
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Statistical Learning in Survival

Models Combining Scan and Clinical

Data

Master Thesis

Author: Katharina Hechinger (11352058)

Supervisor: Prof. Dr. Göran Kauermann

Elite Program Data Science

Date: October 8, 2020

2

Declaration of Independence

I hereby confirm that I have written the accompanying thesis

“Statistical Learning in Survival Models Combining Scan and Clinical Data”

by myself, without contributions from any sources other than those cited in the text and

acknowledgements. This applies also to all graphics, drawings, maps and images included

in the thesis.

Munich, October 8, 2020

Katharina Hechinger

3

Contents of the USB stick

The USB stick contains the following files:

• Thesis as pdf format

• Graphics as pdf formats

• R scripts:

– data preparation.R: for preparing and preprocessing the dataset

– data modelling.R: for the concrete model setup

– summary.R: for a summary of the results

– graphics.R: for the creation of the included graphics

CONTENTS 4

Contents

1 Introduction 7

2 Survival Analysis 9

2.1 Basic Theory . 9

2.1.1 Foundations . 11

2.1.2 Censoring . 13

2.2 Traditional Methods . 14

2.2.1 Kaplan-Meier Estimate . 15

2.2.2 Cox Regression . 15

2.2.3 Limitations . 18

3 Statistical Learning 20

3.1 Basic Theory . 20

3.2 Methods . 23

3.2.1 Penalized Regression . 23

3.2.2 Tree based Methods . 30

3.2.3 Neural Network Approaches . 39

4 Application 47

4.1 Data . 47

4.1.1 Radiomics . 48

4.1.2 Dataset . 49

4.2 Model . 50

4.2.1 Model Setup . 51

4.2.2 Model Validation . 60

4.2.3 Evaluation Metrics . 62

4.3 Results . 64

CONTENTS 5

5 Conclusion 71

5.1 Summary . 71

5.2 Outlook . 72

A Derivation of the Cox proportional hazard model 73

B Implementation Details 75

List of Figures and Tables 80

Bibliography 81

CONTENTS 6

Abstract

The goal of this thesis is the comparison of classical methods of survival analysis and sta-

tistical learning approaches adapted for lifetime random variables. With the rise of big

data and the resulting challenges for data analysis, traditional models suffer under high

dimensional data sets and the lack of flexibility. As machine learning models have proven

to overcome these issues for standard classification and regression problems, they are also

gaining more and more popularity in the field of survival analysis. In the recent years,

many statistical learning approaches have been adapted for handling censored data and

predicting the time to events or risks of events.

Survival analysis is very popular in biostatistics, mainly focusing on the death of patients

as events. In this work, a number of methods is studied in theory and afterwards applied

to a real-life dataset. It consists of information about patients suffering from a rare type of

cancer, called soft tissue sarcomas. Hereby, clinical variables were combined with features

extracted from their medical scan images, which are also referred to as radiomics. This

dataset was analysed using classical survival models as well as statistical learning based

methods with the goal of predicting the patients’ risks of events and identifying risk factors.

The comparison of predictive performances showed an advantage of the more flexible ma-

chine learning approaches over traditional survival methods.

1. INTRODUCTION 7

1 Introduction

Survival Analysis is a field of statistics that is often used in biomedical applications. Its

goal is the analysis of time-to-event data, i.e. the length of time from a starting point to

an event of interest. In this work, such events are the timepoints of death of individu-

als. Therefore, the focus lies on the survival time of patients. The main goals of survival

analysis are the analysis of event patterns, the comparison of survival times in different

patient groups and the identification of factors that affect the survival time. In this way,

it is possible to assess and predict the risk of an event or death for patients and select

appropriate treatment accordingly.

The analysis of time-to-event data poses additional challenges to statisticians, due to its

unique property of censored observations. In order to handle instances without informa-

tion about the actual event time, a number of methods have been developed over the last

decades.

While the traditional approaches gained great popularity and are still widely used today,

the Big Data era asks for novel ideas. With the rise of machine learning and high compu-

tational capacities, datasets, especially in the medical fields, are becoming more and more

high dimensional. Due to their nature, time-to-event datasets are usually rather small

in terms of observations, i.e. events or deaths. When combined with a large number of

features, this results in the well known curse of dimensionality.

Another limitation of traditional methods is the lack of flexibility. While most of those ap-

proaches rely on strict assumptions, modern applications often demand for a more flexible

modelling approach.

These challenges are of course not limited to survival analysis. In the last years, a great

effort has been made in the research community to develop novel methods for dealing with

high dimensional data in flexible ways. Their foundation lies in Statistical Learning. This

field focuses on the prediction of a random variable Y based on covariates X = x using a

1. INTRODUCTION 8

random sample of data from a population and assessing the quality of the prediction af-

terwards. Many popular methods rose from this structure and became part of the general

toolkit of data analysis.

Whereas methods like e.g. penalized regression and random forest are already widely used

for the analysis of regular data, their application in the field of survival analysis is still

rather rare. Adapting the approaches of statistical learning for censored data offers new

possibilities for the analysis of time-to-event data.

The goal of this work is the comparison of numerous methods for the analysis of survival

data. Hereby, traditional methods are evaluated as well as approaches from the field of sta-

tistical learning. After some definitions and explaining the basic theory of survival analysis

and statistical learning, a real-life dataset was analysed. The dataset contains clinical data

of patients with features extracted from their scan images, as well as information about

their survival or censoring times. Using this information, this work aims for the prediction

of risk of death using various methods and the identification of special risk factors among

a large number of variables.

2. SURVIVAL ANALYSIS 9

2 Survival Analysis

As mentioned in the introduction, Survival Analysis is a popular tool in classical Statistics

for handling time-to-event data. As expressed by Kleinbaum and Klein (2010), survival

or lifetime data analysis is a collection of statistical procedures to investigate data, where

the outcome variable of interest is the time until an event of interest occurs. Utilizing

this random variable, risks of events can be constructed for any point in time and any

patient. These risks or survival probabilities are of major interest in the field of survival

analysis. Due to the special data generating process, it contains unique challenges for an

analyst. The main and most popular issue is the handling of data instances, of which the

progression is only partially known, i.e. the information about them is incomplete. These

observations are called censored. For achieving satisfying and valid outcomes, censoring

should not be equated with ordinary missing data. Therefore, the analysis of such datasets

requires specialized methods and models.

In the following, basic theory and the most common methods of survival analysis are

explained. Due to convenience, this work will focus on clinical studies, where an event of

interest typically equals death of an individual due to a certain condition. Hence, one is

interested in the survival probability and risk of death for patients.

2.1 Basic Theory

Statistical analysis always revolves around a certain random variable of interest. For time-

to-event data, the focus lies on a special kind of random variable T , which describes the

time until an event occurs, i.e. the survival time of a patient. It starts at a particular time

point that is defined beforehand, e.g. beginning of the study or a specific surgery related

to the study. The start point can of course be different from patient to patient. Therefore,

it is necessary to shift the viewpoint of time from calender to duration time, as visualized

in Figure 1.

Additionally, the random variable T is of course non-negative, as it describes a duration.

2.1 Basic Theory 10

begin of the study

calender time k

end of the study

begin of the study

duration time t

Figure 1: The development of instances can be transferred from calender time to duration
time. Each vertical line symbolizes an individual. A transparent dot displays individuals
that completed the study without an event or were unobservable in the beginning (transpar-
ent dot). In contrast, a solid dot shows that an individual’s start and event time could be
observed during the study. The instances without event during the study are known as cen-
sored observations. Whereas the two individuals at the top of the graph are right censored,
the down most observation is left censored.

2.1 Basic Theory 11

2.1.1 Foundations

Any non-negative random variable T can be described uniquely by several functions related

to the survival of an instance. Of course, known properties of random variables like density

and distribution function can be used. But in addition, one also has specific functions at

hand to characterize random variables in the context of survival analysis. With density

fT (t) and cumulative distribution function FT (t) = P (T ≤ t), the survivor function can

be defined as

ST (t) = S(t) := P (T > t) = 1− F (t).

It describes the probability of surviving beyond time t. Another central function in survival

analysis is the hazard rate, defined as

hT (t) = h(t) := lim
∆t→0

1
∆tP (t ≤ T < t+ ∆t|T ≥ t).

The hazard is not a density or a probability but a measure of risk: Loosly speaking, hT (t)

is the rate, at which the survivors in the population at time point T are ”falling off the

cliff”. Alternatively, the hazard function can be represented in terms of the cumulative

hazard rate

ΛT (t) = Λ(t) =
∫ t

0
h(u)du,

which in fact resembles accumulated hazards of different time points up to time t.

Using these additional functions to describe random variables has several advantages in

the context of survival analysis applications. A well-known example to demonstrate the

benefits of the hazard rate over the common density is the age of death in Germany. Look-

ing at the density, it peaks at the age of ∼80 and drastically decreases afterwards, which

is of course due to the small number of people older than 80. As one is interested in the

random variable ”age of death”, this might not be intuitive though it is of course correct.

The hazard rate gives more meaningful insights in this context. It grows exponentially

after the age of 80, which indicates a highly increased risk of death for citizens over 80.

Therefore, the hazard rate serves as a more intuitive way of describing risks and survival

2.1 Basic Theory 12

probabilities. Additionally, using h(t) leads to analytic simplifications, i.e. easier analyses

in the presence of censoring.

When the data are subject to right censoring, hazard function representations often lead

to easier analyses. For example, one can consider a cohort of N patients, who just turned

50 years old and are followed for one year. If d individuals die during this follow-up period,

one can nicely estimate the (discrete) hazard function of the random variable T = age of

death. It simply results from the ratio d/N , which is a quite useful property.

Using the above quantities, the distribution of a random variable T can be uniquely de-

scribed through the following relationships:

h(t) = f(t)
1− F (t) = f(t)

S(t) (1)

S(t) = exp(−Λ(t)) = exp(−
∫ t

0
h(u)du) (2)

f(t) = −dS(t)
dt

. (3)

For sequential time points t0 = 0 < t1 < t2 < ... < tK , the survivor function at a certain

time tk∗ can be formulated as a product of functions of previous time points:

S(tk∗) = exp(−Λ(tk∗)) = exp
(
−
∫ tk∗

0
h(u)du

)
= ...

=
k∗−1∏
k=0

P (T ≥ tk+1|T ≥ ti).

Just as for ordinary random variables, T can follow a number of classical distributions

for duration time. Exemplary, the exponential distribution with rate λ describes the time

between the occurrence of events in a Poisson process, i.e. events occurring continuously

and independently at a constant rate. Exp(λ) is a very simple distribution but generally

serves as a baseline assuming a (unrealistic) constant hazard. It can be described by the

following functions:

2.1 Basic Theory 13

Hazardfunction: h(t) = λ

Survivorfunction: S(t) = exp(−
∫ t
0 h(u)du) = exp(−λt).

Density and distribution function as well as the moments equal those of a ”normal” expo-

nential distribution.

Of course, there is a variety of different distribution families for random variables de-

scribing survival time. But for most applications, knowing the exact or even approximate

distribution of a quantity of interest is rare.

2.1.2 Censoring

As already mentioned, in survival analysis one encounters different problems than in or-

dinary data analysis. Often, the time of an event is unknown for patients, for example

due to the end of a study or other reasons of absence, or the patient’s development was

not observed from the very start of the study. In this case, the variable T is not fully

observed, i.e. the information about the patient is incomplete. This phenomenon is called

censoring.

In order to handle this issue, an additional random variable C is defined. It describes

the maximal observable time of a patient. In any case, either T or C is observed and

documented, resulting in

T ∗i = min{Ti, Ci}.

Based on those two quantities a censoring indicator can be constructed as

δi = 1{Ti ≤ Ci},

which takes value 1 for instances, where an event is observed, and 0 for censored obser-

vations. This indicator is often used as ”survival status”, as it also describes whether the

patient died during the study or not.

2.2 Traditional Methods 14

Naturally, one can distinguish two types of censoring. Left truncation of observations, i.e.

missing data at the beginning of the observation period, is relatively rare. In contrast,

most datasets contain many cases of right censored data, that occurs naturally because of

drop-outs of patients or simply the end of a fixed-time study. This work will therefore focus

on the second type: right censoring. There are four different forms of right truncation that

all demand for different treatment. Censoring of type I means that a deterministic maxi-

mum duration time ci can be observed for individual i, which results in T ∗i = min(Ti, ci).

Typically, ci = c,∀i = 1, ..., n holds in this case. For type II censoring, the duration time in

the study ends if a given number of events have been observed. Type III is also called ran-

dom censoring and refers to censoring times Ci that are independent to the duration times

Ti for all instances. Lastly, type IV, also known as non-informative censoring, describes

situations, where the distribution of T provides no information about the distribution of

C, and vice versa.

In order to perform unbiased data analysis despite censored observations, it is crucial that

censoring is non-informative and not caused by systematic circumstances. For a more

extensive discussion about the impact of censoring, see e.g. the introductory book about

lifetime data analysis by Kleinbaum and Klein (2010).

2.2 Traditional Methods

The two most common tools in the field of survival analysis are the Kaplan-Meier estimate

and Cox Regression. Generally, both can be used to investigate the association between

survival times of patients and one or more predictors. In contrast to other popular methods

in the field of survival analysis, these two approaches belong to the family of non-parametric

and semi-parametric models. They offer a data based modelling approach instead of a

priori assumptions about the model structure. This is often desired due to complex and

high dimensional data sets that do not seem to follow any specific prespecified distribution.

Therefore, the flexibility of non- or semiparametric approaches is a preferable property in

survival analysis.

