
Patrick Schwaferts
Thomas Augustin

Bayesian Decisions using Regions of Practical
Equivalence (ROPE): Foundations

Technical Report Number 235, 2020
Department of Statistics
University of Munich

http://www.statistik.uni-muenchen.de

http://www.statistik.uni-muenchen.de/
http://www.statistik.uni-muenchen.de/


Bayesian Decisions using Regions of Practical
Equivalence (ROPE): Foundations

Patrick Schwaferts Thomas Augustin

Ludwig-Maximilians-Universität Munich
Department of Statistics

Methodological Foundations of Statistics and its Applications
Ludwigsstraße 33, 80539 Munich, Germany

Abstract

Kruschke [2018] proposes the so called HDI+ROPE decision rule about accepting
or rejecting a parameter null value for practical purposes using a region of prac-
tical equivalence (ROPE) around the null value and the posterior highest density
interval (HDI) in the context of Bayesian statistics. Further, he mentions the so
called ROPE-only decision rule within his supplementary material, which is based
on ROPE, but uses the full posterior information instead of the HDI.

Of course, if it is about formalizing and guiding decisions then statistical decision
theory is the framework to rely on, and this technical report elaborates the decision
theoretic foundations of both decision rules.

It appears that the foundation of the HDI+ROPE decision rule is rather artificial
compared to the foundation of the ROPE-only decision rule, such that latter might
be characterized as being closer to the underlying practical purpose than former.
Still, the ROPE-only decision rule employs a truly arbitrary, and thus debatable,
choice of loss values.

Keywords: Bayesian Decision Theory, Region of Practical Equivalence, ROPE,
HDI+ROPE, ROPE-only, Imprecise Probabilities

1 Introduction

When it comes to applying statistics, there is an increased awareness that black-and-white
thinking might lead to severe issues within the process of science, and thus binary decisions
should be treated with caution [see e.g. Kruschke, 2018]. Reporting estimates together with
the uncertainty about them might be seen as a fruitful alternative [see e.g. Cumming, 2014].
However, sometimes a decision is necessary and the use of statistical decision theory [see
e.g. Berger, 1995, Robert, 2007] suggests itself. In that regard, every proposed or employed
decision rule might be assessed on the basis of its decision theoretic foundation.

Kruschke [e.g. 2015, 2018] proposes a decision rule based on posterior highest density
intervals (HDI) and regions of practical equivalence (ROPE).

A (1−α) highest density interval for a certain distribution of a parameter (prior or poste-
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rior) is an interval1 that contains all parameter values with the highest probability densities
and integrates to a probability of 1− α. Kruschke [2018] employs (1− α) = 0.95 and uses
the posterior distribution when referring to a highest density interval (HDI; also referred
to as highest posterior density (HPD) interval), which will be adopted within this technical
report.

A region of practical equivalence (ROPE) refers to a certain parameter value of interest,
which might also be called “null value” and frequently (but not necessarily) the parameter
value of interest is zero. A ROPE for a null value is a “range of parameter values that are
equivalent to the null value for practical purposes” [Kruschke, 2018, p. 272]. Accordingly,
“the limits of the ROPE depend on the practical purpose of the ROPE. If the purpose is
to assess the equivalence of drug-treatment outcomes, then the ROPE limits depend on
the real-world costs and benefits of the treatment and the ability to measure the outcome”
[Kruschke, 2015, p. 338].

Once the ROPE is specified (before observing the data) and the HDI is calculated (after
observing the data), the decision rule by Kruschke [2018, p. 272], referred to as HDI+ROPE
decision rule, is as follows:

� If the HDI falls completely inside the ROPE, then accept the null value for practical
purposes.

� If the HDI falls completely outside the ROPE, then reject the null value for practical
purposes.

� Else, withhold a decision.

In addition to the HDI+ROPE decision rule, Kruschke [2018, supp. p. 5] mentions another
exemplary decision rule within his supplementary material2 that is based on the ROPE
alone and considers the posterior distribution instead of the HDI. Referred to as ROPE-
only decision rule, it states:

� If more than 95% of the posterior distribution fall within the ROPE, then accept the
null value for practical purposes.

� If less than 5% of the posterior distribution fall within the ROPE, then reject the
null value for practical purposes.

� Else, withhold a decision.

