
ESG Data Science

Noisy Bayesian Optimization
for Model Selection in Machine Learning

Master’s Thesis

Julia Moosbauer

Supervisors: Prof. Dr. Bernd Bischl

Janek Thomas

Submission Date: September 27, 2018

Munich, September 27, 2018

I declare that I have developed and written the enclosed Master’s The-
sis completely by myself, and have not used sources or means without
declaration in the text. Any thoughts from others or literal quotations
are clearly marked. The Master’s Thesis was not used in the same or in
a similar version to achieve an academic grading or is being published
elsewhere.

Julia Moosbauer

Abstract

Expensive black-box problems occur commonly in practice. In many
cases, the underlying function cannot be accessed directly but only a noisy
version thereof. One prominent example is model selection in machine
learning: performance estimates for model configurations are noisy as
they depend on the data that is used for training and validation. The
variance in the performance estimates can be reduced if more budget is
spent on the evaluation of hyperparameter settings in terms of repetition
or cross-validation folds.
This raises two questions: (1) Can intelligent evaluation budget alloca-

tion strategies improve the overall optimization result? (2) Can we infer
statistical guarantees or even maximize the confidence on the returned
solution?

This thesis investigates in replication strategies as extension of sequential
model-based optimization for noisy, expensive black-boxes. The contribution
of this thesis is threefold: First, existing replication strategies from literature
are compared in a benchmark study on artificial test functions and on
machine learning tuning problems. Second, a new version of sequential
model-based optimization, that aims at reaching a pre-set level of confidence
in the returned solution through the implementation of an identification
step, is proposed. Third, the new proposed method is applied on the traffic
simulation optimization problem CrowdNav[10].

We empirically demonstrate that sophisticated replication strategies can
improve the overall optimization result in specific situations, especially for
higher dimensional input spaces and high noise levels.

v

Contents

1 Introduction 3

2 Background and Challenges 5
2.1 Bayesian Optimization in Noise-free Systems 5
2.2 Bayesian Optimization in Noisy Systems 8

3 Methods 13
3.1 Replication Strategies with Budget Specification 13
3.2 Replication Strategies without Budget Specifications 18
3.3 Replication Strategies with User pre-set Confidence 21

4 Experimental Study 25
4.1 Experiments with Synthetic Test Functions 25
4.2 Machine Learning Experiments . 35

5 CrowdNav: A Sample Application 41

6 Conclusion 45

A Optimal Computing Budget Allocation 47

B Implementation in mlrMBO 49

C Detailed Benchmark Results 51

List of Figures 61

List of Tables 63

Algorithmenverzeichnis 63

List of Algorithms 65

Bibliography 67

Table 0.1: Notation

X ⊂ Rp input space of dimensionality p
x ∈ X input value, configuration, parameter, design

point{
x(1), . . . ,x(n)

}
⊂ X n n unique input values

n number of unique design locations

Y ⊂ R output space
f : X → Y black-box function
y(x) ∈ Y (potentially noisy) evaluation of f

ε(x) ∼ N
(
0, τ2(x)

)
zero-mean Gaussian noise with variance τ2(x)

τ2(x) noise variance function

r(x(i)), r(i) number of function evaluations at input x(i) ∈ X
y(i) :=

(
y(i,1), ..., y(i,r(i))

)
r(i) realizations of y(x(i)) (replications)

r :=
∑n

i=1 r
(i) total number of function evaluations

D :=
{(

x(i), y(i)
)}

i∈1,...,r
design containing duplicated inputs1

D̄ :=
{(

x(i), ȳ(i)
)}

i∈1,...,n
mean-aggregated design2

H model hypothesis space
f̂(x) ∈ H estimated surrogate model for f

ŝ(x) estimated variance of f̂(x)
I : X → R infill criterion

φ : R→ R+,Φ : R→ [0, 1] standard normal density and distribution func-
tion

Without loss of generality objective functions are minimized throughout this work.

1Note that D =
{(

x(i), y(i))}
i∈1,...,r

shall be understood as an indexed family containing all
evaluations. In case of replication the same input can appear in multiple tuples in D.

2The mean-aggregated dataset is denoted by D̄. Here, each input appears only once. We denote
t(D) the summarized/transformed design. Throughout this work, we consider t(D) be either the
identity, i. e. t(D) = D, or mean-aggregation, i. e. t(D) = D̄.

1

Chapter 1

Introduction

Medical doctors decide how to dose a drug and measure its effect by employing medical
scores or subjective assessment of the patient. The development of robots or electronic
devices depends on diverse configuration decisions that impact their functioning. The
development of a car requires a huge range of design decisions which possibly impacts
safety. This can be assessed through expensive crash tests. In computer science,
algorithms are often complex and highly parameterized, and their performance largely
depends on the initial configuration of some hyperparameters.

All those examples have three things in common: the relationship between input and
output is a sort of a black-box, the system is expensive to evaluate and often stochastic.

For a perfect functioning, all those problems require the right design choice out of a
high-dimensional and complex decision space. The relationship between design decision
and outcome is often unknown or cannot be described analytically: the underlying
mechanism is a black-box.
Most of the experiments are expensive to evaluate in terms of time, monetary or

non-monetary resources: the execution time of an algorithm, the costs for a crash test
or the inconveniences for a patient when medication is adjusted, just to name some
examples.

In addition, experiments are often stochastic: in medicine, there are random factors
like the form on the day of the patient, that cannot be controlled. Even computer
programs and algorithms are often stochastic.

Automating these design choices has a tremendous impact on a variety of application
sectors. Sharari et al. [24] state that, “any significant advances in automated design can
result in [...] innovation in a wide area of domains, including advertising, health-care
informatics, banking, information mining, life sciences, control engineering, computing
systems, manufacturing, e-commerce, and entertainment”.

Yet another field of application has the character of a stochastic, expensive black-box
problem: model selection in machine learning. Many machine learning algorithms
require careful tuning of model hyperparameters. Without automatic approaches for
selection of optimal hyperparameters, tuning requires expert experience, rules of thumb

3

Chapter 1 Introduction

or often brute force search. Through rapid progress in the area of machine learning
in recent years, the problem of hyperparameter optimization for machine learning
methods has gained importance.

The high complexity of machine learning models makes them often a black-box to us.
The underlying unknown relationship between hyperparameters of a machine learning
model and the output is investigated through training of the model on a training set
and subsequent evaluation via an appropriate performance measure.
In accordance with Snoek et al. [25] hyperparameter optimization has a somewhat

different flavor than the low-level objectives one often encounters as part of a training
procedure: function evaluations are very expensive as they involve running the primary
machine learning algorithm to completion. For a valid evaluation, advanced validation
techniques like cross-validation even require multiple training runs.
There are multiple factors that make the system stochastic: The model itself can

be of stochastic nature: random forests [6], for example, incorporate bootstrapping
in their training process. Loss minimizers, for example stochastic gradient descent,
can be stochastic as well. Most importantly, noise is introduced by the data that is
used for training and validation. Common model validation techniques like holdout
or cross-validation randomly split the data in one or multiple training and test folds.
The variance of the estimated performance of a configuration, however, decreases when
putting more budget on validation: in general, 10-fold cross-validation will give more
reliable results than a 3-fold cross-validation will do.

Sequential model-based optimization [14], which iterates between fitting models
and using them to choose which configurations to evaluate next, has become the
state-of-the-art optimization strategy for expensive black-box problems.

Many noisy black-box problems like model selection in machine learning naturally
raise the question of how much budget needs to be spent on function evaluations. For
instance, performing ten times repeated holdout at an inferior configuration can be
a waste of budget. Performing a single holdout at a good configuration can yield an
unlucky false assessment of the performance which might impact optimization.

Within this work, we investigate the question of evaluation budget allocation in
sequential model-based optimization for noisy black-box problems. Chapter 2 will give
a short review on sequential model-based optimization emphasizing the problems that
arise in noisy settings. In chapter 3 and 4, noise handling replication strategies that
are integrated into the Bayesian optimization procedure are presented and evaluated
in a benchmark on both synthetic test functions and more realistic machine learning
problems. Finally, the developed methods will be employed in a use case from the area
of simulation optimization.

4

Chapter 2

Background and Challenges

2.1 Bayesian Optimization in Noise-free Systems

Problem Statement

In many practical situations we aim at optimizing a system for which an algebraic
model and thus especially its derivate is not available. For X ⊆ Rp and Y ⊆ R, we
denote f : X → Y the unknown function that describes the relationship between an
input x ∈ X and a system output y ∈ Y in terms of some quality criterion. Such
systems are referred to as black-box systems.

Figure 2.1: A black-box system.

Whereas the analytical form of f is not known, the black-box system can be queried
for any value x. Such an evaluation is denoted by y(x). If function evaluations are
expensive in terms of time or other resources, the number of function evaluations is
often limited.

In the noise-free setting, the evaluated value y(x) at any location x corresponds to
the true function value f(x) as exemplarily shown in Figure 2.2.

Solution Approaches

The state-of-the-art approach of minimizing expensive black-box functions is sequential
model-based optimization (SMBO), also known as Bayesian optimization.

The motivation behind is the following: Taking a Bayesian perspective, the unknown
function f(x) is regarded random and prior believes about its shape are formulated in
terms of a prior distribution. First, initial information about the function is gathered for
different inputs x(i) through evaluation of the black-box function f , i. e. y(i) = f(x(i)),

5

Chapter 2 Background and Challenges

Figure 2.2: The underlying unknown function f(x) is black, the observed values y(x) are red.
In the noise-free case the observations correspond to the true function values.

which results in an initial design D =
{(

x(i), y(i)
)}

i∈1,...,ninit
. Then, the prior is

updated to form the posterior distribution of f(x) given D. The posterior distribution,
in turn, is used to formulate a criterion I(x), referred to as infill or acquisition criterion,
that is used to determine which points to evaluate next. Iteratively performing these
two steps results in a sequential optimization procedure.

Indisputably, the most prominent representative of sequential model-based optimiza-
tion still yielding state-of-the-art performance is the Efficient Global Optimization
(EGO) algorithm by Jones et al. [14].

First, the initial design D is determined and evaluated.
Then the optimization process is started: in each iteration, the posterior of f given

D is determined. According to the above described Bayesian motivation, the EGO
algorithm is based on the assumption of a Gaussian process prior on f(x). In its
simplest form, a zero-mean Gaussian process prior is placed on f(x).

After that, the expected improvement (ei) with respect to the current best observed
function value y(min) := minx∈D {f(x)} is used to propose the most promising point1.
In combination with the Gaussian process assumption, the expected improvement is
analytically tractable and the posterior distribution enters in term of the posterior
mean f̂(x) and the posterior variance ŝ(x)

1In general, the m ≥ 1 most promising points can be proposed here. Throughout this work the
number m is set to 1.

6

2.1 Bayesian Optimization in Noise-free Systems

Iei(x) = E
[(
y(min) − f̂(x)

)+
]

=
(
y(min) − f̂(x)

)
+ Φ

(
y(min) − f̂(x)

ŝ(x)

)
+ ŝ(x)φ

(
y(min) − f̂(x)

ŝ(x)

)
.

