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Abstract

The latent space model is based on the idea that actors exist in a social
space. It fits a model to a network by assigning the actors positions. This thesis
evaluates how well the model is able to recover the positions of the underlying
network. To achieve this, a simulation study is conducted. Networks with
varying underlying distributions, numbers of nodes and dimensions in space are
simulated. Latent space models with different dimensions are fitted to them.
Next, the distances between actors estimated by the model are compared to
the true distances. It can be seen that the type of distribution and the number
of nodes barely have an effect on how good the model recovers the network
structure. What makes a difference is firstly the dimensions of the space
the network was simulated in and secondly the difference between the true
dimensions of the network and the ones used for the model. The model is able
to best recover the network structure if the network and the model dimension
are the same. It can also be observed that overfitting the model yields better
results than underfitting.
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1 Introduction
Networks help us represent data on relations between actors. They are used in a
wide variety of areas: to describe the behaviour of epidemics, the interconnectedness
of corporate boards, wars between nations or links between websites. This thesis
focuses only on social networks. Social networks as described by Kolaczyk (2009) are
networks that focus on relationships between people or groups of people, therefore
the relations are social. One could be looking at friendships, business connections or
even trade agreements of nations. Data on social networks consists of information on
pairs of actors or nodes. Often this data represents the existence, absence or value
of a relationship between pairs of actors, such as friendship, shared membership
in a group of individuals or the volume of emails between business partners. Here
we consider binary social network data representing the presence or absence of a
relationship. A so-called tie or edge exists between two nodes if they interact in
some way. Ties can be directed or undirected. For example, looking at a disease
where one person infects the other, this would be a directed tie. When we observe
friendships, we could treat them as undirected: If one person is friends with another
person, we also assume that the other person reciprocates this friendship. This
thesis will only deal with undirected/reciprocal ties.

To assess and compare the relationships between members of a network one uses
Social Network Analysis. Companies use it to choose which products they suggest
to you, and the NSA used it to figure out the leadership structure of the hijackers
of 9-11 (Satell, 2013) (Krebs, 2002). The current Covid-19 pandemic shows other
examples where network analysis might be of use. As shown by Wang et al. (2020)
it helps us understand how the disease spreads and what role hospitals played in
it. Other papers analyse the network of the twitter users sharing 5G-conspiracy
theories related to the pandemic (Ahmed et al., 2020) or the SARS-Cov-2 genomes
(Forster et al., 2020).

When we want to see the network as a whole and not risk overlooking important
features a good strategy is to build a statistical social network model and formalise
the likelihood of observing a certain network from the space of all possible networks.
One of these models is the latent space model introduced by Hoff et al. (2002). The
latent space model thinks of the actors of the network as points in “social space”.
The distance between two actors in this unobserved Euclidean space corresponds to
the strength of the relationship between the two. The more similar they are, the
closer they are to each other in the social space. The probability of a tie increases
as these locations become closer together. (It may also be affected by observable
covariates, but there will be none in this thesis.) That also means that the latent
space model is inherently transitive as it follows as a result of actors being close to
each other. The concept of transitivity is that if person i and person j are friends
and person j and person l are friends, person i and person l are more likely to also
be friends. Person i and person j would be close to each other as would person j
and person l. That means person i and persons l would also be close to each other
and have a higher probability of a tie.

The idea of the social space has been around much longer. According to Handcock
et al. (2007), the idea of representing a social network by assigning positions in
a continuous space to the actors was introduced in the 1970s. Wasserman et al.

5



(1994) mention using Multidimensional scaling. Its goal is to represent the data
that is given as dissimilarity measures between pairs of objects or individuals by
points in an (usually) Euclidean space. Hoff et al. (2002) used the same idea as the
basis of their model. A similar model was proposed by Schweinberger and Snijders
(2003), but using an ultrametric space rather than a Euclidean space. Hoff (2005)
introduced the bilinear effects model which resembles the latent space model but
incorporates third-order dependence via a bilinear effect.