Within his supplementary material, Kruschke [2018, supp. p. 3–5] delineates preliminary
ideas about the decision theoretic foundation of the HDI+ROPE decision rule. In addition,
a foundation of the ROPE-only decision rule is also pending. In that, the purpose of this

1Certainly, it might be possible that a HDI is a set of parameters, which is not an interval, however, in
accordance with Kruschke [2018], these cases are not considered within this technical report.

2This technical report is based on the supplementary material Version 1 of February 25, 2018, available
at the Open Science Framework with the url https://osf.io/jwd3t/ and downloaded at August 18,
2020.
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technical report is to elaborate the decision theoretic foundations of both decision rules
more profoundly.

Therefore, Bayesian decision theory is briefly recalled in Section 2, before outlining the
foundations of the ROPE-only decision rule (Section 3) and of the HDI+ROPE decision rule
(Section 4). A concluding discussion in Section 5 compares the foundations of both decision
rules w.r.t. their interpretation and connection to the underlying real-world decision.

2 Recall of Bayesian Decision Theory

The observed data x ∈ X , where the sample space X comprises all potential data sets,
are modeled parametrically as realization of the random quantity X with density f(x|θ),
where θ ∈ Θ is a real-valued parameter and Θ the parameter space.

Within a Bayesian context, there is a prior distribution with density π(θ) on the param-
eter θ, which gets updated via Bayes formula to the posterior distribution with density
π(θ|x) once the data x are observed.

In the context of an applied decision, one of different potential actions a ∈ A should be
selected, where A denotes the action space.

Deciding for a certain action a ∈ A if a certain parameter value θ ∈ Θ is true has conse-
quences and the “badness” of these consequences is formally captured by a loss3 function

L : Θ×A → R+
0 . (1)

Naturally, the meaning of this “badness” is comparative and can only be judged w.r.t. the
loss values of other actions and parameter values, yet their comparative meaning should
reflect the characteristics within the applied real-world decision. However, it might be
rather difficult4 to specify an exact loss function that matches those characteristics, which
are usually accessible only vaguely. As a solution, the loss function might be simplified
using ROPE (see Section 3.1) and specified in an imprecise manner (see Section 3.2).

As the posterior density π(θ|x) is available within a Bayesian analysis, it is possible to
calculate the expected posterior loss of each action a ∈ A

ρ : A → R+
0 (2)

by

ρ(a) =

∫

Θ

L(θ, a)π(θ|x)dθ . (3)

3Sometimes decision theory is depicted with a utility function instead of a loss function, which quantifies
the “utility” instead of the “badness” of the respective consequences.

4Of course, there are situations in which a loss function might be specified exactly, as e.g. some special
cases in economy in which the loss might be related to monetary outcomes or obtained from preferences
[see e.g. Berger, 1995, ch. 2.2]. In many research situations, however, the necessary information to do so
might not be available.
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Intuitively and following the conditional Bayes principle [see e.g. Berger, 1995], the action a
with minimal expected posterior loss ρ(a) should be chosen and is called (posterior loss5)
Bayes action.

Taken together, all three quantities π(θ), x, and L are required to find the (optimal) Bayes
action.

Before observing the data, only the prior density π(θ) and the loss function L are available.
Therefore, it is possible to consider each potentially observable data set x ∈ X and evaluate
which action a ∈ A would be the corresponding Bayes action. This is formally captured
by a decision rule

δ : X → A . (4)

In the context of the conditional Bayes principle, the optimal decision rule has the following
shape

δ(x) = arg min
a∈A

ρ(a) = arg min
a∈A

∫

Θ

L(θ, a)π(θ|x)dθ (5)

and states the Bayes action for each potential data set.

Of course, it is possible to formulate other decision rules, but these might not find the
Bayes action for each data set. In that, refer to the decision rule in equation (5), which
matches every data set with the corresponding Bayes action, as Bayes rule6 (not to be
confused with Bayes formula for calculating π(θ|x) from f(x|θ) and π(θ)).

Note that a Bayes action and a Bayes rule always refer to a certain loss function. With a
different loss function a different decision rule might be a Bayes rule and a different action
might be a Bayes action for a given data set.