2.2 Traditional Methods 15

2.2.1 Kaplan-Meier Estimate

The Kaplan-Meier Estimate is a nonparametric method for survival analysis and was pro-

posed by Kaplan and Meier (1958). It is one of the simplest methods for estimating the

survival over time. It assesses the probability of an event for a subject during a specified

time interval in the presence of censoring.

Given ordered and non-censored event time points t(k), k = 1, ..., K, one can define dk as

the number of events or deaths at time point t(k). The number of individuals at risk just

before the particular point in time is denoted with nk as the cardinality of the risk set

R(tk). Being ”at risk” means that the patient did not have an event yet and also was not

censored before or at t(k). One can use dk/nk as an estimate for the hazard rate hk. Then

the Kaplan-Meier Estimate is defined as

Ŝ(t) =

1, t < t(1)∏
t(k)≤t(1− dk/nk), t ≥ t(1),

(4)

which resembles a step function that jumps at each time point t(1), ..., t(k), ..., t(m). This

estimate can serve as a useful tool in combination with specific testing routines for com-

paring two groups of instances and their statistical differences in survival probability.

Goel et al. (2010) provide a more in-depth explanation and demonstration of the Kaplan-

Meier estimate and its practical use. Though it is a very popular method, it is not possible

to include multiple and possibly continuous predictors. Therefore, it is only of limited

utility in most more complex applications.

2.2.2 Cox Regression

Another frequently used and possibly more versatile tool in classical survival analysis is

the Proportional-Hazard or Cox Model, as proposed by Cox (1972).

It belongs to the family of semiparametric models and therefore offers some advantages to

nonparametric approaches, while still maintaining a lot of their flexibility. This approach

2.2 Traditional Methods 16

can be derived using a time-discrete logit model. The detailed derivation and motivation

can be found in the Appendix A. It results in the multiplicative hazard model

h(t, x) = h0(t) exp(xTβ) = h0(t) · exp(β1x1) · ... · exp(βpxp). (5)

It contains the baseline hazard rate h0(t), which is identical for all individuals. Therefore,

it cancels out upon comparison of the hazard of different patients. It can be a function of

arbitrary form and does not have to be specified. As its name already implies, the central

assumption of the model is the proportionality of hazard rates. Assuming two individuals

with covariate vectors x1 and x2, the model follows

log h(t, x1)− log h(t, x2) = (x1 − x2)Tβ,

which implies parallel or proportional survival curves. For example, one can think of the

comparison of treatment groups. One group receives a new treatment, whereas the other

is treated in a traditional way or serves as a placebo group. The proportional hazard as-

sumption states that the ratio between the hazard for an individual in group 1 and the

hazard for an patient in the second group remains constant over time.

In order to estimate the parameters of such a model, Cox proposed a partial likelihood

approach for survival data. For a setting like

X ∼ fx(x|θ), θT = (φT , β2),

i.e. a distribution with two parameters, where β is of primary interest, the idea is to

decompose the likelihood. This results in two parts, where the first component depends on

β but not on φ, and the second one vice versa.

This idea can be applied to the cox model with φ = h0(t). Assuming no ties, it results in

2.2 Traditional Methods 17

the decomposition

Li(β, h0(t)) =
k∏
i=1

exp(xT(i)β)∑
j∈R(t(i)) exp(xTj β) ·

 ∑
j∈R(t(i))

h0(t(i)) exp(xTj β) ·
n∏
i=1

S0(ti) exp(xTi β)

 .
R(t) is the set of instances at risk at time point t. Note that the first part does not depend

on the unknown parameter h0(ti). Therefore, the partial likelihood can be defined as

Lip(β) =
k∏
i=1

exp(xT(i)β)∑
j∈R(t(i)) exp(xTj β) . (6)

The parameter of interest β can now be estimated in the usual manner, i.e.

β̂ = arg max
β

logLip(β).

Maximum likelihood inference leads to

β̂ ∼ N(β, V̂ (β̂)).

This estimate is asymptotically unbiased. Note that some information gets lost during

this estimation process, as the model does not use the exact event times but only their

chronological order. Also, handling of ties can be problematic.

As explained in the beginning, the central assumption of this model are proportional haz-

ards. This implies coefficients β should be constant over time. If this requirement cannot

be fulfilled, the regression coefficients have to be modelled over time. There are numerous

ways to extend the classical proportional hazard model in order to estimate coefficients in

the presence of ties or for modelling time-varying covariates. Also, the cox model can be

extended by semiparametric additive predictors. Another useful extension are frailty mod-

els. Here, heterogeneity between individuals, that cannot be assessed through the observed

covariates, is also taken into account.

2.2 Traditional Methods 18

Generally speaking, the cox model can be used to estimate the influence of numerous vari-

ables on the survival time and can be extended in various ways according to the individual

situation.

2.2.3 Limitations

Traditional survival analysis methods have been extensively used during the last decades

and still remain popular and useful tools for some areas of application. But today’s era of

huge data sets poses new challenges and demands for specific adaptations.

A common issue of the cox model is the violation of the proportional hazard assumption.

While this is not a new problem and does not necessarily prevent the analyst from using the

model, it should of course not be neglected in the first place. A non-proportional hazard

corresponds to an interaction of the independent variable, i.e. time to event, with time. In

this case, it might be necessary to modify the cox model accordingly. To do so, Borucka

et al. (2014) describes two possible methods: introducing time-variable interactions into

the model or using a stratifying variable to re-estimate the model for two separate sub-

groups.

Another frequently occurring problem of cox regression are high-dimensional datasets.

While most censored data sets in the medical domain contain a large number of features,

the actual number of observations, i.e. the number of events, is often small. This results in

a common problem of modern statistics, the curse of dimensionality. Though it is possible

to perform variable selection as a separate step before model building, this is often not

desirable due to the complexity of the variables and their lack of interpretability.

Lastly, many datasets contain complicated non-linear relationships between the survival

time and its predictors. Simple regression models are limited to linear combinations of

feature values and coefficients and are therefore not able to capture complex structures.

These aspects show the need for more advanced modelling procedures in the area of survival

2.2 Traditional Methods 19

analysis. Adapting known statistical methods to the special case of duration time analysis

can help to overcome some of the mentioned problems.

3. STATISTICAL LEARNING 20

3 Statistical Learning

3.1 Basic Theory

Statistical Learning theory is an important foundation of machine learning and is of course

all about learning from data. Numerous famous books have been published on this topic,

e.g. by Friedman et al. (2001) or Bishop (2006). The most essential ideas will be sketched

in the following.

In the general setting of statistical learning, one is interested in making predictions for a

random variable Y based on covariates X = x using a random sample of data from the

population D = {(x1, y1), ..., (xn, yn)}. To do so, one has to use some kind of prediction

procedure that is applied to the features xi of each instance i = 1, ..., n in order to get

the corresponding target value yi. The goal is to quantify how accurately any possible

procedure predicts and to choose the one that performs best.

Any statistical learning method can be decomposed in three main parts: hypothesis space,

risk and optimization.

A hypothesis space is the family of functions that can be used for prediction. It specifies

the general form of the model but not its particular shape. The learning algorithm has to

pick a function or model from this set. Consider for example the space of linear models:

The hypothesis space is the family of linear functions

f(x) = β0 + β1x1 + β2x2 + ...βpxp.

All possible models have to be of this particular form and can only differ in the coefficient

vector β, which is the parameter that one is interested in.

The risk is a metric that is used to evaluate how good a model performs and to compare

different models of the same hypothesis space.

In order to find the optimal model, the risk has to be minimal over the hypothesis space.

Therefore, one has to use an optimization method, like e.g. gradient descent.

3.1 Basic Theory 21

In the following, the focus will lie on the second part of statistical learning: the risk

function. The intuitive goal of the procedure is to find a model f ∈ H : X → Rn that

fulfils

y ≈ f(x)

for (x, y) ∈ Pxy. In order to measure the difference between the true value and the pre-

diction delivered by the model, another function is needed. Therefore, one defines the loss

function as

L : Y × Rn → R.

It compares the prediction f(x) and the true value y in a pointwise manner, i.e. for each

observation separately. Common loss functions for a continuous random variable Y are the

squared error loss or the absolute loss:

Lsquared(y, f(x)) = (y − f(x))2

Labsolut(y, f(x)) = |y − f(x)|.

Both functions measure the deviation between truth and prediction. They set different

emphasis on particular statistical features and also differ in their computational and opti-

mization properties. For example, the squared loss offers convenient optimization due to

its squared form. In contrast, the absolute loss is not as easily influenced by outliers and

of a more stable nature.

The loss function is the main component in (theoretical) Risk Minimization. As it is

of limited usage to compute the loss function only for the given data points, one wants to

take its general expectation. This is defined as theoretical risk

R(f) = Exy(L(y, f(x))) =
∫
L(y, f(x))dPxy.

3.1 Basic Theory 22

In order to ”learn”, the goal is to find the function f(x) ∈ H that minimizes R(f). Of

course, this is not feasible in practice, as Pxy is unknown and can only be estimated

with great effort. Such an estimation procedures would require rigorous assumptions on

its distributional form, i.e. one would have to sacrifice the desired flexibility of machine

learning.

Therefore, Empirical Risk Minimization is mostly used in practice. Given a dataset

D with observation pairs (xi, yi) ∼ Pxy, i.i.d., one tries to approximate the theoretical risk

R(f) by a version based on the data, the empirical risk defined as

Remp(f) :=
n∑
i=1

L(yi, f(xi)). (7)

The goal is to find

f̂ = arg min
f∈H

Remp(f).

If f is parameterized by θ, like e.g. the family of linear models by the vector of coefficients

β, it can be directly written as

θ̂ = arg min
θ∈Θ

n∑
i=1

L(yi, f(xi|θ)).

The empirical risk is of course only an approximation of the true function of interest R(f).

However, it is good enough if D is an unbiased, independent and a large enough sample

from the unknown distribution Pxy.

Using this general framework of statistical learning, the goal of this work is now to incorpo-

rate its advantages and foremost its flexibility into survival analysis. Therefore, it is crucial

to adapt the three components of general learning to the specific problem of analysing du-

ration time data. Specifically, the defining feature of survival analysis, namely censoring,

is a challenge and demands for changes in traditional methods of statistical learning. In

particular, censoring has an influence on the computation of the loss function as the actual

loss of censored instances cannot be calculated. There are several approaches to incorpo-

3.2 Methods 23

rate the presences of censoring into the process of statistical learning. An option is inverse

probability weighting, as proposed by Robins and Rotnitzky (1992). Schemper and Hen-

derson (2000) used imputation methods for handling censored data. Another challenge is

the loss function itself, which has to be appropriate for survival data. Several properties of

possible functions have been presented in the literature, for a deeper review, see Henderson

(1995).

In the last years, a lot of work and research has been conducted to incorporate statistical

learning into survival analysis. This work will only focus on a few exemplary methods. A

very recent general overview and machine learning framework for the analysis of survival

data is e.g. provided by Bender et al. (2020).

3.2 Methods

The following subsection presents different methods that are very popular and commonly

used in machine and statistical Learning. They are all based on the three parts described

before. In addition to defining the general principles, we will also discuss where and how

adaptions have to be incorporated for survival data.

3.2.1 Penalized Regression

A common problem of regression models in general is Overfitting. It refers to a model

that almost perfectly fits the training data but is not capable of generalizing to previously

unseen data. Therefore, the test error will be large. Overfitting can occur due to several

reasons: First, a dataset can contain not enough data or data that is too noisy for general-

ization. Another aspect is the model complexity as the used model can be too complex, i.e.

it contains too many parameters. Lastly, an aggressive loss optimization approach can also

lead to overfitting if it is not stopped early enough. Whereas the first aspect might be easily

solved by collecting more and better data, it is often not feasible in practice. Therefore, it is

useful to concentrate on the second and third point in order to avoid overfitting. The con-

tradicting goals are to maximizing the fit and to minimize the complexity of the model at

3.2 Methods 24

the same time, which of course results in a trade-off. In order to find a sweet spot between

those objectives, regularization is a useful tool in machine learning and statistics in general.

Regularized Empirical Risk Minimization

In order to account for problems like overfitting, it is helpful to adapt the empirical risk

defined in (7). Instead, the function

Rreg(f) = Remp(f) + λ · J(f) =
n∑
i=1

L(yi, f(xi)) + λ · J(f) (8)

is used. J(f) is the complexity penalty and can take various forms that will be discussed

in the following. The constant λ > 0 is a tuning parameter for continuously controlling the

complexity of the model. One is now facing an optimization problem with two contradicting

criteria: Minimization of the empirical risk for a good model fit and minimization of the

complexity penalty, in order to keep the models as simple as possible. As shown in formula

(8), this is achieved with the help of the tuning parameter λ by using a weighted sum. As λ

approaches 0, the regularized risk is reduced to the empirical risk, i.e. optimization results

in a complex model without penalization. In contrast, if λ goes to infinity, the models

become as simple as possible and the fit is neglected. In order to explain and understand

the concrete methods of regularization, it is easier to focus on a concrete model with an

appropriate loss function. For now, a linear regression model and the squared loss are used

for demonstration purposes. This results in the following regularized risk:

Rreg(θ) =
n∑
i=1

(
yi − θTxi

)2
+ λ · J(θ).

Ridge Regression

The first possible type of regularization is L2- or ridge penalization, as proposed by Hoerl

3.2 Methods 25

θ1

θ2

θ1

θ2

Figure 2: The figure shows the solution of a regression model θ = (θ1, θ2), marked as green
cross. On the left hand side, the ridge penalty is visualized as a circle around the origin.
The solution θ̂Ridge is visualized as orange cross. The right hand side shows the lasso

penalty. The solution θ̂Lasso lies on the axis and is again symbolized by the orange cross.

and Kennard (1970):

θ̂Ridge = arg min
θ

n∑
i=1

(
yi − θTxi

)2
+ λ||θ||22. (9)

This optimization problem with two components can also be reformulated as the con-

strained problem

min
θ

n∑
i=1

(yi − f(xi|θ))2 s.t. ||θ||22 ≤ t.

