

STRUCTURAL

ISSN 2053-2296

Received 10 September 2020 Accepted 27 October 2020

Edited by Y. Ohgo, Teikyo University, Japan

¹ Dedicated to Professor Wolfgang Kaim on the occasion of his 70th birthday.

Keywords: pyrroloquinoline quinone; calcium; PQQ; methanol dehydrogenase; crystal structure.

CCDC reference: 2019890

Supporting information: this article has supporting information at journals.iucr.org/c

Check for

Crystal structure of a calcium(II)-pyrroloquinoline quinone (PQQ) complex outside a protein environment¹

Henning Lumpe, Peter Mayer and Lena J. Daumann*

Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich, Bavaria 81377, Germany. *Correspondence e-mail: lena.daumann@cup.lmu.de

Pyrroloquinoline quinone (PQQ) is an important cofactor of calcium- and lanthanide-dependent alcohol dehydrogenases, and has been known for over 30 years. Crystal structures of Ca–MDH enzymes (MDH is methanol dehydrogenase) have been known for some time; however, crystal structures of PQQ with biorelevant metal ions have been lacking in the literature for decades. We report here the first crystal structure analysis of a Ca–PQQ complex outside the protein environment, namely, poly[[undecaaquabis(μ -4,5-dioxo-4,5-dihydro-1*H*-pyrrolo[2,3-*f*]quinoline-2,7,9-tricarboxylato)tricalcium(II)] dihydrate], {[Ca₃-(C₁₄H₃N₂O₈)₂(H₂O)₁₁]·2H₂O}_{*n*}. The complex crystallized as Ca₃PQQ₂·13H₂O with Ca²⁺ in three different positions and PQQ³⁻, including an extensive hydrogen-bond network. Similarities and differences to the recently reported structure with biorelevant europium (Eu₂PQQ₂) are discussed.

1. Introduction

Pyrroloquinoline quinone (PQQ) is the redox cofactor of glucose dehydrogenase enzymes and alcohol dehydrogenases. In particular, the methanol dehydrogenase (MDH) enzymes, which catalyze the oxidation of methanol for the energy household of many methano- and methylotrophic microorganisms, have attracted attention recently. For proper functionality, a metal ion is needed, which acts as a Lewis acid and which is coordinated by PQQ and several amino acids in the enzymatic active site (Fig. 1). The Ca-dependent MDH, encoded by the mxaF gene, was first discovered by Anthony & Zatman (1964*a*,*b*).

After the structure of MDH was elucidated in 1978-79 (Duine et al., 1978; Westerling et al., 1979; Salisbury et al., 1979), the cofactor attracted much attention in the following years, with articles published concerning its total synthesis (Corey & Tramontano, 1981), redox chemistry (Eckert et al., 1982), metal coordination (Noar et al., 1985) and small-molecule interaction (van Koningsveld et al., 1985). Itoh and coworkers published several articles presenting the interaction of PQQ with Ca and other alkaline earth metals (Itoh et al., 1997, 1998), and the synthesis of model compounds, mimicking the active site of MDH (Itoh et al., 2000). Those publications contributed to a better understanding of the functionality and reactivity of PQQ. However, no crystal structures were presented in those studies, which would reveal in-depth structural information of PQQ-metal interactions. While no Ca-PQQ structure has been published to date, in addition, few other crystal structures exist for PQQ with other metals. Outside of the Ca-MDH network (Blake et al., 1994; Williams et al., 2005), several structures were published with sodium