5Within this technical report, the term “Bayes action” always refers to a posterior loss Bayes action.
6 This depiction of a Bayes rule as minimizing the expected posterior loss is based on one of the fun-

damental theorems of Bayesian decision theory [c.p. e.g. Berger, 1995, p. 159 Result 1]. In general, the
definition of a Bayes rule might involve the minimization of the prior risk (which considers all poten-
tially observable data sets) and this theorem states equivalence with minimizing the expected posterior
loss. In anticipation of Section 3, this theorem, however, might not necessarily hold within the frame-
work of imprecise probabilities in general and counterexamples involve imprecisely specified probabilities
[Augustin, 2003]. Yet the involvement of the framework of imprecise probabilities within this technical
report comprises only an imprecisely stated loss function (and no imprecisely specified probabilities, see
Section 3.2), so that an equivalence analogue to this fundamental theorem should hold within the context
depicted here. This should be addressed in further research. In any case, a Bayesian analysis typically
sticks to a conditional point of view that conditions on the actually observed data and does not consider
other potential data sets, which were not observed. In that, Berger [1995, p. 160, notation adapted, italics
preserved] reasons:

Note that, from the conditional perspective together with the utility development of the loss,
the correct way to view the situation is that of minimizing [ρ(a)]. One should condition on
what is known, namely [x] (...), and average the utility over what is unknown, namely θ. The
desire to minimize [the prior risk] would be deemed rather bizarre from this perspective.

In summary, even if this fundamental theorem might not hold within the context employed here to depict
the foundation of the ROPE-only rule (see Section 3), the depicted approach still appears to be reasonable.
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3 Foundations of the ROPE-only decision rule

3.1 ROPE as Simplification

As made obvious by the quotes about the ROPE in Section 1, the ROPE cannot be sep-
arated from the underlying practical purposes. Implied by both the HDI+ROPE decision
rule and the ROPE-only decision rule, the practical purpose is to decide between two ac-
tions a0 and a1. The first action a0 is in accordance with the null value θ0 ∈ Θ and the
second is in discordance with the null value θ0. Accordingly, indicated by subscript P for
“practical purpose”, the action space AP = {a0, a1} comprises these two actions of the
practical purpose.

Kruschke [2018, p. 272] refers to these actions as “accept the null value for practical
purposes” (a0) and “reject the null value for practical purposes” (a1). However, we want
to refrain from using this terminology, because it tempts to ignore the actual real-world
decision and to derive conclusions about actions that might not even be specified. Instead,
we highly recommend to explicitly state the actions of interest, such that the real-world
decision of interest might be formalized properly.

The corresponding loss function LP : Θ × AP → R+
0 quantifies the “badness” of each

of those two practical actions under each parameter. With this loss function it would
be possible to determine the Bayes action for the observed data set, however, the exact
shape of this loss function LP is hardly accessible in real life. Therefore, a way to deal
with this issue is necessary and a first approach might be to simplify this loss function.
Considerations in the context of ROPE lead to such a simplification.

By construction, under the null value θ0 the loss of a0 is smaller than the loss of a1,
i.e. LP (θ0, a0) < LP (θ0, a1), as former action is in accordance and latter action in discor-
dance with the null value.

If not specifying the exact values of the loss function LP , the researcher might (or should)
still be able to determine the appropriate action for each parameter value θ ∈ Θ. In
that, there is a set Θ0 of parameter values for which a0 is appropriate (containing the
null value θ0) and a set Θ1 = Θ \ Θ0 of the remaining parameter values for which a1 is
appropriate. The first set Θ0 is the ROPE and usually an interval.

However, different parameter values within these sets, respectively, might still have dif-
ferent loss values. As these exact values are still hardly accessible in real life, a possible
simplification is to treat each parameter value within the ROPE Θ0 as “equivalent to the
null value for practical purposes” [Kruschke, 2018, p. 272], i.e. assuming identical loss
values for parameters within Θ0:

∀θi, θj ∈ Θ0 ∀a ∈ AP : LP (θi, a) = LP (θj, a) . (6)

In addition to the paramete values within the ROPE Θ0, also the parameter values out-
side the ROPE, i.e. within Θ1, might be treated as equivalent for practical purposes by

5



Table 1: Simplified loss function for the actions of the practical purpose using a regret form.

LP (θ, a) θ ∈ Θ0 θ ∈ Θ1

a = a0 0 k0

a = a1 k1 0

employing identical loss values:

∀θi, θj ∈ Θ1 ∀a ∈ AP : LP (θi, a) = LP (θj, a) . (7)

In that, this simplified loss function needs only four values to be specified and, without
loss of generality, a regret form might be employed, in which a0 and a1 have zero loss if
θ ∈ Θ0 and θ ∈ Θ1, respectively. The remaining two loss values shall be denoted by (see
Table 1)

k0 := LP (θ, a0) ∀θ ∈ Θ1

k1 := LP (θ, a1) ∀θ ∈ Θ0 .