Since the introduction of the latent space model, others have taken up the idea and
continued working on it. For example, Handcock et al. (2007) who introduced the
latent position cluster model. Networks often show clustering, i.e. actors cluster
into (unobserved) groups, within which links are more likely. One reason for this
is transitivity. Another one is a tendency called homophily by attributes: ties are
often more likely to occur between actors that have similar attributes than between
those who do not. According to Handcock et al. (2007), many social networks
exhibit clustering beyond what can be explained by transitivity and homophily on
observed attributes. The latent position cluster model takes account of transitivity,
homophily on attributes and clustering simultaneously in a natural way by allowing
the latent space positions to follow a mixture of distributions, each corresponding
to a cluster.

Krivitsky et al. (2009) built onto Hoff et al.’s model by including additive random
individual effects. Apart from transitivity, homophily on observed attributes and
clustering social network data often exhibits heterogeneity of actors. Heterogeneity
is the tendency of some actors to have more ties than others. To take account of
this the Latent Cluster Random Effects Model by Krivitsky et al. (2009) expands the
latent position cluster model by Handcock et al. (2007) by adding random effects as
proposed by Hoff (2005).

The models presented so far do not allow for hierarchical networks. Hierarchical
networks are multiple partially exchangeable networks that arise for example when
studying school systems. Instead of fitting separate single-network models for each
school, it would make much more sense to be able to link these models to be able to
fit them together and pool information from multiple networks to assess treatment
and covariate effects. Sweet et al. (2013) introduce the Hierarchical Network Models
framework that can be used to extend the single-network statistical network models
to multiple networks. Even though the framework is general, they focus specifically
on hierarchical latent space models.

Sarkar and Moore (2006) extended Hoff et al. (2002)’s Euclidean latent space model
to dynamic networks. Dynamic networks are networks, that are able to represent
the structure and the evolution of the ties between nodes. The ties between the
nodes are measured at multiple time points to map the changes. Embedding this
longitudinal network data into the model helps understand how relationships form,
dissolve and change, for example how politicians form loyalties or break ranks with
their parties or how co-authorship patterns develop and change over time. To be
able to incorporate dynamic networks into the latent space model Sarkar and Moore
(2006) developed a generalized multidimensional scaling to find the initial latent
actor positions across discrete time points. Since the estimation is an ad hoc method
which makes limited use of the available data, Sewell and Chen (2015) proposed a
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different approach. Each actor has a temporal trajectory in the latent space, the
estimation then occurs within a Bayesian framework using Markov chain Monte
Carlo.

Even though there are so many continuations of the model, this thesis will only
deal with the latent space model of Hoff et al. (2002). The goal is to evaluate how
well the latent space model recovers the original structure of the data for different
dimensional spaces, numbers of nodes and distributions. We will only be looking
at dichotomous and undirected ties and fit the model using a maximum likelihood
estimator.

Chapter 2 focuses on the model used and lays the theoretical groundwork. Chapter
3 focuses on the simulation study. Various networks with different numbers of nodes,
dimensions in space and following different distributions are simulated and latent
space models in same, lower and higher dimensional space are fitted to them. Then
we compare how well the models have recovered the true structure of the networks.
A focus is placed on the choice of dimensions for the model. Lastly, the results are
evaluated and suggestions are made on how one could further extend this study.
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2 Latent Space Model
In order to carry out statistical analyses, there are a few terms and definitions that
are practical and often used in social network analysis: Following Luke (2015) we
call our set of actors “nodes”. The nodes are connected to one another via some type
of social relationship which we call “tie”. Our network consists of n nodes. Between
each ordered pair of actors/nodes i and j there is a tie yi,j, i, j = 1, . . . , n which
indicates the relationship between the pair of actors. While it does not have to be,
in this thesis ties are dichotomous and indicate the presence or absence of some sort
of relation. That means that yi,j is 0 if there is no tie and 1 if there is a tie. We will
also only deal with undirected/reciprocal ties, yi,j = yj,i. All the ties together form
the so-called sociomatrix Y = {yi,j} (n× n).