(Ishida et al., 1989; Ikemoto et al., 2012; Ikemoto et al., 2017), with PQQ structural analogs and iron (Tommasi et al., 1995), with copper and terpyridine (terpy) as co-ligand (Nakamura et al., 1994), with copper and triphenylphosphine (Wanner et al., 1999), with ruthenium and terpy (Mitome et al., 2015), and with ruthenium, silver and terpy (Mitome et al., 2013). In 2014, Pol et al. reported a new kind of MDH, found in the extremophile Methylacidiphilum fumariolicum SolV (SolV), which is native to volcanic mudpots close to the Solfatara crater in Italy (Pol et al., 2014). This MDH turned out to be strictly dependent on lanthanides (Pol et al., 2014; Lumpe et al., 2018; Bogart et al., 2015). While SolV was originally thought to be a biological curiosity, more and more organisms in all kinds of ecosystems were found to be lanthanide dependent in the following years, not restricted to such extreme environments like SolV (Keltjens et al., 2014; Ramachandran & Walsh, 2015; Taubert et al., 2015). This also pushed lanthanide bioinorganic chemistry as a new and emerging scientific field with several reviews published (Skovran & Martinez-Gomez, 2015; Cheisson & Schelter, 2019; Chistoserdova, 2019; Cotruvo, 2019; Daumann, 2019; Picone & Op den Camp, 2019; Semrau et al., 2018). Recently, also, the first crystal structure of a europium-PQQ complex outside the MDH network was published through a collaborative effort and was reported as an Eu₂POO₂ structure (Lumpe et al., 2020) (Fig. 2). In light of those advances and the still scarce structural information available about POO-metal interactions, we present here the first crystal structure of a Ca-POO complex without the need of structural POO analogs or additional co-ligands. The molecular formula of the complex is Ca₃PQQ₂·13H₂O.

2. Experimental

2.1. Materials

CaCl₂·2H₂O (99%) was purchased from VWR. Na₂PQQ·H₂O was extracted from Doctor's Best Science-Based Nutrition BioPQQ capsules, as described previously (Lumpe & Daumann, 2019). Milli-Q-grade water (pH 5.5), obtained from a Millipore Synergy UV system from Merck (Darmstadt, Germany), was used for all experiments.

2.2. Crystal growth and analysis

Na₂PQQ·H₂O (32.8 mg, 0.08 mmol) was dissolved in H₂O (12 ml). CaCl₂·2H₂O (2.0 equiv., 23.6 mg, 0.16 mmol) was added as a solid. The metal addition led to precipitation of a pale-grey–brown solid, which was centrifuged, removed and analyzed as a 1:1 PQQ–Ca complex, as described in our previous article (Lumpe & Daumann, 2019). From the supernatant, consisting of a highly diluted aqueous mixture of Na₂PQQ and CaCl₂, small dark crystals, suitable for X-ray crystallography, grew over a period of several months. To obtain more crystalline material of better quality, a procedure from our recent publication (Lumpe *et al.*, 2020) was implemented. Na₂PQQ·H₂O (24.2 mg, 61.8 µmol) was completely dissolved in H₂O (4 ml) at 80 °C in an ultrasonic bath. CaCl₂·2H₂O (27.3 mg, 185.4 µmol, 3 equiv.) was dissolved in a

Table	1	
Experi	mental	details.

Crystal data	
Chemical formula	$[Ca_3(C_{14}H_3N_2O_8)_2(H_2O)_{11}]\cdot 2H_2O$
Mr	1008.81
Crystal system, space group	Triclinic, P1
Temperature (K)	109
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.9363 (3), 15.9791 (7), 16.9786 (7)
α, β, γ (°)	90.844 (1), 93.106 (1), 98.296 (2)
$V(Å^3)$	1858.93 (14)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.56
Crystal size (mm)	$0.10 \times 0.02 \times 0.01$
Data collection	
Diffractometer	Bruker D8 Venture TXS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.88, 0.99
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33048, 8166, 7023
R _{int}	0.043
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.641
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.072, 1.04
No. of reflections	8166
No. of parameters	689
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ (e Å ⁻³)	0.39, -0.28

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2017), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and ORTEP-3 (Farrugia, 2012).

small amount of water (0.2 ml) and was added to the Na₂PQQ solution at 80 °C, which caused precipitation of a grey–brown solid. The mixture was placed directly in a drying oven at 80 °C, which was then switched off and the reaction mixture allowed to cool slowly. After 1 d, small dark crystals had grown between the bulk precipitate. The crystals grew in size over the next few days while consuming the surrounding bulk precipitate. Crystals suitable for X-ray diffraction analysis were then picked out of the reaction mixture. The crystal used for analysis was selected in paraffin oil to prevent dehydration and then placed and measured on a Mitegen Microloop. The crystals obtained from both methods showed the same structure depicted in Fig. 3.