Using this simplification, the expected posterior loss of each action a ∈ AP is

ρ(a0) =

∫

Θ

LP (θ, a0)π(θ|x)dθ

eq.
(6)
(7)
= 0 ·

∫

θ∈Θ0

π(θ|x)dθ + k0 ·
∫

θ∈Θ1

π(θ|x)dθ

= k0 · p(θ ∈ Θ1|x)

and analogously
ρ(a1) = k1 · p(θ ∈ Θ0|x) . (8)

With k := k1/k0, the ratio of expected posterior losses is

%(k) :=
ρ(a1)

ρ(a0)
=
k1 · p(θ ∈ Θ0|x)

k0 · p(θ ∈ Θ1|x)
= k · p(θ ∈ Θ0|x)

p(θ ∈ Θ1|x)
(9)

and the corresponding Bayes action is

aBayes(k) =

{
a0 if %(k) > 1

a1 if %(k) < 1
. (10)

If %(k) = 1, then either action might be chosen.

The term p(θ ∈ Θ0|x)/p(θ ∈ Θ1|x) can be calculated simply from the posterior den-
sity π(θ|x), however, k need to be specified w.r.t. to the practical purpose.
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3.2 Framework of Imprecise Probabilities

Specifying a precise value for k, which defines the simplified loss function, might still
be difficult for applied scientists and ideas from the framework of imprecise probabilities
[Walley, 1991] come in handy. In addition, the foundations of the ROPE-only decision rule
can be depicted elegantly within this framework.

In general, this framework is based on the fact that there is more to uncertainty than can
be captured within precise probability values [e.g. Ellsberg, 1961, Levi, 1980, Walley, 1991,
Etner et al., 2012]. As a solution, sets or intervals of probability values, so called imprecise
probabilities, are employed instead of single precise probability values. These intervals are
treated as an entity of its own [c.p. Walley, 1991] and numerous sources on how to calculate
with imprecise probabilities are available [see e.g. Augustin et al., 2014, for a depiction of
the state of the art within different fields of application at that time]. Naturally, this
framework is appropriate whenever some relevant but potentially vague information about
probabilities is available, yet it is not enough to unambiguously specify exact probability
values. For example, within the Bayesian context, a researcher might be unable to specify
the exact shape of a prior distribution and several different distributions are in accordance
with the available prior knowledge. By comprising all these potential distributions within
a set of distributions, the researcher obtains an imprecise prior distribution, which reflects
the available knowledge and uncertainty as is, without pretending a level of precision that
is not available [see also the framework of robust Bayesian statistics, e.g. Ŕıos Insua and
Ruggeri, 2012].

Similarly, in the context of a real-world decision, some potentially vague information about
potential consequences is supposed to be available. Yet, an applied scientist is usually
unable to unambiguously specify a precise loss function as several different loss functions
might be in accordance with the available (vague) information. An arbitrary specification
of a loss function will result in an arbitrary decision. Not employing a loss function at all,
on the other hand, leads to a decision that lacks a relation to the underlying real-world
situation and is therefore arbitrary as well. In that, it seems obvious that partially available
information about the loss function has to be included into the analysis in the form it is
available.

Thus, analogue to imprecisely specified probabilities, the loss function might be specified
imprecisely. In the context of the simplified loss function as depicted in Section 3.1, instead
of a precise value k, an open7 interval of values K =

(
K,K

)
might be employed, where K

and K denote the lower and upper bound, respectively, for stating how much “worse” a1
would be if θ ∈ Θ0 than a0 would be if θ ∈ Θ1 (if deciding correctly has zero “badness”).
As every value k ∈ K defines a different (simplified) loss function, the interval K defines
a set of loss functions. For each of those loss functions, i.e. for every k ∈ K, it is possible

7Of course, K might also be specified by a closed interval
[
K,K

]
and in many situations this might be

more reasonable. However, in order to derive the ROPE-only decision rule, as stated by Kruschke [2018]
within his supplementary material, K needs to be an open interval.
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to determine the Bayes action aBayes(k), once the data are available and the posterior
distribution of θ is calculated. If the Bayes action aBayes(k) is the same for all k ∈ K,
then this action should be selected, else information is lacking to unambiguously guide a
decision and a decision should be withheld.

