
Ludwig–Maximilians–Universität München

Institut für Statistik

Master’s Thesis

A comprehensive analysis of the use of deep learning models for

forecasting the cross-section of stock returns

Cem Öztürk

Munich, 08.05.2020

Supervision: Prof. Stefan Mittnik, PhD and Dr.Benjamin Moritz

Abstract

This thesis focuses on recent developments in neural networks and their predictive

power for forecasting the cross-section of stock returns. Neural networks with architec-

tures ranging from shallow to deep are used with different hyperparameter configurations.

Company characteristics are considered as the feature set and relationship between fea-

tures are explained. On the other hand, this work also challenges the recent conclusions

about the applicability of neural networks in the financial domain with counter arguments

and reasons are supported with the works from machine learning research.

Contents

1 Introduction 1

1.0.1 Forecasting with Neural Networks 1

1.0.2 Main Findings . 3

2 Theory 6

2.1 Forecasting Returns . 6

2.2 Neural Networks . 7

2.2.1 Purpose . 8

2.2.2 Library . 12

2.2.3 Configurations . 12

3 Empirics 15

3.1 Data Description and Features . 15

3.1.1 Universe . 15

3.1.2 Features . 16

3.2 Training Neural Networks . 19

3.2.1 Training Procedure . 19

3.2.2 Data Preprocessing . 20

3.3 Forecast Evaluation . 23

3.3.1 Comparison of Results . 23

3.3.2 Model Check . 25

3.3.3 Trading Strategies . 26

iv CONTENTS

4 Insights 30

4.1 Factor Based Analysis . 30

4.2 Interpretability . 31

5 Summary 35

A Data Descriptions 38

B Descriptive Statistics 43

C Performance Comparison 46

D Fama-Macbeth Regression Results 49

E Turnovers 51

F Electronic Appendix 53

List of Figures

2.1 One layer neural network with one neuron 11

2.2 Dropout - Srivastava et al.(2014) . 14

3.1 Walk forward testing for final models . 17

3.2 Correlation matrix of features . 18

3.3 Walk forward cross validation design for training 20

3.4 Distribution of expected returns for best performing networks 26

3.5 Cumulative performances of long short portfolios 27

3.6 Cumulative performances of long only portfolios 28

3.7 Cumulative performances of short only portfolios 28

3.8 Maximum market drawdown per network 29

3.9 Changes in one-way portfolio turnovers . 29

4.1 Feature importances for two layer neural network 32

4.2 Feature importances for ten layer neural network 34

List of Tables

3.1 Most correlated features with net profit margin 17

3.2 Columns with missing values . 18

3.3 Network architectures and hyperparameters for forward testing 23

3.4 Cross-sectional average portfolio return per neural network 24

3.5 Cross-sectional average portfolio return minus benchmark portfolio return . 24

3.6 Std. deviation of cross-sectional average portfolio return per neural network 25

3.7 Cross-sectional Sharpe ratio per neural network 25

4.1 Factor regression results for two layer and ten layer networks 31

B.1 Descriptive statistics of the feature set . 45

C.1 Portfolio returns for neural networks architectures during training phase . . 47

C.2 Portfolio returns for neural networks hyperparameters during training phase 48

D.1 Fama-Macbeth 3 Factor regression results for two layer network 49

D.2 Fama-Macbeth 3 Factor regression results for ten layer network 49

D.3 Fama-Macbeth 5 Factor regression results for two layer network 50

D.4 Fama-Macbeth 5 Factor regression results for ten layer network 50

Chapter 1

Introduction

1.0.1 Forecasting with Neural Networks

Recent advances in the computer hardware, especially in processing units have enabled

researchers to handle data that was unfeasible to analyze in the past. These advances also

let the machine learning algorithms such as artificial neural networks to regain popularity

which was lost in the late 1990s because of their intensive computational requirements.

Today, the availability of the modern and more specialized hardware (graphical processing

units, tensor processing units etc.) allow researchers to work with more complex algorithms

especially in the area of artificial neural networks and the term ”deep neural networks” is

popular in the machine learning research.

These advances enabled the researchers to conduct more sophisticated analyses with

different types of data which is called alternative data.[4] It is a known fact that analysts

have been attempting to forecast the decrease/increase in retail sales and economic activity

using the satellite images from the parking lot of retail stores. There are also industry

specific usages of alternative data such as monitoring mining facilities continuously to

capture changes in mining inventories. Wireless signals in the crowded areas show where

customers prefer to eat their meals along the day. Both the increase in the availability

of alternative data and the models to analyze data with vast capacity of resources help

2 1. Introduction

quantitative researchers to add precision to their portfolio forecasts. 1

The developments in the hardware industry also made computing intensive methods

popular again. As an example, the ancestor of the neural networks, the perceptron, was

found in 1957.[24] However, the machines were significantly bigger in terms of size at that

time and duration of computations were defined with not minutes but days. Today, it is

possible to run a multi layer perceptron which has many parameters and is more complex

compared to its ancestors, also known as artificial neural network, on a small computer.

Additionally, availability of opportunities to use better hardware resources by remote access

and cloud computing helps the researchers if they do not have enough computing power

for their research.

Therefore, I used a wide variety of neural networks to forecast cross section of stock

returns using the company characteristics as feature set. Neural networks are able to

capture the non linear relationship between features through the non linear activation

functions.[10] I compare the predictions that are obtained from different neural network

architectures and provide ways to interpret them as well as paths to pick neural networks for

long term investment strategies. Rest of the thesis goes as following: in the next chapter,

I have provided a short literature review about both forecasting the cross-section of stock

returns and a short introduction about neural networks. Then, the empirical approach

and methodology are provided. I compare the results with some industry benchmarks as

well as factor based models and derived some ways to interpret the models and explained

their behaviour. In the end, suggestions are made to improve outcomes and indicate future

directions in research.

1https://www.theatlantic.com/magazine/archive/2019/05/stock-value-satellite-images-
investing/586009/

3

1.0.2 Main Findings

I have created artificial neural network models with hidden layers ranging from 1 layer

neural network through 10 layer neural network and aimed to predict the change in the

monthly stock price of large cap US companies using financial characteristics that are

calculated each quarter from 1970 to 2018. I have compiled the results that I have found

at the end of my experiments:

Deep networks work well, too The neural networks that have one or two hidden

layers are often considered as shallow neural networks and since their architectures are less

simple and less connections are present between layers, they take lesser time in terms of

computations. The neural networks which have different number of layers and neurons

on each layer focus on different features, which is expected. On the other hand, contrary

to common belief, deep neural networks still have relatively good performance compared

to shallow networks and they are able to learn from the non linear relationship of the

financial characteristics of a company such as book to the market ratio, operating leverage

etc. One should not rather use only shallow networks but also deep networks to average

model performances and capture variations in their predictive powers.

Deep networks work well with small samples Increasing sample size usually im-

proves the forecasts for the future since the model has more observations to learn from.

On the other hand, more sample comes with a computational burden. Using less sophis-

ticated machine learning models might be a solution, however predictive power of less

sophisticated algorithms are usually limited. Neural networks are known to work with

big samples and researchers are skeptical with the performance of neural networks. The

recent findings[20] showed that there are deep neural networks that are able to perform

well with small amount of observations and still able to learn from the sample with high

predictive power. In this work, I produced reliable and promising results with a neural net-

work that has more than hundred thousand parameters and the neural network predicted

cross-section of stock returns successfully using the training samples that are around fifty

4 1. Introduction

thousand observations.

Unconscious application of best practices may apply bias One point that I argue

and tried to prove is that best configurations or best practices are not really necessary all

the time when working with neural networks in the financial domain. One example is that

for deep neural networks, it is usually suggested to employ batch normalization and dropout

techniques as a regularization because of high number of layers as well as parameters[13][11].

However, batch normalization is not really necessary for the shallow neural networks since

the effect of covariance shift between layers is negligible. Persisting the adaptation of batch

normalization also may imply a bias on the neural network, therefore it reduces overall

performance of neural networks. For deep neural networks, the effect is the same alike.

Analogical architectures may lead to unexpected results when their activation functions,

optimization methods, initial weights, learning rates are switched. In the end, these tunings

have the possibility to amplify portfolio returns in the long term.

Neural networks are interpretable Neural networks are known as black-box models,

inferring that it is hard to extract which features they weigh the most and the least from

the predictions. I have used LIME[23] to explain model behaviours, however the problem is

that LIME does not extract information about the model considering the whole sample but

rather focuses explaining the behaviour using a subsample. On the contrary, it is possible

to come up with a novel conclusion about the global model behaviour using the outcomes of

multiple applications such as changes in turnover ratios, maximum drawdowns, coefficients

that are obtained through the regression on factors and interpretations that are acquired

through interpretability library. In this work, I have shown that neural networks usually

put higher weights to similar features, but the small differences in the weights define their

performance in the long run.

Neural networks are aggressive While forecasting cross-section of stock returns, I

have used mostly the information that are calculated quarterly (except book to the market

5

ratio and price to the book ratio) from financial announcements. Neural networks make the

major change in the portfolio every quarter since the majority of the feature set is updated.

However, neural networks make small tunes to the portfolio using easy to calculate ratios

such as book to the market ratio and price to the book ratio at the end of each month.

Therefore, the aggressive behavior of stock returns might be restrained using that fact and

asset managers may reduce trading costs when using neural networks as a helper in their

decision making processes.

