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Abstract

Machine learning systems are increasingly deployed in high-stake situations such as crim-
inal justice, credit risk assessment, and medical diagnoses. With predictive decisions
significantly impacting crucial aspects of individuals’ life, society raised concerns about
unfair treatment and discrimination by such algorithmic tools. Consequently, a growing
body of research has established around fairness in machine learning. While the literature
focused mainly on a setting, in which all features are ready at hand, this work focuses on
a setting known as prediction-time active feature-value acquisition (AFA). Here, a deci-
sion maker can sequentially query information (features) at some cost and further makes
a final prediction upon it. The aim of this cumulative thesis is to investigate algorithmic
fairness in prediction-time AFA settings.

The contributions of this work are twofold. First, a framework for choosing a set of
confidence-based stopping criteria is proposed to redistribute information (feature) bud-
gets among individuals. Often, individuals from underrepresented groups in the data
will face a higher likelihood of erroneous decisions. Naturally, this framework encourages
collecting more information for these individuals to ensure equally confident decisions.
Using a calibrated probabilistic classifier, our experiments demonstrated single error par-
ity (equal opportunity) in addition to calibration by groups.

Second, staying in the AFA domain, we translate the problem into a Markov decision
process and train a reinforcement learning agent to sequentially choose subsets of fea-
tures that are predictive for the outcome but do not increase the demographic disparity.
This is done by incorporating an adversary in the reward function, that penalizes the
agent if it selects unfair features. By tuning a hyperparameter representing the magni-
tude of fairness, the framework is able to trade off predictive performance and fairness
(demographic parity), which we confirmed experimentally.
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Chapter 1

Introduction

1.1 Motivation
The recent decade has seen a rise in artificial intelligence, which was predominantly pow-
ered by machine learning-based systems. The progress made at the frontier of machine
learning research is nothing but remarkable. We have seen breakthroughs in intelligent
systems that surpass human-level performance at a variety of tasks such as in recognizing
images [1], playing the game of Go [2] or identifying breast cancer based on mammograms
[3]. As the "new electricity", these transformative technologies are being widely adopted
in various industries with the promise of creating economic value [4]. Hence, machine
learning models are becoming more and more integrated into our daily lives.

This may range from low-stake situations such as setting up an alarm using a conversa-
tional assistant to high-stake situations where an algorithm predicts the creditworthiness
of an individual in a loan application. As you can imagine, the second scenario has a
significantly higher impact on an individual’s life. Wrong decisions may have drastic and
irreversible consequences in the life of that individual, such as existential bankruptcy.
Other high-stake applications of machine learning can be observed in criminal risk as-
sessment, job screening, welfare fraud detection and medical diagnosis.

While there is no doubt about the utility and efficiency of automated systems, society
at large has raised concerns about discrimination and unfairness within those systems.
What if a model’s output results in decisions that are systematically biased against mi-
nority groups? What if historical or real-world biases in the data are perpetuated by those
models? This would lead to unfairly denied loans, missed employment opportunities or
even jail sentences. Indeed, there is substantial evidence of discrimination by deployed
machine learning systems, which has been covered in the mainstream media. A crim-
inal recidivism risk scoring tool used in courtrooms called COMPAS has been claimed
to encode racial bias. A study by ProPublica found that African-American defendants
were mistakenly labeled as potential recidivists at a higher rate than white Americans [5].
Reuters reported in 2018, that a machine learning-based recruiting tool for CV screening
was discontinued by Amazon as it "showed bias against women" [6]. The Gender Shades
study showed how commercial facial recognition software by IBM, Google, Microsoft
significantly "misgender" women of color [7]. Facebook was charged in March 2019 by
the US Department of Housing and Urban Development (HUD)1 for violating the Fair
Housing Act as targeted ads discriminated based on protected attributes like race, sex,
and nationality [8]. In February 2020, a Dutch risk scoring system called SyRI, which

1https://www.hud.gov/sites/dfiles/Main/documents/HUD_v_Facebook.pdf
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Chapter 1 Introduction

aims at predicting the likelihood of social security claimants to commit benefits or tax
fraud, was sentenced for breaching human rights as it discriminated against low-income
neighborhoods [9].

The potential harm of these data-driven methods led to an exploding interest by the
academic community to study fairness in machine learning. Fairness, accountability
and transparency became key ingredients towards more human-centric machine learn-
ing. Substantial efforts have been made in order to define and quantify fairness within
this context, to understand the causes of discrimination and to develop techniques to
mitigate unfairness in algorithmic systems. These efforts are also in line with the General
Data Protection Regulation (GDPR), which was put in place by the European Union in
May 2019. In particular, the GDPR demands privacy-preserving, fair and transparent
processing of personal data2.

Most methods that are aimed at achieving fairer predictive models focus on the stan-
dard classification setting, in which data is assumed to be complete and readily available.
While this assumption might hold in course projects and data science competitions, the
real world often deals with missing values, incomplete data sets, and situations where
information can be specifically collected at some additional cost. Consider a courtroom
setting, where a defendant is accused of having committed a crime. Initially, there might
be insufficient information about the case in order for a judge or jury to make an informed
decision. Hence, in a pre-trial investigation, facts are collected by e.g. police officers or
public procurators. Sequentially, more and more information is queried at some adminis-
trative cost by inviting witnesses, collecting evidences and conducting cross-examinations.
This can carry on across several trial stages until sufficient evidence is collected to make
a confident prediction, the judgment sentence. In machine learning, this setting is known
as prediction-time active feature-value acquisition (AFA) [10] and is relevant in many
high-stake domains.

To the best of our knowledge, there is only one paper [11] exploring the intersection
of fairness in machine learning and AFA systems. In their work, a decision maker can
sequentially acquire features at prediction-time adapted to subgroup-level needs in order
to balance disparities in false positive or false negative rates across subgroups. In order to
determine the subgroup-specific information budgets, they utilize an optimization frame-
work. The goal of this thesis is to extend this line of work and develop further methods to
promote fairness in budget-constrained, sequential decision making. This work is differ-
ent from [11] in that it does not rely on optimization methods to determine information
budgets but rather suggests two dynamic approaches for determining final feature sets
using (1) confidence-based stopping criteria and (2) an adversarial reinforcement learning
framework.

1.2 Key Contributions
This thesis presents two novel methods to mitigate unfairness in budget-constrained ma-
chine learning problems. Thus, the key contributions are twofold:

2https://gdpr-info.eu/art-5-gdpr/
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1.3 Thesis Structure

∙ First, we propose a framework for choosing a set of stopping criteria based on the
probabilistic confidence of a classifier that leads to fairness in terms of single error
parity (equal opportunity) in addition to calibration by groups. The framework
scales efficiently to possibly multiple intersections of sensitive attributes as long as
we have access to the base rate of those subgroups.
∙ Second, we propose a unified framework where the AFA setting is modeled as a

Markov decision process and a reinforcement learning agent sequentially selects
a subset of fair features. This is done by involving an adversary that penalizes
the agent to acquire features that lead to demographic disparity. By tuning a
hyperparameter representing the magnitude of fairness in the reward function, the
framework is able to effectively trade off predictive performance and demographic
parity.

1.3 Thesis Structure
The structure of this thesis is organized as follows. Chapter 1 introduces the problem
of interest and motivates the setting. Further, the main contributions are outlined.

Chapter 2 introduces some relevant background knowledge and provides an overview
of machine learning concepts, i.e. supervised and reinforcement learning. It further in-
troduces the AFA setting and discusses some related work on fairness in machine learning.

Chapter 3, titled "On Fairness on Budget-Constrained Decision Making" investigates
how individual information (features) budgets across protected groups can provide fair-
ness guarantees. The fairness measure of interest here is calibration and equal opportu-
nity. In particular, the overarching question is when to stop acquiring additional features
to provide fair and accurate decisions. The chapter draws on a workshop paper presented
at the KDD 2019 Workshop on Explainable AI (XAI) for Fairness, Accountability and
Transparency (Bakker, Noriega-Campero, Tu et al. 2019). A further expanded version of
this work is currently under review at the International Conference on Machine Learning
(ICML) 2020.

Building on the insights of the previous chapter, Chapter 4 titled "DADI: Dynamic
Discovery of Fair Information with Adversarial Reinforcement Learning" aims to com-
bine two aspects of the AFA pipeline, feature acquisition strategy and stopping criterion,
to ensure fairness in terms of demographic parity for classification tasks downstream.
This work was accepted at the NeurIPS 2019 Human-Centric Machine Learning Work-
shop (Bakker, Tu et al. 2019) and a further extended version is currently under review
at the International Joint Conference on Artificial Intelligence (IJCAI) 2020.

Finally, Chapter 5 concludes this thesis with a discussion and motivates future work.
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Chapter 2

Background and Related Work

This chapter introduces some general background knowledge on machine learning and
discusses some related work. This lays the groundwork of the research contributions in
chapter 3 and 4. First, the concepts of supervised and reinforcement learning are intro-
duced. Second, we lay out the setting of prediction-time active feature-value acquisition.
Last, we elaborate on fairness in machine learning and approaches to achieve statistical
notions of fairness.

2.1 Supervised Learning

Supervised learning has been driving most of the applications in machine learning. The
idea of supervised learning is to learn an unknown functional relationship between inputs
and outputs. The supervised terminology arose as the process of an algorithm learning
from a training data set resembles a teacher supervising the learning process. Knowing
the correct answers, the so-called labels (or sometimes called targets or outcomes), the
algorithm iteratively outputs predictions on the training data and is "corrected" by the
teacher in order to improve itself.

2.1.1 Empirical Risk Minimization

Following the notation in [12, 13], let 𝒳 be an input domain of individuals and let
𝒴 be a target domain. The instances in the input domain 𝒳 , which are represented
by an n-dimensional feature vector x = (𝑥1, ..., 𝑥𝑛), and the label 𝑦 from the tar-
get space 𝒴 are assumed to be drawn from some unknown probability distribution 𝒫
over the joint space 𝒳 × 𝒴. Given a sequence of labeled training examples 𝒟𝑡𝑟𝑎𝑖𝑛 =
((x(1), 𝑦(1)), ..., (x(𝑚), 𝑦(𝑚))), where each example (x(𝑖), 𝑦(𝑖)) of individual 𝑖 is drawn i.i.d
from 𝒫 and denoted as a pair of a feature vector x(𝑖) and its corresponding label 𝑦(𝑖), the
goal is to learn a mapping ℎ : 𝒳 ↦→ 𝒴 that best approximates the unknown functional
relationship 𝑦 = 𝑓(x). This is true for a predictor ℎ that minimizes the so-called true
risk ℛ𝑡𝑟𝑢𝑒(ℎ) = 𝑃(x,𝑦)∼𝒫 [ℎ(x) ̸= 𝑓(x)], the probability of predicting the wrong label on a
randomly drawn sample x from the distribution 𝒫. However, since the true distribution
𝒫 is usually unknown, the true risk is not available to a potential learning algorithm.
Instead, in practice, the empirical risk ℛ𝑒𝑚𝑝 (or sometimes called training error) is used
as a proxy for the true risk. A popular corresponding learning paradigm is empirical risk
minimization (ERM), where based on the available training data 𝒟𝑡𝑟𝑎𝑖𝑛 the empirical risk
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Chapter 2 Background and Related Work

is minimized to find an optimal predictor ℎ*, i.e.,

ℎ* = argmin
ℎ∈ℋ

ℛ𝑒𝑚𝑝(ℎ) = argmin
ℎ∈ℋ

1
|𝒟𝑡𝑟𝑎𝑖𝑛|

∑︁
(x,𝑦)∈𝒟𝑡𝑟𝑎𝑖𝑛

𝑙(ℎ(x), 𝑦). (2.1)

The hypothesis space ℋ is the set of all possible candidate predictors, and 𝑙 denotes a
suitable loss function that measures the discrepancy between the predicted value from
a candidate model ℎ and the actual ground truth label 𝑦 of a given instance. ERM
seeks to find an optimal predictor ℎ* that achieves the minimal average loss over all
instances of the training set 𝒟𝑡𝑟𝑎𝑖𝑛. Although this seems to be a natural way to achieve
good results, this approach also carries pitfalls. In theory, ERM can return a predictor
ℎ(x) = 𝑦,∀(x, 𝑦) ∈ 𝒟𝑡𝑟𝑎𝑖𝑛 that simply memorizes the labels for each observation in the
training set. While this solution results in an optimal empirical risk ℛ𝑒𝑚𝑝(ℎ) = 0, the
model would not necessary perform well on unseen observations (x, 𝑦) /∈ 𝒟𝑡𝑟𝑎𝑖𝑛 in the
real world. In general, the desired goal is that the model is able to generalize beyond the
training set, minimizes the true risk and approximates the true underlying relationship
𝑦 = 𝑓(x).

Figure 2.1: Overfitting: The black line represents a polynomial function that is able to
fit every single training data point. However, this does not represent a good
approximation of true distribution as the residuals on the unobserved data
points are high [12].

Consider the example illustrated in Figure 2.1, where the data follows a polynomial
distribution with some random noise. Suppose ℋ represents the class of all polynomial
functions. From ℋ it is possible to find a polynomial function with a sufficiently high
degree 𝑀 such that it fits each training data point and hence achieves zero empirical risk.
However, the error on data points from the distribution which the learning algorithm has
not seen yet is considerably higher. This phenomenon is called overfitting. To reduce
overfitting, several methods can be applied such as restricting the complexity of the
hypothesis class ℋ or introducing a regularization term 𝐽(ℎ) in the objective function
that penalizes complex models where 𝜆 is a hyperparameter controlling the magnitude of
the penalty.

ℎ* = argmin
ℎ∈ℋ

ℛ𝑒𝑚𝑝(ℎ) + 𝜆 * 𝐽(ℎ) (2.2)

6



2.1 Supervised Learning

2.1.2 Types of Supervised Learning

Supervised learning can be divided into two general tasks: classification and regression.
The fundamental difference between these two techniques is the property of the target
space 𝒴. Regression denotes the problem of learning a continuous output with 𝒴 = R,
e.g. predicting the temperature at a point in time. In contrast, if the target space 𝒴 is
discrete and the goal is to assign based on the input one of 𝑛 labels (e.g. sunny, cloudy or
rainy), the task is called classification. Here, we further distinguish between multi-class
classification when |𝒴| > 2 and binary classification, e.g. 𝒴 = {0, 1}. In line with the
vast majority of work exploring algorithmic fairness in supervised learning problems, we
mostly focus on binary classification in this work. Following the categorization in [12],
there are three prediction types within binary classification:

∙ Discrete classifiers predict the class membership of an observation and directly
assign the label to a given observation.
∙ Scoring classifiers predict a real-valued risk score. Concrete label predictions can

be obtained by thresholding. However, in most cases raw real-valued scores are
rather difficult to interpret.
∙ Probabilistic classifiers try to estimate a probability distribution over all classes

given the data point. Probabilities can be obtained by calibrating risk scores. Also
in this case thresholding can be applied to determine the class prediction.

2.1.3 Performance Metrics

After learning a model based on some observed data, the next step is to find out how well
a model performs. In order to quantify success, several performance metrics have been
proposed to evaluate machine learning models. One widely adopted approach is to apply
the performance metric to a hold-out test data set, which the algorithm has not been
exposed to during the learning process. In the following, common performance measures
for the different supervised tasks are introduced.

Regression In regression, performance is usually quantified using residual-based ap-
proaches. Let ℎ(x) : 𝒳 ↦→ R be a fitted regression model. The residual 𝜖 = 𝑦−ℎ(x) is the
difference between target and predicted value of the model. One commonly used measure
is the mean squared error (MSE). It is the average of the squared residuals across all
considered observations.

