc-

tures at the same implant site in rabbits. Other authors also reported

bone formation at the site of insertion of LAE442 implants placed in

the tibia (Hampp et al., 2013; Rossig et al., 2015; Thomann et al.,

2009). The stimulating effect of magnesium on bone growth (Revell,

Damien, Zhang, Evans, & Howlett, 2004; Zreiqat et al., 2002) is dis-

cussed here, but the surgical procedure, especially the drilling process,

may also have an influence on the development of periosteal growth

(Danckwardt-Lillieström, 1969; Höh et al., 2009).

The implanted LAE442 scaffolds p400 and p500 were clearly visi-

ble on X-rays throughout the study. This observation matches the

μ-CT results with only minimal decrease in density and small volume

losses. The small standard deviations of the volume losses that

occurred at the individual points in time could indicate a homoge-

neous degradation of the LAE442 scaffolds (Huehnerschulte et al.,

2012). Angrisani et al. (Angrisani et al., 2016) recorded a volume loss

of 2% of intramedullary LAE442 pins after 36 weeks for cylindrical

implants without pores, whereas the LAE442 scaffolds used in this

study degraded faster. Reasons for this deviation could be the varying

implantation site (Wolters et al., 2013) with associated different blood

perfusion (Kraus et al., 2018) and the porosity of the LAE442 scaffolds

enlarging the contact surface (Karageorgiou & Kaplan, 2005). Com-

pared to the aforementioned porous Mg sponges of the alloy AX30,

which showed a volume loss of about 76% after 24 weeks (Lalk et al.,

2013), LAE442 with homogeneous pore structure degraded to a lesser

extent (μ-CT: 15.9% for p400 and 11.1% after 36 weeks). In the pre-

sent study, p400 showed a somewhat stronger percentage of volume

loss compared to p500. This difference may be due to deviating scaf-

fold geometries (Wolters et al., 2013). P400 includes thinner strut ele-

ments with a rougher surface and a slightly higher porosity (Julmi

et al., 2019), this may lead to a higher contact surface with the host

tissue, being more susceptible to degradation (Karageorgiou &

Kaplan, 2005).

In comparison with the LAE442 scaffolds, the tendency of an

irregular degradation of ß-TCP over time could be observed in the X-

ray evaluations as well as in the μ-CT scans. A decrease in volume of

74.6% (μ-CT) by the end of the observation period, together with

larger standard deviations, indicate a more irregular degradation of ß-

TCP (Huehnerschulte et al., 2012; Nuss & von Rechenberg, 2008).

This inhomogeneous degradation behavior paired with the brittle

properties of ß-TCP limits its use as a bone substitute in weight-

bearing bone (Nuss & von Rechenberg, 2008).

The results obtained for the in vivo corrosion rate showed that

the LAE442 scaffolds degraded significantly slower than ß-TCP. In

both LAE442 scaffolds, the fastest corrosion rate and the largest

volume loss occurred between direct postoperative and week 2. This

matches the tendency of an initially accelerated degradation of

LAE442 that was observed in other studies in rabbits (Krause et al.,

2009; Ullmann, Reifenrath, Seitz, Bormann, & Meyer-Lindenberg,

2013) and guinea pigs (Witte et al., 2005; Witte et al., 2006). It is

assumed that this can be attributed to the drop in pH value after

implantation of the Mg implants, which favors Mg degradation. As a

possible reason for the subsequent reduction of degradation, it is

described that a protective layer of calcium and phosphorus forms

around the scaffolds at later experimental points (Witte et al., 2005).

This phenomenon could explain the slowdown in the in vivo corrosion

rates of LAE442 after week 2.