The sociomatrix is then the basis for the latent space model by Hoff et al. (2002).
We think of each node i = 1, . . . , n as a point with an unknown position zi in
social space. The probability of a specific tie then depends on some function of the
positions of the actors, here the Euclidean distance as used by Hoff et al. (2002).
Generally, it may also be affected by observable covariates, but there aren’t any in
this thesis due to simplicity. To estimate whether or not there is a tie between two
nodes we need to estimate their positions in social space.

The ties only depend on the positions and are otherwise independent. This is called
the conditional independence approach: we assume that the presence or absence of
a tie between two nodes is independent of all other ties in the network, given the
unobserved positions in social space of the two nodes,

P (Y |Z, θ) =
∏
i 6=j

P (yi,j|zi, zj, θ), (1)

where Y is a n×n sociomatrix with entries yi,j. θ and Z are parameters and positions
to be estimated.

Using a logistic regression model, we get:

ηi,j = log odds(yi,j = 1|zi, zj, α) (2)
= α− |zi − zj| (3)

The log-likelihood of our model is given by,

logP (Y |η) =
∑
i 6=j

(ηi,jyi,j − log(1 + eηi,j)) (4)

where η is a function of α and the unknown positions.

We can then estimate either with maximum likelihood or with Bayesian inference.
We will only use the maximum likelihood approach as it is much simpler. As de-
scribed by Hoff et al. (2002) and Handcock et al. (2007) this is straightforward.
The first step is to estimate a set of distances between the nodes that maximize the
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likelihood. The next step is to then find a set of latent positions that approximate
the distances. This can be done using multidimensional scaling. From there on we
can start a non-linear optimization method.
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3 Simulation Study
Now that the theoretical background has been clarified, it is of interest how well
the model is able to recover the original structure of the network depending on the
number of nodes, the dimension of space of the network and the model and the
distribution of the nodes in the network. We want to know whether for example
networks with more nodes are recovered better or whether the way the nodes are
distributed in space has an influence. How much do the results vary when the
dimensionality changes? What real ramifications does fitting a model with lower
dimensions than the network has have?

To determine this, a simulation study was carried out. Networks following five
different distributions with four different numbers of nodes and in four different
dimensional spaces were simulated. Then models in same, lower and higher dimen-
sional spaces were fitted. Finally the original positions of the nodes were compared
with those estimated by the model.

This was done using R (R Core Team, 2020). The package latentnet by Krivitsky and
Handcock (2020) implements the latent space model. For procrustes transformation
as explained in 3.3.1 the package vegan by Oksanen et al. (2019) was used.

3.1 Simulating the networks

The basis for the simulation study is the simulated network. We generate them
by simulating nodes in space and ties between them. The nodes follow different
distributions in different dimensional spaces. The distributions used are:

• Uniform distribution

• Normal distribution

• 2 Groups following a normal distribution

• 3 Groups following a normal distribution

• 4 Groups following a normal distribution

For each of those distributions we simulate 20, 50, 100 and 200 nodes in 2, 4, 6 and
8 dimensional space. For each combination of number of nodes, distribution and
dimension of space, we will repeat the simulation process five times to get a better
estimate of the true effect of those variables.

Let n be the number of nodes to simulate and q the dimension of the space in which
to simulate. Following the different distributions, we want to generate Z a n × q-
matrix with each row corresponding to a node with the position zi, (i = 1, . . . , n).

Z =


z1
z2
...
zn

 =


z11 z12 . . . z1q
z21 z22 . . . z2q
...

... . . . ...
zn1 zn2 . . . znq

 (5)
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3.1 Simulating the networks

This matrix gives us the positions of all nodes. It is the foundation on which the
ties are generated. For this a Bernoulli distribution is used, the closer two points are
to each other, the higher the probability that they have a tie. The exact process is
described in chapter 3.1.4. To make simulating the ties as easy as possible it makes
sense to have a maximum distance of 1 between any two nodes. To accomplish
this, we either simulate all nodes in a sphere with a diameter of 1 (for the uniform
distribution) or scale the set of nodes down after simulating (for the normal and the
group distributions).