𝑀𝑆𝐸 = 1
𝑚

𝑚∑︁
𝑖=1

(𝑦(𝑖) − ℎ(x(𝑖)))2 = 1
𝑚

𝑚∑︁
𝑖=1

(𝜖(𝑖))2 (2.3)

As the residuals are squared in the MSE, large discrepancies due to outliers have a big
effect on our performance metric. A more robust alternative towards outliers is the mean
absolute error (MAE),

𝑀𝐴𝐸 = 1
𝑚

𝑚∑︁
𝑖=1
|𝑦(𝑖) − ℎ(x(𝑖))| = 1

𝑚

𝑚∑︁
𝑖=1
|𝜖(𝑖)|. (2.4)

7



Chapter 2 Background and Related Work

Discrete Classifiers Discrete classifiers in the context of binary classification assign an
instance to one of the two binary outcomes. The two outcome labels are also often referred
to as the negative and positive class. In general, the aim is to be able to discriminate
well between those two classes and predict the correct class label. From the so-called
confusion matrix shown in Table 2.1, a multitude of performance measures for discrete
classifiers can be derived. For a binary classifier ℎ(x) : 𝒳 ↦→ {0, 1}, the confusion matrix
summarizes possible outcomes of predicted labels and ground truth labels. In the follow-
ing, an overview of commonly used performance measures is given. We refer to [14] for a
more exhaustive overview.

Ground Truth Label

𝑦 = 1 𝑦 = 0

Predicted ℎ(x) = 1 True Positive (TP) False Positive (FP)
Label ℎ(x) = 0 False Negative (FN) True Negative (TN)

Total TP + FN FP + TN

Table 2.1: 2× 2 confusion matrix

The most well known and widely used evaluation metric is the accuracy rate (𝐴𝑐𝑐).
The accuracy measures the percentage of correct predictions of the classifier on the data.

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
(2.5)

However, not in all applications being correct on the positive versus the negative class
is equally important. The recall (𝑅𝑒𝑐), also called true positive rate (𝑇𝑃𝑅), measures
the percentage of samples from only the positive class that were correctly predicted as
positive.

𝑅𝑒𝑐 = 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.6)

Analogously, the specificity (𝑆𝑝𝑒) measures the share of correctly predicted negative
examples and is hence also called true negative rate (𝑇𝑁𝑅).

𝑆𝑝𝑒 = 𝑇𝑁𝑅 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2.7)

The precision (𝑃𝑟𝑒), also called positive predictive value (𝑃𝑃𝑉 ), is an estimate of the
probability that a positively predicted instance is correct. It is the proportion of true
positives across all positively predicted instances.

𝑃𝑟𝑒 = 𝑃𝑃𝑉 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.8)

The metrics introduced above, measure mainly the correctly classified portion of the
classifier. Naturally, they also have complements measuring the incorrect portion. Their
corresponding complements are the error rate (𝐸𝑟𝑟 = 1 − 𝐴𝑐𝑐), the false positive rate
(𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅), the false negative rate (𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅) and the false discovery
rate (𝐹𝐷𝑅 = 1− 𝑃𝑃𝑉 ).

8



2.1 Supervised Learning

True 
Positive 
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Figure 2.2: ROC curve: Each point on the green solid curve is a scoring classifier applied
with a different threshold 𝑡. The dashed black line is the random baseline
classifier.

Scoring Classifiers Let 𝑠(x) : 𝒳 ↦→ R be a model which predicts a risk score that
can possibly range from −∞ to ∞. As scores from different classifiers might be scaled
differently, it is important to note that the order of the scores is more relevant than
the actual value when comparing different scoring classifiers. In practice, one can set a
threshold value 𝑡 to assign the final discrete class labels, i.e.,

ℎ(x) =
{︃

0 𝑠(x) < 𝑡

1 𝑒𝑙𝑠𝑒.
(2.9)

Converting scoring classifiers into discrete classifiers by thresholding enables us to apply
the evaluation measures derived from the confusion matrix introduced in the previous
paragraph. However, different thresholds will lead to different confusion matrices. The
receiver operating characteristics (ROC) curve is a way to take this into consideration.
The ROC curve visualizes the pairs 𝑇𝑃𝑅 and 𝐹𝑃𝑅 for each possible threshold 𝑡. A
natural way to measure the performance of this classifier is to compute the area under
the ROC curve (AUC). A perfect classifier would be able to achieve 𝐴𝑈𝐶 = 1 while a
completely random guessing classifier would have 𝐴𝑈𝐶 = 0.5. The ROC curve shows
that the choice of the threshold 𝑡 trades off the 𝑇𝑃𝑅 with 𝐹𝑃𝑅.

Probabilistic Classifiers Let 𝜋(x) : 𝒳 ↦→ [0, 1] be a probabilistic classifier. Similarly to
scoring classifiers, probabilistic classifiers also output a real-valued number, however in
the interval between 0 and 1. In fact, scores can be transformed into probabilities using
scaling methods such as Platt scaling [15] or isotonic regression [16]. Hence, the same
evaluation measures introduced in the previous paragraph such as thresholding and the
𝐴𝑈𝐶 can be applied.

However, there exists a further desirable property besides discriminatory power for
probabilistic classifiers: calibration. Well-calibrated probability predictions of an event
reflect the true probability as close as possible. Formally, a classifier is perfectly calibrated
when 𝑃 (𝑦 = 1|𝜋(x) = 𝑝) = 𝑝. Intuitively this means that if there are 100 instances where
the model predicts with probability 𝑝 = 0.6 the positive class, 60 of them will actually

9



Chapter 2 Background and Related Work

belong to the positive class.
One proposed measure that takes calibration into account is the Brier score (𝐵𝑆) [17]:

𝐵𝑆 = 1
𝑚

𝑚∑︁
𝑖=1

(𝑦(𝑖) − 𝜋(x(𝑖)))2. (2.10)

The 𝐵𝑆 is the average mean squared difference of predicted probabilities 𝜋 and actual
outcomes 𝑦 and can be thought of as an accuracy measure of the probabilistic predictions.
The best achievable 𝐵𝑆 is 0 while the worst achievable is 1.

2.1.4 Artificial Neural Networks

Artificial neural networks are popular and powerful function approximators for supervised
learning, which date back to the early work of [18, 19]. They were initially inspired by
their biological counterparts in the brain. Biological neural networks comprise billions
of neurons that are interconnected and process electrochemical signals. The simplified,
high-level idea is that every single neuron receives several input signals from preceding
neurons and fires through its single output when a certain action potential is reached
during information processing. The output signal is then forwarded to the connected
neurons downstream [20].

Ѳ1

Ѳ2

Ѳn

b

Inputs Weights Weighted sum Activation function

...

x1

1

x2

xn

f

Figure 2.3: Perceptron: The perceptron takes input data and computes the weighted sum.
The sum is further processed through an activation function 𝑓 .

Artificial neural networks formalize this core idea mathematically. We follow the no-
tation in [21] to introduce artificial neural networks. If clear from the context, we omit
the prefix artificial and refer solely to neural networks. The basic unit of the neural
network is the artificial neuron, also called perceptron. A perceptron has 𝑛 input links.
Further, each link also has some numeric weight 𝜃𝑖 associated with it, which represents
the strength of each connection. The inputs are processed by computing the weighted
sum and a bias 𝑏. Subsequently, an activation function 𝑓 is applied to the scalar value to
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2.1 Supervised Learning

derive the output of the neuron:

𝑓(
𝑛∑︁
𝑖

𝜃𝑖𝑥𝑖 + 𝑏). (2.11)

Typically, non-linear activation functions are utilized to enable the approximation of
non-linear functions. A common activation function is the sigmoid function:

𝑓(𝑥) = 1
1 + 𝑒−𝑥

. (2.12)

A further widely used activation function is the rectified linear unit (ReLU) [22]:

𝑓(𝑥) =
{︃

0 𝑥 < 0
𝑥 𝑥 ≥ 0.

(2.13)

Neural networks can be designed by composing multiple perceptron units in a chain. In
a feed-forward network, connections only face forward in one direction forming a directed,
acyclic graph. Feed-forward networks are usually organized in layers. Each neuron of a
layer receives its inputs from neurons of the preceding layer. Between the input layer
that processes the data input and the output layer, further so-called hidden layers of
neurons can be introduced. The length of the chained layers corresponds to the depth of
the model, which led to the terminology deep learning and deep neural networks.

The goal of the learning process of neural networks is to find a set of weights 𝜃 that
approximates the true distribution and minimizes the loss function. Based on the ground
truth labels of the training data, the weight parameters can be updated iteratively. The
learning process can be illustrated in the following steps:

1. Forward pass: An instance from the data set is inputted to the network and
forwarded across the nodes to get a predicted output 𝑦 = 𝑓(x; 𝜃) for each sample.

2. Loss evaluation: The quality of the prediction 𝑦 ∈ 𝒴 is assessed by comparing it
to their ground truth label. This is done by using a suitable loss function e.g.
∙ Logistic loss: 𝐿(𝜃) =

∑︀𝑚
𝑖=1 log(1 + exp(−𝑦 · 𝑦))

∙ L2 loss: 𝐿(𝜃) = 1
2

∑︀𝑚
𝑖=1(𝑦 − 𝑦)2.

3. Backpropagation of gradients: In order to minimize the respective loss function,
the gradients of the loss function with respect to the weights are computed. The
backpropagation algortihm [24] does this by applying the chain rule. The chain rule
computes derivatives of compositions of multiple functions. Given the functions
𝑦 = 𝑔(𝑥) and 𝑧 = 𝑓(𝑔(𝑥)), the derivative 𝛿𝑧

𝛿𝑥 can be obtained according to

𝛿𝑧

𝛿𝑥
= 𝛿𝑧

𝛿𝑦
· 𝛿𝑦

𝛿𝑥
. (2.14)

Using the chain rule, the local gradients with respect to each weight 𝜃𝑖 can be
backpropagated through the whole network. Notably, in contrast to the forward
pass, this is a backwards pass in the opposite direction until the earliest layer is
reached.

4. Weight update: A widely used method to update the weights with respect to each

11
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Figure 2.4: Feed-forward neural network: A fully connected neural network with 3 hid-
den layers, where each neuron of a layer is connected to each neuron of the
preceeding layer [23].

network parameter is stochastic gradient descent, where the gradients are updated
just based on a subset of the training data. Gradient descent updates the weights
in the negative direction of the gradient loss, i.e.,

𝜃𝑖 ← 𝜃𝑖 − 𝛼
𝛿𝐿(𝜃)

𝛿𝜃𝑖
(2.15)

where 𝛼 represents the learning rate and determines how big the steps in the direc-
tion of the local minimum are.

2.1.5 Decision Trees and Random Forest
Another popular algorithm in supervised learning is random forest [25]. The random
forest belongs to the family of ensemble methods, which combine the predictions of mul-
tiple base models to achieve a more accurate prediction than a single, isolated model. In
particular, it is a bootstrap aggregation or bagging method, which aggregates the output
of several models fitted to different bootstrap samples of the training data. This reduces
the variance in the predictions and hence can mitigate overfitting. As random forests
utilize decision trees as base models, we first introduce classification and regression trees
(CART) [26].

Classification and Regression Trees Decision trees are based on the idea to conclude
a prediction based on a sequence of simple binary decisions that are organized in a hier-
archical, tree-like structure. More formally, following the notation in [27, 28], a decision
tree 𝑇 is a directed, acyclic graph that consists of a set 𝒩 of nodes and a set ℰ of edges.
Each node corresponds to a (binary) decision in the feature space and is connected via
edges to a maximum of one parent node and a minimum of two child nodes. The node
on top of the tree is called the root node while nodes at the bottom are referred to as leaf
nodes. A data point traverses the tree from the root node to a leaf following a unique path
which is determined by each decision of the traversing nodes. In particular, a decision

12
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node splits incoming samples according to a splitting function in two disjoint subsets,
which corresponds to sending the samples to a subsequent child node. A common choice
is to split along one input dimension 𝑗 of the input space 𝒳 using a threshold 𝑡, e.g.
𝑁𝑐ℎ𝑖𝑙𝑑1 = {(x, 𝑦) ∈ 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 : 𝑥𝑗 ≥ 𝑡} and 𝑁𝑐ℎ𝑖𝑙𝑑2 = {(x, 𝑦) ∈ 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 : 𝑥𝑗 < 𝑡}, where
𝑥𝑗 corresponds to the value of the 𝑗-th feature of a corresponding data point. After the
learning phase, the training instances that reached a particular leaf node are used to
model a posterior distribution. This posterior distribution of a leaf node is used to make
a prediction at inference time for incoming samples that end up in that particular leaf
node.

The learning process of a tree focuses on finding the optimal structure of the tree,
i.e. which feature dimension 𝑗 to chose for splitting at each node and the value of the
threshold 𝑡 for the split. There are different impurity measures that define the optimality
criterion based on the nature of a task. Suppose that there are |𝑇 | leaf nodes indexed by
𝜏 = 1, ..., |𝑇 |. In regression tasks with continuous targets the aim is to find a structure
that minimizes the sum of squared errors across leaf nodes, i.e.,

𝑄𝜏 (𝑇 ) =
∑︁

(x,𝑦)∈𝑁𝜏

(𝑦 − 𝑦𝑁𝜏 )2 (2.16)

where 𝑦𝑁𝜏 = 1
|𝑁𝜏 |

∑︀
(x,𝑦)∈𝑁𝜏

𝑦 represents the arithmetic mean of the continuous targets of
the data points that fall in the region defined by leaf node 𝑁𝜏 . For classification problems
with 𝐾 targets, different measures exist to assess the impurity a node 𝑁 . Two commonly
used choices are the Gini Index

𝑄𝜏 (𝑇 ) =
𝐾∑︁

𝑘=1
𝑝𝜏𝑘(1− 𝑝𝜏𝑘) (2.17)

and the cross entropy

𝑄𝜏 (𝑇 ) = −
𝐾∑︁

𝑘=1
𝑝𝜏𝑘 ln 𝑝𝜏𝑘 (2.18)

where 𝑝𝜏𝑘 is the proportion of data points that belong to class 𝑘 in the region defined
by the node 𝑁𝜏 . Both measures encourage regions that have a high proportion of data
points belonging to only one class.

Generally, the optimization problem of finding the optimal structure of a tree with
respect to an impurity measure is computationally infeasible due to the combinatorially
large solution space. Instead, a greedy optimization is usually applied in practice, where,
starting with a single root node representing the whole input space, further nodes are
added sequentially. At each step, a pair of leaf nodes are added from a number of
candidate regions to the existing tree which corresponds to choosing which of the feature
dimension to split and specifying the threshold value. This joint optimization over the
choice of input variable and threshold can be efficiently solved using exhaustive search.
The optimal split is the one that minimizes the impurity measure of the resulting leaf
nodes.

Iteratively, the tree can be grown using this greedy strategy until a stopping criterion
is met. There are three commonly used stopping criteria: (1) maximal tree depth, (2)
minimum population per leaf, and (3) minimum variation of the impurity objective.
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Chapter 2 Background and Related Work

Figure 2.5: Left: Each node of the decision tree splits a data point x along a input feature
dimension 𝑥𝑖 using threshold 𝑡𝑖. Right: Each leaf node represents a region in
the feature space that is partitioned by the thresholds [27].

The first criterion naively stops the iterative splitting process when the depth of the tree
reaches a maximum depth. The second criterion concerns the number of training examples
that end up in a leaf. If the population per leaf node is below a certain threshold, the
splitting terminates. The last criterion considers the impurity measure that is optimized.
If the additional improvement in impurity is below a certain threshold, further splitting
is stopped due to the limited information gain.

Eventually, the leaves of a tree and i.e. the training examples that reach that particular
node are used to model the posterior distribution. Predictions on new unseen examples
can be performed by passing them downwards the tree until they reach a leaf node 𝑁𝜏 .
The posterior model stored in the leaf node 𝑁𝜏 can be used for the prediction e.g. in the
case of regression by taking the average target values of the observations of the leaf

𝑦 = 1
|𝑁𝜏 |

∑︁
(x,𝑦)∈𝑁𝜏

𝑦 (2.19)

or in the case of classification by choosing the class that has the largest proportion in
that node

𝑦 = arg max
𝑘

𝑝𝜏𝑘. (2.20)

Random Forest While single decision trees have favorable properties such as inter-
pretability, they can be prone to overfitting. Breiman [25] demonstrated that combining
multiple independent, decorrelated decision trees to a random forest improves general-
ization performance.

