
Master Thesis

in Data Science

Relation Disambiguation in Knowledge
Graphs

IVICA OBADIC

Supervisor: Prof. Dr. Matthias Schubert
Advisor: Christian Frey
Submission date: 15.11.2019

Declaration of Authorship

I hereby declare that the thesis submitted is my own
unaided work. All direct or indirect sources used are
acknowledged as references.
This paper was not previously presented to another
examination board and has not been published.

Munich, 15.11.2019

. .
IVICA OBADIC

Abstract

Knowledge Graphs are widely used in many different domains such as search
engines, social networks and recommendation systems. They are usually cre-
ated by aggregating data from different domains and data sources which intro-
duces ambiguous entities and ambiguous relations in the Knowledge Graph.
Ambiguous entities are resolved with the existing entity resolution approaches.
In this thesis, we introduce a novel framework capable of relation disambigua-
tion in Knowledge Graphs. The core component of the presented framework is
the proposed Relation Disambiguation algorithm which is able to identify and
disambiguate ambiguous relations in a Knowledge Graph. The algorithm splits
ambiguous relations into multiple unambiguous relations based on clustering
assignments obtained in the latent space of relation-specific entity embeddings.
These embeddings are computed on the basis of RESCAL’s tensor factorization
results for the input Knowledge Graph. The relation disambiguation frame-
work is evaluated on three different benchmark Knowledge Graph datasets
and the obtained results show that the Relation Disambiguation algorithm en-
riches the semantics of a Knowledge Graph which at the same time leads to a
RESCAL factorization for a Knowledge Graph with disambiguated relations
that achieves improvements in the link prediction performance.

Contents

1 Introduction 3

2 Related Work 6

3 Preliminaries 7
3.1 Knowledge Graphs . 7

3.1.1 Link Prediction . 8
3.1.1.1 Metrics . 8

3.2 RESCAL . 8
3.2.1 Training Procedures . 9

3.2.1.1 RESCAL-ALS 10
3.2.1.2 Penalized Maximum Likelihood 10
3.2.1.3 Pairwise Loss 10

3.3 Spectral Clustering . 11
3.3.1 Similarity Graph . 12
3.3.2 Eigengap heuristic . 12

3.4 Hierarchical Clustering . 13

4 Relation Disambiguation Framework 14
4.1 Relation Disambiguation Algorithm 16
4.2 Relation-Specific Subject and Object Embeddings 16
4.3 Clustering Subject and Object Embeddings in a Relation 18
4.4 Identifying Ambiguous Relations 20
4.5 Relation Disambiguation . 24
4.6 Link Prediction for Knowledge Graph with Disambiguated Re-

lations . 25

5 Experiments 27
5.1 Datasets and Implementation 27

5.1.1 Knowledge Graph Datasets 27
5.1.2 Implementation Details 28

5.2 RESCAL Factorization . 28

1

CONTENTS

5.2.1 Model Training . 28
5.2.2 Hyperparameter Tuning and Model Selection 30

5.3 Clustering Relation-Specific Subject and Object Embeddings . . 31
5.3.1 Spectral Clustering . 32

5.3.1.1 k-Nearest Neighbor Graph 32
5.3.1.2 ε-Neighborhood Similarity Graph 33
5.3.1.3 Eigengap Heuristic 34

5.3.2 Hierarchical Clustering 37
5.4 Ambiguous relations . 38

5.4.1 Semantic Evaluation . 39
5.5 Link Prediction . 41

5.5.1 RESCAL factorization on a Knowledge Graph with dis-
ambiguated relations . 41

5.5.2 Evaluation . 42

6 Conclusion 46

List of Figures 47

List of Tables 48

Bibliography 49

2

Chapter 1

Introduction

In today’s digital era, data is one of the most important assets that trans-
forms and moves the world forward. Many organizations and business govern
their decisions based on the extracted insights from the available data. In or-
der to extract knowledge and uncover the semantics behind the vast amounts
of heterogeneous data that are being generated every day, the data is struc-
tured into a set of triples which specify the relationships between the existing
concepts in the data. The set of triples provides a domain-specific knowledge
base which is organized into a Knowledge Graph. Knowledge Graphs model
the information present in the data in terms of entities which represent real-
world concepts and relations which represent different types of relationships
that exist between these concepts. The entities and the relations found in the
data are organized in a graph structure which encodes the semantics of the
domain that has been modeled.

Knowledge Graphs are widely used in many different domains such as search
engines, chatbots, social networks, recommendation systems and biomedicine.
One of the most popular examples for a commercial Knowledge Graph is the
Google Knowledge Graph which is used in search results enhancement and
in the Google Assistant. Google Knowledge Graph covers different categories
of entities such as artists, paintings, movies, books, countries and cities and
models 70 billion triples that exist between the entities. The ability to encode
domain semantics in an intuitive way that can be efficiently queried and the
potential of discovering valuable insights from the Knowledge Graphs inspired
many companies to transform their data in knowledge base which is modeled
by a Knowledge Graph. Such example is the Linkedin Knowledge Graph [1]
which is used to extract valuable consumer analytics information. The entities
in this Knowledge Graph are the Linkedin users, skills, jobs and companies.
The relations specify different relationships such as the current company of a

3

CHAPTER 1. INTRODUCTION

user or users professional skills.

Figure 1.1: Subgraph for the relation organization membership in the Freebase
Knowledge Graph

Knowledge Graphs are usually created from individual user contributions
and by merging and aggregating data from different domains and data sources.
For example, the Freebase Knowledge Graph, which contains general facts
about the world, was created by aggregating entities and relations from dif-
ferent online encyclopedias and databases such as Wikipedia, NNDB1, Mu-
sicBrainz, as well as from user-submitted wiki contributions. As a consequence
of the creation process, Knowledge Graphs contain ambiguous entities and re-
lations. Ambiguous entities are resolved by the existing Entity Resolution
approaches. However, in the focus of this thesis are the ambiguous relations.
Figure 1.1 shows a subgraph for the relation organization membership from the
Freebase Knowledge Graph. This subgraph illustrates that the relation organi-
zation membership models the facts that Japan is a member of the World Bank,
Hillary Clinton is a member of the Girls Scout America and that Stanford is
a member of the American Association of Universities. These facts indicate
that there are multiple semantically different kinds of memberships modeled
with only one relation. Therefore, the relation organization membership is am-
biguous since organization membership in this context can represent different
kinds of memberships.

In this master thesis, we created a novel framework that performs rela-
tion disambiguation in Knowledge Graphs. The proposed framework is based
on our Relation Disambiguation algorithm which discovers and disambiguates

1Notable Names Database (NNDB) is an online database of biographical details of over
40,000 people of note

4

CHAPTER 1. INTRODUCTION

ambiguous relations into multiple relations with clear semantics. The steps
of detecting ambiguous relations and their further disambiguation are based
on clustering assignments obtained in the latent space of relation-specific en-
tity embeddings. These embeddings are computed on the basis of RESCAL’s
tensor factorization results for the input Knowledge Graph.

The RESCAL method models the interactions between the latent features
for a relation with an interaction matrix. The interaction matrices for am-
biguous relations need to capture interactions on multiple semantic levels. By
splitting ambiguous relations into multiple unambiguous relations, each inter-
action matrix captures only interactions between entities that share the same
semantic which is easier to be modeled by the bilinear RESCAL method.
Therefore, within the scope of our framework, we evaluate the effect of the
Relation Disambiguation algorithm on the link prediction performance of the
RESCAL method by performing experiments on the FB15k, FB15k-237 and
WN18 benchmark Knowledge Graph datasets. Additionally, we evaluate the
detected ambiguous relations from a semantical point of view. The obtained
results show that the Relation Disambiguation algorithm is capable of detect-
ing ambiguous relations. The semantic evaluation has shown that relation
disambiguation enhances the semantics of the Knowledge Graph. The im-
provements in the link prediction performance achieved on all datasets used
in the experiments prove that the RESCAL method benefits and is improved
from enrichment of the Knowledge Graph semantics.

5

Chapter 2

Related Work

Relational machine learning is a field which studies methods for statistical
analysis of graph data. One of the main tasks in this field are the tasks of link
prediction, entity resolution and relation disambiguation in Knowledge Graphs
[11]. A common first step towards solving link prediction and entity resolution
tasks is to encode the entities and relations in the Knowledge Graph into a
low dimensional latent-feature representations. There are many different ap-
proaches for learning low dimensional representations from Knowledge Graphs
which can be grouped into translation methods like TransE [3] and TransH
[22], factorization techniques like RESCAL [13] and HolE [12] and neural net-
work approaches like NTN [18] and MLP [5]. There many examples where
embeddings produced by these methods are applied in solving the link predic-
tion and the entity resolution tasks. Entity resolution is most often performed
only based on the similarity scores between the entities embeddings. However,
none of the embeddings produced with any of the above methods were used
for relation disambiguation. Currently, there is no related work in the field of
relation disambiguation which is applied for Knowledge Graphs.

On the other hand, relation disambiguation is a problem that is widely
explored in NLP as part of the relation extraction topic. It is used to disam-
biguate the different relations extracted between named entities in text. For
example, [4] presents an unsupervised approach for relation disambiguation
in a text based on Spectral clustering of context vectors created for pairs of
entities.

6

Chapter 3

Preliminaries

3.1 Knowledge Graphs

Knowledge graphs model information represented in triples of the form
(subject, relation, object) in a graph structure. The nodes in the graph
represent real world entities - the subjects and objects in the triples. The re-
lations in the graph, also called labeled edges, represent the different types of
relationships that exist between these entities.