Formally, an interval-valued ratio of expected posterior losses

(
%(K), %(K)

)
(11)

is obtained by considering the interval-valued K, leading to the Bayes action

aBayes(K) =

{
a0 if %(K) > 1

a1 if %(K) < 1
. (12)

For %(K) ≤ 1 ≤ %(K), the decision should be withheld.

3.3 An Arbitrary Choice

By setting K arbitrarily to K = (1/19, 19), the ROPE-only decision rule is obtained,
because – according to the imprecise decision theoretic framework, especially considering
equation (12) – action a0 (“accept the null value for practical purposes”) is optimal if

%(1/19) > 1

⇔ 1

19
· p(θ ∈ Θ0|x)

p(θ ∈ Θ1|x)
> 1

⇔ p(θ ∈ Θ0|x) > 19 · p(θ ∈ Θ1|x)

⇔ p(θ ∈ Θ0|x) > 19 · (1− p(θ ∈ Θ0|x))

⇔ 20 · p(θ ∈ Θ0|x) > 19

⇔ p(θ ∈ Θ0|x) > 0.95

and, analogously, action a1 (“reject the null value for practical purposes”) is optimal if

%(19) < 1

⇔ p(θ ∈ Θ0|x) < 0.05 ,

which reflect exactly those conditions defining the ROPE-only decision rule.

In any other case, i.e. for 0.05 ≤ p(θ ∈ Θ0|x) ≤ 0.95, both the imprecise decision theoretic
framework using K = (1/19, 19) and the ROPE-only decision rule recommend to withhold
a decision.
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4 Foundations of the HDI+ROPE decision rule

4.1 Action Space and Decision Rule

The general idea of the decision theoretic foundation of the HDI+ROPE decision rule was
described within the supplementary material by Kruschke [2018, supp. p. 3–5]. However,
some aspects depicted there are merely preliminary8, so this technical report intends to out-
line this foundation more profoundly. In line with this idea and the considerations depicted
by Rice et al. [2008] (which are also referred to by Kruschke [2018]), the corresponding
action in the context of the HDI+ROPE decision rule comprises two aspects:

� the determination of the HDI and

� the assessment of the relation between the HDI and the ROPE (inside, outside, or
overlap).

The action space w.r.t. the first aspect – indicated with subscript I for “interval” – contains
all possible closed parameter intervals

AI = {[a, b]|a, b ∈ Θ, a < b} (13)

and the objective is to decide for the element within AI that is the HDI.

The action space w.r.t. the second aspect – indicated with subscript R for “relation” –
contains all three possible relations between a parameter interval and a predefined ROPE:

AR = {r0, r1, r2} (14)

with

r0: The parameter interval falls completely within the ROPE.

r1: The parameter interval falls completely outside the ROPE.

r2: The parameter interval and the ROPE overlap.

In conjunction, the overall action space is AI × AR and the corresponding decision rule
maps the sample space X to this action space:

δHDI+ROPE : X → AI ×AR . (15)

8Within equation (1) on page 4 within Kruschke [2018]’s supplementary material, the argument s of
the function 1(s) is sometimes a set, yet it should be a statement. The explanation of one of the terms
states “cost of reject if HDI overlaps ROPE” [Kruschke, 2018, supp. p. 4 eq. (1)], yet the term might rather
refer to a cost of rejection if the HDI is within the ROPE. As outlined within this technical report (see
esp. equation (30)), the cost of deciding correctly should be identical for each relation between HDI and
ROPE, which is not necessarily the case in Kruschke’s formula (1).

In that regard, Kruschke [2018] states that his ideas are “merely suggestive” [supp. p. 4] and his “goal
is [only] to point out that formal expressions are possible for the loss implicit to the intuitive HDI+ROPE
rule” [supp. p. 5]. In that, the elaborations within this technical report are based on this initial work by
Kruschke [2018].
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The exact shape of this decision rule

δHDI+ROPE(x) =

(
δI(x)

δR(δI(x))

)
(16)

can be depicted using the functions

δI : X → AI , (17)

which maps the data x to the corresponding HDI, and

δR : AI → AR , (18)

which maps an interval in parameter space [a, b] ∈ AI to its correct relation with a prede-
fined ROPE Θ0 by

δR([a, b]) =





r0 if [a, b] ∩Θ0 = [a, b]

r1 if [a, b] ∩Θ0 = ∅
r2 if [a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅

. (19)

4.2 Loss Function

4.2.1 Determination of HDI

It is possible to state a loss function for which the determination of the HDI δI is a Bayes
rule, namely [see e.g. Schervish, 1995, Rice et al., 2008]

LI : Θ×AI → R+
0 : LI(θ, [a, b]) = (b− a) + c · 1(θ 6∈ [a, b]) , (20)

where 1(s) = 1 if the statement s is true and 1(s) = 0 if s is false. The value c denotes a
constant which determines the minimum density of a parameter to be included within the
HDI (see below).