To minimize the correlation between trees that are derived from the same training set,
randomness can be injected during the learning phase. Therefore, two common random-
ization approaches are utilized. One method is to randomize the input data by drawing
different bootstrap samples to grow different trees within the ensemble. Given a training
set 𝒟𝑡𝑟𝑎𝑖𝑛 = ((x(1), 𝑦(1)), ..., (x(𝑚), 𝑦(𝑚))), a bootstrap sample is a subset 𝒟𝐵 of that data,
where each element was uniformly sampled with replacement from the original training
set 𝒟𝑡𝑟𝑎𝑖𝑛. Secondly, randomization can be injected during node optimization. Instead of
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splitting a node among all feature dimensions, only a random subset of all features can
be considered for splitting in each tree. The idea is that by randomizing training of each
tree, although individual trees might have high variance concerning particular subsets of
the training data, the entire forest of trees will have a lower overall variance.

Drawing on the properties of decision trees, random forests provide a flexible framework
with several degrees of freedom. Two important parameters are (1) the number of trees
and (2) the maximum depth of each tree. A forest with an increasing amount of trees
might be able to average out noisy predictions and decrease the error rate. Also, the
maximum depth per tree is an important parameter as it influences the expressiveness
of each tree. While the prediction of short trees might not be very confident as the leaf
nodes might contain still a lot of heterogeneous samples, very deep trees might have too
little data in the leaves and hence could overfit.

After training independent trees, the final predictions are made by aggregating the
individual tree outputs. This is done in regression via averaging and in classification via
majority voting.

...

Tree 1 Tree 2 Tree B...

Prediction 1 Prediction 2 Prediction B...

Aggregation

Final Prediction

Figure 2.6: Random Forest: 𝐵 trees are trained using different bootstrap samples. Sub-
sequently, isolated predictions of single trees are aggregated to make a final
prediction.

2.2 Reinforcement Learning

A key characteristic of supervised learning is that labeled training data is required to
supervise the learning process. However, if we think about it, this is not the most natural
way how e.g. humans learn. Consider an infant learning how to walk. Rather than having
an explicit teacher that is tasked with the supervision, an infant more naturally learns
to walk by interacting with its environment. Based on the feedback of the environment,
e.g. cheering parents or falling on the floor, consequences of actions are learned in order
to achieve some desirable goal. This is exactly the core idea of reinforcement learning, a
paradigm that focuses on goal-directed learning from interactions.
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Agent

Observations

State changes: st+1
Reward: rt+1

State: st
Reward: rt

Action: at

Actions

Environment

Figure 2.7: Reinforcement Learning Setting: An agent interacts with the environment via
an action 𝑎𝑡 and observes the environment in the next time step via 𝑠𝑡+1 and
𝑟𝑡+1 [29].

2.2.1 Markov Decision Process
At its core, reinforcement learning starts with a learner and decision maker called agent.
The agent can perceive to a certain extent the outside world called environment. He can
continually take actions on the environment that will result in a change of the environ-
ment’s state. Jointly with the new state, the environment releases a scalar reward signal.
The goal is to maximize the cumulative reward.

This sequential decision problem can be formalized as a so-called Markov decision pro-
cess (MDP). In particular, we consider finite MDPs where the action and state space
are finite. The basic elements of a finite MDP are introduced in the following based on
[30, 31]:

∙ State space 𝑆: The state space is defined by the finite set of all possible states
{𝑠(1), ..., 𝑠(𝑛)} of the environment. A state in this context refers to a unique repre-
sentation of the environment’s current situation.
∙ Action space 𝐴: The action space is defined by the finite set of all possible actions
{𝑎(1), ..., 𝑎(𝑛)}. Actions can be performed by the agent to control the environment’s
state. Generally, not all actions may be available in each state. In that case, 𝐴(𝑠)
denotes the set applicable actions the agent can choose from in state 𝑠.
∙ Transition function 𝑇 : The transition function 𝑇 (𝑠, 𝑎, 𝑠′) defines the transition

of the environment from a state 𝑠 to the next state 𝑠′ based on a performed action
𝑎. The transition function can also be probabilistic in which case 𝑇 defines a
probability distribution over the next states:

𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡).

∙ Reward function 𝑅: The reward function implicitly specifies the learning goal
and defines the scalar reward value 𝑟 ∈ R an agent receives. There are two possible
definitions for the reward function. The first option, 𝑅 : 𝑆 × 𝐴 ↦→ R, rewards
performing a specific action in a state while the second one, 𝑅 : 𝑆 × 𝐴 × 𝑆 ↦→ R,
rewards the transition from one state to the subsequent one. Both definitions are
interchangeable.

At each discrete time step 𝑡 = 0, 1, 2, ... the agent receives a representation of the
environment’s current state 𝑠𝑡 ∈ 𝑆 and selects an action 𝑎𝑡 ∈ 𝐴(𝑠𝑡). Note that subscript
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𝑡 denotes the state and the action chosen at time step 𝑡 while the superscript above
refers to uniquely defined states and actions of the environment. Based on an action, the
environment transitions according to the transition function 𝑇 into the next state 𝑠𝑡+1
and further returns to the agent the reward 𝑟𝑡+1 ∈ 𝑅 ⊂ R. Together the tuple (𝑆, 𝐴, 𝑇, 𝑅)
defines the finite MPD where the space of states and actions is limited to a finite number
of instances.

2.2.2 Policy and Value Function

Policy Given an MDP, a policy is an agent’s strategy that tells him which action to
take in which situation. There are deterministic and stochastic policies. However, within
the scope of this thesis we only consider deterministic policies. A deterministic policy 𝜋
is defined as a function 𝜋 : 𝑆 ↦→ 𝐴. It returns for each possible state 𝑠 ∈ 𝑆 one action
𝑎 ∈ 𝐴(𝑠) to control the environment.

A desirable goal is to find the optimal policy. The notion of optimality is related to
the rewards an agent gathers and can be different based on the time horizon of the MPD.
For episodic tasks with a finite time horizon 𝑇 , an optimal policy seeks to maximize the
expected returns, the sum of future rewards, within this time frame:

𝐸[
𝑇∑︁

𝑡=0
𝑟𝑡]. (2.21)

In the infinite horizon case, it is common practice to apply a discount factor 𝛾 ∈ (0, 1)
to future rewards, where forthcoming rewards are discounted more than earlier obtained
rewards. This also leads to the convenient property that the infinite sum of rewards is
finite:

𝐸[
∞∑︁

𝑡=0
𝛾𝑡𝑟𝑡]. (2.22)

The discount factor can be considered as an interest rate. If the discount factor 𝛾 is
0, the agent is solely concerned about the immediate reward while a high discount factor
takes future rewards into account more.

Value function One popular way to infer optimal policies is to learn a value function.
A value function aims to quantify based on an optimality criterion how good it is for an
agent to be in a certain state, or how good it is to take a specific action in a respective
state. Value functions are defined on a policy level. Let 𝑉 𝜋(𝑠) be the value of a state 𝑠
under policy 𝜋, where the value can be interpreted as the expected returns of starting in
𝑠 and following 𝜋 afterward. Illustrative for the discounted, infinite-horizon model, the
state-value function 𝑉 : 𝑆 ↦→ R can be defined as

𝑉 𝜋(𝑠) = 𝐸𝜋[
∞∑︁

𝑘=0
𝛾𝑘𝑟𝑡+𝑘|𝑠𝑡 = 𝑠]. (2.23)

Similarly, we can define the state-action value function 𝑄 : 𝑆×𝐴 ↦→ R as the expected
returns of choosing action 𝑎 starting from state 𝑠 and then following policy 𝜋:
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𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[
∞∑︁

𝑘=0
𝛾𝑘𝑟𝑡+𝑘|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. (2.24)

A fundamental property of every value function is that it satisfies a certain recursive
property. More specifically, for any policy 𝜋 and any state 𝑠, a value function can be
recursively defined through the Bellmann equation [32], i.e.,

𝑉 𝜋(𝑠) = 𝐸𝜋[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ...|𝑠𝑡 = 𝑠]
= 𝐸𝜋[𝑟𝑡 + 𝛾𝑉 𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠]
=

∑︁
𝑠′

𝑇 (𝑠, 𝜋(𝑠), 𝑠′)(𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛾𝑉 𝜋(𝑠′)).
(2.25)

This means that the expected value of a state can be decomposed in the immediate
reward and the discounted value of next possible states weighted by their transition
probabilities 𝑇 (𝑠, 𝜋(𝑠), 𝑠′) = 𝑃 (𝑠′|𝑠, 𝜋(𝑠)). Analogously, this also holds for the state-
action value function.

The key objective in reinforcement learning is to find an optimal policy 𝜋* such that
𝑉 𝜋*(𝑠) ≥ 𝑉 𝜋(𝑠) for all 𝑠 ∈ 𝑆 and all policies 𝜋. Note that multiple different policies could
possibly lead to the same optimal state-value function. The optimal solution 𝑉 * = 𝑉 𝜋*

can be defined as

𝑉 *(𝑠) = max
𝑎∈𝐴

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉 *(𝑠′)). (2.26)

This means that the state-value under an optimal policy is equal to the expected return
of taking the best action in that state. Given an optimal state-value function, the optimal
action can be greedily chosen according to

𝜋*(𝑠) = arg max
𝑎∈𝐴(𝑠)

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉 *(𝑠′)). (2.27)

In the same vein, the optimal state-action value function 𝑄* can be defined as follows,

𝑄*(𝑠, 𝑎) =
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 max
𝑎′

𝑄*(𝑠′, 𝑎′)). (2.28)

As 𝑉 *(𝑠) represents the maximum expected returns when starting from 𝑠, it is equal
to the action that results in the maximum 𝑄-value from 𝑠. More formally, the following
relationship holds:

𝑉 *(𝑠) = max
𝑎

𝑄*(𝑠, 𝑎). (2.29)

This, in turn, means that choosing the action with the maximum expected future returns
is equivalent to taking the action with the maximum optimal state-action value. The
optimal action 𝜋* according to a greedy policy results to

𝜋*(𝑠) = arg max
𝑎∈𝐴(𝑠)

𝑄*(𝑠, 𝑎). (2.30)

[30]
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2.2.3 Q-Learning and DQN

Using the 𝑄-function instead of the 𝑉 -function has the convenient property that no
prior knowledge about the transition and reward function is required. This makes 𝑄-
functions especially applicable in model-free approaches, where the model of the MDP
is not known beforehand. One approach to derive an optimal policy is to estimate the
𝑄-function for different actions based on the reward signal and act according to equation
2.30. Naturally, an agent faces an exploration-exploitation trade-off, where the agent has
to balance exploring the MDP to gather more information versus selecting high-value
actions based on the so-far obtained experience [30].

Q-Learning A basic approach to estimate the 𝑄-values is the 𝑄-learning algorithm. 𝑄-
learning in its vanilla form [33] aims to estimate the 𝑄-values by iteratively updating
the values for each state-action combination within a tabular representation until conver-
gence. State-action values are incrementally updated according to the following update
rule

𝑄𝑖+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑖(𝑠𝑡, 𝑎𝑡) + 𝛼
(︁
𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛾 max

𝑎
𝑄𝑖(𝑠𝑡+1, 𝑎)−𝑄𝑖(𝑠𝑡, 𝑎𝑡)

)︁
(2.31)

where 𝑎𝑡 is an action chosen according to an exploration strategy, 𝛼 is the learning
rate and 𝛾 denotes the discount factor. Note that regardless of the exploration strategy
𝑄-learning will eventually converge assuming that 𝛼 is decreased appropriately and each
state-action pair is visited an infinite number of times. However, for MDPs with large
action and state spaces, the resulting exploratory size of state-action combinations make
vanilla, tabular 𝑄-learning memory-inefficient and computationally intractable [30].

Deep Q-learning (DQN) In order to overcome the mentioned limitations of tabular Q-
learning, [34] uses instead a deep neural network as a non-linear function approximation
to estimate the 𝑄-function. The deep Q-Network (DQN) is a deep neural network that
takes the state 𝑠 as an input and outputs estimated 𝑄-values for each available action
𝑎 ∈ 𝐴(𝑠) by performing a forward pass. The Q-Network parametrized by 𝜃 is trained by
minimizing the following loss function

𝐿𝑖(𝜃𝑖) = 𝐸𝑠,𝑎∼𝑝(.)[(𝑦𝑖 −𝑄(𝑠𝑡, 𝑎; 𝜃𝑖))2] (2.32)

where 𝑦𝑖 = 𝐸𝑠′ [𝑟 +𝛾 max𝑎′ 𝑄(𝑠′, 𝑎′; 𝜃−)|𝑠, 𝑎] denotes the target in iteration 𝑖 and 𝑝(𝑠, 𝑎)

State
Q-Value

Action

State-Action Value

Q-Table

State

Q-Value a1

Q-Value a2

Q-Value an

...

Neural Network

Figure 2.8: Left: Q-Learning keeps track of Q-values in a tabular representation for each
possible state-action pair. Right: In Deep Q-Learning a DQN estimates the
Q-values for each action available from a given state.
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represents a distribution over states and actions. Note that for the target estimation of 𝑦𝑖 a
second separate network with identical structure but different weights 𝜃− from a previous
iteration is used. Fixing the parameters 𝜃− of the target network improves stability while
optimizing the loss function. The parameters of the target network can be updated every
𝜏 time steps by copying the parameter of the Q-Network 𝜃− ← 𝜃𝑖. The respective loss
function can be optimized using stochastic gradient descent by differentiating the loss
with respect to the weights:

∇𝜃𝑖𝐿𝑖(𝜃𝑖) = 𝐸𝑠,𝑎∼𝑝(.)[(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃−)−𝑄(𝑠𝑡, 𝑎; 𝜃𝑖))2∇𝜃𝑖𝑄(𝑠, 𝑎; 𝜃𝑖]. (2.33)

Furthermore, the authors utilize an experience replay memory where the agent’s expe-
riences 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) at each time step 𝑡 are stored in a memory. During the
learning process, experiences are sampled from the replay memory for the agent in or-
der to break the correlation between consecutive samples and reduce the variance of the
weight updates [34]. Since its initial introduction, many improvements drawing on the
original DQN algorithm have been proposed. Since Q-values are very noisy, taking the
max over all action will likely return an overestimated value. Double DQN [35, 36] tackles
the problem of the overestimation of Q-values. The authors suggest using two different
Q-networks, an online network parametrized by 𝜃 that chooses the next action and one
target network parametrized by 𝜃− that estimates the Q-values. This will lead to the up-
date 𝑦𝑖 = 𝐸𝑠′ [𝑟 + 𝛾𝑄(𝑠′, arg max𝑎 𝑄(𝑠′, 𝑎, 𝜃𝑖); 𝜃−

𝑖 )|𝑠, 𝑎]. By decoupling the policy from its
evaluation, the authors show reduced overestimation and improved performance. Build-
ing upon double DQN, [37] introduced prioritized experience replay. The intuition is to
increase the replay probability of experience samples that have high expected learning
progress to accelerate the learning process. Dueling DQN [38] proposes a new neural
network architecture called dueling network. They break down the Q-value estimation
in two components, one that estimates how good it is to be in a state 𝑉 (𝑠) and another
one that estimates the advantage 𝐴(𝑠, 𝑎) of taking a corresponding action in that state.
This is realized by two separate streams within their network architecture, which are
later combined to estimate the Q-values. This enables to separately learn the state-value
function, without being influenced by the advantage of taken actions.

2.3 Active Feature-Value Acquisition (AFA)

A common assumption in many traditional machine learning problems is that training
data is readily available and complete for training models. However, in practice, data
is not always complete. Instead, further information (features) can be acquired from
different sources at some processing or acquisition cost until a certain budget is exhausted.
Consider a motivating example where a patient at the hospital is looking for diagnosis and
treatment of his current condition. Initially, a doctor will have insufficient information
to recommend an appropriate treatment. First, a patient has to complete a survey about
their medical history at the reception. Next, the doctor assesses the patient’s symptoms
within a consultation hour. However, a confident diagnosis is often not possible after
the first consultation. So subsequently, further information has to be acquired through
e.g. procuring lab tests or getting specialist opinions. At each step, some medical or
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administrative cost occurs. Clearly, conducting all possible medical tests initially at
once, meaning having all features readily available, is monetary and time-wise not feasible.
Rather, a doctor aims to efficiently acquire the next feature that will decrease uncertainty
until he can provide a confident diagnosis. This setting is called active feature-value
acquisition (AFA) and spans beyond medical domains to online advertisement, credit
assessment, disaster mapping and more [39, 40, 41].