Using this form, it is easier to understand and visualize this form of penalization. The

goal is still to optimize the empirical risk but the solution has to fulfill the constraint. The

solution θ̂Ridge will have a smaller parameter norm than the unregularized solution. As

all features remain in the model and the result is still a dense vector of coefficients, this

method is useful if many variables are influential.

Lasso Regression

Lasso stands for Least Absolute Shrinkage and Selection Operator and was originally pro-

3.2 Methods 26

posed by Tibshirani (1996). It is another shrinkage method that works similarly but uses

an L1 penalty on the parameter. This results in the form

θ̂Ridge = arg min
θ

n∑
i=1

(
yi − θTxi

)2
+ λ||θ||1. (10)

Of course, it can again be re-written as a constrained optimization problem:

min
θ

n∑
i=1

(yi − f(xi|θ))2 s.t. ||θ||1 ≤ t.

In addition to smaller parameter norms, the lasso method also induces sparsity. As the

optimal solution is likely to touch the edges of the diamond shape, some coefficients do

not only get smaller but are shrunken to zero. For highly dimensional data set with a high

number of dimensions in combination with a relatively small number of observations, i.e.

p > n, the lasso regularization method selects at most n variables and neglects all others.

This is a form of automatic feature selection. In cases of only few influential variables,

this can be beneficial. Therefore, lasso regression is in this case often preferred over ridge

regression. For handling correlated predictors on the other hand, the L1 norm does not

perform in the desired way. To gain robustness of the model, highly correlated features

should receive the same weight. With lasso regularization, this is not the case. Instead,

only one of the variables will be included whereas the others are shrunken to zero.

The two penalties can also be combined in the so called Elastic Net penalty:

α
p∑
j=1
|βj|+ (1− α)

p∑
j=1

β2
j ≤ t.

This version contains both penalty terms and α serves as a regulation parameter. Depend-

ing on the size of α, solutions can be similar to the ones found by either lasso or ridge

regression. Using this technique, it is possible to select more than n features even if p > n.

Correlated predictors are then either selected together or collectively shrunken to zero.

3.2 Methods 27

Therefore, the elastic net combines the advantages of both approaches.

L0-Regularization

Another way of regularization that is mainly used in the area of neural networks is L0

penalization:

Rreg(f) = Remp(f) + λ · ||θ||0 := Remp(f) + λ ·
n∑
j=1
|θj|0. (11)

This norm only counts the number of non-zero parameters in the model and induces even

more sparsity in the parameter vector than the L1 penalty. As the L0-regularized risk does

not have mathematically desirable properties for optimization, it is computationally hard

to handle.

Penalized Cox Regression

The regularization approach can of course not only be applied to ordinary linear regression

models. In order to tackle the problem of highly dimensional data in survival analysis,

several methods for incorporating penalization in the traditional cox regression model have

been proposed.

Before diving into the topic of regularized cox regression, it is important to notice the

connection between loss functions, which are typically used in machine learning methods,

and the likelihood. As mentioned in section 2, in ordinary cox regression the parameters

of interest can be obtained by maximizing the partial likelihood Lip or its logarithm lp.

In contrast, most modern approaches in the field of statistical learning concentrate on

minimizing a loss function, i.e. most optimization routines minimize a given function. For

practical purposes, it is therefore useful to reformulate the problem. Using the equivalence

arg max
x

(x) = arg min
x

(−x),

3.2 Methods 28

which holds for arbitrary x, a maximum likelihood estimate can also be obtained by mini-

mizing the negative log (partial) likelihood. Therefore, − log(Li) or − log(Lip) are special

cases of loss functions. Depending on the chosen hypothesis space, this approach based

on the likelihood is equivalent to explicit loss functions. For example, the negative log-

likelihood in linear regression resembles the mean squared error, i.e. the squared loss func-

tion.

Li and Luan (2003) have proposed an L2 penalization approach for the proportional hazard

model in high-dimensional settings with a small number of observations. While this might

serve as a useful tool in some applications, the ridge estimate still uses all features for the

prediction and thus does not provide variable selection, as explained in the previous part.

For medical and biological problems, one expects that only a small number of features

might influence the time until an event of interest occurs. Therefore, the focus of this work

lies on approaches based on lasso regularization.

The L1 penalization method for regression models was extended by Tibshirani (1997) for

the cox proportional hazard model. He proposed a method that minimizes the partial

likelihood with the constraint that the sum of the absolute values of the parameters should

be smaller than a constant, following the original regularized model. As described in

section 2.2.2, the parameter θ in the proportional hazard model corresponds to the vector

of coefficients β and can be estimated through maximization of the partial likelihood in

(6). Denoting the log partial likelihood with lp(β), the parameter of interest β can be

estimated via the criterion

β̂ = arg min
β
lp(β), s.t.

p∑
j=1
|βj| ≤ t. (12)

In order to solve this optimization problem, an iterative Newton-Raphson procedure is

used. It replaces the weighted least squares step by a constrained weighted least squares

procedure. The design matrix of features is denoted by X and the linear predictor by

η = Xβ. Using this notation, one can define u = ∂lp/∂η, A = −∂2lp/∂ηη
T and z =

3.2 Methods 29

η + A−1u. A more detailed explanation of those quantities can be found in Hastie and

Tibshirani (1990). With the one-term Taylor series expansion for the partial log-likelihood

l(β)

(z − η)TA(z − η)

we can solve the problem (12) by using the following algorithm:

Lasso Estimation for Cox Regression (by Tibshirani, 1997)

1. Fix t and initialize β̂ = 0.

2. Compute η,u,A, z based on the current value of β̂.

3. Minimize (z −Xβ)TA(z −Xβ) subject to
∑
j |βj| ≤ t.

4. Repeat steps 2 and 3 until β̂ does not change.

As in an ordinary lasso regression setting, the penalty parameter t is either chosen by the

user or determined by the data itself. Note that the cox model does not contain an intercept

and therefore, step 3 also does not require the intercept. The minimization procedure is

done using a quadratic programming approach as described in Tibshirani (1997). However,

as stated by Gui and Li (2005), applying quadratic programming procedures is not possible

in settings with p >> n, which is often the case in medical or biological areas of application.

In practice, a popular approach is the algorithm developed by Simon et al. (2011), which

provides a fast and efficient way to fit the cox model with elastic net penalties. As men-

tioned before, this implies the maximization of the partial likelihood subject to the com-

bination of ridge and lasso penalty. Setting α = 1 of course results in lasso regression.

The algorithm works similar to the one presented by Tibshirani (1997) but uses cyclical

coordinate descent in the minimization step. This approach was originally proposed for

linear regression and extended for generalized regression models later by Friedman et al.

3.2 Methods 30

(2007). With the objective

M(β) = 1
n

n∑
i=1

w(η)i(z(η)i − xTi β)2 + λ(α
p∑
j=1
|βj|+

1
2(1− α)

p∑
j=1

β2
j)

one can compute its derivative ∂M
∂βk

. This results in the coordinate solution

β̂j∗ =
S(1

n

∑n
i=1w(η)ixi,k) · [z(η)i −

∑
j 6=j∗ xijβj], λα)

1
n

∑n
i=1w(η)ix2

ij∗ + λ(1− α) (13)

with S(x, λ) = sgn(x)(|x| − λ)+. Equation (13) is applied to all elements of β in a cyclic

fashion until convergence and the minimization of the overall objective is achieved.

A number of different algorithms is also available for combining regularization with the

proportional hazard model. Optimization can e.g. also be done via a combination of gra-

dient descent and Newton Raphson or the LARS algorithm. Simon et al. (2011) compared

different approaches regarding runtime for various data situations. The algorithm based

on cyclical coordinate descent was significantly faster, particularly in high dimensional

settings.

3.2.2 Tree based Methods

The family of tree-based methods is a very widely used and flexible class of machine learn-

ing methods. Though they are also quite known for the application in classification tasks,

this work will focus on their usage in a regression context, i.e. for the prediction of a con-

tinuous variable.

Regression Stumps

The simplest version of a tree-based machine learner is a one-level regression tree, namely

a regression stumps. In a univariate setting with X ⊂ R and Y = R, the idea is to assign

the given training data to two subgroups N1 and N2 depending on the value of an input

3.2 Methods 31

variable:

(xi, yi) ∈ N1 ⇔ xi ≤ t

(xi, yi) ∈ N2 ⇔ xi > t.

This results in two nodes N1 and N2 that contain all training observations. The nodes are

chosen based on a split variable xj = (x1j, ..., xnj) and a particular value it takes, called

split point t. For each of these nodes, a constant prediction can be made:

(xi, yi) ∈ N1 ⇔ f(xi) = c1

(xi, yi) ∈ N2 ⇔ f(xi) = c2.

Therefore, regression stumps can predict only two values c1 or c2 and can be described as

regression trees that only use a single split.

Using this simple method, one aims to find an optimal splitting variable xj and splitting

point t, such that the risk will be minimal. For quantifying the risk of a possible split, the

empirical risks of both nodes are simply summed up: R(j, t) = R(N1) + R(N2). The risk

of a node is then calculated as

R(N) =
∑

(x,y)∈N
L(y, c)

and is minimal for a constant c = arg mincR(N), with respect to a previously chosen loss

function. For regression settings, the most common choice is the L2 loss, which results in

R(N) =
∑

(x,y)∈N
(y − c)2.

Regression Trees

Extending this concept to splitting nodes not only once but further in a recursive manner,

one ends up with a more sophisticated model: Regression Trees. Though there are nu-

3.2 Methods 32

merous methodologies of trees, one of the most popular algorithms is the one by Breiman

et al. (1984) named CART (Classification and Regression Trees). In a greedy top-down

approach, binary splits are constructed to build the tree. Thereby, split variables and split

points are selected by exhaustive search, i.e. the algorithm involves iterations over all fea-

tures and over all possible split points for each feature. Formally, a tree divides the features

space into M rectangles Rm and fits a constant model in each of them, which results in a

constant prediction

f(x) =
M∑
m=1

cmI(x ∈ Rm),

where cm is the predicted response.

The central question for regression trees is the choice of an appropriate split criterium, as

it determines the choice of xj and t and therefore the final tree. The impurity of the data

contained in a node N can be measured by a function I(N). If a node N should be split,

potential choices for N1 and N2 can be evaluated by impurity reduction

I(N)− |N1|
|N |

I(N1)− |N2|
|N |

I(N2).

For continuous target variables, one usually chooses the mean-squared error or the variance

in a node

I(N) = 1
|N |

∑
(x,y)∈N

(y − ȳN)2,

where ȳN is the mean value of target variable y in node N . The impurity of a node is there-

fore measured by the variance of y. This is equivalent to the popular ANOVA method.

Choosing the split with the minimal impurity resembles maximizing the between-group

variance, i.e. sum of squares in a very simple analysis of variance. The remaining error of

a node is then the variance of the contained y.

In theory, the CART algorithm could continue the splitting process until each node only

contains a single observation. This would again result in an overfitting problem, as ex-

3.2 Methods 33

plained in section 3.2.1. The complexity of a regression tree depends on a number of

factors and hence can also be controlled by those. There are several ways to control the

risk of overfitting: First, it is possible to specifying a minimal number of observations per

node for another split. Another way is to set a minimal number of observations in an end

leaf- Lastly,the user can also determine a maximum number of tree levels.

Regression trees in general have a number of advantages. Not only are they easy to com-

prehend and offer an intuitive graphical representation, they are also quite efficient and

scale well with larger data sets. In addition, they provide built-in feature selection, which

can be in particular of advantage in high-dimensional settings. Nevertheless, single trees

are very unstable and highly depend on the data, i.e. small changes can lead to completely

different results. Also, the prediction function is a step function and thus not smooth,

which sets some mathematical obstacles.

Random Forest

In order to overcome the problems of single regression trees and achieve a better and more

stable performance, one often focuses on ensemble methods. In particular, the random for-

est algorithm proposed by Breiman (2001) is a very popular ensemble approach for trees.

One form of training ensemble methods is Bagging (Bootstrap Aggregation). First, M

bootstrap samples of size n are created using the training data. On each of those samples,

one fits the chosen base learner.The base learners are simple models like e.g. regression

trees, that can be easily fit but on their own suffer under high variation. A final prediction

is then obtained by aggregating the predictions obtained by the M fitted base learners.

This can be either done by averaging or a majority voting. Bagging is a useful method

of unstable learners such as classification and regression trees or also neural networks as

it reduces the learner’s variance. At the same time, it increases the bias in return and

complicates the interpretation of the model.

For random forests, a modified version of bagging is used and bootstrapped decorrelated

3.2 Methods 34

trees are constructed. The correlation between trees obtained by the bagging procedure is

reduced by randomization, i.e. not all but only mtry variables are chosen for fitting a base

learner. At each split, mtry ≤ p random candidates for the split are drawn. The concrete

algorithm proposed by Breiman (2001) works as follows:

Random Forest

Input: Dataset D of n observations, M , mtry

For m = 1, ...,M do:

1. Draw a bootstrap sample from D: D[m]

2. Grow tree b[m](x) using D[m]

3. For each split, only consider mtry random features

4. Grow the tree without pruning or early stopping

End for: Aggregate the predictions of M estimators to predict on new data.

