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Abstract: Many 2D covalent polymers synthesized as single layers 

on surfaces show inherent disorder, expressed for example in their 

ring-size distribution. Systems which are expected to form the 

thermodynamically favored hexagonal lattice usually deviate from 

crystallinity and include high numbers of pentagons, heptagons, and 

rings of other sizes. Here we investigate the amorphous structure of 

two different covalent polymers in real space using scanning 

tunneling microscopy. Molecular dynamics simulations are employed 

to extract additional information. We show that short-range 

correlations exist in the structure of one polymer, i.e. that polygons 

are not tessellating the surface randomly but that ring neighborhoods 

have preferential compositions. The correlation is dictated by the 

energy of formation of the ring neighborhoods.  

Introduction 

Recent years have witnessed a surge of synthesis methods for 

2D polymers, in which molecular repeat units are not connected 

in 1D strings like in common organic polymers, but rather in a 

plane due to more than two connection sites per repeat unit. 

Reversible chemistry yields the formation of comparably ordered 

2D sheets in covalent organic frameworks (COFs),[1] in which 

existing defects can be healed out by post-synthetic 

modifications.[2] In the surface-science approach to 2D polymers 

the bond formation is often non-reversible.[3] Consequently, once 

a bond is formed – even if this leads to an energetically 

expensive defect – it cannot be easily opened anymore to heal 

out the defect in order for the polymer to evolve towards a 

thermodynamic minimum. Two-dimensional architectures built 

up from organic molecules are thus prone to include 

crystallographic defects if error-correction mechanisms are not 

available. Many 2D (metal-)organic networks exhibit some kind 

of disorder. Branched covalent 2D polymeric structures are 

reported[4] alongside random 2D metal-organic string networks[5]. 

Other 2D porous metal-organic networks grow into amorphous 

structures due to the entropic stabilization provided by 

conformational disorder.[6] Porous covalent polymers other than 

single-layer COFs were reported to be generally amorphous[7–10], 

and Monte Carlo simulations were applied to disentangle how 

precursor mobility and surface reactivity influence structure 

growth.[11,12] Independently, Monte Carlo simulations grant 

insight into the amorphous assembly of tripod-shaped molecular 

building blocks confined to a surface.[13] Defect densities in the 

form of pore-size distributions were extracted from experimental 

data and the effect of the polymerization temperature was 

investigated.[12] In spite of all these efforts to study growth 

conditions, finding design principles that allow the fabrication of 

well-ordered single layer covalent networks via C–C coupling 

remains mostly elusive. For the special case of boronic acid 

condensation reactions in the synthesis of single-layer COFs, 

the presence of excess water as a reaction regulator renders the 

reaction reversible, allowing self-healing and the growth of 

ordered layers.[14,15] Alternatively, the Schiff base reaction can be 

used to increase crystallinity.[16,17]  

On the other hand, amorphous networks exhibit interesting 

properties that distinguish them from their ordered analogues. 

Amorphous metals without grain boundaries exhibit very high 

strength accompanied by low ductility.[18] Organic glasses 

produce smoother and pinhole-free films compared to crystalline 

materials.[19] Defects in graphene open a band gap in its 

electronic structure and populate it with in-gap states.[20] And 

although defects in conductors commonly lower conductivity, π-

electrons can extend partially through an amorphous conjugated 

2D polymer and reduce its electronic gap compared to the 

molecular repeat unit.[21] Currently, porous glassy metal-organic 

frameworks are investigated as hybrid inorganic–organic 

materials for CO2 adsorption.[22] 

Molecular engineering of building blocks in triphenylarene 

based 2D structures have shown to cause a significant change 

in their material properties such as photocatalytic hydrogen 

evolution.[23] Here, we describe two networks prepared from 

molecular building blocks that differ in the atomic composition of 

the central arene ring (Carbon-Hydrogen in 0N replaced by 

Nitrogen in 3N; Scheme 1). Under similar growth conditions, the 

resulting polymers have different defect densities. Molecular 

dynamics simulations are helpful to rationalize pore size 

distributions and can provide design principles that are much 

needed for improving the order in the polymers. 
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Methods 

Experiments 

Experiments were carried out in ultra-high vacuum (UHV) at a 

pressure below 5×10−10 mbar. Prior to polymer synthesis, 

Au(111) single crystals were cleaned by repeated Ar+-sputtering 

and annealing (825 K) cycles. The porous 2D polymers were 

synthesized through sublimation of brominated precursor 

molecules 1,3,5-Tris-(4-bromophenyl)-benzene (0N, Sigma-

Aldrich) and 2,4,6-Tris-(4-bromophenyl)-1,3,5-triazine (3N, 

synthesized according to Ref.[23]) from quartz crucibles and their 

thermal activation in an Ullmann-like polymerization reaction on 

the surface. Sublimation temperatures were 475 K for 0N and 

515 K for 3N, while the Au substrate was held at 565 K, see 

Scheme 1a. The STM images were recorded at room 

temperature and WsXM[24] was used for image analysis. 