(2.1)

As the evaluation of the infill criterion I(x) is usually inexpensive compared to the
evaluation of the black-box function, a large number of evaluations of I(x) can be
performed and simpler derivative-free optimization methods can be applied.

Finally, the design point with the minimum function value, i. e. x∗ with f(x∗) =
minx∈D {f(x)}, is returned.
Note that the Gaussian process regression [21], also referred to as Kriging, can be

replaced by other regression models. Though slightly moving away from the original
Bayesian motivation, the posterior mean f̂(x) can be seen as a model approximating
the unknown black-box function f and is commonly referred to as surrogate model
f̂ . For numeric input spaces X ⊂ Rp, Kriging is a recommended choice due to
its capability of modelling spatial structures. However, Gaussian processes are not
applicable to problems where the input space is categorical or mixed. Hutter et al. [12]
replace Gaussian process models by random forest regression models, which are able to
handle categorical input variables and also yield variance estimates through out-of-bag
estimates.

Whilst the expected improvement is a natural choice for an infill criterion, other infill
criteria, which differ in the way they balance exploitation and exploration, can also be
used. Usually, the way the posterior mean f̂(x) and the posterior variance ŝ(x) are
combined defines that balance in an infill criterion. Besides the expected improvement,
another common choice to combine f̂(x) and ŝ(x) is the lower confidence bound (cb)

Icb(x, λ) = f̂(x) + λŝ(x), λ > 0. (2.2)

To force the optimizer to pure exploitation, the mean response (mr) criterion
Imr(x) = f̂(x) can be used. The standard deviation (sd) criterion Isd(x) = ŝ(x)
leads to pure exploration.

A general scheme for SMBO is outlined in Algorithm 1.

7

Chapter 2 Background and Challenges

Algorithm 1 Sequential model-based optimization
1: input: infill criterion I, hypothesis space H

2: generate initial design D
3: while termination criterion not met do
4: fit surrogate f̂ ∈ H on the design data D
5: propose the point that optimizes I(x) and update D
6: end while

2.2 Bayesian Optimization in Noisy Systems

Problem Statement

In many real-life situations, we cannot access the true function values f(x) but only a
noisy version thereof

y(x) = f(x) + ε(x). (2.3)

Here, ε(x) is a random variable that represents the noise. For the sake of simplicity,
the noise is assumed to be Gaussian throughout this work, i. e.

ε(x) ∼ N
(
0, τ2(x)

)
. (2.4)

If the noise variance τ2(x) is constant, i. e. τ2(x) ≡ τ2 ∈ R>0, noise is called
homoscedastic, otherwise it is called heteroscedastic.

Figure 2.3 shows an example of a function which is only accessible via noisy function
evaluations.

Challenges induced by noise

The existence of noise causes misleading information about the underlying function
and introduces two challenges that need to be addressed by an optimization procedure:

1. Misleading information affects the quality of the fitted surrogate model and the
proposed points which might have a negative impact on the overall optimization
result

2. Noisy evaluations lead to false assessment of design points and the final best
point might not be identifiable in the end (identification error)

8

2.2 Bayesian Optimization in Noisy Systems

Figure 2.3: The underlying unknown function f(x) is black, the observed values are red.
The grey area is the function value plus-minus two times the standard deviation
f(x)± 2 · τ(x) with τ(x) ≡ 3 (homoscedastic noise).

Those challenges can be emphasized by reconsidering EGO. As Kriging [21] is a
strictly interpolating approach, it will return the observed value f̂(x(i)) = y(i) for each
design input x(i) ∈ D which might deviate widely from the true function value.
In addition to that, despite its practical applicability, the choice of the expected

improvement criterion is questionable from a theoretical perspective: The expected
improvement criterion depends on y(min), which is not available in the noisy case.
Finally, the best configuration in design is not necessarily the point with the best

observed output. Bad points could have been overrated while good points could be
overlooked through single unlucky evaluations.

Solution Approaches

Two independent lines of work have extended the EGO algorithm to the noisy case:
the Sequential Kriging Optimization (SKO) algorithm by Huang et al. [11] and the
Sequential Parameter Optimization (SPO) algorithm by Bartz-Beielstein et al. [1].

The SKO algorithm is an instance of Algorithm 1, but differs from the EGO
algorithm in its implementation of the Gaussian process meta-model and its choice of
the infill criterion. To accommodate noise, a noisy Gaussian process model, also called
nugget-effect Kriging model [21], is used as a surrogate model.

Furthermore, the augmented expected improvement (aei)

9

Chapter 2 Background and Challenges

Iaei(x) = (T − f̂(x))Φ
(
T − f̂(x)
ŝ(x)

)

+ ŝ(x)φ
(
T − f̂(x)
ŝ(x)

)
×
(

1− τ√
ŝ2(x) + τ2

) (2.5)

is used instead of the expected improvement criterion. Here, the observed minimum
y(min) in the ei criterion is replaced by T = f̂(x∗∗), which is defined as the predicted
value at the effective best solution x∗∗ = arg minx∈D f̂(x) + ŝ(x). The second term in
Equation 2.5 is a penalty term that increases towards 1 if the function is noise-free. The
effective best solution x∗∗ is the configuration returned at the end of the optimization
process.

The literature contains further attempts to adapt infill criteria for noisy function
evaluations. Picheny et al. [19] give an overview over different criteria. One example
the so-called expected quantile improvement (eqi)

Ieqi(x) = (q(min) − f̂Q(x))Φ
(
q(min) − f̂Q(x)

ŝQ(x)

)
+ ŝQ(x)φ

(
q(min) − f̂Q(x)

ŝQ(x)

)
, (2.6)

where q(min) := minx∈D {q(x)} with q(x) denoting the Kriging quantile f̂(x) +
Φ(β)ŝ(x). f̂Q(x) and ŝQ(x) denote the mean and standard deviation of the Kriging
quantile Q updated with x [19].

The SPO method, in contrast, is based on repeated evaluations of design points.
The algorithm proceeds as follows: Each point of the initial design D is evaluated b

times. Before entering the sequential optimization loop, the empirical mean function
value for each input x (or, more generally, the empirical estimates of a user-defined
cost metric) is calculated. The incumbent (see Definition 2.1) is determined.

Definition 2.1 (Incumbent)
For a given set of design points D =

{(
x(i), y(i)

)}
i∈1,...,r

, the incumbent is defined as

the design input x(inc) with the minimal empirical function value

ȳ(inc) = min
i=1,...,n

ȳ(i).

Then, an interpolating Gaussian process model is fitted to the mean-aggregated data
D̄ :=

{(
x(i), ȳ(i)

)}
. As infill criterion, the classical expected improvement criterion

is used. An intensification strategy is explicitly forcing replication: In every iteration,
not only the new selected point but also the incumbent is evaluated b times. If the

10

2.2 Bayesian Optimization in Noisy Systems

incumbent is not replaced by a new point, the number of iterations b performed on
every (subsequent) point is doubled. Hence, SPO sequentially increases the number of
replications.

The main difference between the two approaches is the fact that the SPO procedure
explicitly incorporates repeated function evaluations while the SKO approach does
not2.

Hutter et al. [13] experimentally investigate these two sequential model-based
procedures in the context of performance optimization of randomized algorithms
and found, that the SPO algorithm offered more robust performance than the SKO
algorithm. But the implementation of an explicit replication strategy has another
major advantage: replication in design points allows inferring statistical guarantees
about the performance of different configurations and reduces the risk of “mistakenly”
returning overestimated configurations (identification error).

Inspired by the idea of an intensification mechanism we formulate the general SMBO
with intensification in Algorithm 2, which extends Algorithm 1 by integrating an
explicit replication strategy3, that controls the degree to which existing design points
are evaluated.

Algorithm 2 Sequential model-based optimization with intensification
1: input: infill criterion I, hypothesis space H, replication strategy R

2: generate initial design D
3: while termination criterion not met do
4: fit surrogate f̂ ∈ H on the (aggregated) design data t(D)
5: propose the point that optimizes I(x) and update D
6: intensify existing design points through a replication strategy R
7: end while

We explore sequential model-based optimization procedures that incorporate in-
tensification strategies. The thesis aims to investigate whether proposed replication
strategies help managing the uncertainty in the presence of noise and improve the
confidence in solutions. Instances of Algorithm 2 are analysed with respect to those
replication strategies and other important algorithmic factors like the surrogate model
and the infill criterion.

2Note that in contrast to the ei criterion, the aei criterion is in general not 0 for already evaluated
points x ∈ D. However, for (theoretically) continuous functions, a point is re-evaluated with zero
probability.

3The terms replication strategy and intensification strategy will be used synonymously.

11

Chapter 2 Background and Challenges

Figure 2.4: Sequential model-based optimization iterates between fitting a surrogate learner
on the design data, proposing new promising points and intensifying existing
design points.

12

Chapter 3

Methods

Our primary goal is to find an optimal replication strategy that manages uncertainty
during the optimization process and improves confidence in the final solution.
In this section, different intensification strategies, which can be used along with

Algorithm 2, are presented. These strategies can be classified into three groups:
(1) approaches requiring the specification of a replication budget, (2) approaches not
requiring explicit budget specifications, and (3) approaches where the user can prescribe
a minimum confidence. The replication decisions are internally determined by the
algorithm to match the required level of confidence.

3.1 Replication Strategies with Budget Specification

Fixed Replication Budget
A naive way of integrating replication into SMBO is fixed re-evaluation of each point:
every point that is proposed by infill optimization is evaluated b > 1 times. This
replication strategy is sketched in Algorithm 3.

As illustrated in Figure 3.1, the same replication effort is spent on points independent
of both their potential of being optimal and the corresponding noise level.

13

Chapter 3 Methods

Algorithm 3 fixed replication strategy
1: input: design D, x(prop) proposed input, replication budget b

2: j = 0
3: while j < b do
4: y(prop,j) ← realization of y(x(prop))
5: D ← D ∪

{(
x(prop), y(prop,j)

)}
6: j ← j + 1
7: end while

Figure 3.1: Two steps of SMBO with fixed intensification starting from an initial Latin
hypercube design of size 4 (violet points). Each point is evaluated b = 5 times.
The surrogate learner is a noisy Gaussian process and is fitted on the non-
transformed data. 95% confidence intervals for ȳ(i) were calculated based on
assuming normality of simulation outputs.

14

3.1 Replication Strategies with Budget Specification

Budget Distribution via Optimal Computing Budget Allocation
Bartz-Beielstein et al. [3] presented the SPO-OCBA algorithm, a modified version
of the SPO algorithm and an instance of Algorithm 2. As replication strategy they
integrate Optimal Computing Budget Allocation (OCBA). OCBA is a ranking and
selection (R & S) procedure that was introduced by Chen et al. [7] for intelligent
determination of the most efficient replication numbers in the context of optimization
of discrete event systems.