Mathematically, a Knowledge Graph that models N entities and M rela-
tions can represented as a 3-dimensional tensor KG of shape (N,N,M). If
M = 1, then KG corresponds to a single-relational graph’s adjacency matrix.
Therefore, a Knowledge Graph KG is defined if and only if N > 1 & M > 1.
We define KGr to be the r-th frontal slice of the tensor KG. KGr can be
seen as an adjacency matrix or a directed unweighted graph for the relation r
which specifies the edges between the subjects and objects that are connected
by relation r. A tensor entry KGijr = 1 models the triple (i, r, j) and repre-
sents the existence of an edge from the i-th entity to the j − th entity in the
adjacency matrix for relation r. We define the subjects in relation r with the
following equation:

sr = {i | KGijr = 1, ∀i, ∀j ∈ 1, ..., N}

Similarly, the objects for relation r are defined with the following equation:

or = {j | KGijr = 1, ∀i, ∀j ∈ 1, ..., N}

While the existing triples are encoded with edges in the Knowledge Graph,
there are two different interpretations for the non-existing triples which are

7

CHAPTER 3. PRELIMINARIES

represented with zeros in the Knowledge Graph tensor. The first interpreta-
tion is based on the closed world assumption which states that non-existing
triple indicates false relationship. The second interpretation is based on the
open world assumption which states that a non-existing triple is interpreted as
unknown, meaning that the triple may or may not exist. This interpretation
is more justified than the first one since, in general, Knowledge Graphs are
known to be very incomplete [11].

3.1.1 Link Prediction

Link prediction, also known as knowledge graph completion, predicts the
existence of edges in the Knowledge Graph. It is a very important prediction
task because it adds missing triples in the Knowledge Graphs which expand
the knowledge base of triples.

3.1.1.1 Metrics

The link prediction metrics are based on the edges ranks [2]. All edges for
which we try to predict their existence are considered as positive, existing
triples. The rank of each positive edge is determined based on the rank of
its score against the scores of a set of negative edges generated for the given
positive edge. Common metrics for link prediciton results are:

1. MRR: The average of the reciprocal ranks of all positive edges (higher
is better, best is 1).

2. Hits@K: A fraction of positive edges that rank in top K among their
negatives (higher is better, best is 1). Common values used for K are 1,
3 and 10.

3.2 RESCAL

The RESCAL method [13] is a tensor factorization approach which factorizes
each frontal slice KGr as:

KGr ≈ ERrE
T , for r = 1, ...,M (3.1)

In equation 3.1, E is a N x D matrix that contains the embeddings of the
entities in KG. These embeddings encode the Knowledge Graph entities into
a D dimensional latent-feature vector representations. Rr is an asymmetric D
x D matrix which models the interactions of the latent features for the r-th
relation in the Knowledge Graph. This equation implies that the entities have

8

CHAPTER 3. PRELIMINARIES

a global and unique latent-feature representation, regardless of their occurrence
as subjects or as objects in a relation, as they are represented both times by the
matrix E. The asymmetry of the matrix Rr allows modeling the occurrence
of the entities as subjects or objects for the relation r by computing different
estimates for the existence of the triples (i, r, j) and (j, r, .i).
RESCAL can also be seen as a latent-feature model which explains triples via
pairwise interactions of latent features [11]. Based on the equation 3.1, the
score of a triple (i, r, j) can also be written as:

f̂ijr := eTi Rrej =
D∑

a=1

D∑
b=1

RabrEiaEjb (3.2)

This equation implies that RESCAL is a bilinear model since the interactions
between the entity embeddings are captured using multiplicative terms.

The global entity latent-feature representations in the E matrix can be seen
as semantic entity embeddings in a sense that two representations are close in
the latent-feature space if the corresponding entities are connected to similar
entities via similar relations. For instance, if the triples (i, r, j) and (p, r, j)
exist for the relation r, then in order to correctly predict the existence of these
triples by the RESCAL model, the embeddings for the i-th entity and p-th
entity must be similar. As a consequence, entities with many similar observed
relations will have similar latent-feature representations.

The parameter that has highest influence on the complexity and therefore
on the performance of the RESCAL model is the dimensionality D of the
latent-feature space. A small value for D can lead to a simple model which
is unable to explain the entities semantics and properly model the different
interactions between the latent-features. On the other hand, a large value
for D can produce a complex model which leads to overfitting in the training
procedure.

3.2.1 Training Procedures

The training procedure for the RESCAL factorization aims to find estimates
for the entity embeddings matrix E and the interaction matrices Rr , r =
1, ...,M . The E matrix and the matrices Rr are estimated with one of the
following procedures described in this section.

9

CHAPTER 3. PRELIMINARIES

3.2.1.1 RESCAL-ALS

The matrix E and the matrices Rr are computed by solving the regularized
minimization problem:

min
E,Rr

f(E,Rr) + g(E,Rr) (3.3)

where

f(E,Rr) =
1

2

(∑
r

‖KGr − ERrE
T‖2F

)
(3.4)

and g is the following regularization term:

g(E,Rr) =
1

2
λ

(
‖E‖2F +

M∑
r=1

‖Rr‖2F

)
(3.5)

that is added to prevent model overfitting. The regularized minimization prob-
lem in equation 3.3 is solved with the alternating least-squares (ALS) approach
adjusted for the RESCAL method, presented in [13]. This approach uses a
sequence of efficient closed-form updates for the E matrix and Rr matrices.
The training method presented in this section interprets the Knowledge Graph
based on the closed-world assumption since the minimization problem requires
predicting values close to zero for the non-existing triples in the Knowledge
Graph.

3.2.1.2 Penalized Maximum Likelihood

The matrix E and the matrices Rr are computed with penalized maximum
likelihood training procedure by minimizing the following loss function:

min
E,Rr

N∑
i=1

N∑
j=1

M∑
r=1

− logBer(KGijr|σ(f̂ijr)) +
1

2
λ

(
‖E‖2F +

M∑
r=1

‖Rr‖2F

)
(3.6)

where f̂ijr is the prediction of the RESCAL model for the triple (i, r, j) com-
puted with the equation 3.2 and σ is the sigmoid function [11]. This loss
function can be optimized with the Stochastic Gradient Descent Algorithm
(SGD) [17]. This training method also interprets the Knowledge Graph based
on the closed-world assumption.

3.2.1.3 Pairwise Loss

The training procedures described in sections 3.2.1.1 and 3.2.1.2 estimate the
parameters of the RESCAL model by using the existing triples as well as all

10

CHAPTER 3. PRELIMINARIES

of the non-existing triples in the Knowledge Graph. Since Knowledge Graphs
are generally sparse, considering all of the non-existing triples can lead to
scalability issues during training [11]. An alternative approach is the pairwise
loss training procedure. In order to define this method, we introduce the
following sets of triples of size T : D+ is a set of all existing (positive) triples in
the Knowledge Graph and D− is a set of non-existing (negative) triples created
by generating one negative triple for each of the positive triples. The pairwise
loss method obtains the estimates of the RESCAL parameters by minimizing
the following objective function:

min
E,Rr

T∑
i=1

L
(
f̂(xi+), f̂(xi)

)
+

1

2
λ

(
‖E‖2F +

M∑
r=1

‖Rr‖2F

)
(3.7)

where (xi+) and (xi) are triples from the sets D+ and D− and f̂x is the
RESCAL prediction for a triple x given in the equation 3.2. L is the following
margin-based ranking loss function:

L(f̂+, f̂−) = max(1 + f̂− − f̂+, 0) (3.8)

where f̂+ and f̂− are the scores for a positive and a negative triple, respec-
tively. The main advantage of the pairwise loss training procedue is that it
relaxes the closed-world assumption through the usage of the margin-based
ranking loss function. This loss function does not require the negative triples
to be predicted close to zero, they just need to be sufficiently smaller than the
corresponding positive triples. This training method is also optimized by SGD
or any of its extensions.

3.3 Spectral Clustering

Spectral clustering [10] is a clustering algorithm that aims to find a partition-
ing of the graph that produces the optimal graph cut. The Spectral clustering
algorithm computes clusters by performing the following steps for a given set
of p data points x1, ..., xp and some notion of similarity sij between all pairs of
data points xi and xj:

1. Construct a similarity graph from the data points.

2. Compute a Laplacian Matrix based on the similarity graph.

3. Perform eigendecomposition of the Laplacian Matrix from step 2.

4. Find k clusters in the space of the first k eigenvectors of the Laplacian
matrix using for example the k-means algorithm.

11

CHAPTER 3. PRELIMINARIES

3.3.1 Similarity Graph

The similarity graph for a set of p points represents a weighted symmetric
adjacency matrix of shape (p, p). It models the local neighborhood relation-
ships that exist between the data points [8]. There are three different types of
similarity graphs:

• k-nearest neighbor graphs: In this type of graphs, a node i is con-
nected to a node j if j is among the k-nearest neighbors of i. However,
this definition leads to a construction of a directed similarity graph be-
cause the neighborhood relationship is not symmetric. There are two
ways to transform this graph into undirected graph:

– The directions of the edges are ignored and node i is connected
to node j with an undirected edge if i is among the the k-nearest
neighbors of j or j is among the k-nearest neighbors of i. This
graph is usually called k-nearest neighbor graph.

– A node i is connected to a node j if i among the the k-nearest
neighbors of j and j is among the the k-nearest neighbors of i. This
graph is called mutual-k-nearest neighbor graph.