2.3.1 Traditional Prediction-time AFA

Different than induction-time AFA [10], in prediction-time AFA [41] querying new fea-
tures takes place at test time. In particular, a model is trained on complete training
instances and sequentially queries feature values per instance at test time in order to
trade off cost and predictive performance.

Let ℎ be a classifier induced from a complete training set of 𝑑 features and their cor-
responding ground-truth labels. Next, a test set with 𝑚 samples is given, where each
instance is also represented by 𝑑 feature values, which can be initially unobserved. At
time step 𝑡 = 0, each of the 𝑚 test examples x(𝑖) start with an initial empty set of fea-
tures 𝒪(𝑖)

0 = {}. At each time step 𝑡 , additional feature values {𝑥(𝑖)
𝑗 }𝑗∈𝒮(𝑖)

𝑡

from the set of

unselected features 𝒮(𝑖)
𝑡 ⊆ {1, . . . , 𝑑} ∖ 𝒪(𝑖)

𝑡−1 can be acquired at the cost 𝑐
(𝑖)
𝑡 =

∑︀
𝑗∈𝒮(𝑖)

𝑡

𝑐𝑗 .
These features are determined according to a feature acquisition strategy. After each
feature collection step, the predictor has access to the features in 𝒪(𝑖)

𝑡 := 𝒮(𝑖)
𝑡 ∪ 𝒪

(𝑖)
𝑡−1.

The acquisition process continues until a stopping criterion is met at 𝑡 = 𝑇 , where the
classifier makes the prediction of ℎ(x(𝑖)) based on the partially observed features in 𝒪(𝑖)

𝑇 .
Generally, the desirable goal is to carefully query features on an instance-level that result
in the best prediction performance at the lowest cost across the test set. Note that dif-
ferent individuals within the test set can have personalized sets of features with different
observed features.

Naturally, this traditional prediction-time AFA setting needs to incorporate three ele-
ments: (1) a mechanism for the classifier to handle missing feature values during predic-
tion time, (2) a feature acquisition strategy that subsequently determines the next feature
to query per instance and (3) a stopping criterion which stops the acquisition process and
predicts the outcome of a test instance based on the queried features.

Handling missing values There are two common approaches for dealing with missing
data during prediction time: imputation-based methods and reduced feature models. The
main idea of imputation-based approaches is to estimate a missing value or its distribution
based on available data. Predictive value imputation (PVI) replaces missing values with
their estimates before a prediction is made by the model. The estimation method may
range from simple ones such as the mean or mode of a feature to more rigorous predictive
models. Distribution-based imputation uses the training data to estimate a distribution
over the values of an attribute in order to compute the expected distribution of the
target variable. Estimated probabilities of the missing values can then be used to weight
the prediction outcomes. This is a commonly used strategy for tree-based classifiers
[42]. For example, [43] introduces a probabilistic random forest, that treats features and
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t=0
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Figure 2.9: Prediction-time AFA: At test time features values 𝑥𝑖 can be sequentially
queried at cost 𝑐𝑖. At time step 𝑇 , when a stopping criterion is met, a pre-
diction is based on the partially observed feature set.

labels as probability distribution functions, and naturally copes with missing values. An
alternative approach to imputation-based methods are reduced feature models. Reduced
feature models apply multiple different models that were induced only on a subset of
features. If at test time a partially missing feature vector is observed, the model that has
been trained only on that particular subset of observed features is employed for prediction.
However, the number of models to be trained and stored is exponential in the number of
attributes, which makes this method storage-wise expensive [42]. A different line of work
makes use of set encoders [44, 45, 46] to embed partial feature sets in a representation
that can be further processed by neural networks.

Feature acquisition strategy Different heuristic-based approaches have been adopted
from the active learning [47] and traditional AFA literature [10, 48] to select the next
relevant feature on an instance-level. Uncertainty sampling is based on the idea that
prediction errors mainly occur when predictions are ambiguous and no confident deci-
sion can be made - in other words when a lot of uncertainty is involved. For example,
missing feature values can be estimated by imputation and the imputed value the model
is least certain about can be queried. Uncertainty can be measured e.g. by unlabeled
margins, which represents a model’s ability to differentiate between instances of different
classes. An alternative approach is to estimate the expected improvement in utility for
each feature query. This could be e.g. the expected marginal contribution to the pre-
dictive performance [10, 48, 41]. More traditional feature selection methods such as L1
regularization for linear classifiers [49] or feature importance rankings e.g. by a random
forest [25] also can choose effectively a subset of features. However, they focus on select-
ing a fixed, static set of features for the whole data set instead of personalizing features
to individuals. A more recent framework called EDDI [46] uses an acquisition function
inspired by a Bayesian experimental design that selects features to maximize the expected
information gain given the set of already observed features.
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Stopping criteria Based on an initially empty set of features, an AFA system iteratively
collects features that have not been observed yet until a certain stopping criterion is met.
One method is to stop when a desirable level of performance is reached. However, most
prior work on AFA does not explicitly state a stopping criterion, but rather the acquisition
process stops when a certain global budget, group budget or individual-level budget is
exhausted [11, 50].

2.3.2 RL-based AFA
While the three components within traditional AFA systems are mostly independent and
disentangled, another approach in the literature [45, 50, 51] formulates the prediction-
time AFA setup as a reinforcement learning problem where i.e. the feature acquisition
strategy and the stopping criterion are intertwined within a unified framework. The
prediction-time AFA setting can be represented as a Markov decision process (MDP),
where an agent chooses in each state an action according to its policy with the goal to
maximize rewards. The MDP can be defined as the following:

∙ State: At each time step 𝑡 the state 𝑠
(𝑖)
𝑡 = 𝒪(𝑖)

𝑡 is represented by the currently
observed set of selected features of individual / episode 𝑖. The state space 𝑆 is
defined by the powerset of the feature set, which has a cardinality of 2𝑑.
∙ Action: The set of possible actions 𝐴(𝑠(𝑖)

𝑡 ) at time step 𝑡 is defined by the set
of unselected features 𝒮(𝑖)

𝑡 ⊆ {1, . . . , 𝑑} ∖ 𝒪(𝑖)
𝑡−1 for individual 𝑖 combined with an

additional {𝑆𝑇𝑂𝑃} action, that terminates the episode and distributes the final
reward to the agent.
∙ Reward: Most prior work [45, 51] proposes a reward function that balances costs

with predictive performance using a trade-off parameter 𝜆. At each time step 𝑡, the
agent is penalized with the cost of the acquired feature. However, in the case of the
terminal classification action, wrong classification is penalized using a suitable loss
function, e.g.,

𝑟𝑡 = 𝑅(𝒪(𝑖)
𝑡 ) =

{︃
−𝜆𝑐𝑗 if 𝑎 = 𝑗

−𝑙
(︀
ℎ(𝒪(𝑖)

𝑡 ), 𝑦(𝑖))︀ if 𝑎 = STOP.
(2.34)

Translating the problem into a general MDP opens the solution space to reinforcement
learning methods such as deep Q-learning in order to learn an optimal policy that max-
imizes the expected cumulative rewards 𝐸[

∑︀𝑇
𝑡=0 𝑟𝑡] and hence trades off the acquisition

costs with accurate predictions. Importantly, the policy jointly addresses both the feature
acquisition strategy and the stopping criterion within the action space.

2.4 Fairness in Machine Learning
Machine learning systems are nowadays integrated into our daily life, may it be filtering
out spam emails or unlocking our phones using facial recognition software. More and
more of these systems are also employed in high-stake situations such as credit risk as-
sessment [52], healthcare [53] or criminal justice [54], in order to support or automate
decision making. While being accurate, numerous studies have revealed that these sys-
tems can unintentionally encode biases and introduce systematic discrimination against
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minority groups within the population [7, 5, 55]. A prominent example is the COMPAS
algorithm, which has been employed in the US criminal justice system to predict the
risk of defendants to recommit a crime. A study from ProPublica [5] found that these
predictions show a higher false positive rate for black than for white defendants. Similar
studies showed biases against gender and race in commercial facial recognition software [7]
and recruiting systems [55]. Consequently, the academic community became increasingly
interested in studying fairness in machine learning and exploring methods to mitigate
discrimination.

2.4.1 Sources of Unfairness

Inequalities and discrimination in machine learning systems often relate to bias. Fre-
quently, the term bias in this context refers to demographic disparities that are worrisome
for societal reasons. These disparities can be introduced in different stages of the machine
learning loop. According to [56], the typical stages within a machine learning system that
outputs predictions comprise measurement, learning, action and feedback.

State of the world

Data Model

Individuals

Measurement

Learning

Action Feedback

Figure 2.10: The (simplified) machine learning loop [56].

Measurement In the first stage, the current state of the world is measured and repre-
sented as data sets. Often, these collected data sets will likely also encode biases that
also exist in our society. This could be due to explicit historical discrimination, implicit
societal stereotypes or distributional differences of certain attributes. For instance, some
occupations have a very high gender imbalance. An automated job screening application
for technical positions trained on this imbalanced data set could be prone to discriminate
against one gender.

Learning In the learning stage, a machine learning model is inferred using the data
measured at the first stage. Intuitively, learning models from biased data sets without
interventions will also likely lead to biased predictions. However, disparities can also
be introduced when they are not contained in the training data. The most prevalent
reason for this is the sample size disparity. Naturally, there are fewer data points about
minorities when the training set is sampled uniformly from the population. Training the
model on less data about minorities generally means that predictions tend to be more
erroneous for minorities than for the general population.

Action The next stage leverages outputs of a model on unseen examples to take actions,
such as deleting a spam mail or detaining a criminal. However, even if models do not
introduce disparities in the previous stages, it can become a problem when characteristics
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in the population shift, a phenomenon known as distribution shift. If different sub-groups
within the population change differently over time, this can lead to disparities.

Feedback In some scenarios, algorithmic systems receive feedback after making pre-
dictions. For example, major cities use predictive policing systems to forecast criminal
hotspots and allocate police to those high-risk areas based on crime data. The feedback
signal, the crimes discovered in those areas, is subsequently used to update and refine
the model. This can bias the model further towards those neighborhoods. However, it
is debatable if crimes were recorded due to an actual higher crime rate in those claimed
high-risk areas or because of increased scrutiny of police sent to those neighborhoods.
These feedback loops can lead to self-fulfilling predictions where police are repeatedly
sent to the same areas regardless of the true crime rate.

2.4.2 Notions of Statistical Fairness

While it is rather intuitive to develop a sense of discrimination, it is not obvious what
it means for a system to be fair. The literature mainly proposed two families of fairness
notions in algorithmic decision systems: individual and statistical notions of fairness.
Individual notions of fairness try to guarantee fairness on an individual level such that
"similar individuals are treated similarly" [57]. However, this requires a task-specific sim-
ilarity metric, which is difficult to agree upon in practice. Statistical notions of fairness
(sometimes called group fairness) on the other hand, require some statistic of a classifier
to equally hold across some defined protected subgroups. While this family of definitions
is easy to measure, it fails to provide guarantees to individuals.

Let, as previously introduced, individual 𝑖 be represented by an 𝑛-dimensional feature
vector x(𝑖) and its corresponding binary outcome label 𝑦(𝑖). In addition, let 𝑏(𝑖) ∈ {0, 1} be
a binary sensitive or protected attribute, which indicates to which population subgroup
an individual belongs to. Further, (x(𝑖), 𝑦(𝑖), 𝑏(𝑖)) are drawn from the joint probability
distribution 𝒫. The idea of protected groups is legally rooted in anti-discrimination laws.
Importantly, just omitting the sensitive attribute from the data set and trying to achieve
fairness through unawareness can still lead to discrimination, as the sensitive attribute
might be redundantly encoded in other features (proxies) [57, 58].

A plethora of fairness definitions have been introduced in recent years and [59] enumer-
ated as many as 20 different definitions. In this work, we focus on the family of statistical
fairness in a binary one-shot classification setting. In the following, we introduce four
popular definitions of statistical fairness. Let’s consider an example where gender is the
sensitive attribute and a classifier ℎ predicts if a loan applicant is creditworthy or not.

Demographic Parity Demographic parity or sometimes called statistical parity requires
the predictions to be independent of the sensitive attribute. The idea is that each group
has an equal chance of receiving a positive outcome. In other words, the loan acceptance
rate should be equal across male and female applicants [57].

𝑃 (𝑦 = 1|𝑏 = 0) = 𝑃 (𝑦 = 1|𝑏 = 1) (2.35)
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Equal Odds A predictor satisfies the criterion equalized odds if both the false negative
rate (FNR) and the false positive rate (FPR) are equal across the subgroups. In contrast
to demographic parity, equalized odds takes the ground-truth outcome of an individual
in addition to their sensitive group into account. In the illustrated example, this means
that the probability of a creditworthy applicant to be correctly classified is equal across
groups and also the probability of an unqualified applicant to be incorrectly provided a
loan [60].

𝑃 (ℎ(x) = 1|𝑦 = 𝑧, 𝑏 = 0) = 𝑃 (ℎ(x) = 1|𝑦 = 𝑧, 𝑏 = 1) 𝑧 ∈ {0, 1} (2.36)

Equal Opportunity In some domains, we just care about the inclusion error. Equal
opportunity is a relaxed, weaker notion of equal odds that just requires only the TPR of
both subgroup to be the same. In our example, the probability of being accepted a loan
while being creditworthy should be equal for the male and female subgroup [60].

𝑃 (ℎ(x) = 1|𝑦 = 1, 𝑏 = 0) = 𝑃 (ℎ(x) = 1|𝑦 = 1, 𝑏 = 1) (2.37)

Calibration by Group In some applications, it is desirable to interpret the values of a
scoring classifier as (calibrated) probabilities. The calibration property introduced in Sec-
tion 2.1.3 holds if for all individuals with a particular assigned probability score 𝜋 ∈ [0, 1],
a 𝜋-fraction of them actually belongs to the positive class. A probabilistic classifier satis-
fies calibration by groups if this condition holds equally for each subgroup. For example,
if within the population each 100 male and female applicants receive a probability score
of 𝜋(x) =0.7 of being creditworthy, 70 individuals of them belong actually to the positive
ground-truth class [61].

𝑃 (𝑦 = 1|𝜋(x) = 𝑝, 𝑏 = 𝑧) = 𝑝 𝑧 ∈ {0, 1} (2.38)

It turns out that the introduced statistical fairness definitions can be at odds with each
other and are mutually exclusive. In particular, the impossibility theorem says that
except in trivial settings (e.g., equal base rate or perfect classifier), it is impossible to
simultaneously achieve demographic parity, equal odds and calibration by groups [56, 54,
62, 63].

2.4.3 Achieving Statistical Fairness

The fairness literature proposed many algorithmic interventions to achieve statistical
notions of fairness. Most approaches to promote fairness fall into three categories: pre-
processing, in-processing, and post-processing techniques. Using these techniques to de-
crease the degree of discrimination comes often at the cost of predictive performance.

Pre-processing This family of techniques preprocesses a data set to remove discrimi-
nation prior to learning a classifier. Hence, this approach is generally agnostic to poten-
tial downstream predictions. Most preprocessing methods aim for demographic parity
by transforming the feature space into some representation that is independent of the
sensitive attribute. A straight-forward approach is suppression, which suggests simply
removing features that are correlated with the sensitive attribute. However, this might
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be ineffective if the relationship between features and the sensitive attribute is not lin-
ear but more complex. Massaging the data aims at mitigating demographic disparity by
changing the labels of some individuals in both groups in the data set and use a ranker to
pick candidates that are close to the decision boundary to motivate minimal effects on ac-
curacy. As changing the labels is a rather intrusive approach, the authors also suggested
reweighing and sampling techniques to correct for sample size disparity across the inter-
section of class labels and protected groups [64]. The optimized preprocessing framework
learns a probabilistic transformation that transforms the features and outcomes within
the data using group fairness, individual distortion, and data fidelity constraints [65]. A
further line of work aims to learn a fair representation from the data using adversarial
learning. The high-level idea is that a discriminator aims to predict the sensitive at-
tribute while an encoder aims to map each data distribution to a single representation
to fool the discriminator. While earlier work [66, 67] achieved representation ensuring
demographic parity, [68] extends this approach to equal opportunity and equal odds by
choosing different loss functions.