Chapter 2

Theory

2.1 Forecasting Returns

In financial econometrics, there are two ways to look at the expected returns. On one

hand, time-series analysis examines the changes in the average returns over time. On the

other hand, cross section analysis focuses on how average expected returns change across

different stocks or portfolios. In this research, the aim is to find an answer to the question

”Why stock A has a higher return expectation compared to stock B?” by trying to model

the non-linear relationship between company characteristics using neural networks. Since

the focus is on the difference of expected returns at the same point in time, this analysis

is regarded as cross section analysis.[3]

There are already works that are done in the same field. Gu (2019) used the machine

learning algorithms as well as less sophisticated neural networks, shallow neural networks,

and found that forecasts that are made with machine learning algorithms and neural net-

works can provide higher alphas compared to the Fama - French 3 factor model portfolios[6]

and Fama - French 5 factor model portfolios [7] [11]. In that work, it is also concluded that

shallow networks perform better than deep networks (the most complex neural network

has five layers utmost) in terms of forecast accuracy. Feng et al. (2018) also predicted

the cross-section of stock returns[8] with neural networks and showed that forecasts for

2.2 Neural Networks 7

monthly returns using deep learning are more accurate than forecasts using simple his-

torical mean in predictions. This is an important finding due to the reason that Welch

and Goyal (2008) claimed that predictive regression models are not able to beat historical

mean.[28]

2.2 Neural Networks

Machine learning algorithms can be defined as the algorithms that can extract patterns

from sample. According to[17]:

”A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured by P ,

improves with experience E”.

In this work, the task is defined as forecasting the cross section of returns using the

financial ratios that are derived using company characteristics. In machine learning terms,

the task is defined as a regression task with f : Rn → R where N features (financial ratios)

are mapped to a target which is expected return of a stock.

The performance measure is different for each application and my focus is the appli-

cation of the neural networks as an investment strategy. As a result, I have defined the

performance measure P as the cross-sectional average return for each neural network and

compared it with a benchmark which I selected as the monthly equally-weighted average

large cap stock return between 1976 and 2019. The neural networks are trained on a

different performance measure, mean absolute error, which I explain in the next section.

During the training phase, neural network learns from training sample provided realized

returns and produces the forecasts as expected returns for observations in the validation

sample and the test sample. Therefore, neural network learns from the experience by

modelling the relationship between features and the target feature. In formal terms, the

8 2. Theory

experience E can be defined as supervised learning problem since company characteristics

for stock i at time t is associated with a target feature, the change in the price from t to

t+ 1, return ri,t+1 at t+ 1 for stock i.

The performances in the training and the validation phases are useful when configuring

the neural network and help to understand whether the model is working or not. How-

ever, these performances do not really reflect the ability of neural networks to learn. The

performance of neural networks can be accurately measured using a sample, where neural

networks are not exposed before. If neural networks are also able to perform well on unseen

observations, they are claimed to generalize well on unseen sample. The error on unseen

sample, or test sample is called as generalization error. A low generalization error shows

the neural network is successful at modelling the relationship between input features.

2.2.1 Purpose

Neural networks are specific estimators that are designed using loose inspirations from

human brain. Their goal is to approximate some function f ∗. A neural network defines

the mapping y = f(x; θ) and tries to estimate the parameters θ to find best function

approximation f of f ∗. In this work, I have used only feed forward neural networks, which

enables information to pass from input x through some function f to output y. There

are no transition of feedback between the layers, therefore information goes only one way.

When there exists a feedback connection between layers, this specific type of neural network

is called as recurrent neural network. Recurrent neural networks are suitable for time-series

analysis rather than cross sectional analysis.[10]

Neural networks consist of an input layer, hidden layers and an output layer. Hidden

layers reside between input layer and output layer. Input layer consists of the features that

are fed to the neural network. Output layer consists of the target that neural network aims

to estimate. On each layer, at least one neuron is present.

2.2 Neural Networks 9

During training phase, neural network tries to match f(x) and f ∗(x). The training

sample enables the network to learn from label y and the network tries to predict a close

value to target y by tuning its own parameters on its layers. However, the behaviour of

hidden layers in the neural network cannot be observed and interpretable.

In simpler terms, to understand the working mechanism of neural networks, one can

start with thinking about linear models. In linear models, the results are obtained through

either closed form solution or convex optimization. The problem with linear models is that

the capacity is usually limited with linear functions, therefore it is almost impossible to

capture non linear relationships between features. If one would like to go beyond linear

model, one does not use the linear x but the nonlinear transformation of x which is φ(x)

using the transformation φ. In that sense, φ(x) is a new representation of x which is high

dimensional due to the nonlinear transformation function.

Neural networks try to learn the mapping function φ(x) to approximate f ∗, in other

words it decides the transformation of variables by itself. The model can be described as

y = f(x; θ, w) = φ(x; θ)Tw. Parameter θ is used to learn φ and w maps the nonlinear

transformation of x to the desired output. Here, the φ(x) describes the hidden layer of

neural network.

On a practical level, neural networks can be described as nesting of functions. The linear

regression can be expressed with one layer neural network as f(x) = Wx by defining the

nonlinear transformation function as I where I is linear activation function or identity

function. To describe it in a more general way, neural networks take a vector of inputs

x and computes a transformation z = WTx + b and applies an element-wise nonlinear

function g(z). This nonlinear function g(z) is the activation function that provides non-

linearity to neural network.

As an example, one can describe multiple layer neural network assuming the activation

function is defined as max function:

10 2. Theory

• 1-layer : f = W1x

• 2-layers: f = W2 max(0,W1x)

• 3-layers: f = W3 max(0,W3 max(0,W1x))

... up to N layers

When neural networks take an input x and makes a forecast as ŷ, information flows from

input to the output layer. This is called as forward propagation. Forward propagation stops

when a scalar cost J(θ) is calculated. During training, information flows from the output

towards the input, which is called backpropagation. The backpropagation algorithm lets

the information to flow through the network to compute the gradient of cost function.

The aim of neural network at that point is to perturb the parameters in a way thus the

decrease in the cost is maximum. This training iteration is repeated many times and each

iteration is called as epoch. When the network repeats this process many times using a

predefined number of epochs, it sets its parameters which pushes the cost to the minimum

value within the number of epochs.

There are many considerations when training a neural network. Network depth (num-

ber of layers) and network width (number of neurons on each layer) are two important

measures. Cost function is also a critical factor in training neural networks. Also, training

the neural network with low number of epochs may apply bias on the model since the cost

may not be minimized and a high number of epochs may lead to overfitting. The number

of epochs needs to be picked carefully.

Neural networks are trained using maximum likelihood, therefore the cost function can

be described as negative log-likelihood. The performance measure of neural network during

training, mean absolute error cost, can be defined as:

J(θ) = Ex,y p̂sample
|y − f(x; θ)|+ const.

2.2 Neural Networks 11

In the cost function above, the p̂sample refers to the training sample that neural network

learns from and the discarded constant represents the variance of the distribution which is

not parameterized. Mean absolute error is not differentiable and it has some bottlenecks

during the calculation of gradients of the loss function. However, its robustness for outliers

and initial experiments in the empirical analysis made me to proceed with mean absolute

cost.

This neural network consists of one input layer with four neurons, one hidden layer with
one neuron and one output layer with one neuron. The network adjusts weights for each
features using backpropagation. The bias term is used to prevent problems (vanishing

gradient) while training step. Since output is one dimensional, return for t+ 1, the
output layer has one neuron. Activation function is defined here with f and f can be

anything, such as maximum, minimum, sigmoid or identity function etc. As an example,
the problem turns to linear regression problem if the identity function is used.

Figure 2.1: One layer neural network with one neuron

12 2. Theory

2.2.2 Library

In the analysis phase, I have used Pytorch[21] library to design neural networks and

carry out the analysis. Pytorch library is developed by Facebook and it is based on Torch1

library and used mostly in natural language processing and computer vision.

2.2.3 Configurations

The neural networks that I have used are inspired from recent research in the deep

learning field[20] since this deep neural network are proven to generalize on small samples.

All of the neural networks I have used share the following configurations:

• Initialization Function: He initialization[12]

• Optimization: Adam optimization[14]

• Activation Function: ELU[2]

Initialization of Layers When neural networks are initialized and ready for training,

the input vector x performs a dot product with the layers of weights w. Therefore, these

weights should be initialized with some number. If one initializes the weights with zeroes,

the network does not learn properly. If the weights are initialized too small, the signal from

the input gets much more smaller as it is passed through layers and in networks with many

layers, deeper layers would not be able to learn from the sample. As a result, one needs to

initialize the weights carefully. When using PyTorch library, weights are initialized with

He initialization (Kaiming Uniform).2.

In He initialization, the weights are picked from standard normal distribution N(0, 1).

Then they are scaled using

√
2√
n

where n defines number of neurons in the previous layer.

The bias term b is set as zero. This is defined as Kaiming Uniform initialization of weights

and proven as a good initialization strategy for neural networks.[12]

1https://github.com/torch
2Interested reader might check Xavier initialization as a starting point[9]

2.2 Neural Networks 13

One of the most popular activation function in the deep learning research is ReLU

(Rectified Linear Units) activation function. The popularity of ReLU arises from the

fact that it allows to calculate gradients easily.[18] The reason that I have used ELU

(Exponential Linear Units) activation function [2] rather than ReLU activation is that it

generalizes better compared to ReLU activation function in deep neural networks that are

trained with small samples.[20] The main difference of ELUs compared to ReLU is that it

allows negative value for gradients and allowing small gradients results analogue to batch

normalization with a lower computational complexity.

ReLU : f(x) = max(0, x)

ELU : f(x) =

x x > 0

α(ex − 1) x ≤ 0

For the optimization, I have used Adam[14] optimization technique. In contrast to the

traditional methods in optimization such as Stochastic Gradient Descent (SGD) which

has a learning rate that needs to be tuned for each optimization, Adam makes use of

the moments of gradients µ and σ (first moment and second moment of gradients) by

calculating the moving average of gradients to ensure a smoother learning compared to

stochastic gradient descent.

I did not use other techniques such as batch normalization[13] since it is suggested for

deep networks (such as in computer vision where neural networks consist of many layers)

and not for shallow networks. Analyses that I made using batch normalization showed

that it implies bias to the networks and the performances of the networks reduce in the

end.