Ring statistics were gathered from large-area overview 

STM images. Only closed pores were counted; incomplete pores 

were not considered. Pores comprised of more than nine 

molecules were not included in the statistics.  

In addition to the count of polygons, the local environment 

of the amorphous network was investigated. Ring 

neighborhoods of a vertex were counted as 𝛼𝛽𝛾-clusters, where 

a vertex is a point shared by three adjacent polygons 𝛼, 𝛽, and 𝛾. 

Histograms of 𝛼𝛽𝛾-clusters were extracted from the same STM 

images from which the ring-size distribution has been taken. 

 

Theory 

Molecular dynamics (MD) on ensembles of up to 5750 

molecules per periodically repeated simulation cell were 

performed in order to gain insight into network formation. A 

simplified model of the molecule was constructed that captures 

all relevant molecular interactions. Each molecule consists of a 

central unit A that is surrounded by three additional units B in a 

trigonal planar fashion (cf. Scheme 1b). The resulting A(B)3 

building units are treated as quasi-rigid molecules, i.e. 

interactions occur only between ‘unified’ subunits belonging to 

different building units.  

The force-field that describes the intermolecular 

interactions consists of two- and three-body-contributions. The 

two-body-interaction is a Lennard-Jones term and an 

additionally interaction accounts for effective long-range 

interactions via a quasi-Coulomb-like term – again between 

subunits of different molecules. To include three-body 

interactions we apply a Stillinger-Weber potential. Details on the 

model of the molecule and the force field are given in the 

Supporting Information. 

The empirical parameters of the force field are adjusted to 

mimic the experimentally observed rings size distributions. Since 

two different molecules are employed in the experiments that 

generate two noticeably different distributions, we have to 

change the potential parameters to realize the different 

behaviors of the experimental systems and to account for the 

different molecules. The potentials that yielded the best fit during 

a large number of test simulations for small system sizes (c.f. 

Supporting Information) are named potentials 1 (MD run I) and 2 

(MD run II) in the following. 

 

Scheme 1. (a) Ullmann-like coupling synthesis pathway. (b) Model molecule 

used in molecular dynamics simulation with subunits A and B and 

intermolecular potential V. 

For the above mentioned potentials 1 (MD run I) and 2 

(MD run II), we extend the system size to 5737-5750 molecules 

(for fifteen different starting structures). The starting structures 

are prepared from trigonal lattice structures from which 10% of 

the molecules have been removed at random and the remaining 

building units randomly laterally shifted by 1.00 to 1.25 Å and 

furthermore rotated by a random angle. The structures are 

heated to 2650 K during the runs. For the sake of numerical 

stability, the MD time step is 2 fs, and the simulations last for 

120000 steps. We apply periodic boundary conditions in the MD-

simulations and constant pressure is set up to establish NpT-

ensembles (canonic ensembles). 

 

Analysis of the networks 

Of particular interest is the analysis of the simulated networks 

built up from the molecules as function of time. For this purpose, 

we developed a set of analysis algorithms that extract the 

adjacency matrix of the polymer, the ring distribution, and the 

distribution of 𝛼𝛽𝛾-clusters.  

In particular, in addition to the simple statistics of how often 

rings of a certain size are observed in the experiment or the 

simulation, we also register the statistics of ring-triplets (or 𝛼𝛽𝛾-

clusters), where three polygons of size 𝛼 , 𝛽 , and 𝛾  share a 
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common vertex. Note that such a vertex corresponds to one 

molecule, and each molecule can participate in up to three rings. 

This approach was previously used to classify short-range 

correlations in 2D silicon oxide. [25] Ignoring correlations, the 

expected occurrence of an 𝛼𝛽𝛾 -cluster based on a given 

(experimental or theoretical) ring-size distribution can be 

computed in a first mean-field like approximation through the 

formula 

P(α, β, γ) = Pα × Pβ × Pγ × f(α, β, γ)  (1), 

where 𝑓(α, β, γ) is the multiplicity, which equals one if all rings 

are of the same size (ring index ααα), equals three if only two 

rings have the same size (ring index ααβ), and equals six, if all 

rings are of different size (ring index αβγ ). Here, 𝑃α  is the 

probability of an α -gon, which is taken from the relative 

distribution in the ring-size histograms.  