• The ε-neighborhood graph: This similarity graph connects all nodes
whose pairwise similarity is greater than ε.

• The fully connected graph: This similarity graph connects nodes
with positive pairwise similarity.

The edges in these similarity graphs are weighted by the corresponding pairwise
similarities between the nodes.

3.3.2 Eigengap heuristic

Choosing the optimal number of clusters is a general problem for all clus-
tering algorithms. A heuristic suitable for the Spectral clustering algorithm is
the eigengap heuristic presented in [8]. This heuristic considers the eigenvalues
of the Laplacian matrix. The aim of this heuristic is to choose the number of
clusters such that all eigenvalues λ1, ..., λk are very small, but λk+1 is relatively
large. The major justification for this heuristic comes from the fact that in the
case that there are k connected components in the similarity graph, the eigen-
value 0 has multiplicity k and λk+1 > 0 for the eigenvalues of the Laplacian
matrix.

12

CHAPTER 3. PRELIMINARIES

Multiple larger eigengaps can occur in the eigenvalues of the Laplacian ma-
trix. In order to find the position of the first larger eigengap, for each of the p
eigenvalues we define an eigengap score that is computed with the following
equation:

eigengap scoren =

{
0, if n = 1

w
∑n−1

i=1 −λi + (1− w)|λn − λn 1|, n ∈ 2, ..., p, w ∈ [0, 1]

(3.9)
As can be seen in this equation, a weight w is introduced for the computation
of the eigengap score. It represents a trade-off between the eigengap in the
n-th position and the negative cumulative sum of eigenvalues in the first n− 1
positions. This equation gives preference towards computing higher eigengap
scores for the first larger eigengaps. After computing the eigengap scores, the
optimal number of clusters k is found by selecting the position of the highest
eigengap score with the following equation:

k = arg max
k
{eigengap scorek | k ∈ 1, ..., p} (3.10)

3.4 Hierarchical Clustering

Hierarchical clustering [9] is a clustering algorithm which builds a hierarchy
of clusters with the following procedure: Initially, each data point is assigned
into its own cluster. In each step of the algorithm, based on the similarity
measure between the data points and on the linkage criteria, the two most
similar clusters are merged into one cluster. The algorithm terminates either
when the desired number of clusters is obtained or when there are no clusters
whose similarity is greater than a predefined similarity threshold.

A common measure used to evaluate the clusters computed with Hierarchical
clustering is the silhouette score [16]. It is a measure that indicates how similar
an object is to its own cluster compared with other clusters. The range of
the silhouette score is between -1 and +1. A value close to 1 indicates that
the object is well matched to its own cluster and poorly matched to other
clusters. The silhouette measure for a set of data points with corresponding
clustering assignments is calculated by taking the average of the silhouette
scores computed for all data points.

13

Chapter 4

Relation Disambiguation
Framework

A core component of the proposed Relation Disambiguation Framework in
this thesis is the Knowledge Graph Relation Disambiguation algorithm
which is able to detect and disambiguate ambiguous relations in a Knowledge
Graph. Our algorithm is based on the assumption that an ambiguous relation
contains multiple semantically different groups of entities such that subject en-
tities tend to densely connect to object entities only within the same semantic
group and sparsely connect to entities in different semantic groups. Therefore,
the proposed algorithm aims to group subject entities into subject clusters and
object entities into object clusters for a relation and then discovers semantic
groups in a relation based on the observed connection patterns between these
clusters. The algorithm outputs a new Knowledge Graph that contains un-
ambiguous relations from the input Knowledge Graph as well as new relations
that were produced in the relation disambiguation step.

In order to test our hypothesis that relation disambiguation improves link
prediction performance of the RESCAL model, as part of our framework, the
new Knowledge Graph with disambiguated relations is also factorized with the
RESCAL method. This factorization is then used to compare link prediction
performance between the RESCAL model computed for the input Knowledge
Graph and RESCAL model computed for the Knowledge graph with disam-
biguated relations.

To summarize, the Relation Disambiguation Framework provides the follow-
ing main functionalities:

1. RESCAL tensor factorization on the input Knowledge Graph.

14

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

2. Computation of relation-specific subject and object embeddings.

3. Identification of semantic subgroups with respect to a specific
relation.

4. Detecting ambiguous relations.

5. Disambiguation of ambiguous relations.

6. Evaluation on the effect of Knowledge Graph relation disam-
biguation on link prediction performance of the RESCAL method.

The first section in this chapter presents the general steps of the Relation
Disambiguation algorithm. The idea and intuition behind each of the steps
in the algorithm are afterwards explained in detail in the subsequent sections
in this chapter. The last section of this chapter explains the required changes
implemented in the framework for computing the link prediction metrics on a
Knowledge Graph with disambiguated relations.

15

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

4.1 Relation Disambiguation Algorithm

Algorithm: Knowledge Graph Relation Disambiguation

input: KG - Knowledge graph tensor of shape (N,N,M), where
N = number of entities in the knowledge graph,
M = number of relations in the knowledge graph

1 Factorize KG using RESCAL
2 for each relation r in KG do
3 Compute embeddings for subject entities in relation r using

RESCAL factorization
4 Compute embeddings for object entities in relation r using

RESCAL factorization
5 Cluster subjects for relation r by subject embeddings
6 Cluster objects for relation r by object embeddings
7 Detect whether relation r is ambiguous using subject

clusters and object clusters
8 if relation r is ambiguous then
9 Disambiguate relation r by splitting it onto kr

unambiguous relations
10 else
11 Copy the slice for relation k into the output knowledge

graph
12 end

13 end
output: Disambiguated knowledge graph tensor of shape (N,N,K)

where N = number of entities in KG, K >= M and

K =
M∑
r=1

kr, kr =

{
Splits for relation r, if r is ambiguous relation

1, otherwise

4.2 Relation-Specific Subject and Object Em-

beddings

As mentioned in section 3.1, Knowledge Graphs are represented as a 3-
dimensional tensor where the slice for each relation represents an adjacency
matrix that specifies the existing edges within a relation. Therefore, the first
step towards identifying semantic groups in a relation in the input Knowledge
Graph is to encode the entities into embeddings which represent real-valued
latent-feature vectors representations. These embeddings allow notion of sim-

16

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

ilarity to be defined between the entities with respect to a relation which can
be used to cluster the entities in a relation into groups.

Semantic embeddings for the entities in the input Knowledge Graph are ob-
tained by factorizing the input Knowledge Graph with the RESCAL method.
As explained in section 3.2, the matrix E produced by the RESCAL factor-
ization holds the global embeddings for the entities in the Knowledge Graph.
However, entities in the Knowledge Graph usually appear in multiple rela-
tions which means that some latent features are more important than other
latent features for certain relations. For example, the entity Hillary Clin-
ton in the Freebase Knowledge Graph participates in relations like organi-
zation membership, religion and celebrity friendship. One can assume that
important features for determining Hillary Clinton’s membership to the or-
ganization Girls Scouts of America are her gender and nationality. However,
her gender and nationality are probably far less discriminative features for
predicting her friendships with celebrities for which her profession is a more
important feature for this relation.
This example illustrates that each relation has certain semantics and the global
entity embeddings are unable to capture the specific semantics for a given re-
lation. Therefore, in order to obtain semantic embeddings for a relation, our
aim is to compute entity embeddings specific for each relation that are able to
capture the most discriminative features in each relation. Moreover, we would
like to have two sets of relation-specific embeddings for a relation - the first
set should contain embeddings for the subjects in a relation and the other set
should contain embeddings for the objects in a relation. Additionally, each
embedding should encode the information whether the corresponding entity
appears as a subject or as an object in a given relation.

In order to obtain relation-specific subject and object entity embeddings for
a given relation r, we use the interaction matrix Rr, also provided by the initial
RESCAL factorization on the input Knowledge Graph.
Concretely, let ek be the vector containing the global embedding for the k-th
entity in the knowledge graph. This embedding vector is obtained by subset-
ting the k-th row of the global entity embedding matrix E, ek = E[k, :]. Then,
the relation-specific embedding for the subject i in the relation r is computed
with the following equation:

sir = eiRr (4.1)

On the other hand, the relation-specific embedding for object j in the relation
r is computed with the following equation:

ojr = Rr (ej)
T (4.2)

17

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

Based on the above equations, the relation-specific embeddings for the
subjects in the relation r can be seen as a linear transformation applied on the
global embeddings for the subjects in relation r by taking linear combinations
with the rows of the interaction matrix Rr. The relation-specific embeddings
for the objects in the relation r can also be seen as a linear transformation
applied on the global embeddings for objects in relation r. The only difference
is that the rotation on the global object embeddings is performed by taking
linear combinations with the columns of the interaction matrix Rr.

Figure 4.1 presents the relation-specific subject and object embeddings for
the entities in the relation organization membership These embeddings are
computed with the steps and formulas presented in this section. Their dimen-
sionality is reduced to 2 dimensions by applying the t-SNE algorithm [20].
The left subplot in this figure shows that subject embeddings preserve the se-
mantic similarity between the subjects entities in this relation. As can be seen
in this subplot, the embeddings for country entities like Germany and Libya
are located close in the latent-feature space to embeddings for other country
entities such as United Kingdom and Central African Republic. On contrary,
the countries are positioned far from the two other obvious groups of entities
that can be noted in the latent-feature space: universities and famous persons
like scientists, artists and politicians.
Similar can be said for the object embeddings shown on the right subplot
where it can be seen that entities which represent association of countries like
European Union and African Union lie in a neighborhood with entities that
represent institutions in which countries participate such as World Bank and
World Trade Organization. This embedding neighborhood lies far from the
neighborhood which mainly consists of academic, art and female organizations.