For deep neural networks with high number of parameters, dropout is usually suggested

to be employed to reduce overfitting.[26] Overfitting happens when the network seems

14 2. Theory

to learn from training sample however neural networks cannot forecast the cross section

of stock returns successfully when using the test sample. The term overfitting can be

simplified as following: an overfitting neural network tries to mimic the output using

the values in training sample instead of modelling the relationship between the features.

Dropout deactivates random neurons in a neural network to prevent neural network to

mimic the results and ensure learning is happening. In this work, I tuned the models using

both with and without dropout and I have found that neural networks trained without

dropout are still able to perform well on the test sample. This behaviour is also proven by

different authors in the deep learning research.[20][22]

Figure 2.2: Dropout - Srivastava et al.(2014)

Chapter 3

Empirics

3.1 Data Description and Features

3.1.1 Universe

Monthly data for the empirical analysis is obtained from Center for Research in Security

Prices (CRSP) for all stocks that are listed in the NYSE, NYSE MKT (AMEX) and

NASDAQ. Company characteristics by firm level is available starting from January 1970,

therefore the analysis spans the period between 1970 to 2019 (Appendix B). In order to

make the analysis more applicable to the real world, only the stocks that have share codes

10 and 11 are used in the sample which defines ordinary common shares that are listed in

these exchanges.

Stocks that are traded in these exchanges for a short period of time (less than 24 months)

are removed from the sample.

16 3. Empirics

3.1.2 Features

The initial sample has 2797065 rows and 76 columns including the target feature, return

rt+1,i for the next month, defined as

rt+1 =
pi,t+1 − pi,t

pi,t
(3.1)

where pi,t is the stock price of stock i at time t. Of 76 input features, two features are about

trading information, trading volume and market cap information. Also, only two features

are engineered; momentum factor for one month and momentum factor for last twelve

months are calculated for the feature set to examine the impact of momentum factor. Rest

of the feature set consists of company characteristics that are calculated quarterly except

book to the market and price to the book ratios which are updated monthly.

It is decided to keep only large cap stocks whose market cap are higher than median

market cap in the sample according to Kenneth French’s data library.1After this reduction

is applied, sample is reduced to 534840 observations over 48 years. The training window

covers only 5 years and shifted quarterly, average training sample has about fifty thousand

observations which is 10% of reduced sample size. This reduction of sample may raise

the question about the effectiveness of neural networks because deep neural networks are

known to generalize better with high number of observations, however results provided that

neural networks with deep architectures are able to approximate the non linear relationships

between company characteristics with small samples.

The reason that small cap and middle cap stocks are filtered is mainly due to the am-

biguities in calculation of returns for delisted stocks. Even it affects our neural networks’

performance in a positive way, I have removed these small cap and mid cap companies

from sample. Number of large cap stocks in my sample changes between 643 and 1594

over time. The period where the number of large cap stocks reached its maximum is just

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/det me breakpoints.html

3.1 Data Description and Features 17

before dot com bubble which happened in late 1990s.

Figure 3.1: Walk forward testing for final models

In the final feature set, not all of the 76 features are used since it is discovered that fea-

tures such as operating profit margin after depreciation (opmad), operating profit margin

before depreciation (opmbd), cash flow margin (cfm) and pre-tax profit margin (ptpm)

have almost 100% correlation with net profit margin (npm) feature. These features (Table

3.1) are removed from sample to speed up training phase. In the correlation matrix, there

are still highly correlated features (over 90%) as it can be seen in the Figure 3.2 however

further dimension reduction techniques are not applied to reduce feature set.

opmad opmbd cfm ptpm
npm npm npm npm

Table 3.1: Most correlated features with net profit margin

There are also few columns with high missing value percentages in the reduced sample.

Even models are tested with walk forward testing and the missing percentages tend to

change over time, the features with more than 30% missing values are removed from the

feature set. The network configuration should be altered every single time another fea-

ture is added/removed to the input layer of neural network hence forth they are kept out

of the analysis. The features that are removed because of high missing value ratios are

18 3. Empirics

Figure 3.2: Correlation matrix of features

price/operating earnings (pe op basic), price/operating earnings diluted (pe op dil), for-

ward p/e to long-term growth ratio (PEG ltgforward) and trailing p/e to growth (PEG)

ratio (PEG trailing) and their missing value percentages are provided in the Table 3.2.

Forward p/e to 1-year-growth ratio (PEG 1yrforward feature is also removed from sample

since it is completely missing for the initial training period.

pe op basic pe op dil PEG trailing PEG ltgforward
36.2% 57.8% 38.3% 34.4%

Table 3.2: Columns with missing values

3.2 Training Neural Networks 19

After the elimination of features that are either highly correlated or present with high

missing percentages, feature set is reduced to 67 columns including the target feature ri,t+1.

3.2 Training Neural Networks

3.2.1 Training Procedure

The training procedure consists of two sub-processes aiming to find best neural net-

work architecture with best set of hyperparameters. The first step focuses on determining

network depth (number of layers) and width (number of neurons per layer) and the sec-

ond step is about finding the best hyperparameter configuration. Since there are no clear

guidelines about how to construct neural network architectures and it is rather a trial and

error procedure[10]2, depth and width of the neural network are two critical features which

defines capacity of the model and plays a key role in the generalization performance.

For the first two sub-processes, architecture tuning and hyperparameter tuning phases,

models are picked using the the walk forward method with expanding window. In walk for-

ward method, initial sample is divided as training and hold out sample. In theory, if models

really perform well, they should work independent of sample size. Therefore, I selected the

period between 1970-1975 as training and validation sample. This subsample has 55998

observations. The rest of the sample, between 1976-2018 is used for walk forward testing

with rolling window, where performance of final models, generalization performances, are

compared.

In the training phase, after neural networks are trained in each window, forecasts are

made for the hold out set. These forecasts for each validation sample are sorted and divided

into 10 deciles. The average return of the decile having highest expected return (top decile)

and lowest expected return (lowest decile) are calculated for each validation sample. Then

it is assumed that neural network buys the top decile portfolio and sells the lowest decile

2There are approaches available such as NEAT. [27]

20 3. Empirics

portfolio. (In other words, it creates a long short portfolio.) The neural networks that end

up with the highest cumulative long-short portfolio return in the validation samples are

picked for final forward testing phase.

Models are trained and hyperparameters are set according to the cumulative cross
validation long-short performances

Figure 3.3: Walk forward cross validation design for training

3.2.2 Data Preprocessing

As can be found in Appendix B, the initial sample still has outliers as well as missing

values after the columns with high missing percentages are removed. On the other hand,

since the company characteristics have different scales, they need to be standardized within

a range to speed up training phase.[1][15] Due to that reason, I have scaled all the features

to [−1, 1] range where −1 is the minimum value or vice versa.

The validation and test samples are scaled with training sample minimum and maximum

rather than the test sample minimum and maximum. Since it is usually expected to have

3.2 Training Neural Networks 21

lower variance for features in the training sample because of the size of the sample, I

proceeded using the training sample’s minimum and maximum to scale test sample.

To deal with outliers, I winsorized each feature both in each training sample and test

sample to limit the effect of outliers. After the 1% and 99% percentiles of each feature are

determined in each training sample, these values are used to limit the effect of extreme out-

liers that are present in validation sample (architecture and hyperparameter configuration)

or the test sample(final walk forward performance comparison).

To fill the missing values, I have used cross-sectional median since most of the features

have skewed distribution.(except DIVYIELD column, which is dividend to be paid to

shareholders and filled with 0).

First Step: Finding the Architecture

To find out which neural network structures perform best for the analysis, I picked that

there could be 15, 60 and 120 neurons in each layer. The reason for picking these numbers

is that there are 66 features in the feature set therefore the aim is to find whether a specific

neural network shape (e.g. constant number of neurons in each layer, decreasing number

of neurons in deeper layers or vice versa) performs better than other architectures or not.

For the first step of the analysis, 3281 neural networks are constructed having from no

layer up to 10 layers with changing neurons in each layer. One specific neural network is

included from the recent research in deep learning[20] which is ten layer neural network

that is proven to generalize on small data sets.

For this phase, the learning rate is set as 0.003, dropout rate as 0% and neural networks

are trained using 100 epochs.

22 3. Empirics

Second Step: Finding the Hyperparameters

After the neural network architectures (capacities) are determined from no layer to 10

layers, the selected architectures are trained with different hyperparameter set (dropout

rate, learning rate, number of epochs) to find best performing hyperparameters to ramp

up the performances. The hyperparameters that are experimented with neural networks

are defined as following:

• Dropout Rates: 0.0, 0.3, 0.7

• Learning Rates: 1e-2, 1e-3, 1e-4, 1e-5

• Epochs: 50, 100, 200

The combination of each hyperparameter setting is provided to candidate architectures

and performances are compared again through walk forward methodology with expanding

window. In the end, the best hyperparameter setting is picked for each neural network

architecture and these settings are tested in the forward testing phase that is discussed in

section 3.2.2.

The long-short portfolio results are provided in the Appendix C and according to the

results, nine models are selected for forward testing phase. The models and their network

architectures as well as hyperparameters are shown in Table 3.3.

The reason that the last two configurations are same is that I decided to compare the

performance of the original research model[20] with default hyperparameter setting and

optimized hyperparameter setting.

Step 3: Final Analysis with One Step Ahead Predictions

Following the architecture and hyperparameter configuration phases, neural networks

are trained using walk forward methodology but this time with rolling window of five years

3.3 Forecast Evaluation 23

Name Neurons and Layers Dropout Alpha Epochs
NN1 66, 15, 1 0.0 1e-4 50
NN2 66, 120, 15, 1 0.7 1e-3 100
NN3 66, 60, 15, 15, 1 0.0 1e-4 50
NN4 66, 15, 15, 60, 120, 1 0.7 1e-5 200
NN5 66, 60, 15, 60, 120, 15, 1 0.3 1e-5 100
NN6 66, 15, 60, 60, 60, 60, 15, 1 0.0 1e-5 100
NN7 66, 15, 15, 15, 15, 60, 60, 15, 1 0.3 1e-5 100
NN8 66, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1 0.0 1e-5 50
NN9 66, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1 0.0 1e-3 200

Table 3.3: Network architectures and hyperparameters for forward testing

and forecasts are made covering next three months following the training window. Most

of the company characteristics are calculated quarterly therefore training sample is shifted

three months and neural networks are retrained with the new sample after predictions are

made. Over 48 years, each neural network is trained and returns are estimated for 170

quarters.