3.1.1 Uniform Distribution

The first and easiest distribution is the uniform distribution. The nodes are equally
probable to be at any position in a q-sphere with its center the point of origin and
a radius of 0.5 (which is equal to a diameter of 1). We do this by first generating q
numbers following this uniform distribution:

zil ∼ U(−0.5, 0.5) with i = 1, . . . , n, l = 1, . . . , q (6)

f(zil) =

{
1 for− 0.5 ≤ zil ≤ 0.5

0 otherwise
(7)

Each point zi = (zi1, . . . , ziq) is a point in a q-cube. We then only keep points that
meet the additional condition

d(zi, 0) ≤ 0.5 (8)

with d(zi, zj) =

√√√√ q∑
l=1

(zil − zjl)2 (9)

d(zi, zj) is the Euclidean distance between point zi and point zj.

This leaves us with n points, the nodes, in a q-sphere. To visualize what that might
look like there are figures for each distribution showing 200 nodes in 2-dimensional
space. The uniform distribution can be seen in figure 1a.

3.1.2 Normal Distribution

To get the nodes normally distributed around the point of origin we simulate n
points following this multivariate normal distribution:

z∗i ∼ Nq(0,1) (10)

f(z∗i ) =
1√
(2π)q

exp (−1

2

q∑
l=1

z∗il
2) (11)

1 denotes the n× n identity matrix.
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3.1 Simulating the networks

(a) Uniform distribution (b) Normal distribution

Figure 1: Example distributions in 2-dimensional space with n = 200

Since some points could have a distance of more than 1 between them they need to
be rescaled:

zi =
z∗i

2 · dmax
(12)

dmax is the biggest observed distance between any two points:

dmax = max(d(z∗1 , z
∗
2), d(z

∗
1 , z
∗
3), . . . , d(z

∗
1 , z
∗
n),

d(z∗2 , z
∗
3), . . . , d(z

∗
2 , z
∗
n), . . . , d(z

∗
n−1, z

∗
n)) (13)

As we can see in figure 1b the points following a normal distribution are much more
concentrated and dense around the point of origin compared to the ones following
a uniform distribution.

3.1.3 Groups

Let g be the number of groups (here g = 2, 3, 4). First, we get the mean of each
group:

µGk ∼ Nq(0,1) with k = 1, . . . , g (14)

Then we want to know how many nodes belong to each group. To calculate nk, the
number of points in group k, we use a multinomial distribution:

f(n1, . . . , ng) =

{
n!

n1!···ng !
pn1
1 · · · p

ng
g for n1, . . . , ng ∈ N0 and n1 + . . .+ ng = n

0 otherwise
(15)
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3.1 Simulating the networks

p1, . . . , pg are the probabilities to be assigned to each group. Here they are all the
same.

p1 = . . . = pg =
n/g

100
(16)

We now get all positions of the nodes in group k by sampling nk points following a
normal distribution.

z∗ik ∼ Nq(µGk,
0.1

g
· 1) with i = 1, . . . , nk (17)

The next step is to, again, scale the points with 2 times the biggest observed distance
and then obtain our point matrix Z:

Z = (z11 , z21 , . . . , zn1 , . . . , zng)
T (18)

Figure 2 shows example realisations of g = 2, 3, 4 group distributions. We can see
that in (c) there seem to only be three groups instead of four. This is because two
of the groups are so close together, they are no longer distinguishable and form one
bigger group. Since this is something that might also happen when working with
real data this is a welcomed behaviour.

3.1.4 Generating the network

After obtaining our point-matrix Z we now want to compute the symmetric so-
ciomatrix Y .

Y =


0
y2,1 0
y3,1 y3,2 0
...

... . . .
yn,1 yn,2 . . . yn,n−1 0

 (19)

yi,j is the tie between the nodes corresponding to the positions zi and zj. To get the
ties from the points simulated before we use a Bernoulli distribution. The smaller
the distance between the two points the higher the probability of a tie.

yi,j ∼ B(1− d(zi, zj)) (20)

f(yi,j) =

{
(1− d(zj, zj))yi,jd(zi, zj)1−yi,j for yi,j = 0, 1

0 otherwise
(21)
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3.2 Fitting the latent space model

(a) 2 normally distributed Groups (b) 3 normally distributed Groups

(c) 4 normally distributed Groups

Figure 2: Example distributions in 2-dimensional space with n = 200

There is no tie between a point and itself: yi,j = 0 for i = j. And the ties are
undirected, meaning that the tie between point i and j is the same as the tie between
point j and i: yi,j = yj,i.