The expected posterior loss w.r.t. this loss function is

ρI([a, b]) =

∫

Θ

LI(θ, [a, b])π(θ|x)dθ

=

∫

Θ

[(b− a) + c · 1(θ 6∈ [a, b])]π(θ|x)dθ

= (b− a) + c

∫

Θ

1(θ 6∈ [a, b])π(θ|x)dθ

= (b− a) + c

∫

Θ\[a,b]
π(θ|x)dθ

and minimizing this expected posterior loss over the action space AI yields as Bayes action
the interval [a, b] that contains all parameters with posterior density larger than c−1 [see
e.g. Schervish, 1995, Rice et al., 2008]. By setting c appropriately, the 95%-HDI is obtained
as Bayes action for a given data set x and the decision rule δI is a Bayes rule w.r.t. the
loss function LI .
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4.2.2 Relation between HDI and ROPE

It is also possible to state a loss function LR for which the assessment of the relation
between a parameter interval [a, b] and a predefined ROPE Θ0 is a Bayes rule.

As outlined in Section 2, a loss function is defined on the parameter space Θ and on the
action space, which is AR (as defined in equation (14)) within this context. However, the
employed loss function will depend on the ROPE Θ0 and the parameter interval [a, b] as
well. Although the ROPE might be treated as given, this is not the case for the parameter
interval [a, b], especially when considering the overall decision rule δHDI+ROPE (as in the
following Section 4.2.3). Accordingly, this dependence of LR on [a, b] ∈ AI needs to be
taken into account, so that

LR : Θ×AR ×AI → R+
0 : (θ, r, [a, b]) 7→ L

[a,b]
R (θ, r) . (21)

Considering δR in isolation, as within this subsection, also [a, b] might be treated as given.

Although this loss function is technically defined using the parameter space Θ, this depen-
dence is not necessary:

∀r ∈ AR : ∀θi, θj ∈ Θ : L
[a,b]
R (θi, r) = L

[a,b]
R (θj, r) =: L

[a,b]
R (r) . (22)

A candidate of this loss function is depicted in Table 2, formally stated as

L
[a,b]
R (r) = c1 · 1(r = r0) · 1([a, b] ∩Θ0 = [a, b]) +

c1 · 1(r = r1) · 1([a, b] ∩Θ0 = ∅) +

c1 · 1(r = r2) · 1([a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅) +

c2 · 1(r = r0) · 1([a, b] ∩Θ0 = ∅) +

c2 · 1(r = r0) · 1([a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅) +

c2 · 1(r = r1) · 1([a, b] ∩Θ0 = [a, b]) +

c2 · 1(r = r1) · 1([a, b] ∩Θ0 6= [a, b] ∧ [a, b] ∩Θ0 6= ∅) +

c2 · 1(r = r2) · 1([a, b] ∩Θ0 = [a, b]) +

c2 · 1(r = r2) · 1([a, b] ∩Θ0 = ∅) , (23)

where c1, c2 are arbitrary positive constants with c1 < c2 and, again, 1(s) = 1 if the
statement s is true and 1(s) = 0 if s is false.

As LR does not depend on the parameter θ, the expected posterior loss ρR of each action
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Table 2: Loss function for finding the relation r between a parameter interval and a ROPE (see equation 23).

L
[a,b]
R (r)

Interval to ROPE
within outside overlap

Decision
r = r0 c1 c2 c2

r = r1 c2 c1 c2

r = r2 c2 c2 c1

r ∈ AR w.r.t. this loss function is the loss value itself:

ρR(r) =

∫

Θ

L
[a,b]
R (θ, r)π(θ|x)dθ

=

∫

Θ

L
[a,b]
R (r)π(θ|x)dθ

= L
[a,b]
R (r)

∫

Θ

π(θ|x)dθ

= L
[a,b]
R (r) (24)

Minimizing ρR over the action space AR results in the relation r that is obtained by the
decision rule δR in equation (19). In that, this decision rule δR is a Bayes rule w.r.t. the
loss function LR for all parameter intervals [a, b] ∈ AI .
The loss function LR was defined using only two different values c1 and c2. In that, two
restrictions are imposed on the loss function LR:

(I) Deciding correctly has the same loss c1 independent of which relation is true.