SPO-OCBA is implemented within the SPOT toolbox [2]. The toolbox allows
the user to choose between noise-free and noisy Gaussian process models and random
forests as surrogate model, which is fitted on the non-aggregated data in each iteration.
Subsequently, the points that minimize the mean response (mr) infill criterion are
proposed. The intensification mechanism works as follows: the new proposed point is
evaluated at least binit ≥ 2 times and added to the set of design points D. Then, a
predefined budget bOCBA is distributed among all already evaluated design points to
approximately maximize the probability of correct selection (PCS).

Definition 3.1 (Probability of Correct Selection)
Given a design D, the probability of correct selection is defined as the probability that
the observed best design x(inc) (the incumbent) is actually the best design

P (CS) := P
(
f(x(inc)) < f(x(i)), i 6= inc | D

)
.

The aim is now to maximize the probability of correct selection through optimal
allocation of a replication budget. Let r(i) be the number of replications that should
be allocated to design i. We follow the definition of Chen et al. [7] and formulate the
OCBA-PCS Problem 3.2.
Problem 3.2 (OCBA-PCS Problem)

max
r(1),...,r(n)

P (CS)

s. t. r(1) + r(2) + . . . r(n) = r

Note that r is the total number of replications after the current step (that is, the
replications that have already been performed plus the bOCBA replications to be
distributed in the current step).

Simplifying assumptions (see Assumptions A.1, A.2) yield a simple analytical for-
mulation of the posterior distribution (see Lemma A.3). Chen et al. approximate

15

Chapter 3 Methods

the probability of correct selection in Problem 3.2 by using the Bonferroni inequality,
which yields Approximate Probability of Correct Selection (APCS) (see Definition A.4).
They have shown, that the resulting approximate problem (see Problem A.5) has,
asymptotically for r →∞, a closed-form solution

r̂(i)

r̂(j) =
(
τi/δinc,i

τj/δinc,j

)2

, i, j ∈ {1, 2, ..., n}, i 6= j 6= inc,

r̂(inc) = τinc

√√√√ n∑
i=1,i 6=inc

(r̂(i))2

τ2
i

.

(3.1)

Here, δinc,i := ȳ(inc)− ȳ(i) denotes the difference of means of evaluations belonging to
the i-th design point and the observed best design point x(inc). Equation 3.1 describes
the budget ratios, which allows to calculate the optimal number of replications on each
point given a fixed budget bOCBA. The budget that is to be allocated in the current
step results as the difference of the budget that already has been allocated and the
budget that fulfils Rule 3.1.

The OCBA intensification strategy is outlined in Algorithm 4. We consider the
OCBA intensification mechanism as one possible plug-in for Algorithm 2. Figure 3.2
shows that replications are distributed among all (already evaluated) design points.
The number of allocated replications per location is the higher, the lower the empirical
mean and the higher the empirical standard deviation of past observations.

Note that the theoretical assumptions made in OCBA are strong and often violated:
First, simulation outputs f(x(i)), i = 1, ..., n, are assumed to be independent across
designs, which is a discrepancy to the Gaussian process assumption, where the correla-
tion between function outputs is modelled explicitly by a kernel function. Second, noise
variances τ2(x) are assumed to be known, which is usually not the case in practice.
Though results could be derived for unknown variances, we stick to the derivations by
Chen et al. where τ2

i is simply replaced by its empirical version τ̂2
i in Equation 3.1.

This, in turn, requires that each point is evaluated at least twice. To improve those
estimates over time, the variance estimates are updated in each iteration.

16

3.1 Replication Strategies with Budget Specification

Algorithm 4 ocba replication strategy
1: input: design D, x(prop) proposed input, initial budget binit, OCBA budget bocba

initial evaluation:
2:
{(

x(prop), y(prop,j)
)}

j=1,...,binit

← evaluate new point binit times

3: D ← D ∪
{

x(i), y(prop,j)
}

j=1,...,binit

replication:
4:
(
r̂(1), ..., r̂(n)

)
← calculate allocation of budget bOCBA using Rule 3.1

5: for i = 1, ..., n do
6:

{(
x(i), y(i,j)

)}
j=1,...,∆i

← perform ∆i = r̂(i) − r(i) replications

7: D ← D ∪
{(

x(i), y(i,j)
)}

j=1,...,∆i

update design
8: end for

Figure 3.2: Two steps of SPO-OCBA algorithm starting from an initial Latin hypercube
design of size 4 (violet points). In each iteration, a new point is evaluated binit = 2
times and a budget of bOCBA = 3 is distributed all design points according to
the OCBA rule. Points with lower mean and higher variance are given more
replications. 95% confidence intervals for ȳ(i) were calculated based on assuming
normality of simulation outputs.

17

Chapter 3 Methods

3.2 Replication Strategies without Budget Specifications
While the replication strategies described so far require a predefined budget for replica-
tion, the following intensification mechanisms do not.

SPO+-like Incumbent Strategy
Hutter et al. [13] have proposed SPO+ by modifying the intensification strategy of
the SPO algorithm.

Before entering to the optimization loop, SPO+ computes the mean observed
function values ȳ(i) for each of the points evaluated so far to determine the incumbent.
In each iteration, an interpolating Gaussian process model is fitted on the mean
aggregated and log-transformed data. The configuration minimizing the expected
improvement criterion is proposed, evaluated once and added to the set of design
points.

The design points are then intensified as follows: A set of candidates is selected
to challenge the incumbent configuration x(inc). This set includes the most recently
added point x(prop) as well as additional m ≥ 0 previously evaluated parameter settings
{x(i)}i∈{1,...,n}\inc. The challengers are randomly sampled without replacement with
probabilities proportional to 1

ȳ(i) . Each one of these points is then challenged against
the incumbent. For each of the challengers, we perform runs until either the challenger
is (empirically) inferior to the incumbent, i. e. ȳ(i) > ȳ(inc), or an equal number of
evaluations was performed on the new point while still being (empirically) superior
to the incumbent, i. e. r(x(i)) ≥ r(x(inc)) (and still ȳ(i) ≤ ȳ(inc)) 1. In the first case,
the challenger is rejected as (probably) inferior. In the latter case, x(i) replaces the
incumbent.

Algorithm 5 outlines the intensification strategy, further referred to as inc+, which we
infer from the SPO+ algorithm. Figure 3.3 illustrates a step of the SPO+ algorithm.

SMAC-like incumbent strategy
Another slight variant of SPO+ has been proposed by Hutter et al. [12]. It is named
after its original field of application: Sequential Model-based Algorithm Configuration
(SMAC).

As SPO+, SMAC determines the incumbent x(inc) as the point with the minimum
mean performance ȳ(inc) = mini=1,...,n ȳ

(i). In each iteration, a random forest is fitted
on the non-aggregated design points. The input x(prop) that minimizes the expected

1When starting a race, each challenger is evaluated once. To reduce overhead, the number of runs
for the challenger x(i) is doubled each time the challenger is not rejected to reduce overhead.

18

3.2 Replication Strategies without Budget Specifications

Algorithm 5 inc+ replication strategy
1: input: design D, x(prop) proposed input, incumbent x(inc), challengers

incumbent evaluation
2: y(inc,r(inc)+1) ← perform evaluation for incumbent x(inc)

3: D ← D ∪
{(

x(inc), y(inc,r(inc)+1)
)}

update design

challenge incumbent
4: C ⊂ {1, ..., n} ← sample m configurations
5: for k ∈ C ∪ prop do
6: b← 1
7: repeat
8:

{(
x(k), y(k,j)

)}
i=1,...,b

← perform b evaluations for challenger x(k)

9: D ← D ∪
{(

x(k), y(k,j)
)}

i=1,...,b
update design

10: b← 2 · b double replications
11: until ȳ(inc) < ȳ(k) or r(inc) ≤ r(k)

12: end for

Figure 3.3: One step of the SPO+ algorithm starting from an initial Latin hypercube design
of size 4 (violet points). Initial design points are re-evaluated 5 times. The lower
figure shows the number of replications that were performed on each configuration.
In the current step, the incumbent x = 0.6 is evaluated once. The new proposed
point x = 0.68 as well as m = 2 other design points are raced against the
incumbent but cannot replace it. 19

Chapter 3 Methods

improvement criterion is evaluated and added to the design. This point is then
challenged against the incumbent in an analogous manner as in SPO+. SMAC and
SPO+ basically differ in the choice of the surrogate learner (which removes the key
limitation of being applicable to numerical problems only), their aggregation method
and the size of the challenger set 2.

Algorithm 6 outlines the intensification strategy, further referred to as inc, which is
inferred from the SMAC algorithm. Figure 3.4 illustrates one step of SMAC.

Algorithm 6 inc replication strategy
1: input: design D, x(prop) proposed input, incumbent x(inc)

incumbent evaluation
2: y(inc,r(inc)+1) ← perform evaluation for incumbent x(inc)

3: D ← D ∪
{(

x(inc), y(inc,r(inc)+1)
)}

update design

challenge incumbent
4: b← 1
5: repeat
6:

{(
x(prop), y(prop,j)

)}
i=1,...,b

← perform b evaluation for challenger x(prop)

7: D ← D ∪
{(

x(prop), y(prop,j)
)}

i=1,...,b
update design

8: b← 2 · b double replications
9: until ȳ(inc) < ȳ(prop) or r(inc) ≤ r(prop)

2Note that the intensification mechanism described by Hutter et al. [12] is designed to differentiate
different problem instances. The simplified procedure described here results from considering one
problem instance only.

20

3.3 Replication Strategies with User pre-set Confidence

Figure 3.4: One step of the SMAC algorithm starting from an initial Latin hypercube design
of size 4 (violet points). The lower figure shows the number of replications that
performed on each configuration.

3.3 Replication Strategies with User pre-set Confidence

Replication strategies that require the specification of a budget (see Section 3.1) are
difficult to apply in practice: the replication budget needs to be specified by prior
knowledge, experience or some well-established default values. The incumbent strategies
described in Section 3.2 are superior in this regard: they do not require a user pre-set
budget (at worst a hyperparameter like the size of the challenger set that impacts the
allocated budget indirectly).

Especially for practical purposes, it might be of great value for the user if he could
specify a desired level of confidence in the final solution before starting optimization.
The algorithm shall determine internally the number of replications that are necessary
to distinguish the best design point from inferior design points with the said level of
confidence.

The first question we address is how to express confidences in solutions. One way to
come up with guarantees in returned solutions is to carry out a statistical test after

21

Chapter 3 Methods

each iteration and reject inferior points. The final solution(s) are the points that have
not been rejected with respect to a specified level of significance. Apart from SMBO,
racing algorithms [18] have been used for algorithm configuration problems and have
gained attention in this field. However, statistical testing will not be pursued in this
work, as one easily runs into multiple testing issues.

The probability of correct selection, which was introduced in Section 3.1, is another
way to express the statistical guarantees. Instead of prescribing a budget and - to
formulate it a little bit offhand - leave it to the algorithm to make the best out of it,
the strategy is inverted: minimize the replication budget while ensuring a desired level
of probability of correct selection P ∗.