There are now 400 different sociomatrices/networks simulated (5 distributions ×
4 different number of nodes × 4 different dimensions of space × 5 times = 400).
The next step is to fit latent space models on these networks.

3.2 Fitting the latent space model

We now fit latent space models to all of the networks using maximum likelihood
estimation. We not only fit them with the dimension the network was generated in
but also in all other dimensions from 2 to 8. That gives us a total of 2800 fitted
models (400× 7 = 2800). From the fitted models we get the estimated positions of
the nodes.

We fit the models using the ergmm-function in the latentnet package in R (Krivitsky
and Handcock, 2020). When dealing with a network that has groups ergmm also
has the option to specify the number of groups within the model. Since the goal of
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3.3 Comparison of fitted and generated data

this thesis is not to determine how well the latent space model could detect groups
we always use the default setting of one group.

3.3 Comparison of fitted and generated data

We want to know how good our fitted model reconstructs the original, true structure
of the data. To make this measurable we first need to transform our estimated set
of points to be comparable to our original set of points. To do this we are using
Procrustes transformation.

3.3.1 Procrustes Transformation

Since the estimated points may be distributed completely different in space than
the original ones and for example no longer have a maximum distance of 1, we need
to transform them. Procrustes transformation translates, rotates and uniformly
scales one set of points to maximum similarity with respect to another set of points
(Oksanen et al., 2019). As described by Mardia et al. (1979) we move the points
until the sum of squared differences is minimal. This transformation is then optimal
in regards to similarity between the two sets.

Figure 3: Visualization of Procrustes transformation in a 2-dimensional space with
20 nodes following a uniform distribution

Figure 3 visualizes the effect of a Procrustes transformation. Before the transforma-
tion, the estimated points are located somewhere else and have much larger distances
than the true points. After, the points lie as close as possible to the original points.
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3.4 Results

In order to see the effects of the Procrustes transformation on the results of the
study in appendix A one can find the results after using simple scaling instead.

One practical problem that arises specifically in our simulation study is that the
number of dimensions of the set of estimated points and original points are not
always the same. We fit models using both higher and lower dimensions than those
of the space in which the true points lie. To still be able to carry out a Procrustes
transformation we set all coordinates of the unused dimensions to 0.

We use the procrustes-function in the vegan package in R (Oksanen et al., 2019) to
transform the estimated set of points Ẑ = {ẑi} to be most similar to the true set
of points Z = {zi}. The new set of points after transformation is called Ẑr = {ẑir}.
The next step is to compare Ẑr to Z.

3.3.2 Difference of Distances

To measure how different the two sets of points are we use a metric we are going to
call the Difference of Distances. To obtain it, we compare the Euclidean distances
between the true points Z and the distances between the estimated and transformed
points Ẑr.

ddiff =

√√√√ n∑
i=1

n∑
j=1

(d(zi, zj)− d(ẑri, ẑrj))2 (22)

The bigger ddiff is, the bigger is also the difference between the estimated points and
the true points. The lower the Difference of Distances the better our model was able
to reconstruct the original structure/positions of the nodes.

Since we simulated each combination of distribution, number of nodes and dimension
of space five times we also get five Differences of Distances per combination. To
better compare them, we calculate the mean of those five. Plots for the standard
deviation can be found in appendix B.

3.4 Results

We now have a mean Difference of Distances for each combination of parameters
and are able to take a look at them.

Figure 4 shows the results. Figure 5 shows the same plot but the Difference of
Distances gets divided by the number of nodes to adjust for n.

Comparing the distributions, we can see that there is barely any difference (given
that number of nodes, fitted and original dimensions are the same). When looking
at 20 nodes we can see that, while the trend is the same, the graphs differ a bit.
This decreases with a rising number of nodes.