4.3 Clustering Subject and Object Embeddings

in a Relation

The relation-specific embeddings are used as an input to two independent
clustering steps:

• Clustering subjects in a relation with the Spectral clustering
algorithm. The cosine similarities between subject embeddings are
used to construct an ε-neighborhood similarity graph for the sub-
jects in the relation.

• Clustering objects in a relation with the Spectral clustering
algorithm. The cosine similarities between object embeddings are

18

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

Figure 4.1: Subject embeddings and object embeddings for relation organiza-
tion membership

used to construct an ε-neighborhood similarity graph for the objects
in the relation.

In both clustering steps, the normalized Laplacian matrix is constructed
from the similarity graph and the number of clusters is chosen with the eigen-
gap heuristic explained in section 3.3.2.
The figures 4.2 and 4.3 show the eigenvalues of the normalized Laplacian ma-
trices obtained with application of the clustering steps for the relation organi-
zation membership. In both figures, the first three eigenvalues are very small
and the gap is largest between the 3rd and the 4th eigenvalue (in figure 4.2
first two eigenvalues are zeroes). The figure 4.1 shows that subject and object
embeddings are well separated in the latent-feature space. Consequently, the
eigenvalues for the graph Laplacians confirm the intuition that there are no
overlapping clusters for the subjects and objects in this relation. By employing
the eigengap heuristic, the optimal number of clusters for subjects and objects
in this relation is set to 3.

Figure 4.4 visualizes the clustering assignments for subject entities and ob-
ject entities in the relation organization membership computed with Spectral
clustering algorithm by setting the number of clusters to 3 for the both cluster-

19

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

Figure 4.2: Normalized Laplacian eigenvalues - subjects clustering for relation
organization membership

ing steps. The color of each entity embedding in the left and right subplots of
this figure marks the cluster for the corresponding entity. The left subplot il-
lustrates that Spectral clustering is able to group semantically similar subjects
into same clusters since the largest cluster consists of country entities and the
two other clusters consist of university entities and famous individuals entities.
The pink objects cluster on the right subplot has clear semantic meaning be-
cause it groups entities representing organizations whose members are different
countries. The other two object clusters consist mainly of academic institu-
tions. However, a bit ambiguity in the semantics of these two clusters is added
by the existence of entities such as political parties or business organizations
like IAB (Internet Advertising Bureau).

4.4 Identifying Ambiguous Relations

Ambiguous relations in the knowledge graph are detected with the following
procedure:

1. A bipartite graph is constructed for a relation where one set of nodes
consists of subject clusters in the relation and the other set of nodes
consists of object clusters in the relation. The weight of an edge from a
node of the subject cluster to a node of the object cluster in the bipartite
graph represents the aggregated number of edges from the input knowl-

20

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

Figure 4.3: Normalized Laplacian eigenvalues - objects clustering for relation
organization membership

Figure 4.4: Subject clusters and object clusters for relation organiza-
tion membership

21

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

Figure 4.5: Normalized Laplacian Eigenvalues - Community detection on the
bipartite graph for the relation organization membership

Figure 4.6: Bipartite graph for the relation organization membership

22

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

edge graph going from any of the entities in the subject cluster node to
any of the entities in the object cluster node.
The bipartite graph for the relation organization membership is shown
in the figure 4.6. The three nodes in the left part of the graph represent
the three clusters obtained by clustering the subject embeddings in the
relation. Similarly, the three nodes in the right part of the graph rep-
resent the three clusters obtained by clustering the object embeddings
in the relation. The subject cluster labeled with scl 0 in the bipartite
graph is the cluster which contains the country entities. The object
cluster labeled with ocl 0 contains the different organizations in which
the countries participate. Therefore, the edge weight 694 for the edge
from scl 0 to ocl 0 means that there are in total 694 edges in the input
knowledge graph from countries to the organizations whose members are
different countries.

2. The bipartite graph from the previous step is used to detect communi-
ties in a relation. The communities are detected with Spectral clustering
algorithm and the number of communities is again chosen with the eigen-
gap heuristic. The similarity graph for the Spectral clustering is directly
constructed from the edge weights in the bipartite graph.
The eigenvalues of the normalized Laplacian matrix for the bipartite
graph of the relation organization membership are shown in figure 4.5.
The largest eigenvalue gap between the 3rd and the 4th eigenvalue indi-
cates the existence of three non-overlapping communities in this relation.
These three identified communities are shown in figure 4.7. The cluster
nodes which are part of the same community are displayed with same
color in the plot.

3. A relation is defined as ambiguous if the spectral clustering of
the bipartite graph detects more than one community.

Our aim by clustering RESCAL subject and object embeddings is to group
semantically similar entities into same clusters. The pattern of connections
between these clusters of subject and object entities in a relation is examined
with the construction of the bipartite graph. If subject clusters nodes tend to
densely connect to only certain object clusters nodes and sparsely connect to
all other object clusters nodes, then this pattern is a clear indicator for the
existence of semantically different groups of entities within a relation. More-
over, such bipartite graph exhibits strong community structure where each
community contains entities from the input Knowledge Graph that share sim-
ilar semantics. For example, the blue community in figure 4.7 for the relation
organization membership corresponds to a subgraph of the graph for the rela-
tion in the input Knowledge Graph whose entities are different countries and

23

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

Figure 4.7: Detected communities in the relation organization membership

organizations in which these countries participate. The orange community
corresponds to another subgraph of the graph for the relation in the input
Knowledge Graph whose entities are famous individuals and organizations like
academies or political parties in which these individuals are members. The
green community corresponds to the last non-empty subgraph of the graph
for the relation in the input Knowledge Graph that contains universities and
the academic organizations Aau.edu (Association of American Universities)
and American council of learned societies in which universities are members.
These subgraph additionally contains three edges from companies to IAB en-
tity.

Based on the above example which justifies our intuition, we determine the
ambiguity of a relation based on the number of detected communities in the
bipartite graph with Spectral clustering. If only one community is detected
in the bipartite graph, then the corresponding relation is not considered as
ambiguous and remains part of the output knowledge graph. Otherwise, rela-
tions having more than one community are considered as ambiguous and are
disambiguated with the algorithm described in the next subsection.

4.5 Relation Disambiguation

Ambiguous relations in the knowledge graph are disambiguated by applying
the following two steps:

1. An ambiguous relation is splitted into k new unambiguous relations,

24

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

where k is equal to the number of communities in the bipartite graph for
the relation.
Referring to the example for the relation organization membership, this
relation is splitted into the following three unambiguous relations:

• organization country membership

• organization university membership

• organization person membership

2. The final step in relation disambiguation involves reassignment of the
edges from the ambiguous relation to the newly created unambiguous
relations. The edges of an ambiguous relation are reassigned by consid-
ering the following two cases:

• Ambiguous relation edge in the dataset used for training:
Ambiguous edges in the training set are reassigned to only one of the
newly created unambiguous relations based on the edges community
memberships. Specifically, an edge for which the subject entity
cluster and object entity cluster belong to the same community in
the bipartite graph is assigned to the unambigous relation for the
corresponding community. Otherwise, the given edge is assigned to
the relation corresponding to the community in which the cluster
of the edge object entity belongs.

• Ambiguous relation edge in the datasets used for validation
and testing: The relation disambiguation framework detects the
ambiguity of the relations in the knowledge graph only based on
the edges in the training set. Therefore, community memberships
of subject entity and object entity for an edge found in the test
set are unknown. Consequently, the unique unambiguous relation
assignment for the edge can’t be determined and the edge is splitted
into k new edges, one for each of the newly created unambiguous
relations. More formally, if there are n edges for an ambiguous
relation in the test set, then after relation disambiguation the test
set contains n ∗ k edges for the disambiguated relation.

4.6 Link Prediction for Knowledge Graph with

Disambiguated Relations

The edge assignment procedure for ambiguous relations requires modified com-
putation of the link prediction metrics, explained in section 3.1.1. Concretely,

25

CHAPTER 4. RELATION DISAMBIGUATION FRAMEWORK

in order to evaluate the effect of relation disambiguation on link prediction,
the metrics are computed with the following procedure:

1. MRR, Hits@10, Hits@3 and Hits@1 scores are calculated for each edge
in the test set.

2. Edges in the test set are grouped by triples having same values for (sub-
ject, parent ambiguous relation, object). Hence, the number of groups
is equal to the number of edges in the initial test set and each group
consists of:

• One edge if the edge belongs to a relation which was not identified
as ambiguous with the steps in section 4.4

• ki edges introduced when reassigning an edge from the i-th am-
biguous relation which was disambiguated into ki new relations.

3. Link prediction metrics scores are summarized on group level by tak-
ing the maximum value for each metric over the scores for the edges
in a group. For example, Hits@10 score for the i-th group on the dis-
ambiguated test dataset with test T edges is computed by taking the
maximum value for the Hits@10 scores of the edges in the i-th group
with the following formula:

Hits@10groupi = max
edgej∈groupi

Hits@10j, j ∈ 1, ..., T. (4.3)

4. The link prediction metrics for the entire dataset are computed by aver-
aging the metrics scores over the groups in the test set.