In-processing Fair in-processing methods aim at mitigating disparities during the train-
ing process. While optimizing directly for fairness is highly effective, the disadvantage
is limited generalization as this applies only to specific model classes and optimization
problems. One line of work introduces fairness criteria as a constraint to a constrained
optimization problem. Zafer et al [69] formulate an optimization problem which given
a decision boundary-based classifier (e.g. logistic regression or support vector machines)
minimizes the loss subject to a fairness constraint. In order to solve this problem effi-
ciently, they convert it into a Disciplined Convex-Concave Program [70]. They satisfy
different notions of fairness regarding (approximate) equal overall misclassification rate,
false positive rate and false negative rate across subgroups. Contrary to their previous
approach, the same authors also propose to maximize fairness under accuracy constraints
instead of vice versa [71]. Agarwal et al [72] propose an approach where they reduce a
constrained optimization problem with fairness constraints to a sequence of cost-sensitive
classification problems with two players. At each round of the sequence, one player max-
imizes accuracy while the other player imposes a particular amount of fairness. The
solution of this cost-sensitive classification problem yields a randomized classifier with
the lowest error while satisfying different fairness definitions such as equal odds, equal
opportunity, and demographic parity. In [73], a meta-algorithm for classification is pro-
posed that takes a large class of fairness constraints with respect to possibly multiple
non-disjoint sensitive attributes as input and optimizes the classifier subject to the fair-
ness constraints.

Post-processing After a classifier is trained on a data set, post-processing approaches
take the model’s predictions and adjust them in order to aim for fairness. The advan-
tage of this class of methods is that it is model-agnostic and works for any black-box
classifier. Further, there is no need to have access to the training process in contrast
to in-processing methods. A popular method to achieve calibration is Platt scaling [74].
Platt scaling treats an uncalibrated score 𝑠 as a single feature and fits a logistic regression
model such that the parameter 𝑎 and 𝑏 fit the sigmoid function 𝜋 = 1

1+𝑒𝑥𝑝(𝑎𝑠+𝑏) . Sub-
sequently, this regression model can be used to transform scores into probabilities. To
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get calibration by group, Platt scaling can be simply applied separately to the different
subgroups. Hardt et al [60] introduce a post-processing technique that achieves equal
odds by using randomized, group-specific thresholds to make class predictions. They
use a mixture of two thresholds 𝑡𝑙𝑜𝑤 and 𝑡𝑢𝑝 per group, where probability scores above
𝜋(x) > 𝑡𝑢𝑝 are always classified as 1 and scores 𝜋(x) < 𝑡𝑙𝑜𝑤 are always classified as 0. For
scores in between however, i.e. 𝑡𝑙𝑜𝑤 < 𝜋(x) < 𝑡𝑢𝑝, the classifier will flip a coin to assign
the class. By having a fraction of randomized predictions per group, this method can
tune the error rates for each group in order to equalize both 𝐹𝑃𝑅 and 𝐹𝑁𝑅. Pleiss et
al [75] also rely on randomization to post-process existing calibrated classifiers to achieve
single error parity (e.g. equal opportunity) in addition to calibration. In contrast to
the previous method, they do not randomize the output but rather assign the base rate
probability to a fraction 𝛼 of individuals of the advantaged group. In other words, they
mix the trivial classifier that always outputs the group-specific mean probability with the
previously learned and calibrated classifier in order to tune the error rate while preserving
the calibration property. The work most related to the one presented in chapter 3 and 4
is the active fairness framework [11], which also investigates fairness in prediction-time
AFA systems. Their post-processing technique is based on acquiring different amounts of
features (information budgets) for different subgroups. This additional degree of freedom
allows it to control for error rates as more features for a group will improve the pre-
dictive performance. First, they achieve calibration and single error parity by choosing
differentiated group budgets jointly with a calibrated classifier. Second, they combine
group-specific information budgets with different classifier thresholds and achieve hereby
equal odds. In order to find the right set of parameters (budget or threshold) that leads
to fair classification, they rely on optimization methods. This work is different from
theirs in that we propose two alternative approaches to determine information budgets
that reduce disparities. Crucially, our approach determines these information budgets
dynamically at prediction-time when a stopping criterion is met and does not rely on
optimization. The first approach adaptively acquires features for an individual until a
certain level of confidence in a prediction is reached. The second approach relies on a
reinforcement learning agent that collects features for an individual and further finalizes
the information budget by deciding when to stop acquiring additional features.
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ABSTRACT
The machine learning community and society at large have become
increasingly concerned with discrimination and bias in data-driven
decision making systems. This has led to a dramatic increase in
academic and popular interest in algorithmic fairness. In this work,
we focus on fairness in budget-constrained decision making, where
the goal is to acquire information (features) one-by-one for each
individual to achieve maximum classification performance in a
cost-effective way. We provide a framework for choosing a set of
stopping criteria that ensures that a probabilistic classifier achieves
a single error parity (e.g. equal opportunity) and calibration. Our
framework scales efficiently to multiple protected attributes and is
not susceptible to intra-group unfairness. Finally, using one syn-
thetic and two public datasets, we confirm the effectiveness of our
framework and investigate its limitations.
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1 INTRODUCTION
As machine learning-based decision making has become increas-
ingly ubiquitous—e.g., in criminal justice [16], medical diagnosis
[15], human resource management [3], credit [11], and insurance
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[29]—there is widespread concern over how these systems intro-
duce and perpetuate discrimination and inequality. Consequently,
substantial work on defining and achieving fairness in machine
learning systems has been published in the last few years.

The vast majority of this research has relied on the assumption
that all data is readily available or can be acquired at no or little
additional costs. In such a setting, the model bases its decision about
an individual always on all features. In practice, however, there are
many applications where the acquisition of an additional feature
leads to a feature-specific cost [17]. Consider a patient entering a
hospital seeking diagnosis. Typically, the doctor starts the diagnosis
with only a handful of symptoms. From there, the patient under-
goes a progressive inquiry by e.g. measuring vitals or procuring lab
tests. At each step, absent sufficient certainty, the inquiry continues.
Acquiring all features at once using all possible medical tests is
prohibitively expensive and time-consuming, so at each time-step
the doctor is tasked with choosing the next feature that most ef-
ficiently leads to a more confident diagnosis. This setting, active
feature-value acquisition (AFA), is becoming increasingly ubiqui-
tous and is relevant in a wide range of contexts, from credit and
insurance, to employee recruiting, poverty and disaster mapping,
and online advertising [8, 17, 19, 22, 28].

The machine learning community has proposed different frame-
works for quantifying fairness in machine learning [10, 16, 30],
most of which focus on balancing classification errors across pro-
tected population subgroups, towards achieving equal false-positive
rates (predictive equality), equal false-negative rates (equal oppor-
tunity), or both (equal odds). Here, we focus on satisfying equal
opportunity, requiring non-discrimination only within the ‘favor-
able’ outcome [10], while also extending these results to satisfying
predictive equality. We show that our method can jointly achieve
either of these error parity measures and calibration for each sub-
group (test-fairness), a property commonly required of classifiers in
real-world settings [5, 25]. We call an estimator calibrated if, when
we look at the subset of people who receive any given probability
estimate p ∈ [0, 1], we indeed find a p fraction of them to be positive
instances of the classification problem.

To ensure that predictions are fair, “optimal" post-processing
methods have been proposed that achieve either 1) equal odds, or
2) parity in one error rate (e.g. equal opportunity) and calibration
[10, 25]. These methods rely on randomization to attain fairness:
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they randomize the predictions for a subset of individuals in the
advantaged group, and hence increase error rates for that group.
By carefully tuning the share of randomized predictions, one en-
sures equal error rates across groups. Although these methods are
effective, they are also unsettling and several objections to them
have been put forth, such as inefficiency, pareto-suboptimality, and
intra-group unfairness due to the randomization [5, 10, 20, 25].

Despite the pervasiveness of AFA systems and the recent spike
in work on algorithmic fairness, only one paper in the literature
has explored fairness at its intersection with AFA [22]. In that
work, optimization is used to find an information budget for each
population subgroup such that an AFA classifier achieves either 1)
one error parity and calibration or 2) equal odds. Notably, by using
this additional degree of freedom, they show that one can achieve
these notions of fairness in an AFA setting without resorting to
randomization.

Our goal is to further investigate the relationship between equal-
izing error rates and AFA. In particular, we derive a set of stopping
criteria that ensures single error parity (equal opportunity or pre-
dictive equality) for calibrated probabilistic classifiers. In contrast
to previous work, this method does not rely on optimization but di-
rectly relates the stopping criteria to the subgroup-specific base rate
and the desired error rate. We demonstrate that our framework is
effective in practice using one synthetic and two public datasets and
show how it extends naturally to a situation with many subgroups
defined over multiple protected attributes.

Finally, the method provides an interesting new perspective on
two central topics in the fairness literature: individual fairness and
fairness gerrymandering. First, as statistical notions of fairness like
equal opportunity are defined with respect to groups, they only
provide guarantees to the group average, not to any individual.
Individual fairness tries to tackle this issue by using constraints
that bind at the individual level [7]. Our method finds a set of stop-
ping criteria that lead to a personalized budget and set of available
features for each individual. Hence, intuitively, it trades off inequal-
ity (the model and the budgets are personalized and thus different
across individuals) for equity (each of the subgroups defined over
the set of protected attributes has the same expected false-negative
rate and even within subgroups each individual is classified with
similar confidence). This can be seen as an attempt to combine
statistical and individual notions of fairness as the stopping criteria
lead to increased equity at the individual level. Second, in fair-
ness gerrymandering, a classifier appears to be fair when measured
across each protected attribute but violates the fairness constraint
on a subgroup defined over several protected attributes [14]. In
contrast to methods based on optimization, our framework is ro-
bust against fairness gerrymandering since it ensures all subgroups
have the same expected false-negative rate.

2 RELATEDWORK
Active feature-value acquisition. Several methods for AFA have

been explored ranging from heuristics-based feature acquisition
strategies to more recent reinforcement learning methods in which
one jointly trains the classifier and the agent that decides which
feature to select next [8, 17, 19, 28]. In line with most prior work in

AFA, we select the next best feature using a feature acquisition strat-
egy while separately training the classifier. The feature acquisition
strategy is based on maximizing the expected utility

EU (x j ) =
∫
v
P(x j = v)

U (x j = v)
c j

(1)

where P(x j = v) is the probability that feature x j will take on value
v andU (x j = v) the utility of the model after adding x j to feature
vector x. The utility function could be defined in multiple ways
depending on the objective, such as the expected classification error
or the expected entropy. We experimented with multiple definitions
for utility and found that one that maximizes the expected increase
or decrease in probability outputted by the model is most cost-
efficient; see Section 5.1 for details.

Fairness in machine learning. Most recent work in fairness in
machine learning, including this work, focuses on matching error
rates (false-positive or false-negative) across population subgroups.
There are, however, multiple other ways to define fairness such as
demographic parity, individual fairness, fairness through unaware-
ness, and counterfactual fairness. Please refer to [30] for a compre-
hensive overview of definitions. Methods for achieving fairness fall
into three categories [1]. First, there are methods for pre-processing
and improving collection of training data [2, 4, 27]. Second, there are
methods for constraining the model during training or optimization
including methods for fair representation learning [21, 33]. Finally,
there are a number of methods for post-processing probabilities to
achieve fairness [10, 32]. For achieving equal opportunity and cali-
bration previous post-processing work has relied on randomization
which led to an inefficient and pareto-suboptimal classifier [5, 25].
In this work, we post-process a classifier trained on all features by
selecting a specific subset of features for each individual.

3 PROBLEM SETUP
The setup of our frameworkmost follows the one in [25] for fairness
in the context of calibrated probabilistic classifiers. However, we
extend their framework for use in the AFA setting. Let (x,y) ∼ P
be an individual in P represented by a d-dimensional feature set
and a binary label y ∈ {0, 1}. In the AFA setting, x(q) ⊂ x denotes
a query on a subset of features in x, with q ⊂ {0, ...,d}, and x(q)
the partial feature vector. The decision maker incurs a cost for the
collected features c(q) =

∑
j ∈q c j . The cost vector c represents the

cost of each feature and is the same for each individual in P . It can
represent different types of costs that the decision maker or an
individual might incur when a feature is queried such as monetary
and privacy costs.

We study the context in which a decision maker can choose what
information to collect about an individual in order to maximize
accuracy while ensuring fairness. Across all individuals in P , the
decision maker is constrained by an average information budget:

Definition 1. The information budget b̄ is a global constraint
that represents the average budget that can be used across individuals
in P , b̄ = 1

n
∑
i ∈P bi with bi =

∑
j ∈q c j , the information budget used

for feature collection for a single individual i in P .

In our population P we have a set of k disjoint population sub-
groups G1, . . . ,Gk defined over the protected attributes (such as
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certain combinations of protected attribute values like race and
gender) across which we measure fairness. Note that the number
of population subgroups is exponential in the number of protected
attributes (e.g. three binary protected attributes will lead to 23 = 8
subgroups). Generally, these subgroups will have different base
rates µt , which represents the probability of belonging to the posi-
tive class µt = P(x,y)∼Gt [y = 1] across individuals in group t . For
classification, we have a separate probabilistic classifier for each
group Gt , ht : Rk → [0, 1]. In practice, these separate classifiers
are stemming from a single classifier trained on P and only differ
because of subgroup-specific calibration. For the probabilistic error
rates as well as for measuring disparity, we follow the generalized
definitions introduced in [25]:

Definition 2. The generalized false-positive rate for classifier
ht is cf p (ht ) = E(x,y)∼Gt [ht (x(q)) | y = 0]. The generalized false-
negative rate is cf n (ht ) = E(x,y)∼Gt [1 − ht (x(q)) | y = 1].

If the classifier would output binary predictions instead of prob-
abilities, these rates would simply represent standard false-positive
and false-negative rates. Similarly, we use generalized notions of
equalized odds and equal opportunity for probabilistic classifiers:

Definition 3. Equal opportunity for a set probabilistic classifiers
h1, . . . ,hk for groups G1, . . . ,Gk requires cf n (ht ) = cf n (ht ′) for all
possible combinations of t and t ′. Equal odds requires both cf n (ht ) =
cf n (ht ′) and cf p (ht ) = cf p (ht ′).

For probabilistic classifiers, however, these two conditions do
not ensure fairness if the classifier probabilities the classifier out-
puts are not calibrated. This is confirmed both theoretically and
experimentally in [5, 6, 25].

Definition 4. A classifier ht is calibrated if P(x,y)∼Gt [y = 1 |
ht (x(q)) = p] = p.

In Figure 1, we observe the set of calibrated classifiers for two
groupsG1 and G2. For each group, the classifiers lie on a line with
slope (1 − µt )/µt that connects the perfect classifier at the origin
with the base rate classifier on the cf p + cf n = 1 line. The perfect
classifier always assigns the correct prediction, while the base rate
classifier has no predictive power and naively assigns the base
rate to each individual [16, 25]. For an AFA classifier, the base rate
classifier is simply the classifier before any features have been
acquired h(xq=∅).

4 EQUAL OPPORTUNITY
We will now derive a set of stopping criteria for each population
subgroup that ensure satisfying equal opportunity. Intuitively, the
stopping criteria should be chosen such that we collect more fea-
tures for subgroups for which the model is less certain. By stopping
later, we acquire more features, have more predictive power, and
move down the slope in Figure 1 towards the perfect classifier at
the origin. First, we reformulate cf n from Definition 2 as

cf n (ht ) =
1∑

(x,y)∈Gt 1y=1

∑
(x,y)∈Gt

1y=1(1 − ht (x(q))) (2)

The normalization can simply be replaced by a constant 1/(|Gt |µt )
since we marginalize over all x in Gt . Because we do not have

0 µ1 µ2 1
cfp

0

1− µ2

1− µ1

1

c f
n

0 cfp(h1) cfp(h2) 1
cfp

0

β

1

c f
n

h1

h2

Figure 1: Left, we observe the set of calibrated classifiers h1
and h2 forG1 in green andG2 in blue. The base rates are µ1 =
0.4 and µ2 = 0.65. Right, we observe two classifiers h1 and h2
that satisfy calibration and equal opportunity with a target
generalized false-negative rate β .

access to ground truth labels 1y=1 at test time, we replace them
with the estimates from the the probabilistic classifier ht (x (q)):

cf n (ht ) =
1

|Gt |µt
∑

(x,y)∈Gt

ht (x(q))(1 − ht (x(q))). (3)

One way to satisfy equal opportunity is to ensure that, in expec-
tation, we have the same generalized false-negative rate cf n for
each group Gt such that E(x,y)∼Gt [cf n (x(q))] = β ∀t , where β can
be chosen according to the information budget b̄. To achieve this,
we slowly increase the confidence of our classifier (ht (x(q)) → 1 or
ht (x(q)) → 0) by sequentially adding features one-by-one. We stop
collecting features when our probabilistic classifier crosses an upper
or lower threshold probability, ht (x(q)) ≥ αu or ht (x(q)) ≤ αl . For
a desired β we can find these stopping thresholds αu and αl by en-
suring equalht (x(q))(1−ht (x(q))/µt = β for every individual in our
groupGt . Bringing everything except the classifier to one side of the
equation, wewant the probabilities to beht (x(q)) = 1

2± 1
2
√

1 − 4βµt
which leads to thresholds

αu =
1
2 +

1
2
√

1 − 4βµt , αl =
1
2 − 1

2
√

1 − 4βµt (4)

Thus, by choosing the right stopping criteria for each individual x
according to their subgroup-specific base rate µt , we ensure that
we satisfy equal opportunity. See Figure 1 for an example with
two subgroups. In practice, a decision maker would not choose the
target rate β but, instead, tune β to meet an information budget b̄.
A higher information budget b̄ allows for a lower target rate β .