(II) Deciding falsely has the same loss c2 independent of which relation is true and which
incorrect relation was chosen.

Of course, it would be possible to employ a loss function without these restrictions that
uses e.g. nine different loss values instead of only two. However, the first restriction (I)
will be necessary for combining both loss functions LI and LR, because then, independent
of the parameter value θ ∈ Θ, for every potential interval [a, b] ∈ AI the decision rule δR
yields a relation r ∈ AR with the identical loss c1, i.e.

∀θ ∈ Θ ∀[a, b] ∈ AI : L
[a,b]
R (θ, δR([a, b])) = c1 , (25)

a fact that will be referred to later.

The second restriction (II) is employed both out of convenience and to emphasize an
important characteristic: Assume that up to six different values larger than c1 would be
employed instead of c2 within the loss function LR in equation (23). Still, the expected

posterior loss ρR(r) of each action r is the loss value L
[a,b]
R (r) itself (equation (24)) and,

again, the minimization leads to the action obtained by δR. In that, the decision rule
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δR is a Bayes rule w.r.t. this loss function independent of the exact values that are used
instead of c2. The exact specification of these values does not contribute to guiding the
decision about the relation r ∈ AR, only the fact that they are larger than c1. Therefore,
if important information is incorporated within these values this information will not be
used for guiding the decision, so a single value c2 might be employed out of convenience.

4.2.3 Overall

Adding both loss functions lead to

LHDI+ROPE : Θ× (AI ×AR)→ R+
0 (26)

with
LHDI+ROPE(θ, ([a, b], r)) = LI(θ, [a, b]) + L

[a,b]
R (θ, r) (27)

for which the overall decision rule δHDI+ROPE is a Bayes rule.

This can be seen by considering the expected posterior loss

ρHDI+ROPE([a, b], r) =

∫

Θ

LHDI+ROPE(θ, ([a, b], r))π(θ|x)dθ

=

∫

Θ

[
LI(θ, [a, b]) + L

[a,b]
R (r)

]
π(θ|x)dθ

=

∫

Θ

LI(θ, [a, b])π(θ|x)dθ +

∫

Θ

L
[a,b]
R (r)π(θ|x)dθ

= ρI([a, b]) + L
[a,b]
R (r) . (28)

The corresponding Bayes action

arg min
([a,b],r)∈AI×AR

ρI([a, b]) + L
[a,b]
R (r) , (29)

is obtained by minimizing this expected posterior loss.

The first part ρI([a, b]) does not depend on r ∈ AR and as outlined in in the previous

Section 4.2.2, for all possible parameter intervals [a, b], the second part L
[a,b]
R (r) can be

minimized by choosing its correct relation r ∈ AR with the predefined ROPE, which is
obtained by the decision rule δR. Therefore, for any parameter interval [a, b], the optimal
relation is r = δR([a, b]).

The optimal parameter interval [a, b] ∈ AI can now be obtained as

arg min
[a,b]∈AI

ρI([a, b]) + L
[a,b]
R (δR([a, b]))

eq.
(25)
= arg min

[a,b]∈AI

ρI([a, b]) + c1

= arg min
[a,b]∈AI

ρI([a, b]) , (30)
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which is the 95%-HDI – for an appropriate choice of c (see Section 4.2.1).

Taken together, as stated at the beginning of this subsection, the Bayes action ([a, b], r)
w.r.t. LHDI+ROPE is obtained by δHDI+ROPE.

The first restriction (I) mentioned in the previous Section 4.2.2 (equation (25)) is employed
for finding the optimal parameter interval in the overall case, i.e. within equation (30).

Without this restriction (I), L
[a,b]
R (δR([a, b])) would not be a constant c1, but a value that

depends on the interval [a, b]. In that, the minimization in equation (30) could yield an
interval, which is not the HDI, a fact that is referred to as “paradoxical behavior” by
Kruschke [2018, supp. p. 4] (who also refers to Casella et al. [1993] in this context).

4.3 Final Decision

In contrast to the foundation of the ROPE-only decision rule, the loss function LHDI+ROPE
does not allow a reasonable employment of the framework of imprecise probabilities. This
is because LI need to be as it is in order to obtain the HDI and LR uses only the fact that
c1 is smaller than c2. As depicted in Section 4.2.2, any additional information within these
constants is not being used. Therefore, no potentially vague information can be captured
within LHDI+ROPE. As a consequence, the framework of imprecise probabilities cannot be
employed within this context to elegantly formalize withholding a decision between a0 and
a1. Therefore, the action space of the final decision comprises all a0, a1 and the action to
withhold the decision.