An edge in the initial test set represents the existence of the link from subject
entity to object entity in the graph for the edge relation. When the relation
of the edge is detected as ambiguous, the disambiguation procedure aims to
find the most plausible unambiguous relation to assign the edge to. Hence,
the edge is replaced with an edge for each of the newly created unambiguous
relations for the relation. As a consequence, not all edges in the new test
set represent the true existence of links in the knowledge graph. Therefore,
edges in the test set of the knowledge graph with disambiguated relations are
grouped such that one group corresponds to an edge for an ambiguous relation
in the initial test set. The most plausible unambiguous relation assignment
for the edge is the relation in the group that provides highest scores for the
link prediction metrics. The relation disambiguation framework has positive
effect on link prediction if the averaged link prediction metrics on the test
set produced with the relation disambiguation algorithm are higher than the
averaged link prediction metrics on the initial test set.

26

Chapter 5

Experiments

5.1 Datasets and Implementation

5.1.1 Knowledge Graph Datasets

The experiments in this master thesis are performed on the following three
benchmark Knowledge Graph datasets:

• FB15k is a dataset introduced in [3]. It is a subset of the Freebase
Knowledge Graph which models 592,213 triples in which occur 14,951
unique entities and 1,345 unique relations.

• FB15k-237 is a dataset introduced in [19]. It is a subset of the FB15k
dataset that excludes redundant relations and triples in the test set for
which corresponding inverse triple exists in the training set. This Knowl-
edge Graph models 310,116 triples in which occur 14,951 unique entities
and 237 unique relations.

• WN18 dataset, also introduced in [3], is created from the WordNet
lexical database that models different relations that exists between the
synsets (sets of synonyms) in the English language. WN18 Knowledge
graph models 151,442 triples that describe 18 different relations between
40,943 synsets in the English language.

In our experiments, each of these Knowledge Graph datasets were splitted
into corresponding training set, validation set and test set. The percentage of
triples in each set is shown in table 5.1. In order to have more samples during
model training phase for the smaller datasets, the datasets FB15k-237 and
WN18 contain higher percentage of triples in the training set than the FB15k
dataset.

27

CHAPTER 5. EXPERIMENTS

Dataset Triples Training set Validation set Test set
FB15k 592,213 81% 9% 10%

FB15k-237 310,096 87% 6% 7%
WN18 151,442 93% 3.5% 3.5%

Table 5.1: Training set, validation set and test set split ratios for the datasets
used in the experiments

5.1.2 Implementation Details

The experiments in this thesis were implemented in Python, release version
3.7.3.
The RESCAL factorizations and link prediction evaluations were performed
with the OpenKE package based on PyTorch [6]. The used PyTorch release
version was 1.1.0. Furthermore, we customized the OpenKE package by im-
plementing: L1 regularization for RESCAL model training, initialization of
the RESCAL model with pretrained embeddings and modification of the link
prediction evaluation procedures explained in section 4.6.
Spectral clustering and Hierarchical clustering algorithms were executed with
the scikit-learn package implementation [15], release version 0.21.2. The eigen-
decomposition for Spectral clustering was obtained with the numpy package
[14], release version 1.16.4. The Laplacian matrices were computed with the
scipy package [21].

5.2 RESCAL Factorization

5.2.1 Model Training

All RESCAL models in the performed experiments were trained with the
pairwise loss training procedure explained in section 3.2.1.3. The margin-
based ranking loss function with L1 regularization was optimized over
the dataset training set with the Adam optimization algorithm [7]: At each
epoch, num batches times is sampled a batch size of positive examples and
corresponding batch size of negative examples (one per each positive example),
where

batch size = |training set|/num batches.

For each of the datasets, we performed grid search for the hyperparameters
learning rate and num batches. The best convergence of the training loss
function was achieved for learning rate = 0.0001 and num batches = 100.

28

CHAPTER 5. EXPERIMENTS

Figure 5.1: RESCAL model training with early stopping on FB15k-237 dataset

The initial number of training epochs was set to 10000. However, in order
to prevent overfitting, for each dataset we implemented the following early
stopping procedure: On each 25-th training epoch, we store the RESCAL
model at the given epoch and evaluate the Hits@10 score on the validation
set. If the Hits@10 score does not improve after five consecutive evaluations,
the training procedure is stopped and the model computed at the epoch that
achieved highest Hits@10 score on the validation set is returned.
The early stopping procedure for the FB15k-237 dataset is illustrated on figure
5.1. The blue line in the plot corresponds to the left y-axis and shows the
training loss achieved in each epoch. The green line on the plot corresponds to
the right y-axis and it shows the Hits@10 score on the validation set computed
on every 25-th training epoch. As can be seen on this figure, the training
loss decreases fast in the initial epochs and it starts to decrease very slowly
after the 2000-th epoch. On the other hand, as expected, the Hits@10 score
also increases fast in the initial epochs and after the 3400-th training epoch it
begins to decrease. Since the decrease happens on five consecutive evaluations,
the training procedure is stopped and the RESCAL model computed in the
3400-th training epoch is returned.

29

CHAPTER 5. EXPERIMENTS

5.2.2 Hyperparameter Tuning and Model Selection

As mentioned in section 3.2, the key hyperparameter of the RESCAL model
is the embedding dimension d. The different number of entities, relations
and triples in the Knowledge Graph datasets used in the experiments require
separate tuning of the embedding dimension for each dataset. By fixing the
embedding dimension, we additionally search for the optimal L1 regularization
constant for the given embedding dimension. Therefore, for each dataset, a
grid search is performed over different pairs of embedding dimensions and
regularization constants by training a separate RESCAL model for the given
hyperparameter configuration with the procedure described in the previous
section. An optimal pair of hyperparameters for a dataset is the pair for
which the corresponding RESCAL model achieves highest Hits@10 score on
the validation set. This RESCAL model is selected as the most representative
model for the dataset and it is used as an input for the experiments performed
in the next steps of the Relation Disambiguation framework.

The hyperparameter tuning procedure for FB15k-237 dataset is shown in
figure 5.2. As can be seen in the plot, increasing the embedding dimension im-
proves the link prediction performance on the validation set, up to embedding
dimension of 50. Further increase in the embedding dimension results in worse
link prediction performance. This implies that RESCAL models with embed-
ding dimension greater than 50 are too complex for the FB15k-237 dataset and
result in overfitting. The regularization constant of 0.00001 consistently pro-
duces best results across the different dimensions. Therefore, as a best model
RESCAL model for the FB15k-237 dataset is chosen the model trained with
the embedding dimension of 50 and regularization constant equal to 0.00001.
The optimal embedding dimensions chosen by this procedure for the FB15k
and WN18 datasets were 100 and 150, respectively. The higher embedding
dimension for the FB15k can be justified by the fact that FB15k Knowledge
Graph models almost twice as many triples and contains 1,108 more relations
compared to the FB15k-237 Knowledge Graph. Although WN18 Knowledge
Graph models much smaller number of triples than FB15k and FB15k-237, it
contains almost three times more entities in its Knowledge Graph. Therefore,
a higher embedding dimension is needed to properly model the entities and
the interactions between their latent features in the WN18 Knowledge Graph.

30

CHAPTER 5. EXPERIMENTS

Figure 5.2: RESCAL model Hyperparameter tuning on FB15k-237 dataset

5.3 Clustering Relation-Specific Subject and

Object Embeddings

The RESCAL factorization of the input Knowledge Graph dataset, obtained
with the training and model selection procedures described in the previous
section, is used to compute the relation-specific subject and object embeddings.
These embeddings are calculated as described in section 4.2.

The clustering steps described in section 4.3 are executed with two clustering
algorithms: Spectral clustering and Hierarchical clustering. Each experiment
for a clustering algorithm and its corresponding hyperparameters outputs a
clustering assignments for the subjects and clustering assignments for the ob-
jects in a relation. In order to evaluate the effect of the clustering algorithms
and their hyperparameters, the next steps of the Relation Disambiguation al-
gorithm are executed for each pair of clustering assignments for subjects and
objects in a relation. Therefore, a new output Knowledge Graph with dis-
ambiguated relations is produced for each clustering experiment performed in
this section.

31

CHAPTER 5. EXPERIMENTS

In this thesis, the cosine similarity is used as a similarity measure between en-
tities when evaluating the experiments for spectral clustering and hierarchical
clustering, respectively. The motivation for using the cosine similarity comes
from the L1 regularization that is added to the training loss function for the
RESCAL model. L1 regularization tends to produce sparse entity embeddings
and sparse relation interaction matrices for the RESCAL model. Therefore,
when two entities are compared with cosine similarity by their relation-specific
embeddings, only the latent features having non-zero values in both embed-
dings are relevant in order to determine the similarity between the entities.

In this section we describe the experiments performed with Spectral cluster-
ing algorithm and Hierarchical clustering algorithm. The effect of the cluster-
ing algorithms on the detected ambiguous relations and on the link prediction
performance are then discussed in sections 5.4 and 5.5.

5.3.1 Spectral Clustering

In order to perform the clustering steps described in section 4.3 with the
Spectral clustering algorithm, two similarity graphs are constructed: one for
the subjects in a relation and the another one for the objects in a relation.
The similarity graphs are constructed based on the relation-specific subject
embeddings and relation-specific object embeddings, respectively. In this the-
sis, we experiment with two different similarity graphs: k-nearest neighbor
graph and ε-neighborhood similarity graph.