The hyperparameters M and mtry have to be chosen in advance and highly influence the

performance of the algorithm.

A useful feature of many random forest implementations is the out of bag (OOB) score

or estimate of the misclassification error. It can be calculated easily and is often used

for model validation. In bootstrap samples, observations are drawn with replacement, i.e.

instances of the original sample can be left out in the bootstrapped versions. These are

called out of bag samples and will not be used for training the respective base learner.

Therefore, it is possible to use the resulting base model to predict the outcome of the OOB

observations. Repeating this procedure for every base learner and its bootstrapped training

data, one can define the OOB score as the number of correctly forecasted instances from

the OOB sample. In theory, roughly 36.8% of the original dataset are part of the OOB

3.2 Methods 35

sample. The probability of not picking n rows in random draws is (n−1
n

)n and with growing

n, this equals

lim
n→∞

(1− 1
n

)n = exp(−1) = 0.368. (14)

This way of model validation is useful if the dataset is not large enough to form a separate

validation set. The OOB and validation error are not equivalent and thus, should not

be compared directly. Nevertheless, the OOB estimate of the error can serve as a good

alternative.

Random Forests overcome a lot of the challenges of ordinary regression trees. They are also

easy to implement and parallelize and are very flexible, thus can be applied to basically

any data. But at the same time, a lot of desirable interpretability, especially for feature

interactions, is lost. Also, the procedure is relatively rigid and does not offer possibilities

to adapt it according to a specific problem.

Tree based methods for Survival Analysis

Survival trees and forests became very popular non-parametric alternatives to the tra-

ditional tools of duration time analysis. Due to their flexibility and ability to identify

complex non-linear relationships, (almost) no assumptions have to be made beforehand.

Single trees also offer a natural distinction of the population in prognostic groups and can

be combined into an ensemble method to form a powerful predictive method. Though the

basic principle is always the same, a lot of different approaches have been developed by

many groups of researchers. Bou-Hamad et al. (2011) provide an extensive overview over

the development of tree-based models for the analysis of censored survival data.

For building a single regression tree for survival data, it is crucial to choose an appropriate

splitting criteria, i.e. the function that should be optimized. Over the years, several choices

have been proposed and tested in practice. Generally, those criteria can again be divided in

3.2 Methods 36

two groups: functions that minimize the risk within one nodes and functions that maximize

the separation between two nodes. Shimokawa et al. (2015) provide a comparison of nine

different split functions for the application in survival trees. For example, the exponential

log-likelihood loss can be used as a criterion, as proposed by Davis and Anderson (1989). As

the optimal split here minimizes the loss among all possible splits, this approach aligns well

with the general structure of this work and will therefore be discussed exemplary. Let N

denote a node in a tree. The sample D = {(t∗i , δi, xi), i = 1, ..., n} that is used for training,

contains the observation time T ∗ = min(T,C), the censoring indicator δ = 1{T ≤ C} and

the covariates X. The hazard of a terminal node can be defined as h(x|N) = hN , i.e. is

constant within the node N . In order to estimate hN , the maximum likelihood procedure

is used:

ĥN =
∑
i∈DN

δi∑
i∈DN

xi
.

The exponential log-likelihood loss of a node N is then defined as

− logLi(ĥN) =
∑
i∈DN

δi −
∑
i∈DN

δi log(ĥN).

Thus, an optimal split should minimize this criterion.

As discussed before, single regression or survival trees are of limited utility in practical

settings. Therefore, this work will focus instead on an ensemble method, namely Random

Survival Forests as proposed by Ishwaran et al. (2008). They extend Breiman’s random

forest model to right censored survival data. The high-level algorithm works as follows:

3.2 Methods 37

Random Survival Forest

1. Draw M bootstrap samples from the original data. Each sample excludes on average

37% of the data.

2. Grow a survival tree for each bootstrap sample. At each node, select randomly p

candidate variables. The node is split using the candidate variable that maximizes

the survival difference between the child nodes.

3. Grow the tree to full size under the constraint that a terminal node should have no

less than d0 > 0 unique deaths.

4. Calculate a cumulative hazard function (CHF) for each tree and average them to

obtain the ensemble CHF.

5. Calculate the prediction error for the ensemble CHF.

The first central element of the algorithm is growing a single survival tree (see step 2).

Just like ordinary binary trees, a survival tree is grown by recursively splitting its nodes.

Therefore, a survival criterion is used. The goal is to maximize the survival difference

between two child nodes, i.e. to find split variable xj and split point t, such that dissimilar

cases are separated. As discussed before, a large number of possible splitting criteria are

available. The R package randomSurvivalForest in particular offers four splitting rules.

An optimal split can be for example found by maximizing the log-rank test statistic. Let

therefore t1 < ... < tK be the distinct event times in parent node g. Additionally, di,h and

ni,h describe the number of deaths and patients at risk at time ti in possible child nodes

h = 1 and h = 2. For a split at value t for predictor xj the log-rank test is defined as

LR(xj, t) =
∑K
k=1(dk,1 − nk,1dk/nk)√∑K

k=1
nk,1
nk
· (1− nk,1

nk
)(nk−dk

nk−1)dk
.

Maximizing the log-rank statistic |LR(xj, t)| leads then to the best split. Alternatively,

3.2 Methods 38

the standardized version of the log-rank test can be used. Another possibility is to find

the children closest to the conservation-of-events principle and split the node accordingly.

The last option provided by the software package is to select a random split for each of the

candidate variables in a node and use the variable with the maximum log-rank statistic for

the final split.

The next important question is the prediction in the terminal nodes, i.e. how to compute

the cumulative hazard estimate for a single terminal node of a tree and the ensemble CHF

(see step 4). For one terminal node h and its distinct event times t1,h < t2,h < ... < tK(h),h,

the CHF estimate is defined as

Λ̂h(t) =
∑
tk,h≤t

dk,h
nk,h

.

Hereby, dk,h and nk,h describe the number of deaths and individuals at risk at time tk,h.

The cumulative hazard function is the same for all cases within the terminal node h. Every

new observation with covariates x∗ will fall into a unique terminal node h. Therefore, the

prediction based on a single tree results as

Λ(t|x∗) = Λ̂h(t). (15)

To compute an ensemble prediction instead, one averages over M survival trees. Λ∗m(t|x)

is defined as the CHF for a single tree based on one bootstrap sample. Then, the bootstrap

ensemble CHF for an observation i can be estimated as

Λ∗e(t|xi) = 1
M

M∑
m=1

Λ∗m(t|xi). (16)

The last step of the algorithm is the calculation of the prediction error. Therefore, Harrell’s

C-index is a suitable choice. Proposed by Harrell et al. (1982), it estimates the concordance

3.2 Methods 39

probability as

c = #concordant pairs

#concordant pairs + #discordant pairs
. (17)

If the model predicts well, patients who had shorter times-to-event should have higher risk

scores than patients with a longer event time. The c-index is a popular tool for measuring

survival performance, as it accounts for censoring and does not depend on a fixed time for

evaluation.

The standard method of random survival forests has recently been extended by Utkin et al.

(2019) to a weighted version. The authors replace the averaging that is used for estimating

the forest survival function by a weighted averaging to achieve better performance.

3.2.3 Neural Network Approaches

Over the past years, Neural Networks and Deep Learning became very popular approaches

for solving many real-life problems. More and more deep learning technologies have been

developed and the computational capacities have been extended enormously. Nowadays, it

is possible to build any kind of network architecture and achieve outstanding performances,

even for very complex problems.

Simple Network Architectures

In order to understand how neural networks work, it is useful to consider a single neuron

and its graphical representation as nodes first. The features of x are represented by the

nodes of the input layer. Those are connected to a neuron in the output layer by edges

that represent weights w. The hypothesis space for a single neuron is

H =

fw : Rp → R|fw(x) = τ

 p∑
j=1

wjxj + b

 .
The function fw(.) depends on the weights of the neural network. The goal now is to

minimize the empirical risk Remp(w, b) = ∑n
i=1 L(y(i), fw(x(i))) with respect to these weights

3.2 Methods 40

w1, ..., wp and the bias term b. Therefore, a suitable loss function L(y, f(x)) has to be

defined. The global minimum and therefore the solution to the problem can be found by

using optimization methods. A very popular tool for optimizing neural networks, i.e. for

finding the best parameters, is gradient descent. After initialization of the parameters,

the algorithm minimizes the objective function Remp(θ)) w.r.t θ = (w, b) by updating them

iteratively. Intuitively, it does so by computing the ”best”direction along which the weights

and the bias should be changed in order to reach the optimum. Therefore, the gradient of

the objective function 5θRemp(θ) is used, as the negative gradient points in the direction

of the steepest descent. This leads to the following update rule for the parameters at

optimization step t:

θ(t+1) = θ(t) − α5θ Remp(θ(t)).

Here, the tuning parameter α is used control the magnitude of a step and is also called

learning rate. If the rate is too high, the algorithm oscillates. On the other hand, if α

is too small, it takes many iterations to reach the optimum. It is often useful in practice

to not choose a fixed learning rate but to reduce its value as the training progresses. In

modern frameworks for neural networks, many variants of the gradient descent algorithm

are available for optimization. Therefore, the procedure can be adapted depending on the

practical needs.

Returning to the simplest architectures using only one neuron, the intuition behind neural

networks becomes obvious. As the hypothesis space shows, this is just another (more

complicated) way of representing ordinary regression models. Substituting τ() with the

identity function leads to linear regression, whereas using the logit function results in

logistic regression. Integrating additional hidden layers in the network allows to construct

extremely complex and flexible hypothesis space, as visualized in Figure 3.

For simplicity, let’s consider a single hidden layer with nodes z1, ..., zM . Given the input x

3.2 Methods 41

x0

x1

x2

x3

Input
layer

ŷ1

ŷ2

Output
layer

x0

x1

x2

x3

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer 2

ŷ1

ŷ2

Output
layer

Figure 3: The network on the left side only consists of input and output layer. By adding
hidden layers to the network, as shown on the right, it is possible to connect and convert
the input values in very flexible ways.

of dimensions p× 1, one needs a weight matrix with dimensions p×M :

W =

w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m
...

...
. . .

...

wp,1 wp,2
... wp,m

.

The value of a hidden node zm are then obtained by zm = σ(W T
mx+ bm), where bm is the

bias of the first hidden neuron and σ is an activation function.

Feed-Forward Neural Networks

The first adaption of neural networks for lifetime data analysis was done by Faraggi and Si-

mon (1995). Their goal was to model censored survival data with a very simple feed-forward

neural network and its input-output relationship as a basis for a non-linear proportional

hazards model. They used a basic architecture with only a single output node. In a feed-

forward network, each input is connected to all but one node in the hidden layer. The

output of a single hidden layer neural network with M hidden nodes and a given input

3.2 Methods 42

vector x can be represented as

g(x, θ) = b0 +
M∑
m=1

bmφ(wTmx) = b0 +
M∑
m=1

bm
1 + exp(−wTmx) .

For simplicity, θ denotes the vector of all unknown parameters, including weights and bias

terms. The product of input values and weights is handed to an activation function is φ().

As for any statistical learning procedure, the term ”training” refers to the calculation of

the parameter values such that the final predicted outputs g(x, θ̂) are as close as possible

to the true outputs. This is done by an iterative procedure called backpropagation via

gradient descent.

In order to adapt this technology for survival analysis, Faraggi and Simon (1995) proposed

to simply replace the linear functional xTi β in the partial likelihood (6) by the outputs

g(xi, θ) of the neural network. The proportional hazards model would then be

h(t, xi) = h0(t) exp(g(xi, θ))

with the partial log likelihood

lp(θ) =
k∏
i=1

exp{∑H
h=1 αh/(1 + exp(−wTh x(i)))}∑

j∈R(t(i)) exp{∑H
h=1 αh/(1 + exp(−wTh x(j)))}

. (18)

Using the Newton-Raphson method, the partial log likelihood can be maximized and one

obtains the optimal network parameters.

This is a very basic approach that only uses simplest neural network architectures. As

experiments and research showed, the proposed network did not necessarily outperfom the

linear cox proportional hazards model. Nevertheless, it serves as a base for numerous more

sophisticated methods in this direction.

3.2 Methods 43

Deep Neural Networks

Nowadays, neural networks can contain hundreds of hidden layers, hence the name ”deep”

neural networks. A great milestone achieved in the last years was overcoming the chal-

lenges of stacking many layers. Increased computational power, huge amounts of data

and novel techniques of regularization made it possible to finally implement deep neural

network architectures. Those models are able to handle data of highly complex shape and

achieve great performances.

Of course, there have also been attempts to use deep neural networks in the context of

survival analysis. A recent example is the DeepSurv architecture proposed by Katzman

et al. (2018). The authors use a cox proportional hazards deep neural network for the

application of personalized treatment recommendations.

DeepSurv is constructed as a deep feed-forward architecture, which predicts the effect of

covariates on the hazard rate of patients. The hazard is parameterized by θ, the weights

of the network. The network itself consists of fully-connected layers of nodes that are each

followed by dropout layers. Given an input x, the output of the network ĥ(x, θ) estimates

the log-risk function in the cox model. Comparable to (18), the objective function is the

average negative log partial likelihood but in this case with additional L2-regularization:

lp(θ) = 1
NE=1

∑
i:Ei=1

ĥ(x(i), θ)− log
∑

j∈R(t(i))
exp{ĥ(x(j), θ)}

+ λ · ||θ||22.

Here, NE=1 denotes the number of patients, where an event was observed. In the particular

use case, DeepSurv was able to outperform a number of other survival methods due to its

highly flexible nature.