 

Hartree-Fock calculations 

On selected ring clusters, Hartree-Fock calculations were 

performed with the Orca 4.01 software suite.[26] The ‘Corrected 

small basis set Hartree-Fock method for large systems’ 

developed by Sure & Grimme[27] was used to optimize the 

geometry of 0N and 3N 𝛼𝛽𝛾-clusters with 𝛼, 𝛽, 𝛾 = 5, 6, 7. The 

energy of formation is calculated for each cluster defined as the 

total energy of the cluster minus 𝑁  times the energy of the 

0N/3N monomer plus 𝑛 times the energy of H2, where 𝑁 is the 

number of 0N/3N units in the cluster and 𝑛  is the number of 

bonds formed between 0N/3N molecules. Bromine is substituted 

by hydrogen in this model calculation. The energy of formation 

per molecule is calculated by dividing this number by 𝑁.  

Results  

Experiments 

A typical STM image of the investigated polymer networks is 

shown in Fig. 1 for 0N. For both molecular repeat units 0N and 

3N, similar coverages can be achieved on the Au(111) substrate 

through well-established Ullmann-coupling protocols.[28] The 

real-space imaging capabilities of STM allow resolving the 

disordered nature of the network and to extract the ring-size 

distribution. Presumably, the optimal structure from an energetic 

point of view is an ordered hexagonal network, but pentagons 

and heptagons are observed with similar frequency. The 

networks resemble in their amorphous structure those reported 

previously by several groups for 0N under different synthesis 

conditions.[8,9,12] Magnifying the structures discloses the 

connectivity between molecular repeat units. Most molecules 

belong to up to three polygons but molecules that terminate 

without binding to other molecules can also be observed (Fig. 2). 

The ratio of unreacted to reacted functional groups as a 

measure of disorder has been explored elsewhere. [29]  

 

 

Figure 1. Typical STM topograph of the amorphous 2D polymer 0N 

(U = −1.3 V, I = 0.3 pA). Insets: zoom into a hexagon with superimposed 

chemical structure and close-up of a cluster made from a pentagon, a 

hexagon, and a heptagon. 

A histogram of the occurrence of 𝛼  -gons (𝛼  = 4…9) is 

shown in Fig. 2c for 0N and 2d for 3N. Although the preparation 

methods are almost identical and differ, if anything, only in the 

deposition flux, the ring size histograms are markedly different. 

Hexagons are always found to be the dominant structural motif, 

but the presence of nitrogen heteroatoms in the triazine ring of 

3N lowers the relative number of pentagons compared to 

hexagons. A very minor occurrence of 4- and 9-membered rings 

is observed for 0N, which is not observed in the 3N statistics. 

Apart from the ring-size distribution, the local structure of the 

amorphous network can be extracted from the STM images. As 

mentioned above, a vertex in the network is a point shared by 

three adjacent polygons (cf. lower right inset in Fig. 1 for an 

example of a vertex shared by a pentagon, a hexagon, and a 

heptagon). Labelling these local environments by the size of the 

sharing polygons 𝛼, 𝛽, and 𝛾 the occurrence of each 𝛼𝛽𝛾-cluster 

can be plotted in a histogram for 0N (Fig. 3a) and 3N (Fig. 3b). 

Alongside, the expected distribution of 𝛼𝛽𝛾 -clusters computed 

via formula (1) is plotted in gray. Marked differences between 

observation and model (1) are apparent. For example, the 

observed count of 555-clusters is much lower than the expected 

count, whereas 666-clusters are observed more frequently than 

expected.  
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Figure 2. STM topograph of (a) 0N (U = −1.0 V, I = 0.7 pA) and (b) 3N 

(U = −1.2 V, I = 0.2 pA) with overlaid coloured polygons. (c) Ring-size 

distribution of 0N. (d) Ring-size distribution of 3N. 

Theory 

After an initial screening of force field parameters we chose two 

sets that mimic in appearance and ring size distributions the 

experimental data of Fig. 2. The configuration of potential 1 (MD 

run I) is reproduced in Fig. 4a after an MD-simulation time of 

220 ps. One notices the overall homogeneity of the network, 

combined with a lack of any obvious crystallinity in the structure 

in agreement with experimental STM images. Polygons of 

different sizes constitute the building units of the polymer sheet. 