Looking at the influence of the number of nodes, we get the sense that the shape is
similar between the number of nodes but gets more “defined” the higher the number
of nodes. The graphs for 20 nodes are very unstable and, while showing a similar
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3.4 Results

trend, don’t show it as clearly as 200 nodes. We can see that the mean Difference of
Distances tends to get higher the more nodes we have. This is because with higher
numbers of nodes we also have more distances between them and therefore a higher
sum overall. When looking at figure 5 we can see that after adjusting for the number
of nodes this effect disappears. But we can still see that for 20 nodes the original
dimension matters much less than for higher numbers of nodes. The more nodes the
bigger are the differences between both the Difference of Distances for the original
and for the fitted dimensions.

Looking at the figures we can see that, no matter distribution and number of nodes,
the highest original dimension 8 almost always also has the highest Difference of
Distances for all fitted dimensions. We can also see that the mean Difference of
Distances for 8 original dimensions decreases with higher fitted dimensions.

The graph for 6 original dimensions is in between the graphs for 4 and 8 dimensions
most of the time. When looking at 200 nodes, the Difference of Distances decreases
up to 6 fitted dimensions and from there on we can see an increase. This seems to
also be the case for 50 nodes when looking at the uniform and 4 groups distribution.
For 50 nodes and a normal distribution, the graph has a similar behaviour but after
6 fitted dimensions it first increases for 7 fitted dimensions and then decreases for 8
(but is still above 6 fitted dimensions). At 50 nodes and 2 groups and for 100 nodes
the graph declines till 6 or (in the case of 3 groups) 7 dimensions and then more or
less stagnates. Looking at 20 nodes, we can’t observe a trend this distinct but still
see a general decrease until 6 fitted dimensions. For higher fitted dimensions the
curve still decreases but with a slower slope.

We can notice similar tendencies when studying 4 original dimensions. Except for
20 nodes, the Difference of Distances tends to decline until 4 fitted dimensions and
then increases again. The more nodes the stronger this trend. For 20 nodes this
isn’t observable but we can still see a general decrease that flattens with higher fitted
dimensions. The Difference of Distances for 4 original dimensions is almost always
lower than the one for 6 (and therefore also 8) original dimensions (with the other
variables being the same).

Looking at only 2 original dimensions the graph increases for all fitted dimensions
with three exceptions being the uniform, 3 groups and 4 groups distribution at 20
nodes. There it more or less stays the same. Up to 4 fitted dimensions the Difference
of Distances for 2 original dimensions is lower than that for higher original dimen-
sions. But for higher fitted dimensions, it gets closer to 4 original dimensions. The
bigger the number of nodes the faster this happens. For 200 nodes it is even higher
than 4 original dimensions and very similar to or even above 6 original dimensions.

This shows that it would always be best to use the original/true dimension as the
fitting dimension. Using a higher or lower dimension both lead to the model being
less able to recover the network structure. We can see that using a dimension for the
model that is too high is better than using one too low (assuming both are equally far
from the original dimension), but the difference it makes is very small. The higher
the number of nodes, the bigger this difference. The original distribution/structure
of the nodes has little to no effect on this aspect.
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3.4 Results

Figure 4: Mean difference of distances between the true, original distances between
the nodes and the estimated distances between the nodes after Procrustes transfor-
mation for each distribution, number of nodes, number of original dimensions and
number of fitted dimensions
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3.4 Results

Figure 5: Mean difference of distances between the true, original distances between
the nodes and the estimated distances between the nodes after Procrustes transfor-
mation for each distribution, number of nodes, number of original dimensions and
number of fitted dimensions divided by the number of nodes
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4 Conclusion and Discussion
The goal of this thesis was to determine how well the latent space model is able to
recover the structure of networks. To do this a number of networks with varying
distributions, numbers of nodes and dimensions in space were simulated. Then
latent space models with different numbers of dimensions were fit. The positions
of nodes from these models were then compared to the true positions. To do this
we defined a new metric, the Difference of Distances. Lastly, we took a look at the
results of the simulation study.