5.3.1.1 k-Nearest Neighbor Graph

For the FB15k-237 dataset, we constructed multiple different subjects and
objects k-nearest neighbor similarity graphs for values of k in the range from
3 to 10. For a fixed value of k, the similarity graphs for the subjects and the
similarity graphs for the objects are constructed with the chosen value of k
for each of the 237 relations that exist in the FB15k-237 dataset. However, all
of the constructed similarity graphs were either sparse or dense. Sparse simi-
larity graphs have high number of connected components and each connected
component contains only a small number of entities. Spectral clustering on
such sparse similarity graphs produces clustering assignments such that each
entity is assigned to a separate cluster. If both similarity graphs for the sub-
jects and objects in a relation are sparse, then the relation disambiguation step
explained in section 4.5 will produce a large number of new relations. Learn-
ing interaction matrices that properly capture the semantics for these newly-
created relations is not feasible since each relation contains a small number of

32

CHAPTER 5. EXPERIMENTS

edges in its adjacency matrix. On the other hand, the Spectral clustering on
dense similarity graphs produces only one cluster since most of the entities are
densely connected. Therefore, dense subject and object similarity graphs for
a relation can lead to not detecting a potentially ambiguous relation as am-
biguous. Because we were unable to determine a value of k that will produce
balanced number of subject and object clusters for most of the relations in
the FB15k-237 dataset, the next steps in the Relation Disambiguation algo-
rithm based on Spectral clustering were performed only with ε-neighborhood
similarity graphs.

5.3.1.2 ε-Neighborhood Similarity Graph

For the construction of the ε-neighborhood similarity graph, we experi-
mented with ε values of 0.3, 0.5, 0.7 and 0.8 as a threshold values for the
cosine similarity between the entities in the similarity graph. For example, if
ε = 0.3, then the similarity graph contains only edges between pairs of entities
having a cosine similarity greater or equal than 0.3. For a given ε value, ε-
neighborhood similarity graphs are constructed for the subjects and the objects
in each relation of the knowledge graph datasets used in the experiments.

The different values for the ε-threshold strongly influence the number of
subject and object clusters obtained for a relation.
Smaller ε values result in connecting less similar entities which leads to an
existence of more edges in the similarity graph. Hence, the resulting similarity
graph contains only a few connected components with higher number of entities
in each component. Consequently, Spectral clustering produces small number
of clusters on such similarity graphs.
On the contrary, higher ε values result in connecting smaller number of entities
in the similarity graph. Therefore, similarity graphs constructed with a high ε
threshold are sparse and contain a high number of connected components with
small number of entities in each component. Hence, higher number of clusters
are obtained on sparse similarity graphs with Spectral clustering.

The influence of the ε value on the number of clusters is additionally illus-
trated with an example for the relation award ceremony from the FB15k-237
Knowledge Graph. The edges in this relation specify the ceremonies on which
different awards are honored.
Figure 5.3 shows the subject and object Spectral clustering assignments for this
relation computed by constructing the ε-neighborhood similarity graphs with
ε = 0.7. The similarity graph for the subjects leads to identifying three clus-
ters of awards among subjects: grammy awards, emmy awards and academy

33

CHAPTER 5. EXPERIMENTS

Figure 5.3: Subject clusters and object clusters in the relation award ceremony
- ε = 0.7

awards. The similarity graph for the objects leads to identifying two clusters of
ceremonies among the objects: ceremonies for grammy awards and ceremonies
for emmy/academy awards.
Figure 5.4 shows that constructing the similarity graph with the value of ε
decreased to 0.3 for the relation award ceremony leads to grouping all awards
into one subject cluster and all ceremonies into one object cluster.

5.3.1.3 Eigengap Heuristic

As already mentioned in sections 4.3 and 4.4, the number of clusters in the
steps of the proposed Relation Disambiguation algorithm that involve Spectral
clustering is chosen with the eigengap heuristic explained in section 3.3.2. In
order to implement this heuristic, the eigengap score needs to be calculated
for each possible choice of the number of clusters. The computation of the
eigengap scores requires choosing a value for the weighting hyperparameter w
in equation 3.9.
A value of w close to zero neglects the cumulative eigenvalues sum in the
equation 3.9 and favorites selection of the eigenvalue gap that occurs within
the later indices in the sorted eigenvalues array, even if the selected eigengap
is not the first larger eigengap. Hence, a small value for w can produce higher

34

CHAPTER 5. EXPERIMENTS

Figure 5.4: Subject clusters and object clusters in the relation award ceremony
- ε = 0.3

number of clusters. The issue with choosing a small value for w is illustrated
with the example shown in figure 5.5. This figure shows the eigenvalues of the
normalized Laplacian matrix obtained by clustering the objects in the relation
award nomination with the value of 0.5 for the ε-neighborhood graph. As can
be seen in this figure, the first large eigengap occurs between the 1st and the
2n eigenvalue. However, there is another large eigengap that occurs between
the 3rd and the 4th eigenvalue. If w = 0.1, then the eigengap heuristic selects
the optimal number of clusters to 3. This means that the selection is based
on the second largest eigengap which contradicts with the definition of the
eigengap heuristic.
On the other hand, a value of w close to 1 favorites selection of the first small
non-zero eigengap which can be problematic if there exists a higher eigengap
that occurs within the next few indices in the sorted eigenvalues array. Such
example is presented in figure 5.6. This figure shows the eigenvalues of the
normalized Laplacian matrix obtained by clustering the objects in the relation
place of birth. The first gap in this plot occurs between the 1st and the 2nd
eigenvalue. However, this gap is very small and is close to zero. The first larger
gap in this plot occurs between the 2nd and the 3rd eigenvalue. By setting
w to 0.9 the eigengap heuristic outputs 1 as the optimal number of clusters.

35

CHAPTER 5. EXPERIMENTS

Figure 5.5: Normalized Laplacian eigenvalues - objects clustering for the rela-
tion award ceremony

This implicates that instead of finding the first larger eigengap, the eigengap
heuristic incorrectly found the first small non-zero gap.
The value of w = 0.4 produces the optimal number of clusters in the both
situations. Therefore, our Relation Disambiguation algorithm uses 0.4 as a
value for the hyperparameter w in the eigengap heuristic.

For some Spectral clustering experiments, it was found that there is no well-
defined gap between the eigenvalues of the normalized Laplacian matrix. The
gap is not well-defined because the differences between all eigenvalues are very
small and approximately the same. In [8] it is shown that this scenario occurs
when there are many overlapping clusters in the data. Therefore, in order
to prevent selecting more than one cluster in such cases, we introduced one
more hyperparameter in the eigengap heuristic called eigengap threshold.
We set its value to 0.05 for all datasets used in the experiments. This hyper-
parameter has the following meaning: An index corresponding to an eigengap
is considered as a candidate for the optimal number of clusters if and only if
the eigengap at the given index is greater than the eigengap threshold. If no
eigengap exists being greater than the eigengap threshold, then one cluster is
returned by default.

36

CHAPTER 5. EXPERIMENTS

Figure 5.6: Normalized Laplacian eigenvalues - objects clustering for the rela-
tion place of birth

5.3.2 Hierarchical Clustering

In each Hierarchical clustering experiment performed over the input relation-
specific embeddings, several clustering assignments were computed by iterating
the value for the hyperparameter number of clusters in the range between 1
and 20. Each clustering assignment was evaluated with the Silhouette measure,
described in section 3.4. The assignment which achieved the highest Silhouette
score was chosen to be the optimal clustering assignment.

A major drawback of the above procedure for choosing the optimal clus-
tering assignments with Hierarchical clustering is that it tends to produce
higher number of clusters compared to the eigengap heuristic. This leads to
having imbalanced clusters such that the majority of the entities are grouped
only into one cluster. An example of such behavior is shown in figure 5.7 for
the relation gdp nominal currency found in the FB15k-237 Knowledge graph.
The left subplot illustrates that Hierarchical clustering identified two clusters
among the subjects in this relation. However, the yellow cluster contains the
majority of the subjects in this relation. The right subplot illustrates that the
although each of the three objects are quite far from each other in the latent-
feature space, two of them are grouped into the same cluster with Hierarchical
clustering. The eigengap heuristic is able to avoid such clustering assignments
because for a sufficiently high value of ε, the ε-neighborhood graph consists

37

CHAPTER 5. EXPERIMENTS

Figure 5.7: Hierarchical clustering assignments in the subjects and the objects
in the relation gdp nominal currency

only of zeros when the entities are far from each other in the latent feature
space. As a consequence, the eigenvalues of the corresponding Laplacian ma-
trix are all zeros and the eigengap heuristic will output one cluster as optimal
number of clusters.

5.4 Ambiguous relations

Table 5.2 summarizes the percentage of detected ambiguous relations in the
FB15k and FB15k-237 datasets obtained with the different Spectral cluster-
ing and Hierarhical clustering experiments applied on the subject and on the
objects in the relations found in these Knowledge Graphs. The shortcut SC
in the table stands for the Spectral clustering algorithm and the shortcut HC
stands for the Hierarchical clustering algorithm.
As can be seen in this table, increasing the ε value for the ε-neighborhood sim-
ilarity graphs used in Spectral clustering increases the percentage of detected
ambiguous relations in both Knowledge Graphs. Based on the algorithm for
detecting ambiguous relations in our framework, described in section 4.4, a
relation is detected as ambiguous if its bipartite graph contains more than one
community. Consequently, a relation that has only one subject cluster and

38

CHAPTER 5. EXPERIMENTS

only one object cluster is not ambiguous. Section 5.3.1.2 shows that Spectral
clustering for similarity graphs constructed with small ε values results in a
small number of clusters. Therefore, the smallest percentage of ambiguous
relations is detected for a value of ε equal to 0.3 because the Spectral cluster-
ing algorithm applied on the similarity graphs constructed with this ε value
results in one subject cluster and one object cluster for most of the relations
in both graphs. Section 5.3.1.2 also illustrates that the increase of the value of
ε for the construction of the ε-neighborhood similarity graph produces higher
number of clusters with Spectral clustering. Consequently, when both sim-
ilarity graphs for the subjects and the objects in a relation are constructed
with a high value of ε, a high number of subject clusters and object clusters is
obtained. At the same time, the high number of subjects clusters and objects
clusters for a relation increases the number of nodes and edges in the bipartite
graph constructed for a relation. This increases the chances for identifying
more than one community in the bipartite graph for the relation. Therefore,
highest percentage of ambiguous relations with Spectral clustering is detected
for value of ε equal to 0.8 which is the highest value used in our experiments.
The Hierarchical clustering produced highest percentage of detected ambigu-
ous relations in both Freebase Knowledge Graphs. This is strongly correlated
with the imbalanced number of clusters obtained for the subjects and the ob-
jects in the relations with Hierarchical clustering being explained in section
5.3.2.