After predictions are made for each month, they are sorted and divided into 10 deciles

and companies that are going to be placed in the long portfolio (top decile) and short

portfolio (lowest decile) are decided for each month. Neural networks’ monthly cumulative

performances over 40 years is calculated. As the benchmark portfolio and return, equally-

weighted large cap portfolio and its return are used and the performances are compared

with this benchmarks.

3.3 Forecast Evaluation

3.3.1 Comparison of Results

The first measure that I checked to evaluate neural networks is their cross-sectional

average returns. During the hold out sample period that covers the period between January

1976 and December 2018, two neural networks showed significant performance. A shallow

two layer neural network and ten layer neural network which is inspired from deep learning

24 3. Empirics

research[20] showed relatively better performances compared to other networks. During

this period, monthly equally weighted average large cap stock return is 1.07%. From the

Table 3.4 it can be seen that top deciles of neural networks with two layers (NN2), five

layers (NN5) and ten layers (NN9) performed better than the benchmark portfolio.

Deciles Low 2 3 4 5 6 7 8 9 High High-Low
NN1 1.09% 1.06% 1.07% 1.1% 1.05% 1.11% 1.1% 1.08% 1.0% 1.07% -0.02%
NN2 0.67% 0.86% 1.03% 1.09% 1.1% 1.14% 1.12% 1.15% 1.29% 1.3% 0.62%
NN3 1.05% 0.97% 1.1% 1.04% 1.06% 1.13% 1.14% 1.08% 1.11% 1.06% 0.01%
NN4 1.0% 1.1% 1.17% 1.08% 1.07% 1.15% 1.1% 1.02% 1.02% 1.04% 0.04%
NN5 0.99% 1.05% 1.05% 0.99% 1.08% 1.06% 1.13% 1.05% 1.19% 1.15% 0.16%
NN6 1.08% 1.11% 1.11% 1.08% 1.05% 1.1% 1.04% 1.02% 1.1% 1.06% -0.02%
NN7 0.96% 1.01% 1.15% 1.08% 1.18% 1.11% 1.14% 1.05% 1.03% 1.02% 0.06%
NN8 1.07% 1.02% 1.03% 1.09% 1.13% 1.19% 1.1% 1.06% 1.07% 0.98% -0.09%
NN9 0.73% 0.94% 1.05% 1.13% 1.04% 1.07% 1.14% 1.2% 1.19% 1.24% 0.51%

Table 3.4: Cross-sectional average portfolio return per neural network

Deciles Low 2 3 4 5 6 7 8 9 High High-Low
NN1 0.02% -0.01% 0.0% 0.03% -0.02% 0.04% 0.03% 0.01% -0.07% 0.0% -1.09%
NN2 -0.4% -0.21% -0.04% 0.02% 0.03% 0.07% 0.05% 0.08% 0.22% 0.23% -0.45%
NN3 -0.02% -0.1% 0.03% -0.03% -0.01% 0.06% 0.07% 0.01% 0.04% -0.01% -1.06%
NN4 -0.07% 0.03% 0.1% 0.01% 0.0% 0.08% 0.03% -0.05% -0.05% -0.03% -1.03%
NN5 -0.08% -0.02% -0.02% -0.08% 0.01% -0.01% 0.06% -0.02% 0.12% 0.08% -0.91%
NN6 0.01% 0.04% 0.04% 0.01% -0.02% 0.03% -0.03% -0.05% 0.03% -0.01% -1.09%
NN7 -0.11% -0.06% 0.08% 0.01% 0.11% 0.04% 0.07% -0.02% -0.04% -0.05% -1.01%
NN8 0.0% -0.05% -0.04% 0.02% 0.06% 0.12% 0.03% -0.01% 0.0% -0.09% -1.16%
NN9 -0.34% -0.13% -0.02% 0.06% -0.03% 0.0% 0.07% 0.13% 0.12% 0.17% -0.56%

Table 3.5: Cross-sectional average portfolio return minus benchmark portfolio return

However, the comparison of standard deviations of decile portfolios for each network

shows that neural networks are aggressive in their stock pickings. Having a high degree

of standard deviation in returns may fear the managers to invest in these portfolios. The

standard deviation of benchmark portfolio return for the same period is 4.76%.

As last step, when the Sharpe ratios[25] of the models are compared in Table 3.7, it can

be seen that models have usually Sharpe ratios less than 1. Among all top deciles, only

3.3 Forecast Evaluation 25

Deciles Low 2 3 4 5 6 7 8 9 High High-Low

NN1 5.45% 5.01% 4.77% 4.63% 4.69% 4.83% 4.77% 4.81% 5.07% 6.15% 4.51%
NN2 7.22% 5.52% 4.93% 4.77% 4.6% 4.48% 4.46% 4.42% 4.54% 4.96% 4.52%
NN3 6.22% 5.16% 4.83% 4.67% 4.67% 4.6% 4.67% 4.69% 4.91% 5.52% 4.39%
NN4 5.94% 4.97% 4.88% 4.69% 4.72% 4.71% 4.75% 4.72% 5.05% 5.6% 4.11%
NN5 5.49% 5.0% 4.82% 4.68% 4.73% 4.7% 4.72% 4.82% 5.07% 5.61% 3.79%
NN6 6.02% 5.04% 4.84% 4.76% 4.7% 4.7% 4.72% 4.74% 4.89% 5.42% 4.11%
NN7 5.96% 5.14% 4.81% 4.72% 4.68% 4.73% 4.67% 4.77% 4.88% 5.23% 3.65%
NN8 5.52% 4.98% 4.68% 4.77% 4.78% 4.72% 4.76% 4.86% 5.06% 5.76% 3.71%
NN9 7.3% 5.48% 4.86% 4.61% 4.52% 4.41% 4.38% 4.43% 4.72% 5.44% 4.49%

Table 3.6: Std. deviation of cross-sectional average portfolio return per neural network

top deciles of 2 layer neural network and 10 layer neural network have higher Sharpe ratio

compared to Sharpe ratio of benchmark portfolio which is 0.51.

Deciles Low 2 3 4 5 6 7 8 9 High High-Low

NN1 0.46 0.48 0.51 0.54 0.5 0.53 0.53 0.51 0.43 0.4 -0.3
NN2 0.15 0.31 0.46 0.52 0.55 0.59 0.59 0.61 0.7 0.65 0.19
NN3 0.38 0.41 0.52 0.5 0.51 0.57 0.57 0.52 0.52 0.43 -0.29
NN4 0.37 0.51 0.57 0.52 0.52 0.57 0.53 0.48 0.44 0.41 -0.28
NN5 0.39 0.47 0.48 0.46 0.52 0.51 0.56 0.49 0.56 0.48 -0.19
NN6 0.41 0.51 0.53 0.52 0.5 0.54 0.49 0.47 0.51 0.44 -0.33
NN7 0.35 0.43 0.56 0.52 0.6 0.54 0.57 0.49 0.47 0.43 -0.29
NN8 0.44 0.45 0.48 0.52 0.55 0.6 0.53 0.49 0.48 0.37 -0.42
NN9 0.17 0.36 0.49 0.57 0.51 0.55 0.61 0.65 0.6 0.56 0.11

Table 3.7: Cross-sectional Sharpe ratio per neural network

3.3.2 Model Check

It is a known fact that stock market returns has a symmetric distribution with fat

tails.[5] In the last layer of neural networks, in order to scale the outputs of last hidden

layer, an activation function (Tanh)[10] is used to limit the outputs to [−1, 1] therefore the

distributions are narrower than the realized returns’ distribution. In the figure 3.4, only

neural networks that have higher average returns than benchmark portfolio return are

included to increase visibility. The Figure 3.4 shows that neural network with two hidden

26 3. Empirics

layers and ten hidden layers have a reasonable expected return distribution however five

layer neural network’s distribution of expected returns does not seem quite good.

Figure 3.4: Distribution of expected returns for best performing networks

3.3.3 Trading Strategies

To evaluate the investment performances of neural networks, I have used long-short and

long only portfolio strategies to compare performances. Figure 3.5 shows that only two

layer neural network outperforms the benchmark portfolio return when long-short strategy

is adapted. One important assumption that needs to be mentioned here is that since

the universe consists of only large cap stocks which are not volatile in terms of return

expectations, it may not be possible to capture huge losses often within the performance

period therefore the short selling strategy may not be feasible.

When long only portfolios are compared, networks with two layers, five layers and ten

layers perform better than the benchmark portfolio. The only issue that can be seen from

3.3 Forecast Evaluation 27

Figure 3.5: Cumulative performances of long short portfolios

the Figure 3.9 is that networks cannot predict recessions or cannot avoid huge market

losses. Neural networks are forced to invest in long only portfolios, therefore stop-loss

strategies can be used to prevent networks from investing when huge losses are observed

at the investment period.

The maximum drawdowns (maximum loss from a peak to a trough of a portfolio) of each

network and the benchmark portfolio point out that neural networks are usually exposed

to higher losses compared to the benchmark poerdolio. However, as it can be seen from

the Figure 3.9, the duration for recovery of losses are similar to the time span for the

benchmark portfolio recovery and in the end neural networks are even able to bring higher

returns compared to benchmark portfolio.