Figure 4b shows the potential energy vs. the logarithm of time, 

averaged over fifteen runs. After an initial settling phase of about 

20 ps, the energy begins to decrease at a constant rate as 

function of the logarithm of time, typical for simulations of 

amorphous or glassy systems.[30] Clearly, we are very far from 

equilibrium in a state of marginal ergodicity,[31,32] where aging 

processes are expected to take place.[33] For comparison, we 

also plot the potential energy vs. log(t) when starting the system 

from the perfect hexagonal lattice (presumably the ground state 

of the system). Besides noting that the potential energy of the 

hexagonal lattice fluctuates about a constant value (typical for a 

system in equilibrium), we see that it would take four to six 

orders of magnitude longer simulation times than we have used 

until we would reach the ground state from our initial random 

configurations. MD run II (see Supporting Information) would 

take even 2 orders of magnitude longer than MD run I to reach 

the ground state energy. 

 

Figure 3. (a) αβγ-cluster model. (b) Expected αβγ-cluster distribution (grey) 

and measured distribution (orange) for 0N. (d) Expected αβγ-cluster 

distribution (grey) and measured distribution (blue) for 3N. 

Figure 5a,b shows the evolution of the (averaged) ring-size 

distribution as function of time for both MD runs. We note that 

the total number of rings slowly increases. The fraction of four- 

and eight-membered rings noticeably decreases, while both the 

number of five- and six-membered rings increases such that 

their ratio remains relatively constant. In both cases, the 6-

membered rings are the most abundant species, followed by 5- 

and 7-membered rings. The number of energetically expensive 

4- and 8-membered rings, which form in early stages of the 

simulation, decreases with time, while 5-, 6-, and 7-membered 

rings increase in abundance. The most obvious difference 

between the two MD runs is the relative abundance of hexagons, 

which is much larger in MD run II than in MD run I. Similarly to 

the time evolution of the ring distribution, we can plot the time 

evolution of the (averaged) 𝛼𝛽𝛾 -cluster distribution for three 

points in time (t = 20 ps, t = 100 ps and t = 220 ps) for potentials 

1 & 2 (Fig. 5c,d). The total number of 𝛼𝛽𝛾 -clusters increases 

with time whereas the overall relative abundance of clusters 

appears to change only little between 100 and 220 ps. Alongside 

666- and 667-clusters, 566-, 567- and 568-clusters are the 

cluster species often most observed. MD run II is marked by a 

larger occurrence of the aforementioned clusters with repect to 

the remaining 𝛼𝛽𝛾-clusters, whereas in MD run I the difference 

is not as prominent. We note that for all parameter values 

chosen, and in spite of the rather large simulation temperatures, 

the relative ring size distributions and the cluster distributions 

stabilize far from the ground state distribution, although they 

keep evolving in an exponentially slow fashion, of course. 
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Figure 4. (a) Configuration of an amorphous network consisting of 5750 molecules in a variable periodic simulation cell, after an MD-simulation of 220 ps with 

potential 1 (MD run I) at 2650 K. (b) Potential energy per atom vs. log(t) (measured in MD-steps: 1MD-step = 2 fs) at 2650 K for MD run I (potential 1). Orange 

line: energy averaged over fifteen independent simulations; black solid line: single simulation for a perfect hexagonal lattice (ground state of the system) at 

2650 K; black dotted lines: averaged energy of the crystalline state (horizontal line) and straight line "fit" of the simulations in the glassy state (after the initial 

settling-time) drawn to guide the eye regarding the times needed to anneal all defects and reach the crystalline ground state.  

 

Figure 5. Rings size distributions shown as function of time (in ps). (a) Number of rings for potential 1; (b) number of rings for potential 2. (c) 𝛼𝛽𝛾-cluster 

distributions for potential 1 as function of time averaged over 15 configurations. Colour code: Gray: t = 20 ps; orange: t = 120 ps; blue: t = 220 ps. (d) 𝛼𝛽𝛾-cluster 

distributions for potential 2 as function of time averaged over 15 configurations.   
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Discussion 

Different values of the potential produce different types of ring-

size distributions. For example lower values of the 

intermolecular A–A–A interaction result in a relatively large 

abundance of 5-membered rings, whereas intermediate values 

of the A–A–A interaction yield a relatively larger number of 6-

membered rings (c.f. Supporting Information). From these MD-

simulations we can chose those two potentials that fit the 

experimental ring-size distributions (MD run I and MD run II), i.e. 