Analogously, if we insteadwant to achieve equalized false-positive
rates (predictive equality) across groups, we can derive a similar
but different set of thresholds αu = 1

2 +
1
2
√

1 + 4β(µt − 1) and
αl =

1
2 − 1

2
√

1 + 4β(µt − 1). Finally, to achieve equal odds, we would
have to find the same set of thresholds for both equal false-positive
rates and equal false-negative rates. The only case for which these
thresholds are the same is for 1 − µt = µt (i.e. µt = 0.5) which is
the trivial case for which there was already no unfairness. This
confirms the conclusion in [25] that for different base rates, one
cannot simultaneously achieve equal odds and calibration.
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Table 1: Overview of the datasets and subgroups split by the protected attributes. Accuracy andAUC are computed on a dataset-
level using the full feature set, while µ is the dataset-level base-rate P(y). For each subgroup we compute the relative number
of individuals nt and the base rate µt .

Dataset Subgroup1 Subgroup0

Name Nsamples Nf eat Acc AUC µ Label1 n1 µ1 Label0 n0 µ0

Synthetic [9, 23] 10,000 150 85.9% 0.933 50.0% z = 1 50.0% 41.3% z = 0 50.0% 58.9%
Mexican poverty [12, 22] 70,305 182 78.7% 0.856 35.5% Urban 63.6% 34.9% Rural 36.4% 36.6%
Adult income [18] 49,000 14 86.3% 0.911 23.9% White 85.4% 25.4% Non-white 14.6% 15.3%

Assumptions. In this framework, we make two key assumptions.
First, we assume that for each individual we have sufficient statis-
tical power to reach the target β by simply adding more features.
In practice, however, there will be a non-zero Bayes-optimal error
rate such that we cannot reach the perfect classifier with β = 0
even with unlimited budget for feature acquisition. Second, we
assume that the probabilities are exactly p = αu or p = αl while in
reality we stop when we cross the threshold and thus p ≥ αu or
p ≤ αl . In the experiments in Section 5 we show that relaxing both
assumptions does not limit the effectiveness of our framework.

4.1 Implications
This result is important for several reasons. First, it provides a theo-
retical framework for understanding the results presented in [22]. In
the active fairness framework described there, optimization is used
to find a set of parameters that allows for equal opportunity and
calibration in the AFA setting, but lacks a theoretical underpinning.

Second, we only need a subgroup’s base rate to find αu and αl .
This is crucial when the problem is extended to a case with several
multi-class protected attributes, like gender, race, and sexual orien-
tation. If one instead would try to find the parameters by optimizing
over a budget and fairness constraints for each protected attribute,
the resulting classifier could contain intra-group unfairness.

Third, comparing this result to the randomization approach pre-
sented in [25], our framework shows that by using AFA, we can
achieve fairness in a budget-constrained setting without having
to resort to randomized approaches that are inefficient, pareto-
suboptimal, and lead to intra-group unfairness.

5 EXPERIMENTS
In light of these findings, we demonstrate the effectiveness and
limitations of our framework on one synthetic and two public real-
world datasets. In this section we aim to satisfy equal opportunity
(equal false-negative rates) but in Appendix A we demonstrate that
the method can also be used for satisfying predictive equality (equal
false-positive rates).

5.1 Implementation
Implementation requires two elements, a probabilistic model and a
feature acquisition strategy.

Probabilistic model. First, we need a model that allows us to es-
timate P(y |x(q)) for arbitrary feature subsets x(q), with q ∈ [0,d].
We implement this using a probabilistic random forest, designed
to deal with incomplete data in trees [26]. Specifically, we first

train a standard random forest using the complete feature vector
x for each individual in our training set. At test time, however,
we now only have access to part of the feature vector x(q). In a
probabilistic random forest, when the algorithm encounters a tree
node for which the value is missing in the feature vector x(q), the
algorithm continues along both branches towards the leafs while
the outcomes in each branch are weighted based on the estimated
probability for the missing value. For each individual, that proba-
bility is estimated from the frequency of values in the training set.
We then compute classification probabilities as a weighted average
of the leaf purity across all leaves landed on by the search. Finally,
the predicted probability is averaged across all trees. Analogously,
gradient boosting and other models can be adjusted to admit in-
complete feature vectors [26, 31]. In this work, all random forests
are created using scikit-learn with 64 trees and maximally 150
leaf nodes. Additionally, we built a custom predict function that
works with the scikit-learn object but accounts for the missing
feature values.

Feature acquisition strategy. Second, we implement an efficient
feature acquisition strategy to estimate which next feature can be
best selected based on the current partially observed feature vector
x(q), while balancing cost and increasing accuracy. We implement
a greedy feature selection algorithm based on the expected utility
methods described in [13, 17]. For an individual with feature vector
x, and at each feature collection iteration, the algorithm searches
for the feature j ′ < q that maximizes the difference between the
current predicted probability P̂ and the expected probability given
that an additional feature j ′ is queried with cost c j , given by:

j ′ = arg max
{j :j<q, j ∈[0,d ]}

1
c j

��P̂{y = 1|x(q∪j)} − P̂{y = 1|x(q)}
��. (5)

5.2 Datasets
An overview of the datasets is given in Table 1. All results are com-
puted using random 60%/20%/20% train/validation/test splits. The
Synthetic dataset is generated using the make_classification
function from scikit-learn [9, 23] where we use the default set
of parameters while setting class_sep to 1.5 (default is 1.0) to
make the task slightly easier. The protected attribute is a randomly
selected feature which we exclude from the dataset and binarize
by splitting along the median. The Mexican Poverty dataset is ex-
tracted from the 2016 publicly available Mexican household survey
containing household binary poverty levels for prediction, as well
as a series of household features [12]. We will release the processed
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dataset. Finally, we use the Adult Income dataset from UCI Machine
Learning Repository [18] which comprises demographic and occu-
pational attributes, with the goal of classifying whether a person’s
income is above $50,000.

5.3 Achieving equal opportunity
We empirically demonstrate that our framework satisfies equal
opportunity for a given information budget b̄. To make the results
more interpretable, we choose the costs to be the same for each
feature c j = 1. Hence, the budget b̄ is simply the average number of
features that can be queried across individuals. We also tested the
framework with linearly increasing feature costs and feature costs
drawn from a normal distribution, while observing similar behavior.
To ensure calibrated probabilities, we fit a sigmoid function to the
classifier’s scores using the validation set; a calibration method
known as Platt scaling [24].

Figure 2 demonstrates that we can satisfy equal opportunity for
the three datasets. In Figure 2a we plot the derived equal opportu-
nity classifiers in the generalized false-positive/false-negative plane
with 5%, 10%, and 20% as information budgets for respectively the
Synthetic, Adult Income, and Mexican Poverty datasets. Table 2
shows the residual false-negative disparities after applying our stop-
ping criteria as well as the false-positive disparity. The results in
the table are benchmarked against the disparities between groups
when the classifiers have access to all features (i.e. no stopping
criteria). As expected, our framework leads to drastically lower
false-negative disparities while the false-positive disparities are
similar to the baseline. In Table A1 we find the stopping criteria,
budgets, and classifier performance (using area under the ROC
curve) for equal opportunity, predictive equality and the baseline
model using all features.

Figure 2b demonstrates that our framework allows for achieving
equal opportunity for a range of different information budgets. The
steepest decrease in cf n is observed for smaller information budgets
because our feature acquisition strategy chooses themost predictive
features first. For larger budgets, the curves plateau as the additional
features do not further increases the classifier performance.

Our framework assumes a one-to-one mapping between the tar-
get β and the actual generalized-false negative rate cf n . For the
Synthetic dataset in Figure 2c, we indeed observe an approximate
one-to-one mapping between target and actual. For the Mexican
Poverty dataset, however, we observe a strong positive correlation
but the actual false-negative rate increases slower than the target
rate. For small target rates β this is the result of lower overall classi-
fication performance for the Mexican dataset (AUC 0.85 when using
all features versus 0.93 for the Synthetic dataset); as β becomes
smaller, the thresholds αu and αl approach 1 and 0. Therefore, when
the classification performance is low, many instances will fail to
meet the stopping criteria before running out of possible features
to query which increases the actual rate cf n . For high values of β ,
another effect is at play. The smaller than expected cf n is observed
because our probabilities do not end up exactly at αu and αl (our
stopping criteria are defined as ht (x(q)) ≥ αu , not as ht (x(q)) = αu ).
Importantly, however, we observe that these assumptions do not
affect our ability to achieve equal opportunity.

Table 2: Information budgets b̄ and absolute differences
(disparities) in generalized false-negative |∆cf n | and false-
positive rates |∆cf p | for the equal opportunity classifiers vi-
sualized in Figure 2. We benchmark our framework to the
classifiers with access to all features x (b̄ = 100%).

Equal opportunity All features
Dataset b̄ |∆cf n | |∆cf p | b̄ |∆cf n | |∆cf p |
Synthetic 5% 0.0039 0.221 100% 0.097 0.042
Mexican Pov. 20% 0.0063 0.040 100% 0.019 0.042
Adult income 10% 0.026 0.065 100% 0.038 0.056

Finally, we test our framework for eight disjoint subgroups de-
fined over three protected household attributes (Young/Old, Ur-
ban/Rural, and With/Without Children) in the Mexican Poverty
dataset. When using optimization for achieving fairness, large intra-
group unfairness can manifest itself; even though disparities mea-
sured across protected attributes are small, large differences be-
tween false-negative rates for each subgroup defined over the at-
tributes can exist [14]. In contrast, our framework requires all eight
false-negative rates to be approximate equal and, indeed, empir-
ically we observe that all fall within the [0.440, 0.541] range. See
Tables A2 and A3 in the appendix for an overview of results for the
three protected attributes.

6 CONCLUSION
We introduced a framework for achieving equal opportunity (and
predictive equality) for calibrated probabilistic classifiers in an ac-
tive feature-value acquisition setting. The framework relates a tar-
get generalized false-negative rate and a subgroup-specific base
rate to a set of stopping criteria, used to determine when to stop
querying additional features for fair classification. The target false-
negative rate can be tuned using the available information budget.
The relationship between error and base rates is intuitive as base
rate differences are what give rise to disparities between calibrated
classifiers. On three datasets, we show the effectiveness of the
framework and demonstrate that relaxing some of the assumptions
in our framework does not significantly change its effectiveness.

Importantly, the proposed framework neither relies on optimiza-
tion nor any form of randomization. Furthermore, it is not suscep-
tible to intra-group unfairness and provides a new perspective on
how we could combine individual and statistical notions of fair-
ness. The ability to set the expected false-negative rates for each
subgroup simply by deriving a set of stopping criteria could be
used to ensure statistical notions of fairness to hold not only for a
small number of larger subgroups but potentially for an exponential
number of smaller subgroups. This could enable a set of classifiers
for which both individual and statistical notions of fairness hold
without having to collect the protected attributes. In turn, this al-
lows for fair decision making in contexts where one deals with a
multitude of subgroups or when collecting the protected attributes
is unethical or impossible.

Chapter 3 On Fairness in Budget-Constrained Decision Making

34



KDD ’19: Explainable AI (XAI), August 4–8, 2019, Anchorage, AK Bakker et al.

Synthetic
 z = 0
 z = 1
 Equal Opportunity - 5% Budget

Mexican Poverty
 Urban
 Rural
 Equal Opportunity - 20% Budget

0.1 0.2 0.3
cfp

0.4

0.8

c f
n

0.2 0.4
cfp

0.30

0.45

0.60

c f
n

0.25 0.50
cfp

0.25

0.50

c f
n

Adult Income
 Non-White
 White
 Equal Opportunity - 10% Budget

Synthetic
 z = 0
 z = 1
 Equal Opportunity - 5% Budget

Mexican Poverty
 Urban
 Rural
 Equal Opportunity - 20% Budget

0.1 0.2 0.3
cfp

0.4

0.8

c f
n

0.2 0.4
cfp

0.30

0.45

0.60
c f

n

0.25 0.50
cfp

0.25

0.50

c f
n

Adult Income
 Non-White
 White
 Equal Opportunity - 10% Budget

(a) The line of calibrated classifiers and the equal opportunity classifiers plotted in the generalized false-positive/false-negative
plane similar to Figure 1. The values for the differences between the error rates can be found in Table A3. The black line traces
cf p + cf n = 1 and contains the naive base rate classifiers for which no features are queried.

0.25 0.50

b̄(%)

0.4

0.6
c f

n

0.2 0.4

b̄(%)

0.30

0.45

0.60

c f
n

0.1 0.2

b̄(%)

0.2

0.4

c f
n

10 20 20 40 25 50

(b) Generalized false-negative rates cf n for equal opportunity
classifiers along a range of different information budgets b̄ .

0.4 0.6 0.8
β

0.50

0.75

c f
n

0.30 0.45 0.60
β

0.30

0.45

0.60

c f
n

0.2 0.4
β

0.15

0.30

c f
n

(c) Generalized false-negative rates cf n for different target
false-negative rates β . Ideally, you expect a straight-line rela-
tionship with slope 1.

Figure 2: For the datasets described in Table 1, we demonstrate equal opportunity for three different budgets. For each sub-
group, we show the possible set of calibrated classifiers (lines) together with the specific classifier that achieves equal oppor-
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A ACHIEVING PREDICTIVE EQUALITY
In line with satisfying equal opportunity in the main text, we empir-
ically demonstrate that our framework satisfies predictive equality
(equal false-positive rates) for three different information budgets
10%, 15%, and 30% for respectively the Synthetic, Adult Income, and
Mexican Poverty datasets. In Table A1 we observe the statistics for
both equal opportunity and predictive equality. In agreement with
equal opportunity, we see a drastic decrease in target error rate
(now |∆cf p |) with respect to the false-positive disparity measured
across the benchmark classifiers that have access to all features.

Chapter 3 On Fairness in Budget-Constrained Decision Making
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Table A1: Comparison of AUC, absolute differences in generalized false-negative |∆cf n | and false-positive |∆cf p | rates across
the equal opportunity, predictive equality and benchmark classifiers for the three different datasets. The equal opportunity
and predictive equality classifier were derived by setting a group-specific threshold and applying active feature acquisition
while the benchmark classifier has access to the complete feature set. The upper threshold αu is shownwhile the lower thresh-
old relates to the upper threshold as αl = 1 − αu . Both are determined by the average information budget b̄.

Equal opportunity Predictive equality All features
Dataset b̄ |∆cf n | |∆cf p | AUC αu,1 αu,0 b̄ |∆cf n | |∆cf p | AUC αu,1 αu,0 b̄ |∆cf n | |∆cf p | AUC

Synthetic 5% 0.0039 0.221 0.77 0.82 0.71 10% 0.225 0.002 0.77 0.69 0.81 100% 0.097 0.042 0.933
Mexican Poverty 20% 0.0063 0.040 0.78 0.77 0.75 30% 0.038 0.011 0.79 078 0.79 100% 0.019 0.042 0.856
Adult Income 10% 0.026 0.065 0.86 0.78 0.89 15% 0.423 0.010 0.81 0.78 0.73 100% 0.038 0.056 0.911

Table A2: Active feature acquisition for eight different subgroups defined over three binary protected attributes in theMexican
Poverty dataset. The metrics cf n , cf p and AUC are computed on each subgroup level with a 25% information budget b̄. Each
subgroup has its own threshold as stopping criterion based on the subgroup specific base rate µt . Furthermore, we report the
relative number of individuals nt with respect to the whole set and the fairness statistics for the benchmark case.