The WN18 Knowledge Graph contains almost three times more entities than
the Freebase Knowledge Graph. This fact causes the eigendecomposition of the
Laplacian matrices for some relations in this dataset to require high amount
of numerical operations. We were able to compute eigendecomposition of the
Laplacians for all relations only for ε values of 0.5 and 0.8 because these values
produced sparse similarity graphs. Therefore, the results on the WN18 dataset
are shown only for Spectral clustering experiments performed with ε values of
0.5, 0.8 and Hierarchical clustering.
Only 1 ambiguous relation (out of 18) was identified in the two experiments
performed with Spectral clustering. On the other hand, 11 relations were
identified as ambiguous with Hierarchical clustering.

5.4.1 Semantic Evaluation

In this section we would like to give a notion about the detected ambiguous
relations and the disambiguation results from a semantically point of view.
We explain the semantics of 5 out of 11 relations which were identified as
ambiguous in the FB15k-237 dataset with the following configuration: The

39

CHAPTER 5. EXPERIMENTS

SC,
eps = 0.3

SC,
eps = 0.5

SC,
eps = 0.7

SC,
eps = 0.8

HC

FB15k 2.5% 6% 10.5% 12.5% 40%
FB15k-237 2.5% 4.7% 12% 16% 46%

Table 5.2: Percentage of detected ambiguous relations in FB15k and FB15k-
237 datasets with the different clustering experiments

subjects and objects in the relations were clustered with Spectral clustering
and ε value of 0.5 was used for the construction of the subjects and objects
similarity graphs in all of the 237 relations in this dataset. We evaluate the
semantics of the following relations:

• location contains: This relation specifies the location of famous insti-
tutions such as universities and businesses. The majority of locations in
the Freebase dataset are places in USA. Therefore, the subject entities in
this relation are grouped into two clusters. The first subject cluster con-
tains all the locations from USA and the second subject cluster contains
locations from the rest of the world. Likewise, the object entities are
also grouped into two clusters. The first object cluster contains all in-
stitutions in USA and the second object cluster contains the institutions
from the rest of the world. The relation disambiguation step (section
4.5) splits this relation into two unambiguous relations:

– location USA contains

– location world contains

• organization membership: This relation is explained in the introduc-
tion and the newly created unambiguous relations are stated in section
4.5.

• educational institution campus: This relation specifies the campuses
of the different universities. Similar as for the relation location contains,
the universities from USA make the majority of the universities in the
dataset. This relation is disambiguated by our framework into two un-
ambiguous relations:

– educational institution USA campus

– educational institution world campus

• award nominated for: This relation specifies the award nominations
for two categories of subject entities: musicians and movies. Therefore,
it is disambiguated by our framework into two unambiguous relations:

40

CHAPTER 5. EXPERIMENTS

– award nominated movie for

– award nominated musician for

• sports team roster: Subjects in this relation are different positions
that exists in football, basketball and american football like midfielder
and quarterback. The objects in this relation are different teams which
have players for the subjects positions. This relation is disambiguated
into two new relations:

– sports football team roster

– sports american football and basketball team roster

5.5 Link Prediction

An execution of the Relation Disambiguation algorithm for an input Knowl-
edge Graph and a choice of one of the supported clustering algorithms with
its corresponding hyperparameters produces a new output Knowledge Graph
with disambiguated relations. In order to evaluate the effect of the relation
disambiguation on link prediction for the RESCAL method, each Knowledge
Graph with disambiguated relations is factorized with the RESCAL method.

5.5.1 RESCAL factorization on a Knowledge Graph with
disambiguated relations

The embedding dimension of the RESCAL factorization on the Knowledge
Graph with disambiguated relations is set to the value of the optimal em-
bedding dimension found for the corresponding input Knowledge Graph. For
example, the embedding dimension is set to 50 in the RESCAL models for
all FB15k-237 Knowledge Graphs with disambiguated relations, since this em-
bedding dimension was found as optimal in section 5.2.2 for the FB15k-237
dataset. Additionally, the optimal RESCAL model for a dataset was used to
perform the following initialization steps in all RESCAL models for Knowledge
Graphs with disambiguated relations produced for the same dataset:

• The entity embeddings were initialized with the values of the entity em-
beddings from the optimal RESCAL model for the dataset.

• The interaction matrices for relations that correspond to unambiguous
relations in the input Knowledge Graph were initialized with the values
of the corresponding unambiguous relations interaction matrices from
the optimal RESCAL model for the dataset.

41

CHAPTER 5. EXPERIMENTS

After completion of the initialization steps, the RESCAL models for the
Knowledge Graphs with disambiguated relations were trained with the early
stopping procedure described in section 5.2.1.

5.5.2 Evaluation

The RESCAL factorization of a given Knowledge Graph was used to com-
pute the link prediction metrics on a test set that was not used during the
RESCAL training procedure. The test sets for the Knowledge Graphs with
disambiguated relations were derived with the procedure explained in section
4.5.
In this section we examine the effect of the Relation Disambiguation algo-
rithm on the link prediction results for the datasets used in our experiments.
Additionally, in order to examine the effect of the Relation Disambiguation
algorithm only on the detected ambiguous relations, for each execution of the
Relation Disambiguation algorithm for an input Knowledge Graph we per-
formed the following evaluation: A new test set was created for the input
Knowledge graph which is a subset of the initial test set. This test set contains
edges only from relations which were identified as ambiguous by the algorithm.
Similarly, a new test set was created for the output Knowledge Graph which
is a subset of the test set of the output Knowledge Graph that only contains
edges from relations that were introduced in the relation disambiguation step
(section 4.5). Then, the link prediction metrics for the new test of the input
Knowledge Graph were computed by the corresponding RESCAL model for
this Knowledge Graph. Similarly, the link prediction metrics for the new test
of the output Knowledge Graph with disambiguated relations were computed
by the corresponding RESCAL model for the output Knowledge Graph with
disambiguated relations.

Table 5.3 presents the link prediction results for the FB15k Knowledge
Graphs. The first row shows the scores for the input FB15k dataset. Each
of the following rows shows scores for a FB15k Knowledge Graph with disam-
biguated relations that is obtained for a choice of clustering algorithm and its
hyperparameters. Link prediction scores are higher in all Knowledge Graphs
with disambiguated relations than in the input FB15k Knowledge graph. The
best scores are obtained when subjects and objects in the relations are clus-
tered with the Hierarchical clustering algorithm. These results are very close to
the best results with the Spectral clustering algorithm, obtained for the value
of ε equal to 0.5. This shows that for the experiments performed with Spectral
clustering, the number of detected ambiguous relations is not correlated with
the improvements in the link prediction results for FB15k since the ε values

42

CHAPTER 5. EXPERIMENTS

of 0.7 and 0.8 lead to detecting a higher number of ambiguous relations (as
shown in table 5.2), but result in a worse prediction.
Table 5.4 shows the link prediction results for the ambiguous relations detected
with the different clustering algorithms on the FB15k dataset. The first cell in
each row describes the clustering algorithm used in the corresponding experi-
ment. Then, the next cells are splitted into two cells: the top cell represents
the score of the RESCAL model computed only on the ambiguous relations de-
tected with the corresponding clustering algorithm for the FB15k Knowledge
Graph and the bottom cell represents the score of the corresponding RESCAL
model for the output Knowledge Graph with disambiguated relations. The
values in the top cell of each row can be interpreted as a confidence in the am-
biguity of the detected ambiguous relations. Based on the RESCAL method,
one can assume that link prediction scores should be smaller for ambiguous
relations than for unambiguous relations. Therefore, small values in the top
cells indicate a high confidence in the ambiguity of the detected ambiguous re-
lations. An ε value of 0.3 for Spectral clustering produces clusters that contain
many dissimilar entities. Therefore, the ambiguous relations detected based on
such clusters are not trustworthy which is confirmed by the high values of the
top cells in the first row in table 5.4. Moreover, the bottom cells show that the
disambiguation of these relations leads to worse link prediction scores on these
relations. These values justify our interpretation of the link prediction scores
as a confidence in the ambiguity of the detected relations. When the value
for ε is increased to 0.5, the link prediction scores for the FB15k dataset are
smaller compared to the link prediction scores for 0.3 value of ε. Our higher
confidence in the ambiguity of the relations produced with ε = 0.5 is justified
by the increase in the link prediction scores after the disambiguation of these
relations and by the fact that the best link prediction scores with Spectral
clustering for the FB15k Knowledge Graph are obtained with this ε value.