realizations of an effective potential by different kinds of 

molecules. Accordingly, since the 0N ring-size statistic shows a 

large number of pentagons, we chose a potential with small A–

A–A interaction, and a large A–A–A interaction for 6N to account 

for the larger abundance of hexagons. Fig. 6a,c combines the 

ring-size histograms of 0N with MD run I and Fig. 6b,d 3N with 

MD run II and an overall agreement can be observed. The 

difference between the two MD runs is the larger A–A–A 

interaction by a factor of ten of MD run II compared to MD run I, 

and a two-fold larger B–A–B/B–B–A interaction. The second 

metric we employ to check whether the MD-simulation is a good 

fit for the experiments is a comparison of the 𝛼𝛽𝛾 -cluster 

distributions. Experimental data from Fig. 3 of 0N and 3N are 

plotted together with the final MD distribution for comparison in 

Fig. 7. For 0N and MD run I, the data agree nicely with each 

other. For example, 555-clusters are almost absent, 666-clusters 

appear with comparable frequency and both show a very large 

number of 567-clusters. The agreement of 3N with MD run II is 

less good. In the following, we will discuss first what the origin of 

the agreement in 0N might be, and then possible differences in 

the case of 3N. 

 

Figure 6. Histograms of ring-size distribution (a) 0N from experiment, (b) 3N 

from experiment, (c) MD run I (potential I), and (d) MD run II (potential II). 

Comparing the mean-field like distribution (computed 

according to equation (1)) with the measured distribution (Fig. 3a 

for 0N) yields only a poor agreement for 0N. Prominent are the 

deviations for example in the 555, 666, and 567 clusters. More 

555 clusters are expected from equation (1) than are observed, 

and fewer 666 clusters are expected than observed. This can be 

explained by the large strain that a 555 cluster would impose on 

the polymer structure. Forcing a 555 cluster into a planar shape 

requires energy to strain bonds and angles. A 666 cluster is 

flatter from the start and little energy is required to enforce 

planarity. On the other hand, a heptagon can compensate the 

stress built up by a pentagon in the structure, which is why 567 

clusters are observed more often than expected. This argument 

is supported by Hartree-Fock calculations. The calculated 

energy of formation per molecule in 0N is lowest in the 666-

cluster and about 30% larger in the 555-cluster (40% in 3N), i.e. 

more energy is required for the 555-cluster to form compared to 

the 666-cluster. The formation energy of the 567-cluster of 0N 

lies in-between these two and is about 15% higher than the one 

of the 666-cluster (10% in 3N). Responsible for the higher 

energy in the 555-cluster is the higher strain in the cluster. For 

three pentagons to connect, they have to buckle out of the plane, 

see Fig. 8a. Less buckling appears in the 666- and 567-clusters 

(Fig. 8b,c). On the surface, as observed in STM, the polymer is 

flat; all buckling is smoothed out by van-der-Waals interactions 

of the polymer with the gold substrate. Due to this flattening, the 

555-cluster becomes even more energetically expensive, and 

thus does not appear in the observed sample. The deviation 

from expectation if random polygons are drawn from the 

distribution of Fig. 2 is a consequence of short-range correlation 

that appears in the polymer network. Small rings with less than 6 

vertices are found in the neighborhood of large rings with more 

than 6 vertices. The ring distribution is clearly not random but 

adheres to recurrent structural motifs that are dictated by the 

drive to minimize strain. The correlation originates from the 

strain that accompanies certain 𝛼𝛽𝛾 -clusters and makes them 

less likely than other clusters with less strain. 
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Figure 7. (a) αβγ-cluster distribution from MD-simulation (grey) and 

experiment (orange) for 0N and MD run I. (b) αβγ-cluster distribution from MD 

simulation (grey) and experiment (blue) for 3N and MD run II. 