Equal opportunity All features
Subgroup nt µt cf n cf p AUC cf n cf p AUC

Young ∩ Urban ∩ With Children 20.0 % 51.4% 0.465 0.460 0.667 0.305 0.306 0.848
Young ∩ Urban ∩ Without Children 13.4% 21.6% 0.502 0.174 0.828 0.494 0.140 0.866
Young ∩ Rural ∩ With Children 13.5% 50.3% 0.443 0.446 0.699 0.333 0.349 0.812
Young ∩ Rural ∩ Without Children 5.8% 23.0% 0.541 0.186 0.773 0.559 0.153 0.810
Old ∩ Urban ∩ With Children 7.4% 54.0% 0.448 0.468 0.681 0.320 0.307 0.750
Old ∩ Urban ∩ Without Children 22.4% 21.7% 0.543 0.188 0.810 0.542 0.160 0.838
Old ∩ Rural ∩ With Children 4.5% 49.5% 0.440 0.433 0.711 0.339 0.322 0.817
Old ∩ Rural ∩ Without Children 12.7% 24.1% 0.530 0.224 0.785 0.531 0.191 0.804

∪Subдroups 100% 35.5% 0.480 0.283 0.794 0.432 0.233 0.824

Table A3: Absolute differences in generalized false-negative |∆cf n | and false-positive |∆cf p | rates on a group-level. The thresh-
olds for feature acquisition were set on a subgroup level (same as in Table 4). Controlling for error rates (in this case cf n ) on a
subgroup level leads to fairness on the level of the sensitve attribute.

Group |∆cf n | |∆cf p |
Young/Old 0.045 0.088
Urban/Rural 0.070 0.097

With/Without Children 0.089 0.257
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Abstract

We introduce a framework for dynamic adversarial discovery of information
(DADI), motivated by a scenario where information (a feature set) is used by
third parties with unknown objectives. We train a reinforcement learning agent
to sequentially acquire a subset of the information while balancing accuracy and
fairness of predictors downstream. Based on the set of already acquired features,
the agent decides dynamically to either collect more information from the set of
available features or to stop and predict using the information that is currently
available. Building on previous work exploring adversarial representation learn-
ing, we attain group fairness (demographic parity) by rewarding the agent with
the adversary’s loss, computed over the final feature set. Importantly, however,
the framework provides a more general starting point for fair or private dynamic
information discovery. Finally, we demonstrate empirically, using two real-world
datasets, that we can trade-off fairness and predictive performance.

1 Introduction

There are two parties involved in information transfer: a data owner who has ownership over its
own data or data it holds on behalf of others and a data collector who is tasked with collecting the
most informative set of data, often to maximize the performance of some predictor downstream.
Intentionally or otherwise, this process of data collection and prediction can lead to biases that
unfairly favor one protected subgroup over another. Numerous recent studies have shown that naively
optimizing for predictive performance can lead to unfair prediction outcomes in high-stake domains
such as criminal justice, credit assessment, recruiting, and healthcare [Kleinberg et al., 2017, Chalfin
et al., 2016, Huang et al., 2007, Obermeyer et al., 2019].

∗Duy Patrick Tu did this work while visiting MIT from LMU Munich.

Workshop on Human-Centric Machine Learning at the 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada. (non-archival)
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Consequently, the data owner faces a critical decision: if it cannot trust the data collector, which
information should it share to ensure fair decision making? While the optimal strategy to maximize
predictive performance is to naively share all the data available, the data owner has to be more
careful when it wants to ensure that the predictions downstream are fair. Removing the sensitive
attribute is the most obvious strategy, but is ineffective when the attribute is redundantly encoded
in other features [Dwork et al., 2012]. Another strategy is to first apply fair feature selection in
which one formulates an optimization problem to select a subset of features that maximizes accuracy,
given a maximum unfairness constraint [Grgić-Hlača et al., 2018]. This strategy, though effective, is
inefficient as it removes each feature simultaneously for all individuals, ignoring any differences in
the underlying conditional dependencies. For example, for individuals that live in Chicago, the most
racially segregated city in America, zipcode will be highly correlated with race and using this feature
can thus lead to racially biased predictions [Logan, 2014]. In contrast, if an individual lives in Irvine,
California, America’s most racially integrated city, zipcode alone will not reveal an individual’s
race. Removing zipcode for all individuals is therefore an effective but inefficient strategy to ensure
fairness.

Motivated by this problem, we propose the DADI (Dynamic Adversarial Discovery of Information)
framework as a general sequential information acquisition framework for any task. Our contributions
are as follows: to the best of our knowledge, we introduce the first framework for dynamic adversarial
discovery of information which we utilize to acquire feature sets that ensure fair decision making.
In this framework, we formulate the feature acquisition task as a minimax optimization problem in
which a reinforcement learning (RL) agent simultaneously minimizes the classification loss while
maximizing the loss of an adversary. We actualize this with a joint framework that simultaneously
trains a classifier, an adversary, and an RL agent using deep Q-learning. Building on work on
adversarial representation learning, we investigate the effects of two different adversarial reward
functions to achieve demographic parity [Edwards and Storkey, 2016, Madras et al., 2018]. Finally,
we demonstrate the effectiveness of our framework with two real-world public datasets.

2 Related Work

Fairness Recent years have seen an explosion in academic work that seeks to define and obtain
fairness in automated decision making systems. At a high level, this literature has focused on two
families of definitions: statistical notions of fairness and individual notions of fairness [Dwork et al.,
2012, Verma and Rubin, 2018]. Most of the literature, including this work, focuses on statistical or
group definitions of fairness, in which we require parity of some statistical measure to hold across a
small number of protected subgroups. In contrast, individual fairness definitions have no notion of
protected subgroups, but instead formulate constraints that bind on pairs of individuals [Dwork et al.,
2012, Joseph et al., 2016]. Both families of definitions have strengths and weaknesses; statistical
notions are easy to verify but do not provide any guarantees to individuals, while individual notions
do give individual guarantees but are difficult to implement in practice and are ambiguous with
respect to the agreed-upon distance function.

In this work, we focus on demographic parity, requiring parity of the positive classification rate
across groups, i.e. P (ŷ = 1 | b = 0) = P (ŷ = 1 | b = 1), where ŷ ∈ {0, 1} is the binary prediction
of a model that classifies feature set x and b ∈ {0, 1} is the sensitive attribute. The usefulness of
demographic parity is limited when the base rate differs across groups, i.e. P (y = 1 | b = 0) 6= (y =
1 | b = 1) where y ∈ {0, 1} is the ground truth label. In that case, the metric can be generalized by
conditioning on the ground truth label, yielding equal false negative rates (equal opportunity) or equal
false negative and false positive rates (equal odds) as measures of fairness [Hardt et al., 2016]. We
demonstrate the effectiveness of our framework using demographic parity, but note that alternative
adversarial objectives have been introduced that can be combined with our framework to achieve
equal opportunity or equal odds [Madras et al., 2018].

Adversarial training Adversarial training for deep generative models was introduced in Goodfel-
low et al. [2014], framing the learning as a two-player game between a generator and a discriminator.
The generator aims to fool the discriminator by generating fake data that resembles data from a
dataset X while the discriminator is trained to distinguish between ‘real’ data from and ‘fake‘ data
generated by the generator. Learning proceeds using a minimax optimization where the generator
and discriminator are optimized jointly. At each iteration, the discriminator improves its ability to
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discriminate between real and fake which, in turn, forces the generator to generate fake data that
better resembles the real data.

Adversarial training was first applied in the context of fairness by Edwards and Storkey [2016],
proposing adversarial training to ensure that multiple distinct data distributions from different
demographic subgroups are modeled as a single representation. The discriminator aims to distinguish
between subgroups while an encoder aims to map each data distribution to a single representation to
fool the discriminator. Subsequently, these representations can be safely shared with a data collector
while ensuring demographic parity for predictions downstream. Beutel et al. [2017] further explores
this approach in the context of demographically imbalanced data. Finally, Zhang et al. [2018] and
Madras et al. [2018] extend this body of work by connecting multiple statistical notions of fairness to
different adversarial objectives. Whereas the method presented in Zhang et al. [2018] predicts the
sensitive attribute from the prediction of the classifier, our work is closer to the method in Madras et al.
[2018], working directly with the learned representation. This allows for transferable representations
that ensure fair outcomes for other third-party classifiers downstream.

Although this work is similar in spirit to adversarial representation learning, we aim to dynamically
collect a fair subset of features instead of learning to map the full feature set to a fair representation.
The ability to collect raw features instead of mapping to a representation is crucial for integration
with current information systems where the collected information is used or audited by both human
and machine decision makers downstream. If we consider our the example of credit assessment,
a bank not only wants to collect a low-level abstract representation for the purpose of the initial
creditworthiness prediction but also wants to explain the credit decisions to an applicant and store the
applicant’s information in a database to provide other services downstream or allow for audits.

Active feature-value acquisition Different from active learning, active feature-value acquisition
(AFA) is concerned with feature-wise active learning for each instance. AFA is of great need in
cost-sensitive applications where the data collector needs to balance an available information budget
with predictive accuracy. A traditional AFA system consists of three components: 1) a classifier that
can handle partially observed feature sets, 2) a strategy for determining which feature to select next
based on the features that are already collected, and 3) a stopping criterion for determining when to
stop acquiring more features and make a final prediction.

First, there are different ways a classifier can handle a partial features set. Generative models handle
missing features naturally by first integrating out the variables while in discriminate models feature
imputation or expectation-maximization can be used to first replace the missing values with estimates.
In this work, we use a set encoder based on Vinyals et al. [2015] to encode arbitrary subsets of
features. Second, to determine which feature to select next, we need a method that estimates the
value of each of the unselected features based on the features that we have already collected. A
recent approach, Efficient Dynamic Discovery of High-Value Information (EDDI), uses a partial
variational autoencoder to represent the set of already acquired features. It then computes the mutual
information between the current representation and each of the available features to select the feature
that minimizes this information [Ma et al., 2019]. Finally, a stopping criterion is not specified in
EDDI and most other AFA methods. However, some prior work assumes a fixed feature budget
per individual after which the process terminates [Krishnapuram et al., 2011]. The active fairness
framework presented in Noriega-Campero et al. [2019] extends this to group-specific budgets that are
found to attain equal opportunity (equal false-positive or false-negative rates).

To effectively trade-off fairness and accuracy, we need a unified framework that jointly optimizes
both the acquisition strategy and the stopping criterion. We adopt the framework from Shim et al.
[2018] and model the feature acquisition process as a Markov decision process (MDP) where the
action space consists of the set of unselected set of features and an additional STOP action which,
upon selection, terminates the acquisition process. To ensure fairness, we formulate a reward function
that balances low classification loss with a high adversarial loss.

3 Adversarial Discovery of Fair Information

Problem setup The setup of our framework most follows the joint active feature acquisition and
classification framework in [Shim et al., 2018]; however, we extend their framework for use with an
adversary. Let (x(i), y(i), b(i)) ∼ P be individual i in P represented by a d-dimensional feature vector

3
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atz1ŷ

Ot

Encoder
fθ(Ot)

Classifier
gψ(z1)

Policy
πφ(z1)

(a) Joint model for the label classifier and policy. The encoder
fθ maps the set of observed features Ot to the latent repre-
sentation z1. From this the classifier gψ predicts ŷ while the
policy πφ predicts the action at (the next feature to select or
STOP).

Ot

z2 b̂

Encoder
fχ(Ot)

Classifier
gω(z2)

(b) Model for the adversary. The
encoder fχ maps the set of ob-
served featuresOt to the latent rep-
resentation z2 from which the clas-
sifier gω predicts the sensitive at-
tribute b̂.

Figure 1: Joint framework for dynamic adversarial discovery of information (DADI)

x(i) ⊆ Rd, a binary label y(i) ∈ {0, 1}, and a binary sensitive attribute b(i) ∈ {0, 1}. We acquire the
features in sequential order starting with an empty set O0 := ∅ at time t = 0. At every later timestep
t, we choose a subset of features from the unselected set of features, S(i)

t ⊆ {1, . . . , d} \O(i)
t−1. After

each new acquisition step, the classifier will have access to feature values in O(i)
t := S(i)t ∪ O(i)

t−1.
We keep acquiring features up to time T (i) when we meet a stopping criterion. At that point, we will
classify x(i) using only the set of features in O(i)

T (i) . Note that the specific set of selected features

O(i)

T (i) will generally be different for each individual i. To learn the model that minimizes classification
loss while maximizing the loss of the adversary we formulate the following optimization problem.

minimize
ψ,θ,ω,χ

1

|P |
∑

i∈P
(1− γ)LC

(
gψ(fθ(O(i)

T ), y(i)
)
− γLA

(
gω(fχ(O(i)

T ), b(i)
)

(1)

Where LC and LA are the suitable losses for the label classifier and the adversary. The encoder fθ
feeds into a classifier gψ for the label prediction ŷ while fχ and gω are the encoder and classifier
for the sensitive attribute prediction b̂. Hyperparameter γ specifies the desired balance between
classification performance and fairness. When clear from context, we drop the superscript (i).

Markov decision process We define a Markov decision process (MDP) to find the set of features
O(i)
T that minimizes the objective in Eq. 1. For each episode, the state at time t is represented by

the set of selected features {xj}j∈Ot . The size of the state space is 2d, the powerset of the feature
set. At each timestep t, the action space consists of the set of unselected features {1, . . . , d} \ Ot−1
and an additional STOP action which, upon selection, stops the acquisition process after which the
rewards are computed. The agent’s reward function, computed at end of the episode for individual i,
corresponds to

r(O(i)
T ) = −(1− γ)LC

(
gψ(fθ(O(i)

T ), y(i))
)
+ γLA

(
gω(fχ(O(i)

T ), b(i))
)

(2)

where the first reward encourages accurate classification and the second reward encourages low
mutual information between the feature set and the sensitive attribute. Now, if we now consider a
policy π∗φ, parametrized by φ, that is optimal for this MDP, then π∗φ is also the optimal solution to
the objective in Eq. 1. We can proof this by maximizing the aggregated reward in Eq. 2 over the
population P

argmax
φ

1

|P |
∑

i∈P
−(1− γ)LC

(
gψ(fθ(O(i)

T ), y(i))
)
+ γLA

(
gω(fχ(O(i)

T ), b(i))
)

(3)

=argmin
φ

1

|P |
∑

i∈P
(1− γ)LC

(
gψ(fθ(O(i)

T ), y(i))
)
− γLA

(
gω(fχ(O(i)

T ), b(i))
)

(4)

which is equivalent to the minimization objective in Eq. 1.
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Generalized framework The generalized framework in Fig. 1 consists of two parts: the first part
in Fig. 1(a) seeks to learn a representation of the set of observed features z1 = fθ(Ot) capable of
classifying the label ŷ = gψ(z1) and estimating the optimal next action at = πφ(z1). The model
has two heads that share the same encoder which leads to improved performance over a model with
two separate encoders [Shim et al., 2018]. In parallel, the second network in Fig. 1(b) seeks to learn
a related but separate representation z2 = fχ(Ot), which is fed to a classifier gω that predicts the
sensitive attribute b̂. Crucially and different from prior work on adversarial representation learning,
the second adversarial classification task cannot have a shared encoder with the first two tasks as this
could encourage the encoder to mask the unfairness of features directly which, in turn, would not
lead to selecting a set of fair features that generalize to any downstream task. While in adversarial
representation learning the adversarial loss is backpropagated directly through a gradient reversal
layer to update the encoder [Goodfellow et al., 2014, Edwards and Storkey, 2016], our agent learns to
fool the adversary by selecting the set of features that maximize the adversarial classification loss.