Bone-scaffold contact sites were observed in all three scaffold

groups. However, there were differences in the amount of these con-

tacts. Compared to p400, p500 showed a higher number of bone-

scaffold contacts with significantly more contacts at week 2. P500

also showed a higher bone volume fraction and a higher number of

trabeculae in the scaffold environment than p400 in the quantitative

3D analyses over the entire period. These two parameters differed

significantly at week 2 after surgery. Similar results were also

observed in the study by Cheng et al. (2016). In that study, pure Mg

scaffolds with pore sizes of 250 and 400 μm were investigated in rab-

bit femora for their influence on bone formation. After 16 weeks,

more bone tissue was present around the Mg scaffolds with the larger

pore size. Lalk et al. (2013) also described a better osseointegration of

porous, coated AX30 scaffolds with a pore size of about 400 μm com-

pared to scaffolds with a smaller pore size of about 100 μm. Contro-

versially, other studies showed no differences between different pore

sizes on bone ingrowth behavior (Ayers et al., 1999; Fisher et al.,

2002; Kujala, Ryhänen, Danilov, & Tuukkanen, 2003). However, other

materials such as nickel, titanium, or polymers were used, so these

results may not be necessarily comparable to the ones obtained for

the LAE442 alloy.

The bone-scaffold contacts of p400 and p500 were observed to

be thin and finely woven. Fine woven bone contacts have also been

described in studies on solid intramedullary LAE442 pins in rabbit

models (Angrisani et al., 2016; Hampp et al., 2013; Thomann et al.,

2009). Compared to LAE442, the bone-scaffold contacts of ß-TCP in

the present study were already well defined after 2 weeks and there

were significant differences compared to p400 and p500 until the end

of the study. ß-TCP had a higher bone volume, a larger number of tra-

beculae and greater trabecular thickness than p400. Later, p500

showed similar bone volume and trabecular number in the scaffold

environment compared to ß-TCP. This indicates that the larger pore

size p500 had better osteoconductive properties than p400 in the

current study. It should be noted that the comparison between the

control group and LAE442 scaffolds might be hampered by the fact of

varying pore structure. The biocompatible ß-TCP ceramic (Nuss & von

Rechenberg, 2008; von Doernberg et al., 2006) was selected as a con-

trol, however, it was not possible to manufacture the implants with

the same geometry as the porous LAE442.

The LAE442 scaffolds showed gas accumulations in the surround-

ings of the implant during the weeks after surgery. A slightly more
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pronounced gas development was found for p400 than for p500. This

observation could be related to the higher degradation of p400, since

it has already been described in the literature that a faster degradation

of Mg alloys produces more gas (Song & Atrens, 1999; Staiger et al.,

2006). However, as in other studies, the gas did not lead to any clini-

cal side effects (Angrisani et al., 2016; Rossig et al., 2015). In the pre-

sent study, an increase in trabecular thickness and bone volume in the

scaffold environment of LAE442 was observed parallel with the

decrease in gas volumes from week 20 onwards. In an investigation of

ZX50 pins in a rat model, Kraus et al. (Kraus et al., 2012) also observed

that bone augmentation could take place after gas reduction. It is

therefore important that gas formation and absorption remain in tol-

erable limits for the body so that the bone formation and remodeling

is not impaired.

Basically, the pore size p500 showed slower in vivo degradation

than p400. With overall higher bone formation and initially reduced

gas production, this leads to a more promising osseointegration of

LAE442 p500 at early stages of the bone remodeling process. Later in

time there were no further significant differences for the two pore

sizes. However, LAE442 p400 remained slightly below the level of

p500 overall in the analyses.

5 | CONCLUSION

The pore sizes p400 and p500 of the Mg alloy LAE442 showed the

same good clinical tolerability as the control group ß-TCP, due to the

absence of negative clinical side effects over an investigation period

up to 36 weeks. The homogeneous degradation behavior of the open-

pored LAE442 scaffolds resulted in an only slight volume reduction at

the end of the study. The osseointegration behavior was more pro-

nounced in p500 than in p400. Thus, LAE442 scaffolds appear attrac-

tive for use as potential bone substitutes for clinical interventions on

weight-bearing bone. The prerequisite for a later clinical application of

LAE442 as a bone substitute is a more controlled gas production by

accordingly optimizing alloy compositions and surface coatings, and

further improvement of bone ingrowth behavior.
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