Problem 3.3 (OCBA dual)

min
r(1),...,r(n)

r(1) + r(2) + . . . r(n)

s. t. P (CS) ≥ P ∗

This optimization problem is formally stated in Problem 3.3. According to Chen et
al. [8] it is the dual to Problem 3.2. Under the assumptions described in Appendix
A, they have shown that its approximate solution corresponds to that of the primal
problem.

Note that the problem basically corresponds to the problem of finding a feasible
points: If the constraint P (CS) ≥ P ∗ is fulfilled, the optimum is r(1) = ... = r(n) = 0
and no budget will be allocated. If the constraint is not fulfilled, Chen et al. propose
to proceed as follows: In each iteration, a very small budget3 is allocated to existing
design points according to Rule 3.2 until the probability of correct selection of at least
P ∗ is met. The probability of correct selection is calculated in each iteration based on
Assumptions A.1 and A.2 using Lemma A.3.

However, the integration of this dual approach poses the following problems: there
might be points in the design that are exactly on the same (bad) level and the algorithm
tries to distinguish them desperately. Furthermore, for continuous functions, a new
design point can be arbitrarily near to an already existing design point. The two
problems are illustrated in Figure 3.5.

This behavior, in turn, is less annoying or even desired in the end of the optimization
procedure: imagine we already explored the input space sufficiently, and the remaining
budget is spent on existing design points to identifiy the final best point.

In this thesis, a new method dividing the SMBO procedure in two phases (opti-
mization and a identification) is proposed. The first phase aims at optimizing the

3We stick to the recommendations of bOCBA = 3 by Chen et al..

22

3.3 Replication Strategies with User pre-set Confidence

Figure 3.5: Illustration of Problems of the OCBA-dual Approach

function and discovering interesting regions of the function. The second phase aims
at identifying the best point among all design points and gives back confidences in
the proposed solution. Note that in this second phase, no new points are added to
the design. In practice, the second phase can be run until the minimum required
probability of correct selection has been reached. However, there is still the risk to
run into the convergence issues described above. Thus, we recommend to limit the
identification phase by an absolute maximum time limit in case of slow convergence.
Note that the two phases are that modular and could in practice be interrupted

and continued at any time by the user. For instance, the optimization phase could be
followed by an identification step that doesn’t seem to converge. The user can inspect
the probability of correct selection reached so far, resume the optimization phase and
try to identify the final best point afterwards again.

Algorithm 7 outlines our new proposed approach, SMBO with identification,
which is inspired by the OCBA-PCS dual 3.34. The algorithm is examplarily vizualised
in Figure 3.6.

4Note that this approach still requires budget specifications, which however play a less important
role than in Section 3.1 as the total replication budget is determined by the iteration performed.
binit should be big enough to ensure sufficient variance estimates for each of the configurations, for
bOCBA = 3 seems to be a good option.

23

Chapter 3 Methods

Algorithm 7 SMBO with identification
1: input: infill criterion I, hypothesis space H, minimum desired PCS P ∗, initial

number of evaluations binit

2: generate initial design D
optimization phase:

3: while optimization budget not spent do
4: fit a surrogate f̂ ∈ H on the (aggregated) data t(D)
5: propose the point that optimizes I(x) and update D
6: intensify new point binit times
7: end while

identification phase:
8: calculate PCS
9: while PCS < P ∗ and identification budget not spent do

10: Allocate budget of bOCBA = 3 according to Algorithm 4
11: calculate PCS
12: end while

Figure 3.6: In the identification phase of SMBO with identification, budget is allocated
on the 7 design points to distinguish inferior from superior design points. In every
identification iteration (which corresponds to one iteration in the identification
loop in Algorithm 7 and thus to a budget of 3 evaluations), the probability of
correct selection increases until it exceeds the minimum required P(CS) of 0.8.

24

Chapter 4

Experimental Study

Implementation details about this experimental study are presented in Appendix B.

4.1 Experiments with Synthetic Test Functions
The first benchmark is conducted on artificial test functions. As both the underlying
black-box function and the structure of the noise are known, this offers us a more
in-depth view about the internal behavior of the methods.
This benchmark is divided into three parts: As a starting point, the three original

algorithms SPO-OCBA, SMAC and SPO+ are compared against the SKO algorithm
that doesn’t employ any replication strategy.

After that, the replication strategies we identified from those algorithms are combined
with different algorithmic choices of surrogate learners, data aggregation methods
and infill criteria in order to systematically find the best variants of SMBO with
intensification.
Based on insights gained from the first two parts, the new method, SMBO with

identification, is compared against SKO and SMBO with replication.

Problem design. All methods are evaluated on four custom test functions f : X → R
provided by the smoof [5] package: the Sphere, the Rosenbrock, the Ackley and the
Alpine No. 1 function. The functions were chosen in a way to cover a wide range of
function properties, from smooth and unimodal to nondifferentiable and multimodal.
All functions are scaled to a function standard deviation of 1. Each of the test functions
is considered in a low dimensional setting (dim(X) = 5) and a higher dimensional
setting (dim(X) = 20). The test functions are presented in Table 4.1.
To simulate a noisy setting, Gaussian noise is added on top of the noise-free test

function f , i. e.

y(x) = f(x) + ε(x), ε(x) ∼ N
(
0, τ(x)2

)
. (4.1)

The noise level τ(x) is expressed in terms of the proportion of the function standard
deviation (which is 1 for all the functions after scaling). For homoscedastic noise, the

25

Chapter 4 Experimental Study

Test function Domain Properties

Sphere f(x) =
∑d

i=1 x
2
i [−5.1, 5.1]

unimodal,
continuous,
differentiable

Rosenbrock f(x) =
∑d−1

i=1 100
(
xi+1 − x2

i

)2 + (1− xi)2 [−30, 30]
multimodal,
continuous,
differentiable

Ackley
f(x) = −20 · exp

(
−0.2

√
1
d

∑d
i=1 xi

)
− exp

(
1
d

∑d
i=1 cos(2πxi)

) [−32.8, 32.8]
multimodal,
continuous,
differentiable

Alpine No. 1 f(x) =
∑d

i=1 |xi sin(xi) + 0.1xi| [−10, 10]
multimodal,
continuous,
non-differentiable

Table 4.1: Test functions used within the benchmark and their respective properties.

noise standard deviation function is constant τ(x) ≡ τ . We set τ ∈ {0.05, 0.25, 0.5} to
investigate in functions with low, medium and high noise levels. For heteroscedastic
noise, the noise variance function τ2(x) is modelled by two different functions: either
by the Sphere function or the Rosenbrock function, which are both scaled to a range of
[0.1, 0.5]. The problem design is presented in Figure 4.1.

Algorithm Intensification Surrogate Infill Crit. Aggregation
SKO none km.nugget aei none
SPO-OCBA ocba km.nugget mr none
SMAC inc rf ei none
SPO+ inc+ km ei mean

Table 4.2: Algorithm specifications for SKO, SPO-OCBA, SPO+, SMAC.

Algorithm design. First, the three algorithms presented in Chapter 3, SPO-OCBA,
SPO+ and SMAC are compared against the SKO algorithm. Their specifications are
summarized in Table 4.21.

Second, we fuse the different intensification mechanisms identified in Chapter 3 with
different algorithmic choices we expect to have a high influence on the performance of
SMBO: the surrogate model, the infill criterion and the way data is aggregated before
fitting the surrogate model.

We will compare three custom choices for a surrogate model: the noise-free Kriging

1Note that for p = 20 the surrogate models are fitted on the mean aggregated data only to avoid
excessive runtimes for Kriging if the design gets too large. Therefore, original methods are slightly
modified in this regard which is marked by subscript (m).

26

4.1 Experiments with Synthetic Test Functions

model2(km)[22], the noisy Kriging model (km.nugget)[22] and the random forest (rf)[17].
As infill criterion we include the classical expected improvement (ei), the augmented

expected improvement (aei), the expected quantile improvement (eqi) and the lower
confidence bound (cb) in our benchmark. For 5-dimensional test functions, data is
either not aggregated (none) or y-values belonging to the same configuration x are
aggregated to their empirical mean (mean) before fitting the surrogate model. For
p = 20, we only consider mean aggregation. The algorithm design is presented in
Figure 4.2. Combining all algorithmic factors results in 96 algorithm instances in the
5-dimensional case and 48 in the 20-dimensional case3.

Figure 4.1: Benchmark on Synthetic Test Functions: Problem Design.

Figure 4.2: Benchmark on Synthetic Test Functions: Algorithm Design.

2To ensure numerical stability, a nugget of 1× 10−7 was added.
3Note that from a theoretical perspective the combination of the strictly interpolating noise-free

Kriging and no aggregation is not possible. As a small nugget effect was added for numerical stability,
this combination is practically still feasible and thus investigated.

27

Chapter 4 Experimental Study

Third, we compare the new proposed method, SMBO with identification, to
SMBO with fixed replication (which basically corresponds to the optimization phase
of Algorithm 7) and to the SKO algorithm. As summarized in Table 4.3, the number
of initial evaluations per point is set to b = 5 for the two variants that employ
replication. To allow intercomparability, the identification phase in SMBO with
identification terminates after 100 function evaluations (risking that the probability
of correct selection is not reached due to this short identification phase).

To keep the number of experiments small, we investigate the 5-dimensional problems
only. Furthermore, the surrogate learner (km.nugget), the infill criterion (cb) and
aggregation method (mean) are kept constant here4.

Algorithm Initial replications
per config.

Optimization budget
max. evals

Identification budget
max. evals

SKO b = 1 500 0
SMBO w/ intensification binit = 5 500 0
SMBO w/ identification binit = 5 400 100

Table 4.3: Algorithms that are compared for a first validation of SMBO with identifica-
tion.

Algorithmic factor Hyperparameters Reference

replication strategy

fixed
ocba
inc+
inc

b = 5
binit = 2, bOCBA = 3
m = 5
-

-
[3]
[13]
-

surrogate learner
km
km.nugget
rf

Matérn-3/2 kernel
Matérn-3/2 kernel
500 trees

mlrMBO [4]

infill criterion

ei
aei
eqi
cb

-
-
β = 0.7
λ = 1

mlrMBO [4]

Table 4.4: Hyperparameter settings of different choices.

Note that some of the different algorithmic choices presented depend on higher-level
parameters. To keep the number of experiments to a minimum, those are set to a
reasonable default, overtaken either from recommendations of the original authors or
from common implementations (see Table 4.4). Other algorithmic choices like the type

4The nugget-effect Kriging model, the lower confidence bound criterion and mean aggregation
were chosen after inspection of first results for the benchmark above and classified as superior to other
methods (see results below)

28

4.1 Experiments with Synthetic Test Functions

or the size of the initial design, the number of points proposed by the infill criterion or
the infill optimizer are also set to a default: The initial design is a Latin hypercube
design of size 5 × p, the number of proposed points per iteration is set to m = 1.
The infill criterion is optimized by focus search [4]. We expect these choices not to
distort results. For SKO, SPO-OCBA, SMAC and SPO+ choices might deviate
from choices made by the original authors. In favor of a consistent assessment and a
uniform implementation, we neglect those discrepancies.