Of course, in the context of the HDI+ROPE decision rule, there is a bijective mapping
between AR and the action space for this final decision:

r0 7→ a0 r1 7→ a1 r2 7→ withhold decision . (31)

Accordingly, this last step does not need a separate decision theoretic account, as the final
actions might be employed instead of the three relations r ∈ AR.

Nevertheless, from a content point of view, this final step should be treated separately from
the determination of the relation between the HDI and the ROPE. As outlined within this
Section 4, the HDI+ROPE decision rule is primarily focusing on technical aspects of how
to obtain the HDI and determine its relation with a predefined ROPE, and it is this final
step that tries to build the connection to the underlying real-world decision of interest.

5 Discussion

The decision theoretic foundations of both Kruschke’s HDI+ROPE decision rule [Kruschke,
2015, 2018] and the ROPE-only decision rule [Kruschke, 2018, supp. p. 5] are outlined
within this technical report. Both decision rules are depicted as Bayes rules w.r.t. certain
loss functions. In that, different loss functions are considered: First, although inaccessible,
there is an underlying “true” loss function characterizing the real-world decision of interest.
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Second, in the context of considerations about the ROPE (see Section 3.1), this “true” loss
function is simplified, such that it might be specified by only a single number. Still, this
simplified loss function characterizes the real-world decision of interest. Third, there is a
loss function w.r.t. to finding the HDI for a given data set and, fourth, a rather artificial
loss function might be employed in the context of determining the relation between a
parameter interval and a pre-defined ROPE. Fifth, the loss function in the context of the
HDI+ROPE decision rule is a combination of the previous two.

Naturally, by considering these different loss functions, different decision rules are char-
acterized as Bayes rules. Put aptly by Rice et al. [2008, p. 3], “for the precise ‘question’
asked by loss function L and the stated modeling assumptions, one can think of the Bayes
rules as providing the ‘best’ answer”. In that, these five loss functions are asking:

� How should I decide in the real-world decision problem?

� Given the simplification, how should I decide in the real-world decision problem?

� Which interval is the HDI of the posterior distribution?

� How is the relation of the HDI and the ROPE?

� Which interval is the HDI of the posterior distribution and how is the relation of it
with the ROPE?

The first question is of interest but cannot be answered, because the loss function is inac-
cessible. The second question does relate to the real-world decision of interest and might be
used as a proxy for the first question (given the employed simplification is reasonable), as
the corresponding simplified loss function still contains information w.r.t. to the real-world
decision of interest. By allowing this loss function to be specified imprecisely, relevant
information might be incorporated into the analysis as it is available. In this context, the
ROPE-only decision rule is optimal when resorting to an arbitrary choice of interval-valued
loss functions.

The third question does not address the real-world decision of interest at all. Although
the fourth question contains the ROPE, the corresponding loss function considers only
the bounds of the ROPE and not respective loss values that are in accordance with the
real-world decision of interest (as within the second (simplified) loss function). In that, the
fourth question relates to the real-world decision of interest only marginally and primarily
addresses a rather technical interval comparison. Therefore, as a combination of the pre-
vious two, the fifth question does not primarily ask about the real-world decision problem,
yet is implicitly used as a proxy for it when employing the HDI+ROPE decision rule.

In summary, the ROPE-only decision rule might be characterized as being closer to the
real-world decision of interest than the HDI+ROPE decision rule. This might also be seen
by the fact, that both the “true” underlying loss function and the posterior distribution
are essential to derive the optimal decision in a Bayesian framework, yet the HDI+ROPE
decision rule uses less of these information than the ROPE-only decision rule: First, former
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simplifies the posterior distribution by sorting back to the less-informative HDI. Second,
former employs only the bounds of the ROPE and latter also information about the loss-
magnitude.

Of course, the arbitrary choice about the loss value interval within the simplified loss
function in the context of the ROPE-only decision rule (see Section 3.3) has to be criticized.
The corresponding interval should be chosen based on the real-world decision of interest.
As it is to expect that at least some information about this loss value in the simplified
loss function is available9, the framework of imprecise probabilities offers an elegant way
to include this essential but vague information.
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