IR (diamond ATR, neat): $\tilde{\nu}$ /cm⁻¹ 3643–2746 (*w*, broad), 1923–1714 (*w*, broad), 1686 (*w*), 1658 (*w*), 1605 (*s*), 1577 (*m*), 1553 (*m*), 1536 (*m*), 1498 (*m*), 1426 (*w*), 1400 (*m*), 1348 (*s*), 1277 (*m*), 1246 (*m*), 1191 (*m*), 1151 (*m*), 1132 (*w*), 1086 (*w*), 1027 (*w*), 972 (*w*), 951 (*w*), 926 (*w*), 868 (*w*), 824 (*w*), 767 (*w*), 719 (*w*), 700 (*w*), 669 (*w*). Elemental analysis (CHN) calculated (%) for Ca₃PQQ₂·11H₂O or C₂₈H₂₈Ca₃N₄O₂₇: C 34.57, H 2.90, N 5.76; found: C 34.30, H 3.20, N 6.06. Crystals were picked out of the reaction mixture and then dried for 1 d on filter paper prior to elemental analysis.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Four reflections have been

omitted from the refinement. Three of them are hidden by the beam stop and show no intensity. A further omitted reflection of higher order (090) has a significantly higher F_o^2 (63.72) compared to its F_c^2 (1.09). This behaviour is observed quite often for reflections of higher order when multigraded X-ray mirrors are used as monochromators. All C-bound H atoms have been calculated in ideal geometry riding on their parent atoms, while the O- and N-bound H atoms were refined freely. Full details of the refinement strategy can be found in the embedded instruction file in the CIF.

3. Results and discussion

3.1. Investigation of PQQ-Ca complexation

In our previous article, PQQ-metal complexes were reported with the trivalent lanthanides La^{3+} , Eu^{3+} and Lu^{3+} , and with Ca^{2+} (Lumpe & Daumann, 2019). Regardless of the excess of added metal salt, 1:1 complexes were identified by elemental analysis. While no further structural information could be provided in that study, we were recently able to verify the proposed stoichiometry by the crystal structure of an Eu-PQQ complex with the net formula $Eu_2PQQ_2 \cdot 12H_2O$ (Lumpe *et al.*, 2020). The Eu^{3+} ion is coordinated by PQQ in the same fashion as in MDH, with participation of N2, O4 and O5, in addition to the participation of O1 (Fig. 2). The latter residue is not utilized in the enzyme for metal coordination.

From a similar experimental approach using Ca^{2+} instead of Eu^{3+} , single crystals suitable for X-ray analysis were grown over a period of several days. Fig. 3 illustrates the composition of the asymmetric unit: the charges of two triply deprotonated PQQ units are balanced by three Ca^{2+} ions supplemented by 13 water molecules. The structural motif depicted in Fig. 2 – the formation of binuclear units by means of two PQQ ligands acting as linkers between the metal centres – is realized in Ca_3PQQ_2 ·13H₂O in a comparable fashion for two of the three Ca ions (Ca1 and Ca3). Ca1 is coordinated by PQQ in a similar fashion to Eu; however, the coordination sphere is completed by a carboxylate group of a nearby pyridine moiety of PQQ

Glu177 Ca Asn261 Asp303

Figure 1 The structure of the active site from Ca-dependent MDH (PDB code 1w6s).