Execution of Experiments. Experiments are repeated 20 times. Every experiment
terminates if a total number of 100 × p function evaluations has been reached and
returns the incumbent configuration. For SMBO with identification, the last 20×p
function evaluations are spent for identification.

Though usually time is the limiting factor for noisy black-box optimization, it would
be misleading in this artificial setup as the model fitting will determine runtime instead
of the function evaluations. Algorithms that perform more replications would perform
much more function evaluations than strategies that only perform one iteration in
each step like SKO. We allow each algorithm to perform a fixed number of function
evaluations, which means that the number of model iterations (i. e. the number
of model fits) depends on the replication strategy. We leave it to the algorithm to
determine an “intelligent” ratio between function evaluations and model iterations.

Evaluation of Results. Experiment results will be evaluated with respect to two
criterions:

• Overall error f(x(inc)) − f(x∗): The difference between the true noise-free
optimum value f(x∗), x∗ := arg minx∈X f(x∗) (theoretical best result), and the
noise-free function value f(x(inc)) at the incumbent configuration.

• Identification error f(x(inc))− f(x∗∗): The error that arises from false identifica-
tion of the final best point, that is the difference between the noise-free function
value at the incumbent configuration f(x(inc)) and the actual best point in the
design f(x(∗∗)), x∗∗ = arg minx∈D f(x).

Note that the identification error is a part of the overall error and arises if the
incumbent configuration does not correspond to the actual best point in design. In this
artificial setting we can quantify both errors as the true underlying function is known.

Results. In Table 4.5 the average ranks for SKO, SPO-OCBA, SMAC and SPO+
with respect to the overall error are presented. The SKO is superior in most 5-
dimensional problems (see Figure 4.4a). The optimization paths for the SKO decrease
faster, but the especially for high noise levels the differences to other methods are small

29

Chapter 4 Experimental Study

(a) 5-dimensional test functions

Algorithm Avg. rank

SKO 1.61
SPO-OCBA 2.08
SMAC 2.68
SPO+ 2.88

(b) 20-dimensional test functions

Algorithm Avg. rank

SKO(m) 1.85
SPO-OCBA(m) 1.76
SMAC(m) 3.09
SPO+ 2.45

Table 4.5: Average ranks for the original algorithms SKO, SPO-OCBA, SMAC and SPO+ w.
r. t. the overall error f(x(inc))− f(x∗). Results were ranked in each replication
and then averaged over the replications and problem instances.

(see Figure C.1). On most 20-dimensional problems, the SPO-OCBA outperforms
SKO (see Figure C.3a). We see that in most cases a major part of the overall error
made by SKO can be explained by false identification of the final best point. The
identification errors for the original methods are presented in Figures C.2a and C.4a.
Figure 4.3 emphasizes this observation showing the mean identification error across
all experiments for SKO compared to SPO+ (which reduces the identification error
through replication) for the 20-dimensional Sphere function in proportion to the mean
overall error.

(a) SKO (b) SPO+

Figure 4.3: Mean identification error f(x(inc))− f(x∗∗) (orange) in proportion to the mean
overall error f(x(inc))− f(x∗) (grey) across experiments for the 20-dimensional
Sphere function.

30

4.1 Experiments with Synthetic Test Functions

Results obtained from combining each of the four replication strategies (fixed, ocba,
inc, inc+) with different surrogate models, infill criteria and aggregation methods are
investigated through a global rank analysis (see Tables C.1 and C.2).
For each of the four replication strategies, the noisy Kriging model systematically

outperforms the noise-free Kriging model and the random forest. Furthermore, results
were better when the surrogate models were fitted on the aggregated data. From the
experiments that have been performed we cannot infer a clear superiority of one of the
infill criteria.

For a better visual comparison of the four replication strategies we consider each of
them in its “optimized” configuration, i. e. with a noisy Kriging model as surrogate
learner and mean aggregation (see Table 4.6). Assuming that the effect of the infill
criterion is limited, it is set to the overall best performing one (cb).
Figure 4.4b shows the performance of the four final candidates for p = 5. Though

the performance considerably improved through an appropriate specification of the
surrogate learner and the aggregation method, the methods still seem to be inferior to
the SKO algorithm. While the SKO algorithm seems to be able to handle the noise for
the lower dimensional problems, it is inferior to ocba in the higher dimensional setting
p = 20 (see Figure C.3). The respective identification errors are shown in Figures C.2b
and C.4b. Optimization paths for problems with high noise levels are presented in
Figure C.5.

intensification surr. crit. agg.

fixed km.nugget cb mean
ocba km.nugget cb mean
inc km.nugget cb mean
inc+ km.nugget cb mean

Table 4.6: The four replication strategies fixed, ocba, inc and inc+ in their optimal configura-
tions w. r. t. surrogate learner and aggregation. The infill criterion was set to the
overall best performing (cb).

31

Chapter 4 Experimental Study

(a) Original methods (see Table 4.2) (b) Optimized strategies (see Table 4.6)

Figure 4.4: Overall error f(x(inc))− f(x∗) from experiments on the 5-dimensional test func-
tions.

32

4.1 Experiments with Synthetic Test Functions

Finally, we analyse the experiments performed with the new proposed method in
order to get a first impression of whether the identification phase in the end of the
optimization procedure can improve the overall optimization result. Figure 4.5 shows
the optimization paths for high noise levels on the four test functions. SMBO with
identification spends the last 100 function evaluation on existing design points only
in order to identify the final best point in design. We see that the SMBO with
identification successfully reduces the identification error (see Figure C.7).

We see that the optimization path for SKO decreases faster than the other methods
as it fits a surrogate model after each evaluation (see Figure 4.5). For the less difficult
Sphere and Rosenbrock functions, the SKO hardly improves after about 300 evaluations
and seems to converge. The methods that employ replication, however, achieve a better
result here. For the more complex Ackley and Alpine No. 1 function, we see that the
SKO algorithm outperforms the other methods for a given budget of 500 iterations.
The SMBO with identification seems to further decrease after 500 iterations whilst
the others don’t. Further work will who if the SMBO with identification could be
superior to the other methods when extending the overall budget and thus also the
optimization phase.
Besides that, we are interested in the expressiveness of the returned probability of

correct selection. Theoretically, a high P(CS) should imply a low identification error.
The minimum required probability of correct selection P ∗ has not been reached for
the smooth Sphere and Rosenbrock functions. If functions are very smooth, it can be
very hard to distinguish close points, which might be the case for the Sphere and the
Rosenbrock function. Here, a level of 0.75 is unrealistic to achieve for larger designs. In
contrast, for the more complex Alpine No. 1, the probability of correct selection has
been achieved in some of the runs. Considering identification error vs. the probability
of correct selection (that actually has been reached) for the Alpine No. 1 function (see
Figure 4.6), we may assume that a high probability of correct selection indicates a
small identification error. This assumption needs to be validated or rejected in future
work.

33

Chapter 4 Experimental Study

Figure 4.5: Aggregated optimization paths of the SKO, SMBO with replication and
SMBO with identification.

34

4.2 Machine Learning Experiments

Figure 4.6: Identification error made vs. probability of correct selection reached by the
respective methods on the Alpine No. 1 function with high noise level (note that
the probability of correct selection can be calculated as long as variance estimates
for the different configurations are available).

4.2 Machine Learning Experiments

The second benchmark situation is a practical setting from machine learning, where
sequential model-based optimization is used for hyperparameter tuning. We investigate
the tuning of the xgboost algorithm [9], which is a scalable machine learning system
for tree boosting yielding state-of-the-art performance in many applications. As the
performance of the algorithm heavily depends on a large number of hyperparameters
for optimization and regularization, the algorithm is a relevant and representative
example for this benchmark.

Problem Design. We compare the performance of the tuning algorithms on a subset
of the datasets that are used by Thornton et al. [26] for evaluation of the AutoWEKA
framework. The chosen datasets contain binary and multiclass classification problems
and differ in size, dimensionality and types of the features. The datasets are summarized
in Table 4.7.

Algorithm design. First, SMBO with intensification is used for hyperparameter
tuning on all of the problems in Table 4.7. We compare the four algorithm versions
that have been identified in the first benchmark on artificial test functions (see Table
4.6). In addition, experiments are performed for random forests as surrogate models as
well.

Second, we also investigate SMBO with identification for a subset of the problems

35

Chapter 4 Experimental Study

Dataset # Classes # Training
obs.

Test obs. # Numeric
features

Factor
features

Abalone 28 2923 1254 7 1
Car 2 1209 519 0 6
Dexter 2 420 180 20000 0
GermanCredit 2 700 300 7 2
KR-vs-KP 2 2237 959 0 37
Madelon 2 1820 780 500 0
Secom 2 1096 471 591 0
Semeion 10 1115 478 256 0
Waveform 3 3500 1500 40 0
Wine Quality 7 3425 1469 11 0
Yeast 10 1038 446 8 0

Table 4.7: Summary of the AutoWEKA datasets used for the machine learning benchmark.

in Table 4.7 in order to get a first impression of whether an identification step in the
end can improve the final tuning result. Here as well, we use a noisy Kriging model
(km.nugget) as surrogate learner, the lower confidence bound (cb) as infill criterion and
mean aggregation for all three methods.

Further algorithmic choices are set to the same defaults as for the benchmark on
synthetic test functions (see Table 4.4).

Execution of Experiments. Within the SMBO procedure, a function evaluation for
a given configuration x corresponds to one randomized5 holdout iteration (with split
rate 4

5). Each experiment is repeated 20 times and terminates if either a maximum
number of 500 evaluations is reached during tuning or a time budget of 15 hours is
exceeded. For the comparison of SMBO with identification to SMBO with
intensification and SKO, we use the more practically oriented termination criterion
of a maximum runtime of one hour. For SMBO with identification, the last 10
minutes were used for identification.

xgboost is trained via optimization of the logistic loss for the binary and the softmax
loss for multiclass classification problems respectively. Factor features are dummy
encoded. The hyperparameter space we tune over is presented in Table 4.8. Note that
we tune over the nrounds hyperparameter which could have been determined through
early stopping as well. Performing replications would result in multiple (potentially
different) estimates for the nrounds parameter for one and the same configuration,
which needs to be aggregated across replications. This raises the interesting question

5Note that randomized holdout introduces more noise than if we would have defined fixed folds
within the tuning. It is questionable if this kind of noise can help to avoid potential overfitting or if it
rather disturbs the optimizer. This question is not covered by this thesis.

36

4.2 Machine Learning Experiments

of whether replications can help to find a good nrounds parameter.