Our Relation Disambiguation algorithm also improves the link prediction
performance on the FB15k-237 and WN18 datasets. The results for the FB15k-
237 dataset are shown on tables 5.5 and 5.6. The results for WN18 dataset
are shown on tables 5.7 and 5.8.

43

CHAPTER 5. EXPERIMENTS

Dataset MRR Hits@10 Hits@3 Hits@1
FB15k 0.414 0.664 0.482 0.285

FB15k-SC, eps=0.3 0.431 0.685 0.505 0.298
FB15k-SC. eps=0.5 0.438 0.691 0.514 0.304
FB15k-SC, eps=0.7 0.427 0.681 0.499 0.293
FB15k-SC, eps=0.8 0.431 0.685 0.504 0.297

FB15k-HC 0.441 0.691 0.517 0.309

Table 5.3: Link prediction results for the FB15k datasets

Dataset MRR Hits@10 Hits@3 Hits@1

FB15k-SC, eps=0.3
0.556 0.883 0.634 0.419
0.527 0.776 0.603 0.392

FB15kSC, eps=0.5
0.442 0.734 0.546 0.28
0.487 0.776 0.599 0.325

FB15k-SC, eps=0.7
0.536 0.729 0.586 0.436
0.548 0.729 0.594 0.453

FB15k-SC, eps=0.8
0.579 0.763 0.631 0.482
0.565 0.758 0.605 0.471

FB15k-HC
0.409 0.688 0.491 0.261
0.449 0.725 0.54 0.299

Table 5.4: Link prediction results for the ambiguous relations in the FB15k
datasets

Dataset MRR Hits@10 Hits@3 Hits@1
FB15k-237 0.263 0.424 0.29 0.183

FB15k-237-SC, eps=0.3 0.266 0.426 0.294 0.185
FB15k-237-SC. eps=0.5 0.268 0.431 0.293 0.186

FB15k-237-SC, eps=0.7 3 0.271 0.434 0.296 0.189
FB15k-237-SC, eps=0.8 0.272 0.434 0.298 0.191

FB15k-237-HC 0.282 0.448 0.307 0.2

Table 5.5: Link prediction results for the FB15k-237 datasets

44

CHAPTER 5. EXPERIMENTS

Dataset MRR Hits@10 Hits@3 Hits@1

FB15k237-SC, eps=0.3
0.293 0.445 0.321 0.215
0.302 0.465 0.335 0.219

FB15k237-SC, eps=0.5
0.309 0.47 0.339 0.226
0.31 0.483 0.35 0.22

FB15k237-SC, eps=0.7
0.307 0.465 0.349 0.223
0.345 0.5 0.383 0.265

FB15k237-SC, eps=0.8
0.254 0.377 0.297 0.184
0.285 0.415 0.306 0.218

FB15k237-HC
0.249 0.41 0.273 0.168
0.287 0.454 0.31 0.206

Table 5.6: Link prediction results for the ambiguous relations in the FB15k-237
datasets

Dataset MRR Hits@10 Hits@3 Hits@1
WN18 0.72 0.893 0.788 0.6248

WN18-SC, eps=0.5 0.74 0.9 0.8 0.6505
WN18-SC, eps=0.8 0.75 0.901 0.816 0.662

WN18-HC 0.78 0.9 0.837 0.706

Table 5.7: Link prediction results for the WN18 datasets

Dataset MRR Hits@10 Hits@3 Hits@1

WN18-SC, eps=0.5
0.44 1 0.66 0.16
0.565 0.66 0.5 0.5

WN18-SC, eps=0.8
0.382 0.576 0.403 0.307
0.421 0.5 0.442 0.365

WN18-HC
0.51 0.74 0.549 0.406
0.564 0.771 0.613 0.464

Table 5.8: Link prediction results for the ambiguous relations in the WN18
datasets

45

Chapter 6

Conclusion

This thesis introduced a framework for relation disambiguation in Knowl-
edge Graphs. A main component of the presented framework is the Relation
Disambiguation algorithm which performs relation disambiguation based on
relation-specific embeddings that are computed on a basis of RESCAL’s tensor
factorization for the input Knowledge Graph. The achieved results on differ-
ent datasets showed that the Relation Disambiguation algorithm ennhances
the Knowledge Graph semantics which leads to improving the link prediction
results of the RESCAL method.

The relation disambiguation framework currently supports only a usage
of bilinear tensor factorization methods like RESCAL. In order to compute
relation-specific embeddings that are able to capture non-linear relationships
between the entities in the Knowledge Graph, as part of the future work, we
plan to extend our framework so that it can support computation of other
tensor factorization and Knowledge Graph embeddings methods.

46

List of Figures

1.1 Subgraph for the relation organization membership in the Free-
base Knowledge Graph . 4

4.1 Subject embeddings and object embeddings for relation organi-
zation membership . 19

4.2 Normalized Laplacian eigenvalues - subjects clustering for rela-
tion organization membership 20

4.3 Normalized Laplacian eigenvalues - objects clustering for rela-
tion organization membership 21

4.4 Subject clusters and object clusters for relation organization membership
21

4.5 Normalized Laplacian Eigenvalues - Community detection on
the bipartite graph for the relation organization membership . . 22

4.6 Bipartite graph for the relation organization membership 22
4.7 Detected communities in the relation organization membership 24

5.1 RESCAL model training with early stopping on FB15k-237 dataset
29

5.2 RESCAL model Hyperparameter tuning on FB15k-237 dataset 31
5.3 Subject clusters and object clusters in the relation award ceremony

- ε = 0.7 . 34
5.4 Subject clusters and object clusters in the relation award ceremony

- ε = 0.3 . 35
5.5 Normalized Laplacian eigenvalues - objects clustering for the

relation award ceremony . 36
5.6 Normalized Laplacian eigenvalues - objects clustering for the

relation place of birth . 37
5.7 Hierarchical clustering assignments in the subjects and the ob-

jects in the relation gdp nominal currency 38

47

List of Tables

5.1 Training set, validation set and test set split ratios for the
datasets used in the experiments 28

5.2 Percentage of detected ambiguous relations in FB15k and FB15k-
237 datasets with the different clustering experiments 40

5.3 Link prediction results for the FB15k datasets 44
5.4 Link prediction results for the ambiguous relations in the FB15k

datasets . 44
5.5 Link prediction results for the FB15k-237 datasets 44
5.6 Link prediction results for the ambiguous relations in the FB15k-

237 datasets . 45
5.7 Link prediction results for the WN18 datasets 45
5.8 Link prediction results for the ambiguous relations in the WN18

datasets . 45

48

Bibliography

[1] Building The LinkedIn Knowledge Graph, howpublished =
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-
knowledge-graph, note = Accessed: 2019-11-13.

[2] Pytorch biggraph Evaluation, howpublished =
https://torchbiggraph.readthedocs.io/en/latest/evaluation.html, note =
Accessed: 2019-11-14.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’13, pages 2787–
2795, USA, 2013. Curran Associates Inc.

[4] Jinxiu Chen, Donghong Ji, Chew Lim Tan, and Zhengyu Niu. Unsu-
pervised relation disambiguation with order identification capabilities. In
Proceedings of the 2006 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 568–575, Sydney, Australia, July 2006. Associa-
tion for Computational Linguistics.

[5] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao,
Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang.
Knowledge vault: A web-scale approach to probabilistic knowledge fu-
sion. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, pages 601–610, New
York, NY, USA, 2014. ACM.

[6] Xu Han, Shulin Cao, Lv Xin, Yankai Lin, Zhiyuan Liu, Maosong Sun,
and Juanzi Li. Openke: An open toolkit for knowledge embedding. In
Proceedings of EMNLP, 2018.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2014. cite arxiv:1412.6980Comment: Published as a conference

49

BIBLIOGRAPHY

paper at the 3rd International Conference for Learning Representations,
San Diego, 2015.

[8] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Comput-
ing, 17(4):395–416, December 2007.

[9] Fionn Murtagh and Pedro Contreras. Methods of hierarchical clustering.
CoRR, abs/1105.0121, 2011.

[10] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. In ADVANCES IN NEURAL INFORMA-
TION PROCESSING SYSTEMS, pages 849–856. MIT Press, 2001.

[11] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy
Gabrilovich. A review of relational machine learning for knowledge graphs,
2015. cite arxiv:1503.00759Comment: To appear in Proceedings of the
IEEE.

[12] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic
embeddings of knowledge graphs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI’16, pages 1955–1961. AAAI
Press, 2016.

[13] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In Proceedings of the
28th International Conference on International Conference on Machine
Learning, ICML’11, pages 809–816, USA, 2011. Omnipress.

[14] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[16] Peter Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math., 20(1):53–65,
November 1987.

[17] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms., 2016. cite arxiv:1609.04747Comment: Added derivations of
AdaMax and Nadam.

50

BIBLIOGRAPHY

[18] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng.
Reasoning with neural tensor networks for knowledge base completion.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 926–934. Curran Associates, Inc., 2013.

[19] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi
Choudhury, and Michael Gamon. Representing text for joint embedding of
text and knowledge bases. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages 1499–1509, Lisbon,
Portugal, September 2015. Association for Computational Linguistics.

[20] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.

[21] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0–Fundamental
Algorithms for Scientific Computing in Python. arXiv e-prints, page
arXiv:1907.10121, Jul 2019.

[22] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowl-
edge graph embedding by translating on hyperplanes. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14,
pages 1112–1119. AAAI Press, 2014.

51