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1-H2···O8	0.86 (2)	2.01 (2)	2.7232 (19)	139.6 (19)
$N3-H4\cdots O16$	0.86(2)	1.83 (2)	2.6163 (19)	151 (2)
$O17 - H171 \cdots O10^{iii}$	0.85 (3)	1.91 (3)	2.7543 (18)	170 (3)
O17−H172···O1	0.86 (3)	2.08 (3)	2.9287 (19)	170 (2)
O18−H181···O28	0.88 (3)	1.82 (3)	2.681 (2)	166 (2)
$O18-H182\cdots O1^{iv}$	0.84 (3)	1.97 (3)	2.8107 (19)	176 (3)
$O19-H191\cdots O20^{ii}$	0.81 (3)	2.10 (3)	2.8789 (19)	161 (3)
$O19-H192 \cdot \cdot \cdot O5^{i}$	0.85 (3)	1.89 (3)	2.7350 (18)	174 (3)
$O20-H201\cdots O11^{v}$	0.82 (3)	2.00 (3)	2.8221 (18)	173 (3)
$O20-H202\cdots O2^{vi}$	0.84 (3)	1.94 (3)	2.7620 (18)	169 (3)
$O21 - H211 \cdots O29^{iii}$	0.80(3)	2.05 (3)	2.845 (2)	173 (3)
O21−H212···O16	0.85 (3)	1.90 (3)	2.7320 (18)	163 (3)
$O22-H221\cdots O19^{vi}$	0.76 (3)	2.26 (3)	2.958 (2)	152 (3)
$O22-H222\cdots O6^{vii}$	0.87 (3)	1.83 (3)	2.6985 (19)	175 (3)
$O23-H231\cdots O3^{viii}$	0.76 (3)	2.10 (3)	2.8398 (19)	164 (3)
$O23 - H232 \cdot \cdot \cdot O9^{iii}$	0.83 (3)	1.90 (3)	2.7217 (19)	169 (3)
$O24 - H241 \cdots O7^{ix}$	0.81 (3)	2.03 (3)	2.8040 (19)	163 (3)
O24−H242···O29	0.82 (3)	1.93 (3)	2.750 (2)	172 (3)
$O25-H251\cdots O13^{ix}$	0.85 (3)	2.02 (3)	2.8578 (18)	168 (3)
$O25-H252 \cdot \cdot \cdot O3^{viii}$	0.81 (3)	2.41 (3)	3.0258 (19)	133 (2)
$O25-H252\cdots O4^{viii}$	0.81 (3)	2.28 (3)	3.0405 (18)	155 (3)
$O26-H261\cdots O27^{x}$	0.86 (3)	2.11 (3)	2.9018 (19)	154 (3)
$O26-H262\cdots O13^{ix}$	0.80(3)	2.06 (3)	2.8506 (19)	170 (3)
$O27 - H271 \cdots O25^{iv}$	0.85 (3)	2.08 (3)	2.9022 (19)	164 (3)
$O27 - H272 \cdot \cdot \cdot O9^{v}$	0.83 (3)	1.99 (3)	2.8125 (18)	171 (2)
$O28-H281\cdots O10^{v}$	0.89 (4)	1.88 (4)	2.721 (2)	159 (3)
$O28-H282\cdots O26^{x}$	0.83 (4)	2.59 (3)	3.098 (2)	121 (3)
$O29-H291\cdots O6^{ix}$	0.84 (3)	1.85 (3)	2.6582 (19)	160 (3)
O29−H292···O11	0.79 (3)	2.27 (3)	3.021 (2)	159 (3)
O29−H292···O12	0.79 (3)	2.40 (3)	2.7789 (19)	110 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y, -z; (iv) x + 1, y, z; (v) -x + 2, -y, -z; (vi) -x + 1, -y, -z + 1; (vii) x, y - 1, z; (viii) x, y, z - 1; (ix) -x + 1, -y + 1, -z; (x) -x + 2, -y + 1, -z.