We realize fθ, gψ, fχ, gω and πφ as neural networks parametrized by θ, ψ, χ, ω, and φ, which are
optimized using alternating gradient descent steps. To facilitate encoding of partially observed feature
sets, we adopt a feature-level set encoder [Shim et al., 2018]. Each observed feature xi is first mapped
to a memory vector mi after which an LSTM processes the set of memory vectors repeatedly while
an attention layer improves the set embedding. The attention step ensures the input is order-invariant.
The final set embedding z1 is fed to both the classifier and the policy network. A second independent
set embedding z2 is fed to the adversary. We refer to App. A for details on the set encoding process
and to App. B for implementation details.

Adversarial reward function We compare two different loss functions to compute the rewards
for the adversary. First, earlier work on adversarial fair representation learning for demographic
parity has shown that using binary cross-entropy (CE) loss for both the classifier and the adversary
encourages fair and high-value representations [Edwards and Storkey, 2016, Beutel et al., 2017]

LCEA (OT ) = − (b log(gω(fχ(OT ))) + (1− b) log(1− gω(fχ(OT )))) (5)

where the adversary only has access to the final feature set OT obtained after stopping. Though
effective, LCEA fails to account for demographically unbalanced training data. To address this problem,
[Madras et al., 2018] introduces group-normalized L1 (GNL1) loss as a more natural relaxation of
demographic parity, which we adopt to compute the rewards from the adversary

LGNL1

A (OT ) =
|P |
2|Pb|

|gω(fχ(OT ))− b| (6)

where P0 and P1 are the protected subgroups with respectively attributes b = 0 and b = 1. As neural
networks have difficulty learning with L1 loss [Janocha and Czarnecki, 2017], we continue to use
cross-entropy loss to train the adversary but use LGNL1

A to compute the final rewards for the agent.
We refer to Madras et al. [2018] for the theoretical properties of both loss functions.

4 Experiments

DADI seeks to select the subset of features that can be used by third parties with the assurance that
their trained classifiers are both fair and accurate. As exact demographic parity is hard to enforce
in practice, we use demographic disparity |P (ŷ = 1 | b = 0)− P (ŷ = 1 | b = 1)| as measure for
the degree of unfairness. The performance of the classifier is measured using the Area Under the
Receiver Operating Characteristics curve (AUC) to account for the imbalanced label distributions.

Datasets We evaluate DADI empirically on the UCI Adult and Mexican Poverty datasets. We use
one-hot encoding for categorical features and standardize numerical features. For the mapping to
actions, we combine multiple one-hot encoded binary features that stem from the same categorical
feature into a single action (e.g. the binary features marital=divorced, marital=married and mari-
tal=single correspond to a single action that acquires these features simultaneously). We use 8-fold
cross validation with a random 87.5%/12.5% train-val/test split. We further split the train-val set
into training and validation data using a second random 80%/20% split.

The Adult Dataset from UCI Machine Learning Repository [Lichman et al., 2013] comprises 14
demographic and occupational attributes, which translates after preprocessing into 98 continuous
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Figure 2: DADI for mitigating demographic disparity across subgroups in the Adult and Mexico
datasets. Subfigures (a),(b), (d) and (e) show respectively the AUC and disparity for a range of trade-
off parameters 1− γ. The lines are plotted using the median with first/third quantile as confidence
area computed using 8-fold CV. Subfigures (c) and (f) show the Pareto front along the AUC-disparity
trade-off. The black square represents the baseline unfair classifier for which we use the pretrained
classifier together with the full feature set. The median AUC and disparity are again computed across
the 8 folds.

and binary features and 14 actions for 48,842 individuals, with the goal of classifying whether a
person’s income is above $50,000 (25% are above). Rows with missing values are omitted resulting
in a dataset with 45,222 samples. In line with previous work, we use gender as the sensitive attribute,
listed as male or female.

The Mexican Poverty dataset is extracted from the Mexican household survey 2016, which contains
ground-truth household poverty levels and 99 attributes, related to household information such as
the number of rooms or the type of heating system [Ibarrarán et al., 2017]. The processed dataset
is obtained from Noriega-Campero et al. [2019] and comprises a sample of 70,305 households in
Mexico, with 183 continuous and one-hot encoded binary features and 99 actions. Classification
is binary according to the country’s official poverty line, with 36% of the households having the
label poor. The considered sensitive attribute describes whether the head of the household is a senior
citizen or not.

Results Fig. 2 shows the results for both datasets. First, Figs. 2(a),2(b),2(d), and 2(e) show that
increasing 1− γ, i.e., decreasing the relative weight of the adversarial reward γ, leads to an increase
in both performance and disparity for both choices of adversarial reward functions. Naturally, as the
adversarial reward becomes less important, the agent will have a stronger incentive to maximize the
accuracy which, in turn, leads to the collection of more features and thus higher AUC at the cost of a
higher disparity.

Importantly, however, we observe that while the AUC increases drastically from the start, demographic
parity only increases drastically for larger values of 1 − γ, allowing for agents that achieve good
predictive performance with minimal disparity loss. This conclusion is supported by Figs. 2(c)
and 2(f) where we visualize the Pareto front along the AUC-disparity trade-off. These results are
encouraging as we show that a data collector can still maintain good performance while only having
access to a unique fair subset of features for each data owner. Finally, we observe that the group-
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normalized L1 reward generally results in a better trade-off, especially in the most important fairness
range for small values of the disparity.

5 Conclusion and Future Work

A number of recent works have focused on adversarially learning fair representations. However, the
methods underlying these works, are ineffective when the data owner is required to share raw features,
a key aspect in many use cases where features are collected for both human and machine decision
making. To tackle this problem, we propose DADI, to our knowledge the first framework for dynamic
adversarial discovery of fair information. We frame the data owner’s choice as a reinforcement
learning problem where an agent selects a subset of features while an adversary critiques potentially
unfair feature sets. Experimentally, we demonstrate how our framework guides information discovery
for ensuring demographic parity and how it allows the data owner to efficiently trade-off fairness and
accuracy.

Importantly, however, our framework is more generally applicable in settings where a data owner
may wish to guard itself against a naive or malicious data collector by sharing only a subset of
features. First, by changing the adversarial objective function, the framework in [Madras et al., 2018]
demonstrates that one can achieve other notions of fairness such as equal opportunity and equal odds.
Second, several recent works have formulated adversarial objectives to attain (differentially) private
data representations. These objectives could be adopted using DADI to automate dynamic discovery
of private information [Yang et al., 2018, Phan et al., 2019] which could be further extended by
encoding features in different levels of precision (such as age by year or age by decade), allowing the
agent to select the level of precision that maximizes accuracy while minimizing privacy risk. Finally,
adding monetary acquisition costs of features as a penalty at each collection step would allow our
agent to holistically trade-off accuracy, information costs, and fairness or privacy [Shim et al., 2018].
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A Set Encoder

A set encoder is used to encode arbitrary sets of features. The set encoder was introduced as part
of the sequence-to-sequence framework in [Vinyals et al., 2015], while the authors in [Shim et al.,
2018] adopt it for active feature-value acquisition. The set encoder has two parts: a reading block
and a processing block. First, each feature is represented by a vector uj = [xj I(j)] where xj is
the feature-value and I(j) is a one-hot vector with 1 at position j and zeros elsewhere, allowing
the network to incorporate coordinate information. The reading block embeds each vector uj onto
a memory vector mj using a neural network with a shared set of parameters across all features
j ∈ {1, . . . , d}. The processing block reads the memory (so all memory vectors) into an initial
reading vector r0 = 1

N

∑
jmj at processing step 0. This vector r0 is padded with zeros and fed to

an LSTM to compute an initial query vector q0. At each consecutive time step t an attention weight
for each memory vector mi is computed using

ai,t =
exp (mT

i qt)∑
j exp (m

T
j qt)

(7)

where mT
i qt is the dot product of the memory and query vectors. Using the attention vector at, we

update the reading vector rt =
∑
i ai,tmi which we concatenate with the query vector and feed to

the LSTM to compute the next query vector qt+1 =LSTM([qt rt]). In turn, this new query vector is
used to compute the new attention vector at, We repeat this process for a fixed number of processing
steps to achieve a final readout vector rT , which is subsequently fed to the classifiers and policy
network. We refer to [Vinyals et al., 2015] for a more detailed description over the encoder and
experiments for different number of processing steps. Note that the attention mechanism guarantees
that the final readout vector rT retrieved from processing is invariant to different permutations of the
features in the set.

B Architecture and training details

Architecture We use two separate encoders fθ and fχ with the same architecture but different
parameters where one feeds into the label classifier and one feeds into the adversary. The encoders
consist of a memory block, a neural network with two hidden layers of 64-64 units that maps each
feature value and its coordinate information to a 32-dimensional real-valued memory vector, and a
processing block, an LSTM with 32 hidden units that performs 5 processing steps over the memory
to obtain a final read vector. Both classifiers gψ and gω and the policy network πφ are realized as
neural networks with two hidden layers of 64-64 units. The networks share the same architecture for
both datasets and use rectified linear units (ReLUs) as activation functions.

Pretraining In the first training phase, we train the encoders fθ and fχ, and classifiers gψ and gω
with both the full set of features and randomly missing features. To obtain the partially missing feature
sets, we drop each feature with probability p ∼ U(0, 1), sampled once for instance to encourage
different degrees of sparsity across instances. We train the models using the Adam optimizer with
binary cross-entropy loss for 10,000 iterations and a batch size of 64. In each batch, half of the
samples have randomly missing features and half contain the full feature set. We evaluate the AUC of
the models on a validation set with partially missing features and save the models with the highest
validation score for joint training.

Joint Training In the second training phase, the policy network πφ and the classifier gψ are trained
jointly for 10,000 iterations. We use n-step Q-Learning [Mnih et al., 2016] with 4 steps and follow
the implementation in [Shim et al., 2018] where multiple agents run in parallel and collect n-step
experiences (st, at, st+1, at+1, ..., st+n, at+n) using ε-greedy exploration. We decrease ε linearly
in the first 5,000 iterations from 1 to 0.1. We train with 64 agents in parallel, one agent for one
respective instance in a batch of 64. After collecting a running history of n-step experiences, fθ,
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πφ and gψ are jointly updated. The policy network πφ and encoder fθ are updated using gradient
descent by backpropagating the squared loss (Q(st, at) − R)2 of the estimated Q-values and the
target Q-values. Q-values corresponding to actions of already acquired features are manually set to
−∞ to prevent the agent from selecting the same feature twice. To account for overestimation of
Q-values and improve stability, we use a target Q network πφ′ , which is a delayed copy of the online
policy network πφ, that gets updated every 100 joint training iterations by copying the parameters of
πφ. The estimated Q-values are defined as Q(st+n, argmaxaQ(st+n, a;φ);φ

′). The classifiers gψ
and gω, together with encoders fθ and fχ are trained using the collected experiences of the agents.
Each state {xj}j∈Ot in the history of experiences represents a partial feature vector that is used
in combination with the true label to update the classifier. In line with the pretraining phase, the
classifier is trained using binary cross-entropy loss and the Adam optimizer.

10

49





Chapter 5

Discussion

Machine learning systems are used in situations that directly affect human lives, from
credit risk scoring, to criminal risk assessment and predictive policing. With the increas-
ing usage of predictive models, there are increasing concerns that their outputs may be
supporting decisions that result in systematic discrimination and unfair treatment based
on sensitive characteristics such as gender, race or nationality. Hence, it is crucial to
address fairness in such systems. This thesis is aimed at contributing to the design of
novel methods to mitigate for fairness in a setting where a decision maker can adaptively
collect information in a budget-constrained setting before a predictive decision is made.
Specifically, two methods were proposed.

Chapter 3 introduces a framework for confidence-based fair stopping during the infor-
mation collection process. The main idea is to stop acquiring additional features for an
individual when a certain confidence in the decision is reached. This stopping criterion is
analytically derived based on the sub-group specific base rate and relates to a desirable
error rate for that subpopulation. Importantly, this approach is agnostic to the feature
acquisition strategy and the classifier, as long as it can handle partial feature vectors.
The framework is effectively able to achieve equal opportunity for calibrated probabilis-
tic classifiers without relying on optimization or randomization methods.

In Chapter 4, a framework for the dynamic adversarial discovery of fair information
is proposed. In contrast to the previous contribution, this method jointly combines a
feature acquisition strategy, a stopping criterion, and classifier in a unified reinforcement
learning framework to trade off predictive performance and fairness. This is done by
modeling the prediction-time active feature-value acquisition (AFA) setup as a Markov
decision process (MDP) and adding an adversarial loss component to the reward function
of the agent. In this way, the agent learns to select a subset of features that is predictive
for the label but not for the sensitive attribute. This mitigates potential demographic
disparities in downstream classification tasks.

A common overarching theme of both contributions is that the information budget is
leveraged as an additional degree of freedom to achieve fairness objectives. In contrast to
the work in [11], the final feature sets are personalized and not static across subgroups,
meaning that each individual can have different selected features and a different amount
of features. This allows to cater for individual-level nuances and enables a more efficient
feature acquisition process. Both frameworks were effectively evaluated using real-world
data sets and demonstrated abilities to achieve different popular notions of group fairness,
i.e., demographic parity, equal opportunity, and calibration by group.
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Chapter 5 Discussion

Holistically, this work presents some interesting perspectives at the intersection of fairness
in machine learning and AFA systems, and is relevant in many real-world settings such
as social targeting, criminal justice, healthcare resource allocation or credit risk scoring.
Especially in situations where decision makers need to make decisions under resource
constraints, e.g. time, cost or information, the presented methods provide a toolset to
achieve popular notions of statistical fairness. For example, in public pandemic crises de-
cisions need to be made how to allocate intensive care unit (ICU) spots based on e.g. the
estimated risk of fatality of individual cases. The estimated risk of fatality is a function
of the information (features) that were acquired per case (e.g. reported symptoms, lab
test results). However, the global information budget is constrained by the capacity of
the healthcare system (e.g. number of healthcare workers or possible lab tests per day)
and a decision maker needs to decide who will be tested or gets further treatment. In
this context, a decision maker needs to gather the right information on a case-level to
make confident decisions (who gets an ICU bed), while also considering fair access to the
healthcare system across social classes in the population.

5.1 Limitations and Future Work
One limitation we experienced during the experiments is that the data sets need to carry
a large number of features that are predictive for the task. For the method introduced in
chapter 3, it could otherwise happen that the confidence thresholds are not reached even
though all available features have been queried. Also for the RL framework in chapter
4, feature-rich data sets worked better as they provide the agent with more flexibility
to choose between features that are differently informative for the label and sensitive
attribute. Hence, the agent can achieve a more granular trade-off between fairness and
predictive performance. As most data sets are not collected for the purpose of AFA, this
limitation held in the experimental evaluation of the approaches. However, this does not
apply in real-world AFA situations, where further features can be acquired at a cost at
prediction-time regardless of how many features were observed in the training set.

While the focus of both proposed methods lies on fairness objectives, we encourage future
research to explore extensions to incorporate feature-specific costs and privacy objectives.
First, we assumed a simplified setting where features come at uniform cost. However,
in practice, the acquisition cost of different features can vary. Second, intuitively, we
concluded that using only a subset instead of all available features per individual should
provide more privacy. However, explicitly incorporating privacy as a cost, mitigating pri-
vacy disparities across groups or connecting it to the line of work of differential privacy
would be possible paths moving forward. Despite some interesting work at the intersec-
tion of group fairness and individual fairness [76, 77], most methods are still difficult to
apply in practice. The work in Chapter 3 can be considered as an attempt to stake a
ground between group and individual fairness, as it provides confident decisions on an
individual level while also equalizing group-level statistics. We want to encourage future
research to investigate the individual-level fairness guarantees and explore new methods
to achieve individual fairness.
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5.2 Conclusion

5.2 Conclusion
In conclusion, all efforts at the frontier of fairness in machine learning are already an
important step forward. However, in practice, the adoption of these methods still poses
challenges [78]. It is important to highlight that in order to bring fair algorithms from
research into practice and make a real-world impact, a dialogue between many stakehold-
ers such as politicians, ethicists, legal experts, researchers, and industry practitioners
is necessary. With the right regulatory framework, a selection of fairness tools and a
fairness-by-design product mindset, we can take the right steps to move towards a more
inclusive society while still taking advantage of machine learning systems.
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