Portfolio turnovers show that neural networks are usually aggressive in their stock pick-

ings. One reason of the high turnover rate is that neural networks’ update the majority

of the portfolios when financial announcements are made (each quarter) and they change

28 3. Empirics

Figure 3.6: Cumulative performances of long only portfolios

Figure 3.7: Cumulative performances of short only portfolios

3.3 Forecast Evaluation 29

Figure 3.8: Maximum market drawdown per network

portfolios only considering book to the market ratio and price to the book ratio between

financial announcements. In the interpretability section (Section 4.2, I discuss it further

that what can be the underlying reason for this behavior. The turnover ratios may seem

high, however they can be tuned or neural networks can be constrained to construct the

portfolio quarterly rather than monthly. However, to make a conclusion about this ap-

proach, further analyses should be made to compare the cumulative performances with

constrained portfolio constructions.

A finding about the annual portfolio turnovers’ figure is that best performing neural

networks, two layer neural networks and ten layers neural networks have lesser turnover

rates on average compared to other neural networks (Appendix E). However, their turnover

ratios increase significantly during the market boom times, such as post financial crisis of

2008.

Figure 3.9: Changes in one-way portfolio turnovers

Chapter 4

Insights

4.1 Factor Based Analysis

When the portfolio returns for the top decile are regressed on three-factor model which

is available on Kenneth French’s data library12, the measure R2
OOS

3 shows that there is a

high fit to the factors for both of the models.

When two layer neural network’s top decile portfolio is regressed on the factors, its

87.6% of the monthly returns can be explained by the Fama-French 3 Factor model. It

has a positive alpha which is 0.23% monthly and and 2.8% yearly, which means that it

overperforms the benchmark factor model by 2.8% every year. Beta value is 1.03 since it

consists of only equities. Coefficient of SmB is 0.22 and it can be concluded that portfolio

consists of the the lower decile of the large cap stocks in terms of market cap. Coefficient

of HmL signs that it is a growth fund.

On the other hand, ten layer neural network’s top portfolios’ 84% of monthly returns can

be explained with Fama-French 3 Factor model. Its alpha is around 0.18% showing that

it overperforms the benchmark factor model by 2.2% every year. The portfolio consists

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f 5 factors 2x3.html
2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html
3OOS: out of sample

4.2 Interpretability 31

coef. std. error t P > |t| [0.025 0.975]
const 0.23 0.08 2.95 0.00 0.08 0.39

Mkt-RF 1.03 0.02 54.84 0.00 1.00 1.07
SMB 0.22 0.03 8.21 0.00 0.17 0.28
HML 0.07 0.03 2.28 0.02 0.01 0.12

coef. std. error t P > |t| [0.025 0.975]
const 0.18 0.1 1.86 0.06 -0.01 0.37

Mkt-RF 1.02 0.02 44.04 0.00 0.98 1.07
SMB 0.43 0.03 12.72 0.00 0.36 0.50
HML -0.08 0.04 -2.29 0.02 -0.15 -0.01

Table 4.1: Factor regression results for two layer and ten layer networks

of only equities similar to the portfolios that two layer neural network constructs which

is also aligned with the stock universe. The interesting part is that coefficient of SmB is

now higher than two layer neural network, pointing that portfolio usually consists of stocks

have even lower market cap compared to two layer neural network. Coefficient of HmL

is statistically significant, stating that portfolio is also a growth fund rather than a value

fund. One conclusion that can be made is ten layer neural network expects higher returns

from the companies who pass the median market cap recently (switched from being middle

cap to large cap) in comparison to the two layer neural network.

4.2 Interpretability

One important problem about the neural networks is that they are usually black box

models therefore it is really hard to interpret the model forecasts. There are some ap-

proaches exist such as LIME[23] and SHAP[16]. I have followed the approach of LIME,

which focuses on the assumption that every non linear model behaves linear on a local scale.

As an example, by looking and comparing the features of two similar observations (e.g.

consider the stocks that are placed to the top decile by conditioning on neural network)

one can come up with some conclusions about the behaviour of neural network. Therefore,

LIME perturbs the feature set of similarly predicted data points (top decile stocks in this

case) and evaluates the changes in the forecasts after perturbation of given observations.

In the end, it comes up with a conclusion that how black box global model behaves on the

local set of sample.

For the sample, since a neural network with same configuration is fitted with rolling

window of five years, it is hard to come up with a global interpretation considering all the

32 4. Insights

features within given time frame because the weight of each feature changes over time as

expected. However, I calculated the importance of features as following: for each predicted

quarter, I have found the most important feature and least important feature for the top

decile and normalized the feature set relatively to the most important feature and least

important feature. Then I have basically summed up the importance of each feature (in a

manner that, how many times feature A or feature B were picked as the most important

feature over the hold out sample period) and obtained the Figure 4.1 for two layer neural

network and Figure 4.2 for ten layer network.

The Figure 4.1 points out that book to the market ratio is the most positive feature

for two layer neural network when it predicts the top decile. If this feature has a higher

value, it means that stock is undervalued therefore neural network expects a higher return

for a given stock then make predictions accordingly. On the other hand, price to the book

ratio has a completely inverse effect and higher price to the book ratio weighs down the

predictions of neural network.

Figure 4.1: Feature importances for two layer neural network

4.2 Interpretability 33

One can ask the question that why book to the market or price to the book features are

more important?. The answer might be that they are calculated more frequently than the

rest of company characteristics. Majority of financial ratios or company characteristics

are announced and calculated every quarter however book to the market or price to the

book ratios are updated according to market price (stock price) since book value of the

company does not change quite often. Therefore, neural networks update the majority of

its portfolio each quarter and make small tweaks to the portfolio via book to the market

and price to the book indicators (they sell stocks that they consider overvalued in the

portfolio). The other important characteristics are dividend yield, debt to assets ratio,

accruals as a fraction of total assets, gross profit margin and gross profit/total assets for

top decile stocks. On the other hand, increase of long term debt to the total liabilities,

price to the sales, inventory/current assets and volume features usually affect predictions

negatively.

One can make many assumptions and conclusions using the interpretations. As an exam-

ple, one can come up with a conclusion that higher debt shows the investment motivation

of the top management, however only the short term debt is accepted as a good debt

since long term debt to the liabilities ratio alters our predictions negatively. A company

having high amount of inventory may show that the company is not successful in selling

its products to customers therefore it may lead to problems in profitability. However,

the assumptions may change depending on the market cycle therefore making a general

conclusion would not be valid and accurate.

For ten layer neural network, the importance of features for the top decile slightly differ

from two layer neural network. It gives higher weights to debt to assets ratio and relatively

less weight to dividend yield that company has paid. Also, one interesting finding is that

it relies more on momentum factor for 12 months as it can be seen from the Figure 3.9.

Ten layer neural network gets affected badly between the years 2000 and 2003 because of

the reason that it followed high momentum stocks during during the dot com bubble. It

34 4. Insights

Figure 4.2: Feature importances for ten layer neural network

also gives higher weights to research and development expenses to sales ratio and return

on capital employed, which can be related to operation leverage and innovation strength

of the company.

The monthly changes in the weights of features with the time also provides interest-

ing insights and would be interesting for future research. These interpretations can be

used when model averaging or ensemble methods are used since different neural networks

evaluate each of the features in a different way.

Chapter 5

Summary

The research in deep learning is still one of the prospective areas in the future and

many questions await to be answered in the field. Therefore, it might be early to make

conclusions about the performance of neural networks in general. As it is shown in the

analysis, a network that can be regarded as deep neural network may have higher monthly

average return compared to equally-weighted average large cap stock return. On the other

hand, both shallow and deep neural networks outperform the average return of large cap

stocks. These outcomes indicate that there might be still better networks in the field or

different networks may evaluate the feature set completely different.

The analysis in this work is a regression analysis. The output is a continuous variable.

The performances are compared using long short portfolios therefore the expected returns

are discretized and top performers are compared with worst performers. The research con-

sists of only large cap stocks where companies are regarded as usually less risky compared

to other listed stocks. One future direction that I can point out is that instead of sort-

ing and dividing expected returns into ten deciles, the network can be trained directly on

discretized (already divided) realized returns. That means the discretization of returns at

time t is done before the training phase rather than after training phase. Thus the problem

turns to a multi class classification problem[10] with ten classes referring to the deciles.

36 5. Summary

In Chapter 2, the cost function and importance of it is discussed. The mean absolute cost

is not differentiable therefore it is not the perfect selection as a cost function. On the other

hand, mean squared cost is sensitive to the outliers and did not bring good results during

empirical research. When the problem is changed to a multi class problem, a different cost

function, cross-entropy loss function can be used to improve performance.

The research is limited to large cap stocks and the increase of the universe to mid cap

stocks may increase the performance of neural networks, since the changes in the financials

might be more observable and these businesses are more shaky compared to the large

cap stocks. However, filtering mid cap and small cap stocks is also an advantage since

transaction costs are higher for illiquid stocks.[19] In addition to that, I have used only

financials that are used quarterly, therefore increasing the feature set might be a good idea

to amplify strategy returns.

Neural networks can be used and ensembled to forecast cross-section of returns. And in

that sense, one does not need many training samples to make use of them. The process of

finding a good neural network might be a computer intensive process, however the networks

that generalize well for an shorter period of time (three to five years) usually generalize

in the long term as well. The neural networks that has out performed the benchmark

portfolio return from 1976 to 1980 has continued to behave in the same way from 1980

to 2018. In this thesis, the aim is to challenge findings about neural networks and their

application in the forecasting cross section of stock returns, accordingly it is decided to set

the aim as explainability of applications rather than outperforming some benchmarks.

The cross section and the time series applications can be merged by adding feedback

connections to the neural network and this is also an interesting area to discover. In this

work, only feed forward neural networks are discussed where the transition of feedback

is not present between the layers. However, recurrent neural networks and convolutional

neural networks with feedback connections which can carry the previous market cycle

37

information to the recent time periods might be an interesting area to explore.