(instead of a carboxylate of a pyrrole ring). Ca3, on the other hand, uses the same pocket and residues as Eu; however, this interaction is assisted by a hydrogen bond of a Ca3-bound water molecule to the carboxylate group of the pyrrole ring (Fig. 3b, green arrows). In the structure, these two types of alternating Ca1 and Ca3 units are connected *via* Ca1 into strands along [$\overline{111}$]. The charge of the Ca₂PQQ₂ unit is balanced by Ca2, which is coordinated solely by water molecules and carboxylate groups, however, never in the biologically relevant ONO pocket of PQQ. All N–H and O–H donor groups are involved in classical hydrogen bonds with either carboxylate groups, keto groups or water molecules,

The crystal structure of the inversion-symmetric Eu_2PQQ_2 complex. The CIF is taken from Lumpe *et al.* (2020). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

research papers

Figure 3

(a) The asymmetric unit of Ca₃PQQ₂·13H₂O. (b) A strand along [$\overline{111}$] consisting of inversion-symmetric Ca₂PQQ₂²⁻ pairs. Here, for clarity, all water molecules, except for that involved in intra-pair hydrogen bonds (green arrows), have been omitted. For symmetry codes, see Table 2.

acting as acceptors establishing a three-dimensional network (see Table 2 for hydrogen-bond details).

Table 3

Selected bond lengths (Å) of the $Ca_3PQQ_2 \cdot 13H_2O$ complex in comparison with the previously reported $Eu_2PQQ_2 \cdot 12H_2O$ structure.

For symmetry data for Eu₂PQQ₂·12H₂O, see Lumpe et al. (2020).

Ca ₃ PQQ ₂ ·13H ₂ O		$Eu_2PQQ_2 \cdot 12H_2O$			
Ca1 ⁱ -O4	2.5928 (12)	Eu1-O4	2.584 (2)		
Ca1 ⁱ -N2	2.5069 (14)	Eu1-N2	2.648 (2)		
Ca1 ⁱ -O5	2.3784 (12)	Eu1-O5	2.440 (2)		
Ca1-O14	2.2514 (12)	Eu1-O1	2.409 (2)		
Ca1-O8	2.3137 (12)	Eu1-O _{water} (5 bonds)	2.389 (2)-2.464 (2)		
Ca1-O17	2.3694 (13)				
Ca1-O18	2.3145 (14)	Ca3-O12	2.5703 (12)		
Ca2 ⁱⁱ -O1	2.4812 (12)	Ca3-N4	2.5460 (14)		
Ca2 ⁱⁱ -O2	2.5279 (12)	Ca3-O13	2.3963 (12)		
Ca2-O15	2.3522 (12)	Ca3-O23	2.4362 (14)		
Ca2-O19	2.3894 (14)	Ca3-O24	2.3607 (13)		
Ca2-O20	2.4382 (13)	Ca3-O25	2.5787 (14)		
Ca2-O21	2.3824 (14)	Ca3-O26	2.3962 (14)		
Ca2-O22	2.3383 (14)	Ca3-O27	2.4924 (14)		

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.

Interestingly, while the elemental analysis of the initially precipitated (amorphous) solid showed a 1:1 Ca–PQQ stoichiometry (Lumpe & Daumann, 2019), the present structure from slowly crystallized material reveals a network of three different Ca²⁺ ions and two differently-coordinated PQQ anionic ligands, resulting in a 3:2 stoichiometry. Also, in the Ca–PQQ structure, both PQQ molecules coordinate in the same fashion as in the MDH enzyme (Fig. 1), in addition to the participation of several carboxylate groups. One of the PQQ ligands coordinates to calcium with the participation of all three carboxylate groups: Ca1 *via* O8, N2, O5 and O4, and Ca2 *via* O1 and O2 in a bidentate manner. The second PQQ molecule coordinates Ca1 with O14, Ca2 with O15 and Ca3 with N4, O12 and O13. In total, 13 water molecules are present

Figure 4

Normalized IR absorption spectra of the Ca_3PQQ_2 complex in black, the 1:1 Ca-PQQ precipitate in grey and the Eu_2PQQ_2 complex in blue. Inset: close-up of the PQQ-related IR absorption peaks.