Name Range log2 scale
nrounds {1, 2, ..., 5000} no
eta [0.01, 0.2] no
gamma [−7, 6] yes
max_depth {3, ..., 20} no
colsample_bytree [0.5, 1] no
colsample_bylevel [0.5, 1] no
lambda [−10, 10] yes
alpha [−10, 10] yes
subsample [0.5, 1] no
scale_pos_weight [−10, 10] yes

Table 4.8: xgboost hyperparameter spaces that are tuned over in the benchmark.

Evaluation of Results. We evaluate the performance of the tuned learners in terms of
the mean misclassification error on a test set that was excluded from training (mmce).
As test set we use the one that is pre-defined by AutoWEKA and was also used by
other authors for the purpose of evaluation.

Results. Results for experiments employing SMBO with replication are visualised
in Figure 4.7 for the binary problems (for the multiclass problems see Figure C.8). The
ranks across all the data problems are summarized in Table C.3.

From the results on the binary problems, we see that no strategy clearly outperforms
the others. Further, random forests as surrogate learners yield comparable performances.
Notably, we see that replication strategies yield better results than classical SMBO
with no integrated replication strategy.

The results for SMBO with identification are presented in Figure 4.8. The
respective ranks across all the problems show that for the experiments conducted,
SMBO with identification are superior to the strategies without identification step.
We see that the variability of the experiments conducted with SMBO with identification
step is smallest among the three methods. Future work will show if SMBO with
identification can yield substantial benefits in machine learning tuning.

37

Chapter 4 Experimental Study

Figure 4.7: Test performance (mmce) of the final xgboost model after tuning for the different
SMBO versions on the binary problems.

38

4.2 Machine Learning Experiments

Figure 4.8: Test performance (mmce) of the final xgboost model after tuning by SMBO,
SMBO with intensification and SMBO with identification respectively
on three of the AutoWEKA datasets.

intensification rank
SMBO 2.26
SMBO with replication 2.06
SMBO with identification 1.62

Table 4.9: Average ranks for the tuning results of the SMBO, SMBO with replication
and SMBO with identification on the datasets Car, Germancredit and
KrvsKp. Results were ranked in each replication and then averaged over the
replications and problems.

39

Chapter 5

CrowdNav: A Sample Application

When investigating the effect of different design choices on a real-life system, experi-
ments might be not feasible, either for technical or financial reasons. Here, computer
simulations can be a useful tool to imitate and analyse those systems. Due to their
complexity, simulation experiments often fulfil the characteristics of black-boxes.

Figure 5.1: When experiments cannot be performed in the real-life, those systems are imitated
via computer simulations.

The goal of simulation optimization is to find the optimal input value with respect
to some quality criterion using simulations. Each time the objective function, i. e.
the underlying relation between input value x and quality criterion y, is evaluated, a
simulation is run instead.

In this work, we consider a traffic navigation expemlar: Deploying a new navigation
algorithm in real cars in a city for test purposes is difficult if not impossible and brings
high risks in case of fail. In order to test such systems, one often uses traffic simulations
instead. One such example is CrowdNav [23][10] : the goal is to optimize the duration
of car trips in a city by adapting parameters of a smart routing algorithm, that is
based on static traffic information (e.g. the length and the speed limit of a street)
but also on dynamic traffic information (e.g. current traffic volume). The simulation

41

Chapter 5 CrowdNav: A Sample Application

is based on SUMO (Simulation of Urban Mobility)[15] and TraCi (Traffic Control
Interface)[27]. CrowdNav consists of a number of cars traveling in a virtual city
following the itineraries of their drivers and of a centralized navigation service (see 5.2).
A fraction is guided by the smart navigation service, whilst the others are controlled
by the standard built-in routing algorithm of SUMO.

The smart routing service is controllable via multiple hyperparameters, which are
summarized in table 5.1 For instance, randomness is introduced by route randomization
in order to avoid giving the same routes to a large number of drivers. The data freshness
threshold determines when dynamic traffic information is regarded expired.

Figure 5.2: The graphical user interface of CrowdNav: Cars are driving in a virtual city,
some of them are guided by the smart navigation system (red).s

Name Description Range

route randomization
degree to which random noise
is introduced introduced
to avoid giving same routes

[0, 0.3]

exploration percentage controls the ratio of smart
cars used as explorers [0, 0.3]

static info weight controls the importance of
static information on routing [1, 2.5]

dynamic info weight controls the importance of
dynamic information on routing [1, 2.5]

exploration weight controls the degree of
exploration of the explorers [5, 20]

data freshness threshold
threshold for considering observed
traffic-related data as stale
and disregard it

[100, 700]

re-routing requency controls how often the route would be
invoked to re-route a smart car [10, 70]

Table 5.1: CrowdNav hyperparameter space.

42

The goal is to optimize the quality of CrowdNav with respect to the average trip
overhead. The overhead for each trip is defined as

y = actual duration of a trip
theoretical duration of a trip ≥ 1. (5.1)

The system has the character of a noisy, expensive black-box: the simulation is
complex and the relationship of input parameters x and trip overhead y is not known
in advance. Further, each simulation has to run some time which makes evaluations
expensive. Ultimately, function evaluations are noisy: the trip overhead doesn’t only
depend on the route proposed by the router, which itself has stochastic components
(e. g. the rout randomization factor), but particularly on other cars and the traffic
which is generated stochastically. Noise can be smoothed out the longer we run the
simulation.

This application raises again the question of how much budget in terms of simulation
runtime should be spent on each configuration.

For observing data produced by CrowdNav for different configurations, we use
the Real-Time Experimentation (RTX) tool [23]. In this thesis, existing work by
Gerostathopoulos et al. [10] was extended by the integration of SMBO with inten-
sification, which is employed to find the optimal hyperparameters for the smart
navigation system. As surrogate model, a random forest is fitted on the non-aggregated
data as random forests turned out to be more stable in the scope of this application.
New points were proposed by the lower confidence bound criterion. In order to get
good results in a reasonable amount of time we tune over two hyperparameters only:
the route randomization factor and the data freshness threshold. In this example,
one evaluation corresponds to one trip. We use an initial Latin hypercube design of
size 10. Every time a new parametric configuration is set in the router, the first 2000
trips are omitted from analysis as it takes some time until the system adapts (burn-in
rate). Every configuration is evaluated 1000 times. After 80 optimization iterations
the identification phase is started with bOCBA = 10000 evaluations. The algorithm
terminates, if a minimum P (CS) of 0.7 or a maximum number of 20 identification
iterations is reached.

Figure 5.3 shows the 20 best configurations and the 90% percent confidence intervals
around the mean trip overhead for the corresponding configuration. Though it seems
that the identification step in the end allows a clear distinction between the best point
and inferior points, this is questionable when looking at the configurations in the
2-dimensional hyperparameter space (see figure 5.4). We see that good points are very
close which can have two reasons: either the effects observed are random and appear
because noise has not been smoothed out sufficiently or the true underlying mechanism

43

Chapter 5 CrowdNav: A Sample Application

in fact very unsmooth. In future work, it still needs to be clarified if higher-level
hyperparameters like the burn-in rate or the initial evaluation budget of 1000 are
sufficient to capture the noise level. The performance of sequential-based optimization
in this application needs to be validated in a more extensive experimental study.

Figure 5.3: Resulting top 20 configurations after using SMBO with identification as
optimizer for CrowdNav. The figure shows the average trip overhead for the
top 20 configurations. 90% confidence intervals for ȳ(i) were calculated based on
assuming normality of simulation outputs.

Figure 5.4: The two-dimensional hyperparameter space that was tuned over in this application
and the configurations evaluated in the course of hyperparameter optimization.

44

Chapter 6

Conclusion

In this work we formulated the general SMBO with intensification algorithm
which extends sequential model-based optimization by a replication strategy. We
have identified four replication strategies from literature: the simple fixed strategy,
replication budget allocation through ocba and inc and inc+ that iteratively perform
races against the incumbent configuration.
In an experimental study, the replication strategies have been compared: whereas

experiments on artificial test functions have shown that replication strategies can
improve the optimization result considerably in the 20-dimensional case, the SKO
algorithm that employs no replication strategy at all could not been outperformed
by those methods employing replication. Based on the benchmark on artificial test
functions, the ocba replication strategy together with a noisy Gaussian process surrogate
learner was the best performing instance of SMBO with intensification.
Results of deploying SMBO with intensification in machine learning tuning

problems suggest that replication strategies can improve the tuning outcome, but results
vary between datasets and thus do not allow clear conclusions or recommendations
for practical purposes. In future work, these methods will be investigated on more
machine learning problems.

From experiments performed on the artificial test functions, we analysed the final
error made by the respective optimization algorithms in more depth: often, a fraction of
the overall error is attributable to false identification of the final best point in the end.
Motivated by the OCBA theory, we proposed a new version of sequential model-based
optimization that tackles this type of error in a final identification step and provides
the user with a sort of confidence in this returned solution: the probability of correct
selection. While a first experimental investigation of the performance of this algorithm
for optimization of artificial test functions and in machine learning hyperparameter
tuning yields promising results, this method needs to be evaluated in more depth in
future work.

We emphasize that the point in time, when optimization is stopped, and the identifica-
tion phase is started has an impact on the final outcome. In our experiments, we simply
defined a budget for the optimization phase. When it was exceeded, the identification
phase was started. Two suboptimal scenarios can occur: First, the optimization phase

45

Chapter 6 Conclusion

is quit too early and the identification phase is triggered when the function was not
optimized sufficiently. In this case, multiple suboptimal configurations are compared
and the identification phase won’t yield useable results. Second, the optimization phase
takes too long. In this case, the identification phase could have been entered earlier
and budget could have been saved. In future work, we will investigate how to find this
“sweet spot” of switching from optimization to identification. Furthermore, we might
look into in better notions of confidences in solutions.

Finally, we employed the new proposed method on a black-box optimization problem
for parametric traffic simulation optimization to tackle the question of how much
simulation budget should be spent on single configurations. In future work, this we
will analyse the functioning of SMBO with identification in a more extensive
benchmark study.

46

Appendix A

Optimal Computing Budget Allocation
Assumption A.1 (Normal simulation outputs)
For inputs x(i), i = 1, ..., n, simulation outputs y(x(i)) are normally distributed around
their true function value f(x(i)), with known variance τ2

i := τ2(x(i)), i. e.

y(x(i)) ∼ N
(
f(x(i)), τ2

i

)
.

For each input x(i), outputs are drawn independently. Furthermore, outputs are inde-
pendent across designs, that is y(x(i)) and y(x(j)) are independent for all i 6= j.

Assumption A.2 (Conjugate uninformative normal prior)
The function values f(x(i)), i = 1, ..., n, are independent and have the conjugate normal
prior distribution with mean ηi and variance ν2

i > 0, i. e.

f(x(i)) ∼ N
(
ηi, ν

2
i

)
.

Furthermore, the prior is assumed uninformative, i. e. ν2
i →∞.