Nevertheless, the success of deep neural networks also lies in large sample sizes. As ex-

plained in the beginning, a large amount of event observations is rare in survival analysis.

In most application, only a low number of non-censored samples is given, whereas the di-

mensionality of the dataset is often high. Therefore, deep architectures might not always

be the best choice and other neural network algorithms should not be neglected.

3.2 Methods 44

Extreme Learning Machine

Another direction of neural network algorithms is the extreme learning machine (ELM).

Wang and Zhou (2018) recently provided the theoretical framework and a software toolkit

for adapting ELM to the high dimensional setting of survival data.

ELM was introduced by Huang et al. (2006) for single- and multi-hidden layer feed-forward

neural networks (SLFNs). For such networks, one usually uses a backpropagation based

algorithm for computing gradients. However, it is known that such procedures have a

number of bottlenecks, which the ELM approach tries to overcome. Its particularity is

that the parameters of hidden nodes do not need to be tuned. Instead, it is possible to

assign values to hidden nodes randomly or to inherit the parameter values from ancestor

nodes without affecting the performance negatively. This learning method is comparably

simple and can be summarized in the following algorithm:

Extreme Learning Machine (by Huang et al., 2006)

Given: Training data set D = {(xi, ti)|xi ∈ Rp,yi ∈ Rn, i = 1, ..., N}, an activation

function φ(x) and hidden node number Ñ

1. Randomly assign input weight wi and bias bi, i = 1, ..., Ñ .

2. Calculate the hidden layer output matrix G.

3. Calculate the output weights β of the hidden nodes.

Calculate β = Gy with the training data target matrix y = (y1, ..., yN)T , which contains

the true values for the training inputs x1, ..., xN .

Using the training data set D, the output function in ELM with L hidden neurons is then

fL(x) =
L∑
l=1

βlhl(x) = g(x)β.

Here, g(x) is the output vector of the hidden layer with respect to the input x, i.e. the

3.2 Methods 45

function that maps the data from the input space to the ELM feature space. Using the

least squares solution β = GT (1
C

+GGT)−1y, the output function of the ELM algorithm is

f(x) = g(x)GT (1
C

+GGT)−1y.

If this feature map is unknown, one can make now use of a kernel based version of the

extreme learning machine. Following Mercer’s conditions, the kernel matrix of ELM is

given by M = GGT : mij = g(xi)g(xj) = k(xi, xj) and the output function of KELM

results as

f(x) = [k(x, x1), ..., k(x, xN)](1
C

+M)−1y.

Wang et al. (2017) proposed a way to combine (kernel) extreme learning machines with

methods for analysing right censored data. Their method uses the Buckley-James esti-

mator for ”uncensoring” the data. This estimator assumes that the transformed survival

time follows a linear regression with normally distributed error terms. Censored survival

times can then be imputed accordingly. This corresponds to Accelerated Failure Time

models (AFT models), which are another class of traditional methods for survival analysis.

They provide a parametric alternative to the proportional hazards model if the assumption

of constant hazards is violated. Instead, the logarithm of the survival time is expected to

follow a linear regression model with normally distributed errors, as explained before. A

deeper discussion of AFT models and the comparison to the proportional hazards model

can be found in Wei (1992).

In ELM the parameters in the hidden layers have to be chosen randomly and the kernel

matrix has to be specified by the user. This induces instability. To overcome this prob-

lem, ensemble methods are a popular choice. Using imputed estimates for censored data

and an unstable base learner like KELM leads to a lot of diversity and thus enables a

good performance of the ensemble learner. Based on this research, Wang and Zhou (2018)

published a software package named SurvELM that contains six survival models based on

kernel ELMs. First, they use the Buckley-James estimator to impute the survival times

3.2 Methods 46

of censored observations before applying ELM learning to survival analysis. This is imple-

mented as a single model as well as an ensemble. Secondly, they combine the approach

with cox regression. The linear combination of covariates in the cox model is replaced by

the non-linear output function of a neural network based on ELM. This can be seen as an

extension of the early approach for inducing non-linearity in the cox model by Faraggi and

Simon (1995). To achieve more stability, a random forest ensemble of this method is also

provided. Thirdly, the authors also propose to use ELM within the boosting framework.

It is possible to use ELM combined with gradient boosting or likelihood based boosting.

In their experimental results, the authors found these methods to be useful alternatives to

traditional models, due to their high efficiency and accuracy.

4. APPLICATION 47

4 Application

The main focus of this work is of course not the theoretical discussion of and reasoning

behind the proposed methods. In order to compare classical and modern approaches to

survival analysis it is crucial to apply them to real-life datasets and test them in specific

use cases. In general, survival analysis plays a huge role in medicine and especially in the

observation of patients and their condition from the time of treatment to time of death.

In this area of application, censoring is common and therefore, has to be incorporated

adequately in the analysis of lifetime data.

The following chapter will first describe the application of the methods discussed in Chapter

3 to a real-life dataset and then discuss the results and individual performances of models.

4.1 Data

The patients in the study suffer from soft tissue sarcomas. This is a rare type of cancer

that begins to sprawl in the tissues. Such tissues connect and support surrounding body

structures and can occur anywhere in the body. Soft tissue sarcomas are usually treated

by surgical resection, often in combination with radiation or chemo therapy. The particu-

larity of this disease is its huge variety. The spectrum of processes comprises long patient

survival to highly aggressive variants that spread in the entire body rapidly. Therefore, it

is difficult but of course crucial to choose appropriate treatment for individual patients.

Personalized medication in general is an active field of research and can benefit greatly

from data analysis and data science.

As found by recent studies, images of the tumor and a number of biomarkers that can

be extracted from the pictures are related to the patient’s outcome in terms of survival.

Analysing structural and quantitative features from tomography images can therefore sup-

port the selection of appropriate individual treatment.

Combining the features extracted from tomography pictures with clinical patient data

forms a useful dataset. Whereas the former is very abstract and hardly interpretable for

non-experts, the latter simply refers to general aspects about patients and their condition.

4.1 Data 48

It comprises broad information about the various disease process of different instances. One

goal of this work is to use the provided dataset to assess different methods for predicting

survival probabilities. On the other hand, it is also of interest to identify features that are

important in terms of prediction, in order to provide interpretability and usability of the

proposed methods.

4.1.1 Radiomics

In recent studies, researchers used a novel method called Radiomics for the examination

of radiographic medical images. In general, radiomics is a technique for mining quantita-

tive features from standard medical images, that gained a lot of importance in the field of

cancer research in the last years. It is able to extract a large number of features, which

capture disease characteristics that cannot be seen by the human eye. The overall goal

of radiomics is the prediction of prognosis and therapeutic response for different patient

conditions. Thus, it provides valuable information for personalized therapy.

A large number of studies has been conducted to show the possibilities offered by the us-

age of radiomic features. The extracted variables are for example capable of discriminating

tumor stages and clinical outcomes. Though this technique offers a lot of possibilities in

modern medicine, a lot of work still has to be done in the area. As mentioned by Lambin

et al. (2017), standardized data collection, evaluation criteria, and reporting guidelines are

still to be found for radiomics.

In particular, the technique is also used for soft tissue sarcomas. The extraction of ra-

diomic features from medical tumor images enables the analysis of important biomarkers,

which can be insightful for diagnosis and treatment selection, as explained in the previous

subsection. The researchers used the implementation in the python package pyradiomics

for image preprocessing and obtaining the actual quantities. This results in a large number

of features describing shape, intensity and texture, either extracted from the original image

or a reconstructed version of it.

4.1 Data 49

4.1.2 Dataset

Data Collection

The provided dataset comprises information from patients of two cohorts suffering from

biopsy-proven soft tissue sarcomas. The patients have been treated with surgery in cura-

tive intent
”

radiation therapy, or chemotherapy based on multidisciplinary review at two

medical centers, namely at the Technical University of Munich (TUM) and the University

of Washington/Seattle Cancer Care Alliance (UW). The variable of interest is the overall

survival time, which was calculated from the initial pathologic diagnosis to the time point

of death or censoring. Combining clinical patient information with radiomic features leads

to a high-dimensional dataset, which sets the basis for the following work.

Feature Reduction and Selection

Following the work of Peeken et al. (2019), several reduction methods were applied to the

dataset before starting model training.

On the one hand, it is advisable to only use a subset of the provided patients. By only

including patients with AJCC staging classes 3, 4 and 5, one obtains a more meaningful

and robust cohort.

On the other hand, the provided dataset is very high dimensional with only few observa-

tions and thus, a preceding feature selection procedure is useful. Two steps of unsupervised

reduction were applied in order to guarantee a meaningful dataset. First, the intraclass

correlation coefficient ICC(3,1) was calculated for each feature. In general, this statistic

describes how strongly units that belong to the same group resemble each other. In this

case, the dataset contains three resegmentations or reconstructions of each patient image.

Thus, it is useful to quantify the size of the differences between the three image versions

and the extracted features. A higher ICC value corresponds to a higher level of agreement

between the raters or, in this case, of similarity between the re-segmentations. Therefore,

features with an ICC value below 0.8 were deleted and not used in further analyses.

4.2 Model 50

Next, inter-correlated features were removed. The Pearson Correlation Coefficient % mea-

sures linear correlation between two variables and ranges between -1 and 1. Calculating

the coefficient for each pair of features F1 and F2 makes it possible to assess the pairwise

similarity. An absolute value of %F1,F2 above 0.9 across all patients is an indicator for highly

correlated variables. As such features are of limited use for the following analysis, feature

F2 was removed from the dataset if %F1,F2 > 0.9.

Another important preprocessing step of the features is standardization. The most popular

technique to standardizing is substracting the mean and dividing by the variance for each

feature. As this method is not very robust against outliers, another standardization ap-

proach was used in this work. For each feature, the median was calculated and substracted

from its values, before dividing each result by the interquartile range.

After all described steps of data preparation, the final dataset contained 127 observations

and 1189 features. 93 patients were still alive at the end of the observation period and

therefore, only provide right-censored information. For 34 patients, the time of death

could be observed. A more detailed description of the patient characteristics can be found

in Table 1. Here, the target variables are OS (survival time) and survival status, which

refers to the observation of an event (= 1) and censoring (= 0). The quantities Age,

TNMSuff, TNMT, TNMN, TNMM and Grading are the available clinical information

about the instances. The abbreviations refer to a tumor grading system that is often used

to assess the severity of disease and choose appropriate treatment by hand. Additionally,

Figure 4 shows the cumulative survival distribution function over time, indicating events

and censored observations in different colours.

4.2 Model

The following part describes the application of all methods mentioned in section 3. The

goal is to model the survival time of patients (OS). Therefore, experiments with tradi-

4.2 Model 51

continuous Min. 1st Qu. Median Mean 3rd Qu. Max.

OS 2.267 21.551 40.145 47.107 74.097 105.519

Age 17 43 57 56.37 69 88

categorical Level Count

Survival Status 0 93
1 34

TNMSuff a 9
b 118

TNMT 1 21
2 104
k.A. 2

TNMN 0 124
1 3

TNMM 0 127

Grading 2 50
3 77

Table 1: Descriptive statistics of the clinical variables as well as the target variables.

tional methods of survival analysis as well as modern statistical learning approaches were

conducted.

4.2.1 Model Setup

The most important chunks of R code for all models and their configurations described in

the following can be found in Appendix B.

Cox Regression

The most popular method for analysing survival data is cox regression, as introduced in

section 2.2.2 and implemented in the R package survival. This method suffers strongly

from the curse of dimensionality and thus cannot be used on the dataset without further

feature selection.

4.2 Model 52

Figure 4: The plot shows the cumulative survival distribution of the patients over time.
The red dots indicate events, the blue observations are censored.

Therefore, univariate regression models were built for each feature first. All but one vari-

ables were removed and the survival time as target variable was predicted only using this

single feature. Examining all regression outputs and all p-values, it was possible to assess

the predictive power of all variables in a univariate setting. In order to perform a meaning-

ful multivariate cox regression, the dimensionality of the dataset must not be larger than

the actual number of observed deaths (n = 34). Therefore, only features with a p-value

smaller than 0.0001 were used for a more sophisticated version of the Cox regression. The

final model uses the clinical variable Age and 14 radiomics features, see Table 2, which

comprises hazard ratios, 95% confidence intervals and the respective p-values.

Looking at the large p-values and very wide 95% confidence intervals, it is obvious that

some selected variables do not contribute much to the model. Therefore, the features were

further restricted. Again only selecting significant features, a Cox regression model was

built only using the variables Age as clinical information and the radiomic features

4.2 Model 53

Feature HR 95% CI p-value

Age 1.07 1.03, 1.10 <0.001
log sigma 1 0 mm 3D glcm Imc2 0.28 0.09, 0.83 0.022
log sigma 1 0 mm 3D glrlm RunEntropy 2.49 0.17, 37.2 0.5
log sigma 1 0 mm 3D glszm GrayLevelNonUniformityNormalized 1.31 0.14, 12.5 0.8
log sigma 2 0 mm 3D firstorder Entropy 1370 0.02, 87586972 0.2
log sigma 2 0 mm 3D glcm JointEntropy 0.05 0.00, 3864 0.6
log sigma 2 0 mm 3D glcm InverseVariance 17.9 0.28, 1152 0.2
log sigma 2 0 mm 3D glrlm GrayLevelNonUniformityNormalized 7.96 0.47, 136 0.2
log sigma 2 0 mm 3D glrlm RunEntropy 0.59 0.07, 5.26 0.6
log sigma 5 0 mm 3D glcm MaximumProbability 1.27 0.27, 5.96 0.8
log sigma 5 0 mm 3D glrlm LongRunEmphasis 0.59 0.00, 93.0 0.8
log sigma 5 0 mm 3D glrlm RunVariance 1.71 0.01, 329 0.8
log sigma 5 0 mm 3D glszm ZoneEntropy 0.72 0.30, 1.73 0.5
wavelet LLH glszm SmallAreaHighGrayLevelEmphasis 0.57 0.36, 0.91 0.018
wavelet HHL glszm SizeZoneNonUniformity 1.47 0.90, 2.38 0.12

Table 2: The table displays the variables in the multivariate cox model based on the uni-
variate p-values, along with the respective hazard ratios, p-values and confidence intervals.

log_sigma_1_0_mm_3D_glcm_Imc2,

wavelet_LLH_glszm_SmallAreaHighGrayLevelEmphasis and

wavelet_HHL_glszm_SizeZoneNonUniformity. This model resulted in a similar perfor-

mance using only four features. Hazard ratios, confidence intervals and p-values are dis-

played in Table 3.