in the crystal structure, of which 11 directly coordinate to atoms Ca1–Ca3 and two water molecules (O28 and O29) have no direct coordination partners. Interestingly, elemental analysis of the dried crystalline material fits best to only 11 water molecules, most likely due to the disappearance of the two noncoordinating water molecules during the drying process. Ca1 and Ca2 show pentagonal–bipyramidal geometries, with coordination numbers (CNs) of 7 and Ca3 shows a distorted geometry with a CN of 8. All metal-to-ligand bond lengths and angles of Ca₃PQQ₂ are given in Table 3, in addition to the values for Eu₂PQQ₂. The known PQQ–water adduct (diol in C5 position), which is formed to some extent in aqueous solution (Dekker *et al.*, 1982), is not present in the complex, and this is in line with all known crystal structures of PQQ, to the best of our knowledge.

In the Eu₂PQQ₂ complex, the Eu ions are coordinated in a similar fashion by PQQ. The bonds to Eu are up to 0.141 Å longer than to Ca1 and Ca3. The CN of Eu in the complex is 9, which corresponds to an ionic radius of 1.12 Å according to Shannon (1976), while the ionic radius of Ca is 1.06 Å for a CN of 7 and 1.12 Å for a CN of 8. Therefore, the larger bond lengths to Eu can hardly be explained by different ionic radii, which are overall similar, but by differences in the CNs and different participation in coordination of a second PQQ molecule.

The IR spectra of the precipitated Ca–PQQ amorphous solid, Eu₂PQQ₂ and Ca₃PQQ₂ crystals were recorded and compared (Fig. 4). The spectra can be roughly divided into two areas. While PQQ C=O stretching vibrations of the carboxylate and quinone groups absorb in the range 1750–1600 cm⁻¹ (Zhejiang Hisun Pharmaceutical Co. Ltd, 2020), the peaks with smaller wavenumbers are largely related to PQQ lattice vibrations. While the heights of the large absorption bands in the range 3600–2600 cm⁻¹ are a direct result of the different amounts and coordination modes of cocrystallized water, the differences in the area 1750–1550 cm⁻¹ further indicate the different coordination modes already depicted in the crystal structures.

4. Conclusion

We present here the first crystal structure of PQQ with the biologically relevant metal ion calcium. The complex consists of PQQ and the metal ion alone, unlike previously reported structures with other metal ions. Those complexes often needed additional co-ligands, which limited the use of the structures for comparison with the biologically active site. However, in particular, the use of methylated PQQMe₃ (with all three carboxyl groups esterified) prevented participation of (nonbiogenic) carboxyl groups in complexation. This is not the case in the presented structure, where calcium is coordinated by PQQ in the same pocket as in MDH, in addition to further carboxyl-group participation, spanning a three-dimensional coordination network. However, considering the few crystal structures of PQQ complexes reported over the years, we are confident that the presented structure will help to better explain the coordination behaviour of PQQ outside the MDH

enzyme and help guide the design of mononuclear model complexes for these fascinating enzymes.

Acknowledgements

Open access funding enabled and organized by Projekt DEAL.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 392552271 to LJD).