Appendix A

Data Descriptions

1

1source: https://wrds-www.wharton.upenn.edu/

39

40 A. Data Descriptions

41

42 A. Data Descriptions

Appendix B

Descriptive Statistics

44 B. Descriptive Statistics

feature count mean std min 1% 25% 50% 75% 99% max
VOL 50881 3,368.50 4,005.77 0.00 95.00 1,005.00 2,110.00 4,173.00 19,387.00 78,441.00
return t1 55156 0.00 0.11 -1.00 -0.26 -0.06 0.00 0.06 0.32 1.26
CAP 55156 809,842.54 2,236,210.80 61,106.63 80,247.31 178,384.92 328,584.38 670,992.75 8,758,155.38 50,592,470.50
mom 1m 54739 0.01 0.11 -0.53 -0.24 -0.06 0.00 0.06 0.34 1.26
cum return 52380 0.06 0.40 -0.89 -0.63 -0.19 0.01 0.24 1.37 7.41
CAPEI 50878 20.62 55.05 -685.53 2.49 9.63 13.92 23.40 101.27 5,487.54
bm 51929 0.84 0.64 0.01 0.08 0.39 0.70 1.09 3.06 8.65
evm 52151 8.45 48.41 -4,300.50 1.49 5.61 7.97 11.18 33.34 4,073.53
pe exi 49746 15.90 15.45 -125.00 0.24 7.64 12.34 19.90 67.03 288.75
pe inc 47722 16.60 15.58 -114.06 -7.89 8.41 12.77 20.57 69.75 293.75
ps 52250 1.31 1.52 0.02 0.09 0.43 0.83 1.55 8.60 13.56
pcf 51630 12.14 36.23 -271.55 -125.20 4.19 7.55 15.95 154.90 399.68
dpr 51971 0.15 2.71 -348.90 0.00 0.00 0.02 0.23 0.93 35.16
npm 52250 0.09 0.37 -0.63 -0.01 0.04 0.07 0.11 0.33 32.52
opmbd 52184 0.22 1.21 -0.84 0.03 0.11 0.17 0.26 0.69 149.71
opmad 52201 0.17 1.20 -0.90 0.01 0.08 0.13 0.21 0.54 149.71
gpm 52180 0.33 0.50 -76.15 0.03 0.24 0.31 0.42 0.81 1.00
ptpm 52241 0.15 0.54 -0.66 -0.01 0.07 0.12 0.18 0.51 48.22
cfm 48398 0.14 0.15 -0.48 0.02 0.07 0.11 0.17 0.55 7.01
roa 51435 0.17 0.10 -1.52 0.01 0.11 0.15 0.22 0.49 2.06
roe 51548 0.20 2.31 -26.90 -0.07 0.10 0.13 0.17 0.63 235.30
roce 47786 0.18 0.13 -0.34 0.00 0.10 0.15 0.23 0.63 3.88
efftax 51588 0.38 0.34 -19.52 -0.06 0.33 0.44 0.48 0.57 3.08
aftret eq 51897 0.14 0.08 -1.70 -0.02 0.10 0.13 0.17 0.39 1.25
aftret invcapx 51946 0.13 0.50 -0.29 0.00 0.08 0.10 0.15 0.47 31.11
aftret equity 51613 0.14 0.08 -1.70 -0.02 0.10 0.13 0.17 0.39 1.25
pretret noa 47736 0.21 0.26 -2.54 0.00 0.11 0.18 0.27 0.78 14.68
pretret earnat 47774 0.16 0.15 -0.23 0.01 0.09 0.13 0.20 0.54 3.41
GProf 52186 0.32 0.25 -3.37 0.02 0.13 0.28 0.45 1.08 1.95
equity invcap 52417 0.71 0.34 -7.42 0.27 0.54 0.71 0.86 1.27 4.00
debt invcap 51959 0.29 0.20 0.00 0.00 0.14 0.28 0.44 0.73 5.62
totdebt invcap 51833 0.43 0.45 0.00 0.00 0.22 0.38 0.56 2.25 23.93
capital ratio 51949 0.29 0.19 0.00 0.00 0.14 0.28 0.43 0.70 1.00
int debt 44954 0.18 1.60 0.00 0.03 0.07 0.08 0.12 1.00 94.10
int totdebt 45507 0.07 0.04 0.00 0.02 0.06 0.07 0.08 0.20 2.35
cash lt 48299 0.29 1.39 -1.06 0.01 0.06 0.12 0.25 2.47 63.35
invt act 44689 0.40 0.19 0.00 0.00 0.27 0.42 0.52 0.81 2.05
rect act 44694 0.38 0.14 0.00 0.03 0.30 0.38 0.45 0.84 0.98
debt at 51697 0.26 0.17 0.00 0.00 0.13 0.25 0.38 0.65 1.20
debt ebitda 51585 2.47 5.29 -210.57 0.00 0.80 1.78 3.47 13.03 400.00
short debt 49743 0.27 0.26 0.00 0.00 0.08 0.18 0.37 1.00 1.01
curr debt 48663 0.48 0.24 -0.94 0.08 0.28 0.46 0.64 1.00 1.68
lt debt 51829 0.40 0.25 -0.35 0.00 0.20 0.42 0.59 0.87 1.19
profit lct 48505 1.03 0.94 -4.21 0.12 0.58 0.86 1.27 3.56 32.02
ocf lct 48201 0.63 3.33 -3.58 -0.35 0.22 0.46 0.75 2.77 181.34
cash debt 51289 0.28 3.08 -1.20 -0.20 0.07 0.14 0.26 1.41 155.45
fcf ocf 39902 -1.18 23.42 -1,425.70 -14.42 -0.66 0.02 0.41 0.94 1.01
lt ppent 51816 7.75 27.40 -2.02 0.29 0.71 1.07 1.82 150.49 408.11
dltt be 51565 0.60 1.32 0.00 0.00 0.16 0.39 0.79 2.42 93.82
debt assets 52165 0.50 0.18 -0.33 0.12 0.39 0.50 0.61 0.95 1.00
debt capital 46890 0.41 0.21 0.00 0.04 0.27 0.39 0.53 0.96 0.99
de ratio 52120 2.09 4.39 -0.26 0.15 0.63 0.98 1.55 22.91 184.74
intcov 46249 17.86 216.50 -4,226.10 0.76 2.62 4.08 7.81 149.31 11,669.00
intcov ratio 46186 29.50 341.63 -46.32 0.18 3.28 5.97 12.49 256.57 18,815.70

45

cash ratio 44861 0.52 1.58 0.00 0.03 0.14 0.26 0.53 3.54 63.35
quick ratio 44744 1.42 1.86 0.00 0.24 0.88 1.19 1.57 5.04 71.50
curr ratio 48610 2.23 1.95 0.00 0.38 1.42 2.06 2.73 6.17 72.04
cash conversion 36146 191.42 8,572.74 0.05 4.96 58.50 99.84 151.79 749.12 1,151,806.00
inv turn 41962 22.88 1,228.86 0.05 1.08 3.00 4.48 7.51 78.85 133,596.00
at turn 51647 1.16 0.90 0.00 0.06 0.49 1.09 1.52 5.07 8.88
rect turn 46457 11.56 27.45 0.00 0.11 5.15 6.83 9.54 142.42 618.21
pay turn 38440 14.04 10.25 -91.22 -0.55 8.31 12.25 17.41 48.45 267.18
sale invcap 52222 1.81 7.02 0.00 0.21 0.81 1.47 2.12 8.95 901.77
sale equity 51899 2.32 1.82 0.00 0.38 1.24 1.98 2.85 9.99 74.91
sale nwc 41888 13.16 149.98 -959.46 0.61 3.36 4.88 8.06 96.65 8,353.83
rd sale 52500 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.23
adv sale 52169 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.12 0.85
staff sale 52169 0.11 0.16 0.00 0.00 0.00 0.00 0.23 0.49 4.67
accrual 51555 0.01 0.07 -1.01 -0.19 -0.01 0.02 0.04 0.15 5.00
ptb 51929 2.15 2.13 0.13 0.33 0.89 1.39 2.50 10.85 17.31
PEG trailing 33705 2.57 7.03 -0.41 0.01 0.43 1.12 2.36 30.41 183.30
DIVYIELD 55156 0.03 0.03 0.00 0.00 0.01 0.03 0.05 0.11 0.30

Table B.1: Descriptive statistics of the feature set

Appendix C

Performance Comparison

47

D
ec

il
es

1
2

3
4

5
6

7
8

9
10

H
ig

h
-L

ow
N

eu
ra

l
N

et
w

or
k

N
am

e
C

on
fi
gs

N
N

4
[6

6,
15

,
15

,
60

,
12

0,
1]

-0
.1

2%
1.

30
%

2.
30

%
1.

48
%

1.
27

%
1.

59
%

4.
14

%
2.

82
%

2.
61

%
3.

77
%

3.
89

%
N

N
6

[6
6,

15
,

60
,

60
,

60
,

60
,

15
,

1]
-0

.1
1%

1.
77

%
1.

26
%

2.
04

%
2.

47
%

2.
17

%
2.

89
%

2.
50

%
2.

89
%

3.
28

%
3.

39
%

N
N

7
[6

6,
15

,
15

,
15

,
15

,
60

,
60

,
15

,
1]

0.
79

%
0.

97
%

1.
99

%
2.

41
%

1.
59

%
2.

17
%

2.
71

%
2.

07
%

2.
28

%
4.

16
%

3.
37

%
N

N
5

[6
6,

60
,

15
,

60
,

12
0,

15
,

1]
0.

58
%

2.
10

%
1.

86
%

1.
15

%
3.

25
%

1.
48

%
2.

89
%

3.
20

%
1.

68
%

2.
94

%
2.

36
%

N
N

2
[6

6,
12

0,
15

,
1]

1.
24

%
2.

47
%

1.
58

%
2.

80
%

1.
59

%
1.

12
%

1.
34

%
2.

90
%

3.
18

%
2.

94
%

1.
71

%
N

N
3

[6
6,

60
,

15
,

15
,

1]
1.

16
%

0.
61

%
2.

30
%

2.
30

%
0.

49
%

3.
46

%
2.

97
%

3.
17

%
2.

23
%

2.
47

%
1.