Lemma A.3
Under assumptions A.1 and A.2, the posterior distribution is

f(x(i)) | D ∼ N
(
τ2

i ηi + r(i)ν2
i ȳ

(i)

τ2
i + r(i)ν2

i

,
τ2

i ν
2
i

τ2
i + r(i)ν2

i

)

For ν2
i →∞, this becomes

f(x(i)) | D a∼ N
(
ȳ(i),

τ2
i

r(i)

)
for νi →∞.

Definition A.4
The approximate probability of correct selection is defined as

APCS = 1−
n∑

i=1
P
(
f(x(inc)) > f(x(i)) | D

)

47

Appendix A Optimal Computing Budget Allocation

Problem A.5 (OCBA-APCS Problem)

max
r(1),...,r(k)

APCS

s. t. r(1) + r(2) + . . . r(n) = r

Theorem A.6
Given a total number of simulation samples r to be allocated to n competing designs
whose performance is depicted by random variables with means f(x(i)), i = 1, ..., n,
and finite variances τ2

i respectively, the Approximate Probability of Correct Selection
(APCS) is asymptotically maximized when

r(i)

r(j) =
(
τi/δinc,i

τj/δinc,j

)2

, i, j ∈ {1, 2, ...,m}, i 6= j 6= inc

n(inc) = τinc

√√√√ ∑
i=1,i 6=inc

(r(i))2

τ2
i

.

(A.1)

48

Appendix B

Implementation in mlrMBO

All algorithms, experiments and graphics have been implemented in R [20]. Only the
experiments for the CrowdNav example have been integrated using python as program-
ming language. The intensification strategies presented in Chapter 3 are implementend
in the R package mlrMBO [4] and can be accessed under the development branch https:
//github.com/mlr-org/mlrMBO/tree/feature_noisy_incumbent_ocba. The bench-
mark experiments have been implemented with the use of the R package batchtools
[16]. For graphics, the R package ggplot2 [28] was used.

Code, results, graphics and the thesis are accessible via the bitbucket repository
https://bitbucket.org/ju_moosbauer/thesis-moosbauer.

• /benchmarks/ contains all code for the execution and analysis of the experiments

• /RTX/ contains the source code of RTX; the contribution of this thesis can be
found under /crowdnav-rtx/RTX/rtxlib/executionstrategy/MlrStrategy.py
(for installation of CrowdNav and RTX, please refer to the documentations
under https://github.com/Starofall/CrowdNav and https://github.com/
Starofall/RTX)

• /result/ contains all benchmark results and respective graphics

• /thesis/ contains the this thesis in .tex and .pdf format

• /mlrMBO/ contains the current version of the feature_noisy_incumbent_ocba
branch of the R package mlrMBO

49

https://github.com/mlr-org/mlrMBO/tree/feature_noisy_incumbent_ocba
https://github.com/mlr-org/mlrMBO/tree/feature_noisy_incumbent_ocba
https://bitbucket.org/ju_moosbauer/thesis-moosbauer
https://github.com/Starofall/CrowdNav
https://github.com/Starofall/RTX
https://github.com/Starofall/RTX

Appendix C

Detailed Benchmark Results

Figure C.1: Aggregated optimization paths of the original algorithms (see table 4.2) on
experiments with the 5D test functions with high noise levels. The figure shows
the mean error accross the experiments (line) and the corresponding 90-percent
confidence band.

51

Appendix C Detailed Benchmark Results

(a) Original methods (see table 4.2) (b) Optimized strategies (see table 4.6)

Figure C.2: Identification error f(x(inc))−f(x∗∗) for the experiments on the 5D test functions.

52

(a) Original methods (see table 4.2) (b) Optimized strategies (see table 4.6)

Figure C.3: Overall error f(x(inc))− f(x∗) for the experiments on the 20D test functions.

53

Appendix C Detailed Benchmark Results

(a) Original methods (see table 4.2) (b) Optimized strategies (see table 4.6)

Figure C.4: Identification error f(x(inc)) − f(x∗∗) for the experiments on the 20D test
functions.

54

Figure C.5: Aggregated optimization paths of the different intensification strategies in an
improved configuration (see table 4.6) on experiments with the 5D test functions
with high noise levels. The figure shows the mean error accross the experiments
(line) and the corresponding 90-percent confidence band.

55

Appendix C Detailed Benchmark Results

intensification surr. crit. agg. rank

SKO none km.nugget aei none 18.46
∗ ocba km.nugget cb mean 19.41

ocba km.nugget eqi mean 20.04
fixed km.nugget aei mean 20.90

∗ fixed km.nugget cb mean 21.25
ocba km.nugget aei mean 22.53
ocba km.nugget ei mean 22.78
fixed km.nugget ei mean 23.35
fixed km.nugget eqi mean 25.50
ocba km cb mean 28.59
ocba km.nugget mr none 31.79
ocba km ei mean 33.57
ocba km aei mean 33.59
ocba km eqi mean 33.87
ocba km eqi none 34.59
fixed km cb mean 36.00
inc km.nugget aei mean 36.00
ocba km.nugget cb none 36.35
fixed km aei mean 37.33
inc km.nugget eqi mean 37.62

∗ inc km.nugget cb mean 37.94
ocba km cb none 38.10
inc km.nugget ei mean 38.39
ocba km.nugget ei none 38.56
ocba km aei none 39.34
fixed km eqi mean 39.41
fixed km.nugget cb none 40.10
fixed km ei mean 40.15

SPO-OCBA ocba km mr none 40.31
inc km.nugget cb none 41.40
inc+ km.nugget eqi mean 42.07

∗ inc+ km.nugget cb mean 42.43
ocba km ei none 42.49
fixed km.nugget ei none 42.79
ocba km.nugget aei none 42.86
inc km.nugget ei none 42.97
inc+ km.nugget ei mean 43.07
fixed km cb none 43.29
inc+ km.nugget aei mean 45.22
inc km cb mean 45.22
ocba km.nugget eqi none 45.36
inc km cb none 45.67
inc km ei mean 46.10
inc km.nugget aei none 46.54
fixed km.nugget aei none 46.82
inc km aei mean 47.10
inc km ei none 47.41
inc km eqi mean 47.43
inc km eqi none 47.45

SMAC inc rf ei none 47.70
...

...
...

...
...

...
...

...
...

...

intensification surr. crit. agg. rank
...

...
...

...
...

...
...

...
...

...
fixed km eqi none 47.71
inc km aei none 48.32
ocba rf cb none 48.72
fixed km aei none 48.88
fixed km ei none 49.19
inc km.nugget eqi none 49.67
fixed km.nugget eqi none 50.78
inc+ km cb none 50.89
ocba rf cb mean 51.58
inc+ km.nugget cb none 51.61
inc+ km aei none 51.88
inc+ km eqi mean 52.29

SPO+ inc+ km ei mean 52.51
inc+ km aei mean 52.66
inc+ km.nugget ei none 52.68
inc+ km ei none 53.34
inc+ km cb mean 53.44
ocba rf mr none 54.70
inc+ km.nugget aei none 54.78
inc+ km eqi none 55.39
fixed rf cb none 55.68
inc rf cb none 55.90
ocba rf eqi mean 56.84
fixed rf cb mean 57.13
inc rf cb mean 57.88
ocba rf eqi none 59.47
ocba rf aei mean 60.08
inc+ km.nugget eqi none 60.19
ocba rf ei none 60.35
ocba rf aei none 60.75
ocba rf ei mean 61.60
fixed rf aei none 63.18
fixed rf ei none 64.45
fixed rf ei mean 64.97
fixed rf eqi none 65.10
inc rf eqi none 65.94
fixed rf eqi mean 65.97
fixed rf aei mean 65.98
inc rf aei none 66.51
inc rf ei mean 67.22
inc rf aei mean 67.49
inc rf eqi mean 68.28
inc+ rf cb mean 70.08
inc+ rf cb none 70.69
inc+ rf aei none 70.97
inc+ rf aei mean 71.85
inc+ rf ei mean 72.01
inc+ rf eqi none 72.52
inc+ rf ei none 73.22
inc+ rf eqi mean 75.04

Table C.1: Average ranks for the overall error on the 5D test functions for the different
algorithm versions. Results were ranked in each replication and then averaged over
the replications and problem instances. Maximum rank is thus nrepl × nsurr ×
ncrit × nagg + 2 = 4 × 3 × 4 × 2 + 2 = 98 (+2 for original versions of SKO and
SPO-OCBA results).

56

intensification surr. crit. agg. rank

∗ ocba km.nugget cb mean 12.19
ocba km.nugget mr mean 12.60

∗ inc km.nugget cb mean 13.85
ocba km.nugget aei mean 14.16
ocba km.nugget ei mean 15.12
ocba km.nugget eqi mean 15.16
inc km.nugget ei mean 15.50
none km.nugget aei mean 15.65
inc km.nugget aei mean 16.00
none km.nugget cb mean 16.88
inc km.nugget eqi mean 17.10
ocba km cb mean 17.70

∗ inc+ km.nugget cb mean 18.33
inc km cb mean 18.55
inc km ei mean 18.62
ocba km ei mean 18.88
inc+ km.nugget ei mean 19.22
ocba km eqi mean 19.23
inc km aei mean 19.33
ocba km aei mean 19.34
inc+ km.nugget aei mean 19.88
inc+ km.nugget eqi mean 20.10
inc km eqi mean 20.36
none km.nugget eqi mean 20.93
inc+ km cb mean 21.99
inc+ km ei mean 22.12
inc+ km aei mean 22.37
inc+ km eqi mean 23.45
...

...
...

...
...

...
...

...
...

...

intensification surr. crit. agg. rank
...

...
...

...
...

...
...

...
...

...
none km cb mean 23.61

∗ fixed km.nugget cb mean 24.94
fixed km.nugget aei mean 25.79
fixed km.nugget ei mean 26.09
fixed km cb mean 27.22
inc rf cb mean 27.40
fixed km.nugget eqi mean 27.63
none km eqi mean 27.71
ocba rf cb mean 28.66
fixed km eqi mean 29.26
fixed km ei mean 29.48
inc rf eqi mean 30.05
fixed km aei mean 30.11
inc+ rf cb mean 30.28
ocba rf eqi mean 31.59
inc rf aei mean 32.17
fixed rf cb mean 32.40
inc rf ei mean 33.40
inc+ rf eqi mean 33.46
ocba rf aei mean 33.93
inc+ rf aei mean 34.34
ocba rf ei mean 34.41
fixed rf eqi mean 34.79
none rf cb mean 35.07
inc+ rf ei mean 35.90
fixed rf aei mean 35.90
fixed rf ei mean 36.82
none rf eqi mean 40.68

Table C.2: Average ranks for the overall error on the 20D test functions for the different
algorithm versions. Results were ranked in each replication and then averaged over
the replications and problem instances. Maximum rank is thus nrepl × nsurr ×
ncrit × nagg + 2 = 4 × 3 × 4 × 1 + 2 = 50 (+2 for original versions of SKO and
SPO-OCBA).

intensification surrogate rank
spoplus km.nugget 4.77
smac rf 4.98
ocba km.nugget 4.99
fixed rf 5.07
smac km.nugget 5.10
spoplus rf 5.26
fixed km.nugget 5.48
none km.nugget 5.77
ocba rf 5.78
none rf 5.84

Table C.3: Average ranks for the tuning results (mmce) of the different SMBO versions with
intensification. Results were ranked in each replication and then averaged over
the replications and problems.