Feature HR 95% CI p-value

Age 1.06 1.03, 1.08 <0.001
log sigma 1 0 mm 3D glcm Imc2 0.50 0.30, 0.82 0.007
wavelet LLH glszm SmallAreaHighGrayLevelEmphasis 0.54 0.37, 0.78 0.001
wavelet HHL glszm SizeZoneNonUniformity 1.35 1.01, 1.80 0.045

Table 3: The table shows the output of a Cox regression model that only uses the four
variables with significant coefficients. Here, the confidence intervals as well as the hazard
rate look more reasonable.

Penalized Cox Regression

As an extension of regular cox regression, many R packages also provide a penalized version

of the regression model. Here, only two variants will be described further.

4.2 Model 54

The package penalized by Goeman (2010) enables the user to build generalized linear

models with penalized estimation. It does not only support the cox proportional hazards

models but also linear, logistic and poisson regression models. With the two tuning param-

eters λ1 and λ2, estimation can be penalized with the lasso, ridge or elastic net approach.

The basic function penalized() performs a regularized regression for fixed values of λ1

and λ2. The focus of this work lies on lasso penalization, as it provides built-in feature

selection. The resulting simplicity of the model is desirable for interpretation and identifi-

cation of risk factors.

As it is often difficult to specify the penality parameters in advance, the package also offers

cross validation approaches in order to find optimal values. Using the option steps = n,

it is possible to visualize the effect of changing the values of λ1 on the final regression

coefficients. At step 1, the algorithm fits the model with the maximal λ1, i.e. the value

that leads to maximal penalization and shrinks all coefficients to zero. In the next steps,

models with a successively decreasing penalty parameter are fitted. The algorithm stops as

soon as the specified value of λ1 is reached. The result of this procedure is a list of objects

of class penfit and the user can plot the estimated coefficients of each step by using the

function plotpath(), as shown in Figure 5.

For building a cox proportional hazards model, the survival time is used as response to be

predicted, i.e. Surv(time, event).

Another implementation of penalized cox regression is offered in the package glmnet, as

introduced by Simon et al. (2011). Its function glmnet() fits the Cox proportional hazards

model by using the elastic net penalty, i.e. a combination of L1 and L2 regularization. As

most applications of survival analysis suffer under high dimensionality in combination with

only few observations of actual deaths, this function focuses on underdetermined models

and only selects a small number of covariates. In order to perform cox regression, the user

specifies family = "cox" and uses the survival time as response. The package also offers

cross validation approaches and in case of high dimensional datasets, a large number of

4.2 Model 55

Figure 5: The figure displays fitting steps of a L1 regularized regression. As λ1 gets smaller,
more variables are included into the model. For large values, i.e. strong penalization, only
one variable has a non-zero coefficient. At approx. λ1 ≈ 30, the model gets more complex.

4.2 Model 56

iterations is required. After fitting, an optimal value for λ1 is returned. In order to evaluate

the model, it is possible to visualize the development of performance. A number of different

metrics is available, e.g. the concordance index for cox regression. In this case, a higher

value equals better results. Choosing the maximum (or minimum for different performance

metrics) of this curve, the optimal model and its active covariates can be easily determined.

It is to note here that the functions for performing cross validated lasso regression provided

by the two packages deliver different results in terms of the tuning parameter λ as well as

performance metrics. This instability of lasso regression combined with cross validation

was reported for various applications and does not seem to be a novel issue. Whereas both

methods maximize the penalized log-likelihood with penalty parameter λ, the estimation

methods differ. A possible explanation can be found in the respective documentations

by Goeman et al. (2012) and Friedman et al. (2009). The package penalized uses the

full gradient algorithm and the Newton Raphson method for finding an estimate for the

coefficients. For glmnet however, coordinate descent is applied, which is much faster in

comparison. The package also provides better documentation and easier usability. For the

comparison of performance metrics, only the glmnet implementation of lasso regression

will be considered in order to avoid confusion.

Tree based Methods

A very popular approach for analysing data without distributional assumptions and flexi-

bility restrictions are tree based methods in all variations, as introduced in section 3.2.2.

As a first step, a survival tree was built using the package rpart, which is based on the

work of Breiman et al. (1984). Though the single tree might not suffice for actual prediction

of the survival time, it can be easily visualized and interpreted and can therefore serve as a

good starting point. The function rpart(formula, data) builds a full survival tree for the

target variable survival time. The resulting rpart object can then be pruned using prune()

in order to avoid overfitting. This function ”snips” off the least important splits based on a

4.2 Model 57

tuning parameter cp that measures the complexity of the model. It then generates a nested

sequence of subtrees. If a split does not decrease the overall lack of fit by a factor of cp,

it is not attempted anymore. This is not only a way of avoiding overfitting, but also saves

computing time. If the parameter is set to a larger value, the resulting tree will be smaller,

i.e. less splits will be attempted. Of course, the main advantage of single trees is their

interpretability and the option to visualize them. Figure 6 shows a the full version as well

as two pruned version of the final tree. This method also enables the user to inspect the

differences of the groups that are formed by the terminal nodes. It is possible to inspect

separate Kaplan Meier curves for the survival probability in each group and compare them.

In order to get a more sophisticated model, the package ipred can be used to perform bag-

ging of survival trees. Using the parameter nbagg in the function bagging(), the analyst

can specify the number of bootstrap samples that should be aggregated. For this usecase,

100 base learners were combined. By setting coob = TRUE, the function also returns the

out-of-bag estimate for the misclassification error. The package only provides a very basic

implementation of the bagging principle and is very slow in terms of runtime, compared to

the other methods.

Another common package for random forest is randomForestSRC. Its main function rf-

src() is able to handle a variety of data settings, not only including classification and

regression but also survival analysis with right censored observations and competing risks.

The user can specify a number of tuning parameters, like e.g. the number of trees ntree.

Another important information is the splitting rule, as already discussed in theory in sec-

tion 3.2.2. For survival settings, the package offers three splitrules: logrank (implements

log-rank splitting), bs.gradient (gradient-based brier score splitting) and logrankscore

(log-rank score splitting).

Again, 100 base learners were trained, specified through ntree = 100.

4.2 Model 58

Figure 6: The upper figure shows the survival tree produced by the function rpart. Split
variables as well as the node sizes are displayed in this graph. Adjusting the complexity
parameter and setting it to cp = 0.1 or cp = 0.2 leads to a smaller tree, displayed in the
two bottom visualizations.

4.2 Model 59

Neural Network Approach

Lastly, the dataset was analysed using two approaches based on neural networks.

First, the package SurvELM, as described in theory before, was used. It provides six dif-

ferent methods, which are all implemented in the fashion of ”black boxes”. Additionally

to specifying target vector and feature matrix and the algorithm, the user can only choose

between four kernel types. In this work, the function ELMCox was used, i.e. a combination

of extreme learning machine and classical cox regression. It produces an output of the same

type as the function glmnet() that was used for penalized regression before. Therefore,

performance measures as well as predicted values could be extracted analogously for the

ELM version. Though Wang and Zhou (2018) stated that the methods perform well in

their experimental studies, they struggled to achieve comparable performances on the STS

dataset. This might be due to the very small number of events.

Additionally, a very simple feed forward network architecture was implemented from scratch,

following the work of Drysdale (2018). The goal is to predict hazards with a network con-

sisting of L hidden layers with a particular number of nodes. Therefore, several functions

had to be defined beforehand. First, forward propogation was needed to pass the infor-

mation about the weights through the network. As the prediction is a nested function of

L activation functions, a for-loop was implemented. Second, the derivative of the weights

of each layer with respect to the loss function was calculated. This could be done in a

partial manner, by deriving partial derivatives of the activations, the linear inputs and

the weights. Starting with the terminal layer and iterating back one layer at a time, the

information, i.e. the derivatives of the weights, are stored in a cache.With the help of the

chain rule for derivation, back propogation is performed to get the derivatives. These

two main functions were combined with a weight initialization and a parameter update

into a wrapper method. The user specifies the number of layers and nodes per layer, as

well as the features and targets, i.e. survival times and censoring indicators. The network

results in final weights, that can again be used to make hazard predictions for a dataset.

4.2 Model 60

The implemented functions only provide basic functionalities and can be extended in var-

ious ways, e.g. by adding regularization or multiple output nodes for multi-class tasks.

4.2.2 Model Validation

In machine learning, model validation and tuning of parameters is usually done by a tech-

nique called K-fold Cross Validation. It generally works as follows: The available data

is divided into K folds. Then, the model is fit on K−1 of these folds and evaluated on the

remaining fold in terms of prediction accuracy. This process is repeated K times, i.e. the

observations in each fold are used as test set once and K times as training set. Whereas

the procedure is straightforward in normal statistical analysis, it gets more complicated

for cox regression and in particular penalized versions. For cox regression, it is not quite

obvious how to quantify prediction accuracy on a test set. The estimated coefficients only

allow to set the risk of each patient in relation to other observations. A very basic approach

to assess the model’s predictive accuracy is to calculate the partial likelihood based on the

observations in the test set. Then, the risk for each patient can be set into relation to the

risks of other members of the test set. However, this approach is only of limited use if the

dataset does not contain many events. To overcome this issue, several versions of cross

validation for survival methods have been proposed and implemented, e.g. by Simon et al.

(2011) in the software package glmnet or more recently by Dai and Breheny (2019).

In this work, general train and test splits were not used for model validation. The dataset

does not provide a sufficient number of observations and therefore, further reducing the

events by splitting the dataset is not advisable. 10-fold cross validation was only used for

determining the complexity parameters in penalized cox regression. The packages described

above already provide implementations and options for determining optimal parameters.

When plotting the results of e.g. cv.glmnet, one can assess the achieved performance for

different values of the tuning parameter. Figure 7 shows the concordance index for a chang-

ing λ.

4.2 Model 61

Figure 7: The figure shows the development of the partial likelihood deviance and its con-
fidence intervals for different values of the tuning parameter log(λ).

Nevertheless, it is important to assess the internal performance and stability of the models.

Therefore, a classical bootstrap procedure was used in this work. As explained in section

3.2.2 for the bagging technique, bootstrapping refers to randomly drawing observations

with replacement from the original dataset. Repeating this process several times results

in B bootstrap samples of size n, that can contain duplicate observations. One can build

the models based on each bootstrap samples, which of course results in B slightly different

versions. These can be used to calculate performance metrics based on either the bootstrap

sample, which would result in a training performance, or the whole sample, i.e. a dataset

containing seen and unseen observations. By using all available data, it is possible to

indicate an upper limit to the expected model performance in other settings and avoid the

over-optimism of the pure training performance. Averaging the B bootstrap performance

metrics leads to a more honest estimate for the model. It is also possible to inspect the

variation of performance for the B different model versions. A low variance indicates more

4.2 Model 62

stability. For more details on this approach, the work of Efron and Tibshirani (1994)

provides an intensive introduction to the bootstrap.

4.2.3 Evaluation Metrics

As seen in the previous sections, numerous methods for handling survival data are avail-

able. Therefore, it is crucial to evaluate their performance, i.e. their ability to predict

future data. An overview of possible methods and metrics is for example provided by Graf

et al. (1999) or more recently by Chen et al. (2012). It is possible to divide the population

into groups and test for significant differences in those groups in order to compare them.

Additionally, metrics that focus on the relationship between the risk score and the survival

are available.

A very general approach is of course to look at suitable loss functions, as introduced in

Chapter 3. The inaccuracy can be measured in a pointwise manner by simply adding the

values of the loss function for each true data point and its prediction. Whereas this is a

very flexible and general approach, not all methods provide a straight-forward loss func-

tion. Therefore, it is useful to take a look at specifically defined measures that can be

calculated for arbitrary models.

In order to assess the performance, the models generated from the training data were used

to estimate the risk scores. Using these fitted values, metrics can be calculated for each

model for the comparison of their predictive performance. In the following, the most im-

portant and central measures will be explained shortly.

Hazard Ratio and R2

Of course, it is possible to compare the predictive performance of models in terms of the

estimated hazard ratio and the reported coefficient of determination, R2. The latter refers

to the proportion of explained variation by the cox model fitted on the training data and of

course can be used as a goodness-of-fit measure between the predicted risk scores and the

patients’ true survival times. Though this measure is reported as R2 in most model outputs,

4.2 Model 63

the values are not the same as in ordinary regression outputs and are therefore often called

”pseudo-R2”. In the literature, several types of these pseudo version have been proposed.

The R package coxph calculates the reported R2 values as the improvement in the (par-

tial) likelihood when comparing the fitted model against the model without any predictors.

Brier Score

The Brier Score is a score function that measures the accuracy of any probabilistic predic-

tion and can be thought of as a cost function. It was originally proposed by Brier (1950).