31
%

N
N

1
[6

6,
15

,
1]

2.
10

%
1.

35
%

1.
99

%
2.

02
%

2.
17

%
2.

16
%

2.
58

%
2.

63
%

2.
03

%
2.

14
%

0.
05

%
N

N
8&

N
N

9
[6

6,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
1]

2.
61

%
2.

24
%

1.
41

%
2.

34
%

0.
74

%
2.

10
%

2.
11

%
2.

90
%

2.
89

%
1.

79
%

-0
.8

1%

Table C.1: Portfolio returns for neural networks architectures during training phase

48 C. Performance Comparison

D
ec

il
es

1
2

3
4

5
6

7
8

9
10

H
ig

h
-L

ow
N

eu
ra

l
N

et
w

or
k

N
am

e
C

on
fi
gs

N
N

6
[6

6,
15

,
60

,
60

,
60

,
60

,
15

,
1]

-2
.0

6%
2.

56
%

4.
07

%
5.

18
%

5.
59

%
4.

78
%

5.
72

%
5.

93
%

6.
18

%
5.

07
%

7.
13

%
D

:
0

-
R

:1
e-

05
-

E
:

10
0

N
N

8
[6

6,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
1]

1.
63

%
3.

72
%

2.
76

%
3.

15
%

3.
16

%
3.

53
%

5.
10

%
3.

79
%

7.
55

%
8.

46
%

6.
83

%
D

:
0

–
R

:1
e-

05
–

E
:

50
N

N
4

[6
6,

15
,

15
,

60
,

12
0,

1]
-0

.2
0%

1.
73

%
2.

26
%

1.
07

%
2.

20
%

2.
50

%
2.

30
%

2.
03

%
2.

71
%

4.
60

%
4.

80
%

D
:

0.
7

–
R

:1
e-

05
–

E
:

20
0

N
N

1
[6

6,
15

,
1]

1.
72

%
2.

86
%

4.
36

%
4.

23
%

3.
82

%
5.

43
%

4.
14

%
4.

76
%

5.
89

%
5.

54
%

3.
82

%
D

:
0

–
R

:0
.0

00
1

–
E

:
50

N
N

5
[6

6,
60

,
15

,
60

,
12

0,
15

,
1]

0.
77

%
0.

04
%

1.
25

%
2.

09
%

2.
67

%
2.

02
%

1.
78

%
3.

68
%

2.
80

%
4.

11
%

3.
34

%
D

:
0.

3
–

R
:1

e-
05

–
E

:
10

0
N

N
3

[6
6,

60
,

15
,

15
,

1]
2.

45
%

4.
01

%
5.

46
%

4.
58

%
4.

17
%

3.
42

%
4.

20
%

4.
25

%
4.

49
%

5.
71

%
3.

26
%

D
:

0
–

R
:0

.0
00

1
–

E
:

50
N

N
7

[6
6,

15
,

15
,

15
,

15
,

60
,

60
,

15
,

1]
0.

07
%

2.
45

%
0.

96
%

2.
77

%
1.

34
%

2.
26

%
2.

76
%

2.
66

%
2.

80
%

3.
11

%
3.

03
%

D
:

0.
3

–
R

:0
.0

00
1

–
E

:
50

N
N

2
[6

6,
12

0,
15

,
1]

D
:

0.
7R

:0
.0

01
E

:
10

0
0.

24
%

1.
43

%
1.

00
%

2.
34

%
1.

82
%

1.
96

%
2.

36
%

3.
73

%
3.

17
%

3.
12

%
2.

88
%

D
:

0.
7

–
R

:0
.0

01
–

E
:

10
0

N
N

9
[6

6,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
10

0,
1]

6.
59

%
5.

53
%

2.
59

%
3.

73
%

3.
19

%
2.

55
%

5.
15

%
5.

62
%

3.
50

%
4.

29
%

-2
.3

0%
D

:
0

–
R

:0
.0

01
–

E
:

20
0

Table C.2: Portfolio returns for neural networks hyperparameters during training phase

Appendix D

Fama-Macbeth Regression Results

Deciles 1 2 3 4 5 6 7 8 9 10
const -0.49 -0.24 -0.07 0.00 0.02 0.08 0.07 0.10 0.24 0.23

(0.00) (0.00) (0.29) (1.00) (0.79) (0.20) (0.26) (0.08) (0.00) (0.00)
Mkt-RF 1.30 1.13 1.06 1.03 1.00 0.98 0.98 0.96 0.97 1.03

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
SMB 0.50 0.27 0.24 0.22 0.21 0.19 0.18 0.20 0.21 0.22

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
HML -0.39 -0.07 0.10 0.15 0.20 0.21 0.20 0.19 0.17 0.07

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02)

Table D.1: Fama-Macbeth 3 Factor regression results for two layer network

Deciles 1 2 3 4 5 6 7 8 9 10
const -0.49 -0.19 -0.04 0.07 -0.03 0.03 0.09 0.17 0.15 0.18

(0.00) (0.01) (0.53) (0.28) (0.68) (0.66) (0.11) (0.00) (0.04) (0.06)
Mkt-RF 1.37 1.15 1.04 1.00 0.99 0.97 0.97 0.96 0.96 1.02

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
SMB 0.40 0.25 0.24 0.15 0.16 0.16 0.15 0.20 0.31 0.43

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
HML -0.25 0.04 0.16 0.17 0.20 0.19 0.21 0.14 0.06 -0.08

(0.00) (0.11) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.02)

Table D.2: Fama-Macbeth 3 Factor regression results for ten layer network

50 D. Fama-Macbeth Regression Results

Deciles 1 2 3 4 5 6 7 8 9 10
const -0.04 -0.11 -0.07 -0.04 -0.03 0.00 0.00 0.04 0.18 0.20

(0.70) (0.16) (0.27) (0.48) (0.57) (0.98) (0.92) (0.44) (0.01) (0.01)
Mkt-RF 1.20 1.10 1.05 1.04 1.01 1.00 0.99 0.97 0.98 1.03

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
SMB 0.20 0.20 0.26 0.26 0.26 0.23 0.22 0.24 0.26 0.27

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
HML -0.32 -0.04 0.08 0.12 0.16 0.12 0.13 0.14 0.11 0.06

(0.00) (0.20) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.14)
RMW -0.92 -0.25 0.03 0.11 0.11 0.13 0.14 0.12 0.12 0.12

(0.00) (0.00) (0.40) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.20)
CMA -0.14 -0.11 -0.01 0.00 0.00 0.11 0.09 0.03 0.05 -0.07

(0.06) (0.04) (0.79) (0.91) (0.92) (0.00) (0.03) (0.40) (0.36) (0.24)

Table D.3: Fama-Macbeth 5 Factor regression results for two layer network

Deciles 1 2 3 4 5 6 7 8 9 10
const -0.01 -0.12 -0.10 -0.02 -0.12 -0.1 0.00 0.13 0.18 0.28

(0.90) (0.12) (0.15) (0.78) (0.04) (0.08) (0.96) (0.03) (0.02) (0.00)
Mkt-RF 1.24 1.12 1.05 1.02 1.01 1.00 0.99 0.97 0.96 1.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
SMB 0.13 0.24 0.29 0.23 0.23 0.22 0.21 0.22 0.28 0.36

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
HML -0.06 0.08 0.10 0.13 0.13 0.07 0.13 0.09 0.00 -0.13

(0.27) (0.02) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.99) (0.01)
RMW -0.89 -0.09 0.12 0.20 0.19 0.20 0.17 0.09 -0.07 -0.20

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.06) (0.00)
CMA -0.40 -0.15 0.03 0.00 0.07 0.19 0.09 0.04 0.04 0.01

(0.00) (0.00) (0.50) (0.87) (0.09) (0.00) (0.02) (0.32) (0.40) (0.84)