The agreement of both ring-size and 𝛼𝛽𝛾 -cluster 

distribution for 0N and MD run I is not present in 3N and MD run 

II to the same degree. Whereas the ring-size distributions 

compare rather well also for 3N and MD run II, the 𝛼𝛽𝛾-cluster 

distribution shows marked differences. The very high frequency 

of occurrence of 666-clusters in the experiment leads us to 

believe that the experimental system is closer to the 

thermodynamically expected hexagonal lattice than the 

simulation is. This might be due to simulation times that are too 

short for the system to have made significant progress towards 

equilibrium. Figure 4b shows that the average potential energy 

of the MD runs steadily decreases, but on exponentially slow 

time scales, i.e. the time needed for the simulation to evolve 

towards a higher abundance of 6-membered rings increases 

exponentially. The relative abundance of 6-membered rings 

keeps increasing while the number of smaller rings remain 

constant or even decreases (Fig. 5b). Interestingly, the match 

between 3N and the mean-field model of equation (1) is rather 

good compared to 0N. The Hartree-Fock calculations show that 

3N some 𝛼𝛽𝛾 -clusters require less energy to be incorporated 

compared to 0N, thus the energy penalty is lower and the 

polygons are more likely to tessellate the surface in a random 

manner without the limitations imposed by energy of formation 

that hinders random tessellation of 0N. Additonally, the triazine 

vertices of 3N impose fewer sites for steric H···H clashes 

between hydrogen atoms of neighboring cyclic compounds, 

which will lead to less energy required to enforce planarity in 3N 

vs. 0N. This in turn will make 3N more defect tolerant and its 

cluster distribution closer to equation (1). The correlation on 

short length scales that is observed in 0N is absent in 3N due to 

the different energy required for cluster formation and for 

enforcing planarity. The chemical structure of the precursor 

molecule is thus a design criterion for tuning spatial correlations. 

 

Figure 8. Top and side view of 3 different αβγ-cluster: (a) 555-cluster, (b) 666-

cluster, (c) 567-cluster. 

The potential energy of the calculated network structure 

plotted as a function of the logarithm of time (c.f. Fig. 4b above) 

highlights that even after rather long times the network does not 

settle into an energetic minimum. The energy decreases 

continuously with evolved simulation time, and the system 

evolves towards the energy of the optimal hexagonal lattice on 

exponentially increasing time scales, a typical aging behavior as 

mentioned earlier. A thermodynamic minimum is not reached, 

and probably will not be achieved, even after very long times. 
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The experimental structures can thus be expected to keep 

changing but on time scales likely irrelevant for experimental 

studies, and simulations are expected to have to run at least 4-6 

orders of magnitude longer in order to reach the (presumably 

ground state) hexagonal lattice. This aging process is slower in 

potential 2 than in potential 1. Along with the continuously 

decreasing energy comes a restructuring of the network. The 

number of pores increases with time for both potentials 1 & 2 

(Fig. 5a,b) as does the relative abundance of hexagonal rings. 

Accordingly, the 𝛼𝛽𝛾 -cluster distribution keeps changing over 

time (Fig. 5c,d) and evolves towards a distribution consisting of 

those clusters with the lowest energy of formation. The aging 

rate depends on the choice of potential in the MD-simulation, 

and conversely on the choice of precursor molecule, i.e. its 

coupling strength and stiffness in the newly formed bonds. 

Unless easy breaking of the bonds is ensured – in the form of 

reversible bonds – perfect equilibrium will take a long time to be 

reached, even at elevated temperatures. On the other hand, if a 

particular amorphous structure is desired, for example for 

enhanced structural stability, then the choice of the appropriate 

precursor molecule can guarantee metastable structures which 

are aging on sufficiently slow time scales.  

Conclusions 

The measured ring-size distribution can be matched by a 

similar calculated distribution from molecular dynamics 

simulations. What gives additional weight to the suitability of the 

calculations to adequately mimic the experiments are the 

similarities in the relative abundance of 𝛼𝛽𝛾-clusters. This shows 

that not only the distributions as a property of the networks are 

similar, but also that short-range correlations of pore 

neighborhoods are identical. Accepting the validity of the 

calculations, we can propose design principles that would 

increase order in the networks. These include stiffening the A–

A–A interaction and employing intermolecular interactions that 

allow for fast aging of the structure. 

Further studies are needed for a full understanding of the 

growth kinetics of 2D polymers on surfaces. For one, changing 

the molecular repeat units to incorporate the design principles is 

one way, e.g. through including bulky groups at the molecules 

that hinder the formation of pores smaller than hexagons. On the 

other hand, defects in the growth template, for example step 

edges, should be accounted for both in experiments and in 

simulation. These can function as nucleation sites for growing 

polymer crystallites and skew the optimal growth towards small 

domain, high-defect density structures. Lastly, it would be 

interesting to study the evolution of ring and 𝛼𝛽𝛾 -cluster 

distributions over long time scales and to investigate whether 

leaving the sample stored for very long times alters these 

distributions towards a higher abundance of 6-membered rings, 

and possibly generates nearly crystalline subregions. 
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