In survival analysis, it is used to assess the accuracy of a predicted survival function at a

specific time point. The Brier score is defined as the average squared distance between the

true survival status and the predicted probability of survival. It can take any value between

0 and 1, with 0 being the best value that is possible. In the absence of censoring and given

a dataset D = {(t∗i , δi, xi), i = 1, ..., n} and the predicted survival function Ŝ(t, xi) at some

point in time t, the Brier Score is generally calculated as

BS(t) = 1
n

n∑
i=1

(1t∗i>t − Ŝ(t, xi))2.

Of course, if the dataset contains right-censored observations, the formula has to be

adapted. By estimating the conditional survival function of the censoring times C by

Ĝ(t) = P (C > t), the Brier score results as

BSc(t) = 1
n

n∑
i=1

(0− Ŝ(t, xi))2 · 1t∗i>t,δi=1

Ĝ(T−i)
+

(1− Ŝ(t, xi))2 · 1t∗i>t
Ĝ(t)

 .
It is important to note that this version of the Brier score only considers a single time

point.

In order to assess the model performance at all possible times, the integrated Brier score

is used:

IBS(tmax) = 1
tmax

∫ tmax

0
BS(t)dt.

4.3 Results 64

Though the Brier score is a very popular measure, it has its shortcomings in situations with

very rare or frequent events, see Benedetti (2010). In such cases, small forecast changes

are significant for rare events but the score is not able to discriminate between them.

C-Index

Another very popular tool for the comparison of survival models and their performances is

the concordance index or c-index. Generally speaking, it refers to the agreement between

the prediction and the truth and was proposed by Harrell et al. (1982). This index can be

seen as a generalization of the area under the ROC curve (AUC) that is able to account for

censoring. It compares concordant and discordant observations. In survival analysis, two

observations are called concordant if the risk prediction for an event and the time of the

actual event align. Therefore, the predicted risk should be lower for an observation with a

later event time. As defined in (17), the index relates the number of pairs and results in

values between 0 and 1. The latter corresponds to a perfect model forecast, a value of 0.5

indicates a random prediction.

The c-index is very popular and widely used as it is easy to compute and interpret, but of

course it also has its disadvantages. With an increasing amount of censoring, the measure

tends to be too optimistic and hence, induces an upward bias. In order to overcome this

issue, solutions and variants have been proposed in the literature, see e.g. Uno et al. (2011).

4.3 Results

The first goal of this work is the identification of risk factors. Due to the massive amount

of radiomic variables, it is essential to determine, which of them actually influence the sur-

vival of patients. Therefore, one can extract the variables used in specific models. Most of

the mentioned and implemented methods perform internal feature selection and therefore

exclude features with a low predictive power automatically. Table 4 shows how many of

1189 available variables were actually included in each model. The cox regression model

contains 15 features that were selected in the univariate procedure described before. As

4.3 Results 65

seen already in Table 3, only four out of 15 coefficients are significantly different from

zero. For the penalized regression models with L1 regularization, 19 and 6 features were

selected. The parameter λ1 was in both variants determined by an implemented cross val-

idation procedure with 10 folds. The single survival tree used 34 different split variables.

Due to their definition, the bagging methods contain more features for the construction

of 100 base learners. Nevertheless, the model built with ipred only contains 36 variables

that are utilized by five or more single trees. For the random survival forest, 226 features

were used and achieved a variable importance score larger than zero. This suggests large

variability of the bagging approaches, which is desirable to achieve a stable ensemble per-

formance.

Method Number of included features

cox 15
cox.penalized 19
cox.glmnet 7
rpart 34
ipred 36
rsf 226

Table 4: The table shows the number of features included in each model. Note that the
methods ipred and rsf perform bagging with nbagg = 100.

In addition, it is also useful to take an explicit look at the chosen columns and the asso-

ciated variable importance score. For a huge amount of features and a small number of

observations, it is possible that selection of variables does not happen because of a valu-

able relationship with the outcome variable. Instead, features might just be selected by

chance and do not actually contain information about the survival of patients. Therefore,

it is useful to inspect the number of times a feature was used as well as its importance

within the model. For all methods and the utilized variables, these importance scores were

standardized to take a value between 0 and 1, in order to achieve comparable dimensions.

In Table 5, features that were chosen by more than two models are shown. In addition to

the number of occurrences, the table also shows the importance score the variable received

4.3 Results 66

from each model. 237 features were chosen by one method only, 28 were selected by two

methods and four features occurred in three or four models, respectively. Three variables

were included in four out of the six models and four of them, including the only clinical

variable ”Age”, were even selected by five methods.

4.3 Results 67
V

ar
ia

b
le

S
u
m

C
ou

n
t

co
x

p
en

al
iz

ed
gl

m
n
et

rp
a
rt

ip
re

d
rs

f

lo
g

si
gm

a
2

0
m

m
3D

gl
cm

In
v
er

se
V

ar
ia

n
ce

1.
70

4
3

0.
01

3
0

0
1
.0

0
0

0
0
.6

9
1

lo
g

si
gm

a
2

0
m

m
3D

gl
rl

m
R

u
n

E
n
tr

op
y

0.
79

4
3

0.
00

0
4

0
0

0
0
.5

4
9

0
.2

4
5

w
av

el
et

L
L

H
gl

sz
m

H
ig

h
G

ra
y
L

ev
el

Z
on

eE
m

p
h

as
is

0.
56

8
3

0
0.

01
2

0
0

0
.5

1
4

0
.0

4
2

or
ig

in
al

gl
rl

m
R

u
n

P
er

ce
n
ta

ge
0.

44
5

3
0

0
0

0
.4

2
6

0
0
.0

1
9

lo
g

si
gm

a
1

0
m

m
3D

gl
cm

Im
c2

0.
83

1
4

0.
00

02
0

0
.1

2
4

0
0
.6

3
1

0
.0

7
6

lo
g

si
gm

a
2

0
m

m
3D

gl
rl

m
G

ra
y
L

ev
el

N
on

U
n
if

or
m

it
y
N

o
rm

a
li
ze

d
1.

40
4

4
0.

00
6

0
0.

0
3
8

0
.8

4
1

0
0
.5

1
9

w
av

el
et

H
H

L
gl

sz
m

S
iz

eZ
on

eN
on

U
n
if

or
m

it
y

0.
19

4
4

0.
00

1
0
.0

9
9

0.
0
8
6

0
0

0
.0

0
7

A
ge

1.
58

9
5

0.
00

0
7

0
.1

0
3

0.
0
0
0
3

0
.4

8
5

0
1
.0

0
0

lo
g

si
gm

a
1

0
m

m
3D

gl
rl

m
R

u
n

E
n
tr

op
y

1.
21

0
5

0.
00

2
0.

1
56

0
.4

7
5

0
0
.5

2
8

0
.0

4
9

w
av

el
et

L
L

H
gl

sz
m

S
m

al
lA

re
aH

ig
h
G

ra
y
L

ev
el

E
m

p
h
a
si

s
3.

02
5

5
0.

00
03

0.
7
15

1
.0

0
0

0
0
.7

6
9

0
.5

4
0

lb
p

3D
k

fi
rs

to
rd

er
K

u
rt

os
is

1.
86

3
5

0
1.

00
0

0
.0

4
5

0
.3

0
9

0
.4

6
2

0
.0

4
7

T
ab

le
5:

T
he

ta
bl

e
co

n
ta

in
s

fe
at

u
re

s
th

at
w

er
e

u
se

d
in

m
or

e
th

an
tw

o
of

th
e

pr
es

en
te

d
m

od
el

s
an

d
th

ei
r

re
sp

ec
ti

ve
ti

m
es

of
oc

cu
rr

en
ce

s.

4.3 Results 68

The second aspect to consider is of course the predictive performance of the individual

models. Overall model performance was assessed using Harrell’s c-index and the inte-

grated Brier score. In order to internally validate the models, a bootstrap procedure was

performed. Therefore, all models were fit based on B = 200 randomly generated bootstrap

samples of the same size as the original data. The results could then be used to evaluate

the performance on the bootstrap data set and also the full data set (containing in-bag and

out-of-bag samples). This results in a more honest estimation of performance and indicates

the upper limit to the expected performance in other settings, as explained before already.

In Table 6, the mean performance measures based on the bootstrap samples are shown for

all models.

Model Harrell’s concordance index Integrated Brier Score

cox 0.8584269 0.08018208

glmnet 0.9618095 0.04668102

rpart 0.8864362 0.07502253

ipred 0.9095640 0.14457626

rsf 0.9146984 0.06999434

coxnn 0.8595210 0.08278964

ELMCox 0.8215034 0.13724042

Table 6: The table shows the performance measures for different models for internal vali-
dation purposes.

First, higher values of the c-index indicate better performance, as already discussed. The

metric shows that the penalized cox regression model built with glmnet achieved the best

results, followed by the random survival forest and the bagging of survival trees. Never-

theless, all values are comparably high. Second, an integrated Brier score close to zero is

desirable. The smallest scores were again achieved by the glmnet approach and the ran-

dom survival forest. The bagging procedure based on ipred on the other hand performed

worst in terms of the IBS. Summarizing these aspects, it is to note that the penalized

regression routine from the quite popular package glmnet performs best, followed by more

4.3 Results 69

sophisticated tree based methods. The approaches based on neural networks only managed

performances comparable to the classic Cox regression model.

The bootstrap procedure also offers the inspection of the variance of the performance mea-

sures through the 200 random samples. This can be easily visualized in form of boxplots.

The borders of the box indicates the 0.25 and 0.75 quantiles, the line inside symbolizes the

median. Figure 8 shows the boxplots for C-index and integrated Brier score, for the full

data set as well as the bootstrap data. Whereas all boxplots for the ELMCox model are

rather large, the other models show smaller performance variance on the bootstrap samples

than on the full data set. Again, one can observe that the penalized regression based on

the glmnet package performs consistently best.

4.3 Results 70

Figure 8: The upper row shows boxplots for the bootstrapped c-index values for each model.
The left plot contains the values for the full sample, whereas the values on the right side
were calculated based only on the bootstrap sample. The bottom row shows the same plots
for the integrated Brier score.

5. CONCLUSION 71

5 Conclusion

5.1 Summary

The goal of this thesis was the comparison of different methods for the analysis of survival

data. Whereas classical approaches like the Cox proportional hazards model are very pop-

ular in this field and have been widely used for decades already, the recent developments in

the field of statistics and data science ask for modifications and more flexible approaches.

Methods of statistical learning are already quite famous for their performances in classi-

fication and regression problems but did not receive the same attention in the analysis of

lifetime data. This work aimed to compare some of these novel approaches to the classical

procedures.

First, the basics of survival analysis were introduced in Chapter 2, including the theory

behind the Cox regression model. Chapter 3 discussed the idea of statistical learning in

general, as well as selected popular methods. After explaining their general functionalities,

adaptions for survival analysis were introduced. In Chapter 4, the models were applied to a

real-life dataset to predict the risk of death for patients suffering from a special kind of can-

cer. Along with some clinical variables, a large number of features extracted from medial

images was available. The highly dimensional dataset served as a good basis for comparing

the different methods. Whereas classical Cox regression suffers from such settings, statisti-

cal learning approaches are able to handle many variables due to regularization or internal

variable selection. The comparison of performance metrics showed that regularized regres-

sion models and random survival forests are superior to other methods for this kind of use

case.

Apart from overall performance of the models, another relevant aspect was the identifica-

tion of risk factors, i.e. features with a high variable importance. Therefore, the number of

occurrence of features within the different methods and their respective importance scores

were examined. Starting out with 1189 variables, most models only used a much smaller

5.2 Outlook 72

number of features. 11 quantities were included in at least half of the discussed methods,

which indicates an relevance for risk prediction. The only important clinical variable was

the age of patient, all other identified risk factors are radiomic features. It is left to the

biomedical expertise to further interpret those results but the results can serve as a starting

point for continuing investigation.

5.2 Outlook

Though a lot of work has already been done in the direction of incorporating statistical

learning in the field of survival analysis, there is still a lot to come in this particular field.

Whereas regularized regression and tree based methods are already available in various

packages in R, suitable implementations of neural network approaches are still rare and

to be extended in the future. Most of the time, the main bottleneck is the size of the

datasets. With typically only few observations or events, deep learning and other popular

neural network approaches are not suitable for the analysis of survival data. This is a topic

of extensive research at the moment, which offers great possibilities for future work.

Nevertheless, the discussed methods already provide great improvements in terms of flexi-

bility and high dimensional datasets. In the light of the developments during the last years,

this greatly enhances modern survival analysis.

A. DERIVATION OF THE COX PROPORTIONAL HAZARD MODEL 73

A Derivation of the Cox proportional hazard model

The Cox regression model can be motivated utilizing a time-discrete logit model. For a

small additional time ∆t, one has

h(t, x)∆t = P (t ≤ T < t+ ∆t|T ≥ t, x) + o(∆t),

where the latter part is irrelevant. The continuous duration time T can be converted to a

discrete grid, namely 0 = t0 < t1 < ... < tj < ... < tJ , which leads to the discrete random

variable

T ∗ = tj ⇔ tj ≤ T < tj+1, j = 1, ..., J.

For T ∗, a discrete hazard can be formulated in terms of conditional probabilities:

h∗j(x) = P (T ∗ = tj|T ∗ ≥ tj, x) = P (tj ≤ T ≤ tj+1|T ≥ tj, x)

= P (tj ≤ T ≤ tj+1, x)
P (T ≥ tj, x) = P (tj ≤ T, x)− P (tj+1 ≤ T, x)

P (T ≥ tj, x)

= 1− exp(−
∫ tj+1

0 h(t, x)dt)
exp(−

∫ tj
0 h(t, x)dt)

= 1− exp(−
∫ tj+1

tj
h(t, x)dt).