Table D.4: Fama-Macbeth 5 Factor regression results for ten layer network

Appendix E

Turnovers

52 E. Turnovers

Year NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 NN9
1976 477.73% 469.99% 487.19% 435.47% 405.7% 441.98% 419.7% 389.9% 437.7%
1977 415.27% 552.44% 468.85% 469.15% 532.13% 529.76% 448.73% 538.76% 453.85%
1978 460.18% 469.21% 482.74% 490.04% 461.87% 559.87% 429.04% 491.46% 516.53%
1979 475.65% 503.11% 521.99% 454.75% 465.95% 477.56% 516.58% 426.55% 462.38%
1980 499.86% 603.94% 570.11% 574.16% 487.03% 467.38% 548.96% 482.98% 569.23%
1981 508.00% 520.76% 529.74% 472.03% 531.6% 498.81% 476.83% 478.92% 578.67%
1982 542.23% 559.55% 573.44% 478.04% 551.24% 567.9% 521.77% 420.96% 628.54%
1983 482.25% 517.93% 548.24% 492.21% 504.52% 520.88% 530.35% 478.74% 580.71%
1984 556.98% 428.95% 505.58% 489.05% 482.13% 481.54% 479.47% 508.02% 384.21%
1985 430.17% 411.18% 508.08% 530.1% 526.87% 576.31% 483.66% 490.46% 320.63%
1986 496.5% 367.23% 506.41% 532.54% 543.96% 455.06% 486.06% 486.21% 326.83%
1987 489.1% 407.73% 582.71% 529.74% 500.99% 517.88% 547.55% 582.61% 385.33%
1988 515.92% 558.49% 480.23% 506.46% 490.82% 516.81% 545.75% 610.72% 489.41%
1989 438.52% 525.95% 554.63% 490.3% 450.05% 470.48% 458.89% 453.19% 513.84%
1990 498.21% 431.08% 482.15% 508.83% 474.77% 389.54% 393.56% 486.81% 376.66%
1991 493.59% 460.21% 495.24% 491.28% 489.9% 481.57% 475.05% 485.98% 382.21%
1992 552.56% 547.67% 500.96% 476.76% 456.22% 476.26% 534.8% 512.86% 510.72%
1993 459.63% 429.21% 471.55% 519.41% 512.13% 473.83% 494.34% 509.1% 338.08%
1994 527.43% 431.11% 558.52% 425.04% 494.53% 523.81% 498.47% 543.39% 310.54%
1995 512.96% 488.99% 507.16% 492.06% 532.11% 525.32% 464.08% 414.8% 458.74%
1996 461.7% 484.32% 457.67% 578.27% 495.99% 459.95% 432.73% 505.49% 454.62%
1997 524.98% 482.63% 542.26% 536.13% 473.24% 512.73% 463.69% 493.39% 285.3%
1998 525.11% 373.1% 533.69% 522.00% 511.17% 520.28% 573.34% 464.44% 272.3%
1999 566.39% 467.75% 530.36% 524.39% 564.2% 560.24% 574.12% 514.67% 342.33%
2000 520.05% 409.9% 577.41% 501.37% 547.1% 558.94% 609.01% 519.99% 515.63%
2001 536.41% 365.46% 510.98% 479.9% 565.17% 544.61% 472.07% 583.04% 320.37%
2002 502.96% 412.6% 451.4% 484.42% 472.32% 487.15% 504.51% 459.3% 370.71%
2003 516.84% 371.47% 499.52% 530.04% 487.57% 506.35% 521.18% 495.37% 346.76%
2004 491.45% 283.9% 435.54% 475.28% 479.53% 455.02% 454.46% 442.36% 316.13%
2005 494.29% 281.76% 432.54% 455.29% 490.81% 435.17% 455.25% 413.18% 290.15%
2006 464.14% 413.31% 534.28% 461.07% 486.83% 437.68% 416.44% 482.93% 358.21%
2007 526.42% 476.16% 496.06% 503.49% 459.66% 533.47% 513.65% 455.83% 325.36%
2008 503.51% 430.38% 521.88% 554.5% 474.33% 472.42% 497.17% 527.43% 408.87%
2009 650.81% 496.41% 474.41% 577.23% 548.65% 495.72% 501.34% 490.22% 541.52%
2010 495.00% 701.00% 511.46% 497.77% 540.57% 510.82% 467.08% 547.46% 594.5%
2011 510.21% 621.16% 403.72% 538.3% 443.46% 542.93% 491.94% 491.66% 620.84%
2012 521.87% 697.63% 544.37% 490.89% 458.31% 443.8% 487.76% 441.88% 673.39%
2013 431.52% 668.65% 474.65% 447.78% 491.8% 485.89% 391.68% 487.83% 635.77%
2014 385.5% 482.4% 435.26% 474.07% 483.55% 505.13% 488.7% 462.46% 457.41%
2015 422.53% 506.67% 492.61% 480.75% 503.79% 488.36% 490.41% 505.51% 403.34%
2016 474.26% 588.81% 430.73% 503.4% 480.37% 483.75% 501.55% 473.00% 458.81%
2017 534.86% 689.58% 483.98% 505.39% 472.29% 521.8% 447.65% 537.59% 686.57%
2018 478.36% 609.01% 536.36% 473.93% 464.27% 447.58% 517.23% 533.45% 494.28%
Average 497.02% 488.34% 503.41% 498.9% 495.1% 496.79% 488.99% 491.18% 446.46%

Appendix F

Electronic Appendix

• data (folder):

– breakpoints (folder):

∗ ME Breakpoints.csv: includes Fama-French market breakpoints

– factors (folder):

∗ F-F Research Data 5 Factors 2x3.csv: Fama-French 3 Factors

∗ F-F Research Data Factors.csv: Fama-French 5 Factors

– README.txt: README for data processing steps

– final data lc.csv: data including only large cap stocks after preprocessing

– market data 19602018.csv: market data from CRSP

– fin ratio 19702018.csv: company characteristics data from CRSP

• preprocess (folder):

– cleaner.py : script that is used to create final data lc.csv and performs prepro-

cessing

• optimizer (folder):

– solver comparison.py : solver that performs optimization of neural network

54 F. Electronic Appendix

– models.py : model that initializes feedforward neural networks automatically

• results (folder):

– interpretability best (folder):

∗ data.json: includes feature importances for 2 layer neural network

– interpretability second (folder)

∗ data.json: includes feature importances for 10 layer neural network

– layers (folder):

∗ returns.csv: includes the result of neural network architecture search

– one step (folder):

∗ returns.csv: includes the result of neural network hyperparameter search

– best config(folder):

∗ returns.csv: includes the result of forward testing

• Forecasting Returns Step1.py : performs the neural network architecture search and

extracts CSV file

• Forecasting Returns Step2.py : performs the neural network hyperparameter search

and extracts CSV file

• Forecasting Returns Step3.py : performs the neural network forward testing for final

models and extracts CSV file

• Forecasting Returns Step4.py : performs the interpretation of top decile and extracts

JSON file

• Reproduce Tables and Plots : A Jupyter Notebook that includes methods to repro-

duce results in the thesis

• requirements.txt: list that lists the packages that needs to be installed

Bibliography

[1] C.M. Bishop: Neural Networks for Pattern Recognition. Oxford University Press,

USA, 1995.

[2] D.A. Clevert, T. Unterthiner S. Hochreiter: Fast and Accurate Deep Network Learning

by Exponential Linear Units (ELUs). ICLR 2016, 2016.

[3] J. Cochrane: Asset Pricing. McGraw-Hill, New York, pg. 435, 2005.

[4] Eagle Alpha: Alternative Data Use Cases, 2018.

[5] E. Fama: The Behavior of Stock-Market Prices. The Journal of Business, Vol. 38, No.

1. (Jan., 1965), pp. 34-105, 1965.

[6] E.F. Fama K.R. French: Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics 33 (1993) pp. 3-56, 1993.

[7] E.F. Fama K.R. French: A Five-Factor Asset Pricing Model. Journal of Financial

Economics 116 (2015), pp.1-22, 2013.

[8] G. Feng, N.G. Polson J. Xu: Deep Learning in Characteristics-Sorted Factor Models,

2018.

[9] X. Glorot Y. Bengio: Understanding the difficulty of training deep feedforward neural

networks. Volume 9 of JMLR pg.249-256, 2010.

[10] I. Goodfellow, Y. Bengio A. Courville: Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

56 BIBLIOGRAPHY

[11] S. Gu, B. Kelly D. Xiu: Empirical Asset Pricing via Machine Learning. The Review

of Financial Studies Vol. 33, pp. 2223-2273, 2020.

[12] K. He, X. Zhang, S. Ren J. Sun: Delving Deep into Rectifiers:Surpassing Human-Level

Performance on ImageNet Classification. Proceedings of the IEEE internationalcon-

ference on computer vision, pg. 1026–1034, 2015.

[13] S. Ioffe C. Szegedy: Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. Proceedings of the 32nd International Conference

on Machine Learning. JMLR: WCP volume 37.

[14] D.P. Kingma J.L. Ba: Adam: A Method For Stochastic Optimization. ICLR 2015,

2015.

[15] Y. LeCun, L. Bottou, G. Orr K.R. Muller: In: Montavon G., Orr G.B., Müller KR.

(eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol

7700. Springer, 2012.

[16] S.M. Lundberg S.I. Lee: A Unified Approach to Interpreting Model Predictions. 31st

Conference on Neural Information Processing Systems (NIPS 2017), 2017.

[17] T. Mitchell: Machine Learning. McGraw-Hill, New York, 1997.

[18] V. Nair G.E. Hinton: Rectified Linear Units Improve Restricted Boltzmann Machines.

ICLR 2010, 2010.

[19] R. Novy-Marx M. Velikov: A Taxonomy of Anomalies and Their Trading Costs. The

Review of Financial Studies, Volume 29, Issue 1, pp. 104–147, 2016.

[20] M. Olson, A.J. Wyner R. Berk: Modern Neural Networks Generalize on Small

DataSets. 32nd Conference on Neural Information Processing Systems (NeurIPS

2018), 2018.

BIBLIOGRAPHY 57

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai S. Chintala: PyTorch: An

Imperative Style, High-Performance Deep Learning Library. Curran Associates, Inc.,

2019.

[22] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda Q. Liao: Why and When Can Deep

– but Not Shallow – Networks Avoid the Curse of Dimensionality: a Review. Interna-

tional Journal of Automation and Computing volume 14, pp. 503–519, 2017.

[23] M.T. Ribeiro, S. Singh C. Guestrin: ”Why Should I Trust You?” Explaining the

Predictions of Any Classifier. KDD ’16: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, August 2016,

pp. 1135–1144, 2016.

[24] F. Rosenblatt: The Perceptron: A Perceiving and Recognizing Automaton. Report 85,

60, 1, Cornell Aeronautical Laboratory, 1957.

[25] W.F. Sharpe: The Sharpe Ratio. The Journal of Portfolio Management Fall 1994,

Issue 21, pp.49-58, 1995.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever R. Salakhutdinov: Dropout:

A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine

Learning Research 15 pp. 1929-1958, 2014.

[27] K.O. Stanley R. Miikkulainen: Evolving Neural Networks through Augmenting Topolo-

gies. Evolutionary Computation 10(2): pp. 99-127, 2002.

[28] I. Welch A. Goyal: A Comprehensive Look at The Empirical Performance of Eq-

uity Premium Prediction. The Review of Financial Studies, Volume 21, Issue 4, pp.

1455–1508, 2008.

	Introduction
	Forecasting with Neural Networks
	Main Findings

	Theory
	Forecasting Returns
	Neural Networks
	Purpose
	Library
	Configurations

	Empirics
	Data Description and Features
	Universe
	Features

	Training Neural Networks
	Training Procedure
	Data Preprocessing

	Forecast Evaluation
	Comparison of Results
	Model Check
	Trading Strategies

	Insights
	Factor Based Analysis
	Interpretability

	Summary
	Data Descriptions
	Descriptive Statistics
	Performance Comparison
	Fama-Macbeth Regression Results
	Turnovers
	Electronic Appendix