In summary, it can be noted that the quality of the fit is independent of the distri-
bution. 5 different distributions were tested. The goodness of the recovery is nearly
the same for all of the distributions. The number of nodes also don’t seem to play
a big role. For networks with a lot of nodes, the differences between the different
original dimensions are big. Looking at just 20 nodes, the Differences of Distances
don’t vary that much between the original dimensions. In practice, that means we
don’t have to make any adjustments to our model based on just the distribution of
the nodes and the number of nodes.

What one needs to be careful of is the dimension with which to fit the model. In
reality, we typically do not know the original dimensions of the network but the
simulation study served as an indication of what one should do if they were known.
There is a bias towards using low dimensions to fit the model because the results
are easier to interpret and visualize. This study helps us see how much of a problem
underfitting really is. It shows that we obtain the best results when fitting with the
same dimensions as the network. The lower the dimensions of the network the better
the results. In the case of using the wrong dimensions for fitting overfitting returns
better results than underfitting. But the difference is so marginal that in practice
it makes sense to underfit (due to the advantages it gives us when interpreting the
model).

How could one go on from here? In order to understand in more detail the limitations
and usage of the latent space model further issues should be addressed: The first
and most logical step would be to vary the underlying network structure more. That
is, to try out different distributions (for example, with more groups or with groups
of varied sizes). Or one could test higher original dimensions or different numbers
of nodes.

The second option is to alter the model. In this work, we always used the Euclidean
distance. But as Hoff et al. (2002) notes, other metrics are also possible. This could
be useful, especially with higher dimensions, as discussed by Aggarwal et al. (2001).
Whether other distance metrics show different or similar behaviour would be very
interesting for practical applications. But not only the metric could be changed. As
mentioned in chapter 2 there are two methods to estimate the parameters: Maximum
likelihood estimation, which was used here, and a Bayesian approach. It would be
interesting to see if the two estimation methods differ in their results.

After the model has been estimated, it is also possible to change how the similarity of
the positions of the nodes is assessed. Perhaps there is a better measure of this than
the Difference of Distances. A simple change would be to use the Manhattan metric
instead of the Euclidean distance to calculate the distances. According to Aggarwal
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et al. (2001) this might make sense, especially in higher dimensional spaces. Another
option would be to use the fitted model to simulate new networks and compare those
to the true networks. This approach wouldn’t be focused on the idea behind the
latent space model, the social space, but one could still see the impact of different
changes of parameters to the performance of the model.

Next, it would be interesting to see how well the latent space model performs com-
pared to other social network models. Since the distinctive feature of the latent
space model is the concept of the social space, which makes the comparison of po-
sitions as done here practicable, one would need to find another metric to compare
the models. An idea would be to use the approach of simulating new networks, as
described before.

Another way to compare the performance of the latent space model to other models
could be by focusing on community detection. Handcock et al. (2007) introduced
the latent position cluster model which extends the latent space model with the
possibility to identify clusters of nodes. The latent position cluster model could,
for example, be compared to the stochastic block model in regards to how good the
community detection is.
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A Difference of Distances with Scaling instead of
Procrustes transformation

Figure A1: Mean difference of distances between the true, original distances between
the nodes and the estimated distances between the nodes after Scaling for each
distribution, number of nodes, number of original dimensions and number of fitted
dimensions

24



Figure A2: Mean difference of distances between the true, original distances between
the nodes and the estimated distances between the nodes after Scaling for each
distribution, number of nodes, number of original dimensions and number of fitted
dimensions divided by the number of nodes
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B Variance of the Difference of Distances

Figure B1: Standard deviation of the Difference of distances between the true, orig-
inal nodes and the estimated distances between the nodes after Procrustes rotation
for each distribution, number of nodes, number of original dimensions and number
of fitted dimensions
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Figure B2: Standard deviation of the Difference of distances between the true, orig-
inal nodes and the estimated distances between the nodes after Procrustes rotation
for each distribution, number of nodes, number of original dimensions and number
of fitted dimensions divided by the number of nodes
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