Let then h∗j0 = hj(x = 0) be the baseline at x = 0, i.e. the intercept. The proportional

hazards assumption now states that the odds of h∗j(x) are proportional to the odds of h∗j0

for all j, which implies for all j = 1, ..., J

1− h∗j(x)
h∗j(x) =

1− h∗j0
h∗j0

g(x).

Now, the function g(x) can be replaced by exp(xTβ) and one gets

1− h∗j(x)
h∗j(x) = exp(log

1− h∗j0
h∗j0

+ xTβ).

A. DERIVATION OF THE COX PROPORTIONAL HAZARD MODEL 74

Therefore, survival can be interpreted as the sequence of binary events. If ∆t approaches

zero, this generalizes to the proportional hazards model:

h(t, x)
h0(t) = exp(xTβ)⇔ h(t, x) = h0(t) exp(xTβ).

B. IMPLEMENTATION DETAILS 75

B Implementation Details

This section of the appendix contains a more detailed discussion of the concrete implemen-

tation of various methods. Packages as well as specific model settings will be described

in order to provide a reusable framework for future extensions and further research. All

analyses were done in the statistical programming language R, which offers numerous dif-

ferent packages for all kinds of survival analysis and is the standard tool for statistics in

the biological sector.

Cox Regression

As described in section 4.2.1, it was necessary to reduce the number of dimensions drasti-

cally before performing cox regression. The data frame is called data.STS and the vector

cox_uni$var contains the names of variables that were chosen from the univariate regres-

sion models and should be used to build a multivariate prediction model.

library(survival)

generate formula of chosen variables

formula_cox <- formula(paste("Surv(OS,statusSurvival)~",

paste(as.character(cox_uni$var), collapse="+")))

model

mod.cox <- coxph(formula_cox, data=data.STS, x=TRUE)

results

summary(mod.cox)

Penalized Cox Regression

In order to perform a penalized version of the classic cox proportional hazards model,

the implementation of two different packages was used. Both of them provide the option

to perform cross validation to determine suitable values for the penalization parameters,

B. IMPLEMENTATION DETAILS 76

which is demonstrated below. L1 regularization was used to shrink parameter values to

zero and therefore provide built-in variable selection. This time, all variables were included

in the model formula as all_var.

formula <- formula(paste("Surv(OS, statusSurvival == 1) ~ ",

paste(as.character(all_var), collapse=" + ")))

Version 1: package penalized ---

library(penalized)

model with 10 fold cross validation

mod.penalized.cv <- optL1(formula, data=data.STS, lambda2=0, fold=10)

inspect steps of lambda

profL1(formula, data=data.STS, fold=cox.penalized.cv.1$fold, steps = 50)

Version 2: glmnet package ---

library(glmnet)

suitable data format

x <- model.matrix(~ ., data.STS[,8:1189]) # clinical and radiomics predictors

y <- data.STS[,c(2,5)] # survival times and status

model

mod.glmnet.cv <- cv.glmnet(x, Surv(data.STS$OS,

data.STS$statusSurvival == 1), family="cox",

type.measure="deviance", nfolds=10)

B. IMPLEMENTATION DETAILS 77

Tree based methods

Three different version of survival trees or ensembles of such were used in this work. Again,

the trees choose from all available variables. The bagging model of the package ipred is

based on the implementation of single trees in rpart and therefore offers the same config-

urations. The random survival forest presents more options for specific survival settings.

formula <- formula(paste("Surv(OS, statusSurvival == 1) ~ ",

paste(as.character(all_var), collapse=" + ")))

Version 1: rpart ---

libarary(rpart)

model; parameter "cp" for adjusting pruning

mod.rpart <- rpart(formula, data=data.STS, method='exp')

mod.rpart.02 <- rpart(formula, data=data.STS, method='exp', cp=0.2)

Version 2: ipred (bagging of rpart) ---

library(ipred)

model; 100 bootstrap iterations

mod.ipred <- bagging(formula=formula, data=data.STS, coob=TRUE,

nbagg=100, control=rpart.control(minsplit=2,minbucket=1,cp=0, xval=0),

method="exp")

Version 3: random survival forest ---

library(randomForestSRC)

model; 100 bootstrap iterations

mod.rsf <- rfsrc(formula=formula, data = data.STS, ntree=100,

B. IMPLEMENTATION DETAILS 78

ensemble='oob', splitrule='logrank', block.size=1,

node.size=1, var.used='all.tree')

Neural Network methods

Though R offers packages for building general neural networks, the offer of survival specific

approaches is quite small. In addition to a fairly new package called SurvELM providing

black box models, a small and very simple feed forward neural network was implemented

from scratch. The details will not be discussed here but a similar approach can be found

at http://www.erikdrysdale.com/neuralnetsR/. The implemented function allows the

user to specify the number of layers and hidden units for each layer, as well as common

network tuning parameters.

Version 1: SurvELM ---

library("devtools")

devtools::install_github("whcsu/SurvELM")

library(SurvELM)

data format

n <- dim(data.STS)[1]

x1 <- model.matrix(~ ., data.STS[,6:1189])

model

mod.survCox <- ELMCox(x1,Surv(data.STS$OS,data.STS$statusSurvival),

alpha=1, maxit=10000)

Version 2: Feed forward neural network ---

data fromat

B. IMPLEMENTATION DETAILS 79

x2 <- t(data.matrix(data.STS[,c(6,8:1189)]))

Surv <- Surv(time=data$OS, event=data$statusSurvival)

call own function: one hidden layer with 10 nodes

cox.net <- survnetfit(c(10,1), x2, Surv[,2], Surv[,1],

alpha = 0.001,niter=10000,verbose=T,ll=1/2,leaky=0.1)

LIST OF FIGURES 80

List of Figures

1 Transfer of calender time to duration time. 10

2 Visualization of ridge and lasso penalty. 25

3 Visualization of a simple neural network architecture. 41

4 Visualization of the cumulative survival distribution 52

5 Visualization of the development of included variables for different penalties. 55

6 Visualization of survival trees at different pruning intensities. 58

7 Visualization of the cross validation procedure for finding the optimal pe-

nalization parameter. 61

8 Visualization of boxplots displaying the variation of bootstrapped perfor-

mance metrics. 70

List of Tables

1 Descriptive statistics of the clinical variables as well as the target variables. 51

2 Results of the multivariate cox regression model. 53

3 Results of the multivariate cox regression model, including only a small

number of variables. 53

4 Number of included features. 65

5 Feature importances and number of occurrences in different models. 67

6 Performance metrics based on bootstrap samples for different methods. . . 68

REFERENCES 81

References

Bender, A., D. Rügamer, F. Scheipl, and B. Bischl (2020). A general machine learning

framework for survival analysis. arXiv preprint arXiv:2006.15442 .

Benedetti, R. (2010). Scoring rules for forecast verification. Monthly Weather Re-

view 138 (1), 203–211.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Borucka, J. et al. (2014). Extensions of cox model for non-proportional hazards purpose.

Ekonometria (45), 85–101.

Bou-Hamad, I., D. Larocque, H. Ben-Ameur, et al. (2011). A review of survival trees.

Statistics surveys 5, 44–71.

Breiman, L. (2001). Random forests. Machine learning 45 (1), 5–32.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen (1984). Classification and regres-

sion trees. CRC press.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly

weather review 78 (1), 1–3.

Chen, H.-C., R. L. Kodell, K. F. Cheng, and J. J. Chen (2012). Assessment of per-

formance of survival prediction models for cancer prognosis. BMC medical research

methodology 12 (1), 102.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical

Society: Series B (Methodological) 34 (2), 187–202.

Dai, B. and P. Breheny (2019). Cross validation approaches for penalized cox regression.

arXiv preprint arXiv:1905.10432 .

Davis, R. B. and J. R. Anderson (1989). Exponential survival trees. Statistics in

Medicine 8 (8), 947–961.

REFERENCES 82

Drysdale, E. (2018). Building a survival-neuralnet from scratch in base r.

http://www.erikdrysdale.com/neuralnetsR/ .

Efron, B. and R. J. Tibshirani (1994). An introduction to the bootstrap. CRC press.

Faraggi, D. and R. Simon (1995). A neural network model for survival data. Statistics in

medicine 14 (1), 73–82.

Friedman, J., T. Hastie, H. Höfling, R. Tibshirani, et al. (2007). Pathwise coordinate

optimization. The annals of applied statistics 1 (2), 302–332.

Friedman, J., T. Hastie, and R. Tibshirani (2001). The elements of statistical learning,

Volume 1. Springer series in statistics New York.

Friedman, J., T. Hastie, and R. Tibshirani (2009). glmnet: Lasso and elastic-net regularized

generalized linear models. R package version 1 (4).

Goel, M. K., P. Khanna, and J. Kishore (2010). Understanding survival analysis: Kaplan-

meier estimate. International journal of Ayurveda research 1 (4), 274.

Goeman, J., R. Meijer, N. Chaturvedi, and M. Lueder (2012). penalized: L1 (lasso and

fused lasso) and l2 (ridge) penalized estimation in glms and in the cox model. URL

http://cran. r-project. org/web/packages/penalized/index. html .

Goeman, J. J. (2010). L1 penalized estimation in the cox proportional hazards model.

Biometrical journal 52 (1), 70–84.

Graf, E., C. Schmoor, W. Sauerbrei, and M. Schumacher (1999). Assessment and compar-

ison of prognostic classification schemes for survival data. Statistics in medicine 18 (17-

18), 2529–2545.

Gui, J. and H. Li (2005). Penalized cox regression analysis in the high-dimensional and

low-sample size settings, with applications to microarray gene expression data. Bioin-

formatics , 3001–3008.

REFERENCES 83

Harrell, F. E., R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati (1982). Evaluating

the yield of medical tests. Jama 247 (18), 2543–2546.

Hastie, T. and R. Tibshirani (1990). Generalized Additive Models. Chapman and Hall.

Henderson, R. (1995). Problems and prediction in survival-data analysis. Statistics in

medicine 14 (2), 161–184.

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for nonorthog-

onal problems. Technometrics 12 (1), 55–67.

Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew (2006). Extreme learning machine: theory and

applications. Neurocomputing 70 (1-3), 489–501.

Ishwaran, H., U. B. Kogalur, E. H. Blackstone, M. S. Lauer, et al. (2008). Random survival

forests. The annals of applied statistics 2 (3), 841–860.

Kaplan, E. L. and P. Meier (1958). Nonparametric estimation from incomplete observa-

tions. Journal of the American statistical association 53 (282), 457–481.

Katzman, J. L., U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger (2018).

Deepsurv: personalized treatment recommender system using a cox proportional hazards

deep neural network. BMC medical research methodology 18 (1), 24.

Kleinbaum, D. G. and M. Klein (2010). Survival analysis. Springer.

Lambin, P., R. T. Leijenaar, T. M. Deist, J. Peerlings, E. E. De Jong, J. Van Timmeren,

S. Sanduleanu, R. T. Larue, A. J. Even, A. Jochems, et al. (2017). Radiomics: the

bridge between medical imaging and personalized medicine. Nature reviews Clinical

oncology 14 (12), 749–762.

Li, H. and Y. Luan (2003). Kernel cox regression models for linking gene exxpression

profiles to censored survival data. Pacific Symposium on Biocomputing 8, 65–76.

REFERENCES 84

Peeken, J. C., M. Bernhofer, M. B. Spraker, D. Pfeiffer, M. Devecka, A. Thamer, M. A.

Shouman, A. Ott, F. Nüsslin, N. A. Mayr, et al. (2019). Ct-based radiomic features

predict tumor grading and have prognostic value in patients with soft tissue sarcomas

treated with neoadjuvant radiation therapy. Radiotherapy and Oncology 135, 187–196.

Robins, J. M. and A. Rotnitzky (1992). Recovery of information and adjustment for depen-

dent censoring using surrogate markers. In AIDS epidemiology, pp. 297–331. Springer.

Schemper, M. and R. Henderson (2000). Predictive accuracy and explained variation in

cox regression. Biometrics 56 (1), 249–255.

Shimokawa, A., Y. Kawasaki, and E. Miyaoka (2015). Comparison of splitting methods on

survival tree. The International Journal of Biostatistics 11 (1), 175 – 188.

Simon, N., J. Friedman, T. Hastie, and R. Tibshirani (2011). Regularization paths for cox’s

proportional hazards model via coordinate descent. Journal of statistical software 39 (5),

1.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological) 58 (1), 267–288.

Tibshirani, R. (1997). The lasso method for variable selection in the cox model. Statistics

in medicine 16 (4), 385–395.

Uno, H., T. Cai, M. J. Pencina, R. B. D’Agostino, and L. Wei (2011). On the c-statistics

for evaluating overall adequacy of risk prediction procedures with censored survival data.

Statistics in medicine 30 (10), 1105–1117.

Utkin, L. V., A. V. Konstantinov, V. S. Chukanov, M. V. Kots, M. A. Ryabinin, and

A. A. Meldo (2019). A weighted random survival forest. Knowledge-Based Systems 177,

136–144.

Wang, H., J. Wang, and L. Zhou (2017, 09). A survival ensemble of extreme learning

machine. Applied Intelligence.

REFERENCES 85

Wang, H. and L. Zhou (2018). Survelm: an r package for high dimensional survival analysis

with extreme learning machine. Knowledge-Based Systems 160, 28–33.

Wei, L.-J. (1992). The accelerated failure time model: a useful alternative to the cox

regression model in survival analysis. Statistics in medicine 11 (14-15), 1871–1879.