57

Appendix C Detailed Benchmark Results

Figure C.6: Overall error f(x(inc)) − f(x∗) for the experiments on the 5D test functions
comparing SKO, SMBO with replication and SMBO with identification.

58

Figure C.7: Identification error f(x(inc))−f(x∗∗) for the experiments on the 5D test functions
comparing SKO, SMBO with replication and SMBO with identification.

59

Appendix C Detailed Benchmark Results

Figure C.8: Test performance (mmce) of the tuned xgboost model for the different SMBO
versions on the multiclass problems.

60

List of Figures

2.1 A Black-box System . 5
2.2 Evaluation of a Noise-free Function . 6
2.3 Evaluation of a Noisy Function . 9
2.4 Ingredients of Sequential Model-based Optimization 12

3.1 Illustration of two Steps of SMBO with fixed Replication 14
3.2 Illustration of two Steps of SPO-OCBA 17
3.3 Illustration of one Step of SPO+ . 19
3.4 Illustration of two Steps of SMAC . 21
3.5 Illustration of Problems of the OCBA-dual Approach 23
3.6 Illustration of the Identification Phase in SMBO with identification 24

4.1 Benchmark on Synthetic Test Functions: Problem Design 27
4.2 Benchmark on Synthetic Test Functions: Algorithm Design 27
4.3 Benchmark on Synthetic Test Functions: Identification error for p = 5 30
4.4 Benchmark on Synthetic Test Functions: Overall Error for p = 5 . . . 32
4.5 SKO with identification: Optimization Paths for p = 5 34
4.6 SMBO with identification: Identification Error vs. Probability of

correct Selection . 35
4.7 ML Tuning: Test Performance of SMBO with Intensification (binary) 38
4.8 ML Tuning: Performance of SMBO with Identification (binary) . 39

5.1 A Simulation Experiment . 41
5.2 CrowdNav: Graphical User-Interface 42
5.3 CrowdNav: Result of employing SMBO with identification . . . 44
5.4 CrowdNav: Points visited by SMBO with identification 44

C.1 Benchmark On Synthetic Test Functions: Optimization Paths for p = 5 51
C.2 Benchmark On Synthetic Test Functions: Identification Error for p = 5 52
C.3 Benchmark On Synthetic Test Functions: Overall Error for p = 20 . . 53
C.4 Benchmark On Synthetic Test Functions: Identification Error for p = 20 54
C.5 Benchmark On Synthetic Test Functions: Optimization Paths for p = 5 55
C.6 SKO with identification: Overall Error for p = 5 58
C.7 SKO with identification: Identification Error for p = 5 59
C.8 ML Tuning: Performance of SMBO with Intensification (multiclass) 60

61

List of Tables

0.1 Notation . 1

4.1 Benchmark on Synthetic Test Functions: Test Functions 26
4.2 Benchmark on Synthetic Test Functions: Original Algorithms 26
4.3 Benchmark on Synthetic Test Functions: Specification of SMBO with

Identification . 28
4.4 Benchmark on Synthetic Test Functions: Higher-level Parameters . . . 28
4.5 Benchmark on Synthetic Test Functions: Average Ranks for original

Algorithms . 30
4.6 Benchmark on Synthetic Test Functions: Optimized Versions of SMBO

with Intensification . 31
4.7 ML Tuning: Datasets . 36
4.8 ML Tuning: xgboost hyperparameter space 37
4.9 ML Tuning: Average ranks for a comparison of SMBO with Identifi-

cation . 39

5.1 CrowdNav: Hyperparameter Space 42

C.1 Benchmark on Synthetic Test Functions: Global Rank Analysis (p = 5) 56
C.2 Benchmark on Synthetic Test Functions: Global Rank Analysis (p = 20) 57
C.3 ML Tuning: Global Rank Analysis . 57

63

List of Algorithms

1 Sequential model-based optimization 8
2 Sequential model-based optimization with intensification 11

3 fixed replication strategy . 14
4 ocba replication strategy . 17
5 inc+ replication strategy . 19
6 inc replication strategy . 20
7 SMBO with identification . 24

65

Bibliography

[1] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. “Sequential Parameter Opti-
mization”. In: vol. 1. IEEE, 2005, pp. 773–780. isbn: 978-0-7803-9363-9.

[2] T. Bartz-Beielstein. “SPOT: An R Package For Automatic and Interactive
Tuning of Optimization Algorithms by Sequential Parameter Optimization”. In:
arXiv:1006.4645 [cs, math, stat] (June 2010). arXiv: 1006.4645 [cs, math,
stat].

[3] T. Bartz-Beielstein, M. Friese, M. Zaefferer, B. Naujoks, O. Flasch, W. Konen,
and P. Koch. “Noisy Optimization with Sequential Parameter Optimization and
Optimal Computational Budget Allocation”. In: ACM Press, 2011, p. 119. isbn:
978-1-4503-0690-4.

[4] B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang. “mlrMBO:
A Modular Framework for Model-Based Optimization of Expensive Black-Box
Functions”. In: arXiv:1703.03373 [stat] (Mar. 2017). arXiv: 1703.03373 [stat].

[5] J. Bossek. “Smoof: Single- and Multi-Objective Optimization Test Functions”.
In: The R Journal (2017).

[6] L. Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32.
issn: 1573-0565.

[7] C.-h. Chen and L. H. Lee. Stochastic Simulation Optimization: An Optimal
Computing Budget Allocation. System engineering and operations research v. 1.
OCLC: ocn456170891. Singapore ; Hackensack, NJ: World Scientific, 2011. isbn:
978-981-4282-64-2.

[8] C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick. “Simulation Budget Allocation
for Further Enhancing the Efficiency of Ordinal Optimization”. In: Discrete Event
Dynamic Systems 10.3 (July 2000), pp. 251–270. issn: 0924-6703.

[9] T. Chen and C. Guestrin. “XGBoost: A Scalable Tree Boosting System”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. New York, NY, USA: ACM, 2016, pp. 785–
794. isbn: 978-1-4503-4232-2.

67

http://arxiv.org/abs/1006.4645
http://arxiv.org/abs/1006.4645
http://arxiv.org/abs/1703.03373

Bibliography

[10] I. Gerostathopoulos, C. Prehofer, and T. Bures. “Adapting a System with Noisy
Outputs with Statistical Guarantees”. In: Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’18. Gothenburg, Sweden: ACM, 2018, pp. 58–68. isbn: 978-1-4503-5715-
9.

[11] D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. “Global Optimization of
Stochastic Black-Box Systems via Sequential Kriging Meta-Models”. In: Journal
of Global Optimization 34.3 (Mar. 2006), pp. 441–466. issn: 0925-5001, 1573-2916.

[12] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequential Model-Based Op-
timization for General Algorithm Configuration”. In: Learning and Intelligent
Optimization. Ed. by C. A. C. Coello. Vol. 6683. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 507–523. isbn: 978-3-642-25565-6 978-3-642-25566-3.

[13] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy. “An Experimental
Investigation of Model-Based Parameter Optimisation: SPO and Beyond”. In:
ACM Press, 2009, p. 271. isbn: 978-1-60558-325-9.

[14] D. R. Jones, M. Schonlau, and W. J. Welch. “Efficient Global Optimization of
Expensive Black-Box Functions”. In: Journal of Global Optimization 13.4 (Dec.
1998), pp. 455–492. issn: 1573-2916.

[15] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. “Recent Development
and Applications of SUMO - Simulation of Urban MObility”. In: International
Journal On Advances in Systems and Measurements 5.3&4 (Dec. 2012), pp. 128–
138.

[16] M. Lang, B. Bischl, and D. Surmann. “batchtools: Tools for R to work on batch
systems”. In: The Journal of Open Source Software 2.10 (Feb. 2017).

[17] A. Liaw and M. Wiener. “Classification and Regression by randomForest”. In: R
News 2.3 (2002), pp. 18–22.

[18] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stüt-
zle. “The Irace Package: Iterated Racing for Automatic Algorithm Configuration”.
In: Operations Research Perspectives 3 (2016), pp. 43–58. issn: 22147160.

[19] V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based
Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Opti-
mization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

[20] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria, 2014.

[21] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
Adaptive computation and machine learning. OCLC: ocm61285753. Cambridge,
Mass: MIT Press, 2006. isbn: 978-0-262-18253-9.

68

Bibliography

[22] O. Roustant, D. Ginsbourger, and Y. Deville. “DiceKriging , DiceOptim :
Two R Packages for the Analysis of Computer Experiments by Kriging-Based
Metamodeling and Optimization”. In: Journal of Statistical Software 51.1 (2012).
issn: 1548-7660.

[23] S. Schmid, I. Gerostathopoulos, C. Prehofer, and T. Bures. “Self-Adaptation
Based on Big Data Analytics: A Model Problem and Tool”. In: IEEE, May 2017,
pp. 102–108. isbn: 978-1-5386-1550-8.

[24] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking the
Human Out of the Loop: A Review of Bayesian Optimization”. In: Proceedings
of the IEEE 104.1 (Jan. 2016), pp. 148–175. issn: 0018-9219, 1558-2256.

[25] J. Snoek, H. Larochelle, and R. P. Adams. “Practical Bayesian Optimization of
Machine Learning Algorithms”. In: arXiv:1206.2944 [cs, stat] (June 2012). arXiv:
1206.2944 [cs, stat].

[26] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Auto-WEKA: Com-
bined Selection and Hyperparameter Optimization of Classification Algorithms”.
In: Proc. of KDD-2013. 2013, pp. 847–855.

[27] A. Wegener, M. Piórkowski Michałand Raya, H. Hellbrück, S. Fischer, and
J.-P. Hubaux. “TraCI: An Interface for Coupling Road Traffic and Network
Simulators”. In: Proceedings of the 11th Communications and Networking Sim-
ulation Symposium. CNS ’08. Ottawa, Canada: ACM, 2008, pp. 155–163. isbn:
1-56555-318-7.

[28] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York, 2016. isbn: 978-3-319-24277-4.

69

http://arxiv.org/abs/1206.2944

	Introduction
	Background and Challenges
	Bayesian Optimization in Noise-free Systems
	Bayesian Optimization in Noisy Systems

	Methods
	Replication Strategies with Budget Specification
	Replication Strategies without Budget Specifications
	Replication Strategies with User pre-set Confidence

	Experimental Study
	Experiments with Synthetic Test Functions
	Machine Learning Experiments

	CrowdNav: A Sample Application
	Conclusion
	Optimal Computing Budget Allocation
	Implementation in mlrMBO
	Detailed Benchmark Results
	List of Figures
	List of Tables
	Algorithmenverzeichnis
	List of Algorithms
	Bibliography