References

- Anthony, C. & Zatman, L. J. (1964a). Biochem. J. 92, 609-614.
- Anthony, C. & Zatman, L. J. (1964b). Biochem. J. 92, 614-621.
- Blake, C. C. F., Ghosh, M., Harlos, K., Avezoux, A. & Anthony, C. (1994). *Nat. Struct. Mol. Biol.* **1**, 102–105.
- Bogart, J. A., Lewis, A. J. & Schelter, E. J. (2015). *Chem. Eur. J.* **21**, 1743–1748.
- Bruker (2016). *APEX3* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheisson, T. & Schelter, E. J. (2019). Science, 363, 489-493.
- Chistoserdova, L. (2019). Mol. Microbiol. 111, 1127-1131.
- Corey, E. J. & Tramontano, A. (1981). J. Am. Chem. Soc. 103, 5599– 5600.
- Cotruvo, J. A. (2019). ACS Cent. Sci. 9, 1496-1506.
- Daumann, L. J. (2019). Angew. Chem. Int. Ed. 58, 12795–12802.
- Dekker, R. H., Duine, J. A., Frank, J., Verwiel, P. E. J. & Westerling, J. (1982). Eur. J. Biochem. 125, 69–73.
- Duine, J. A., Frank, J. & Westerling, J. (1978). Biochim. Biophys. Acta Enzymol. 524, 277–287.
- Eckert, T. S., Bruice, T. C., Gainor, J. A. & Weinreb, S. M. (1982). Proc. Natl Acad. Sci. USA, 79, 2533–2536.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ikemoto, K., Sakamoto, H. & Nakano, M. (2012). Chem. Cent. J. 6, 57.
- Ikemoto, K., Sakamoto, Y., Tanaka, R., Ogata, K., Matsushita, N. & Nakamura, S. (2017). Cryst. Growth Des. 17, 4118–4123.
- Ishida, T., Doi, M., Tomita, K., Hayashi, H., Inoue, M. & Urakami, T. (1989). J. Am. Chem. Soc. 111, 6822–6828.
- Itoh, S., Kawakami, H. & Fukuzumi, S. (1997). J. Am. Chem. Soc. 119, 439–440.
- Itoh, S., Kawakami, H. & Fukuzumi, S. (1998). *Biochemistry*, **37**, 6562–6571.
- Itoh, S., Kawakami, H. & Fukuzumi, S. (2000). J. Mol. Catal. B Enzym. 8, 85–94.
- Keltjens, J. T., Pol, A., Reimann, J. & Op den Camp, H. J. M. (2014). Appl. Microbiol. Biotechnol. 98, 6163–6183.
- Koningsveld, H. van, Jansen, J. C., Jongejan, J. A., Frank, J. Jzn. & Duine, J. A. (1985). Acta Cryst. C41, 89–92.
- Lumpe, H. & Daumann, L. J. (2019). Inorg. Chem. 58, 8432-8441.
- Lumpe, H., Menke, A., Haisch, C., Mayer, P., Kabelitz, A., Yusenko, K. V., Guilherme Buzanich, A., Block, T., Pöttgen, R., Emmerling, F. & Daumann, L. J. (2020). *Chem. Eur. J.* 26, 10133– 10139.
- Lumpe, H., Pol, A., Op den Camp, H. J. M. & Daumann, L. J. (2018). *Dalton Trans.* 47, 10463–10472.
- Mitome, H., Ishizuka, T., Shiota, Y., Yoshizawa, K. & Kojima, T. (2013). *Inorg. Chem.* **52**, 2274–2276.
- Mitome, H., Ishizuka, T., Shiota, Y., Yoshizawa, K. & Kojima, T. (2015). Dalton Trans. 44, 3151–3158.
- Nakamura, N., Kohzuma, T., Kuma, H. & Suzuki, S. (1994). *Inorg. Chem.* **33**, 1594–1599.

research papers

- Noar, J. B., Rodriguez, E. J. & Bruice, T. C. (1985). J. Am. Chem. Soc. 107, 7198–7199.
- Picone, N. & Op den Camp, H. J. M. (2019). Curr. Opin. Chem. Biol. 49, 39–44.
- Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M. & Op den Camp, H. J. M. (2014). *Environ. Microbiol.* 16, 255–264.
- Ramachandran, A. & Walsh, D. A. (2015). *FEMS Microbiol. Ecol.* **91**, fiv105/1–fiv105/10.
- Salisbury, S. A., Forrest, H. S., Cruse, W. B. T. & Kennard, O. (1979). *Nature*, **280**, 843–844.
- Semrau, J. D., DiSpirito, A. A., Gu, W. & Yoon, S. (2018). Appl. Environ. Microbiol. 84, e02289-17.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Skovran, E. & Martinez-Gomez, N. C. (2015). Science, 348, 862-863.

- Taubert, M., Grob, C., Howat, A. M., Burns, O. J., Dixon, J. L., Chen, Y. & Murrell, J. C. (2015). *Environ. Microbiol.* 17, 3937–3948.
- Tommasi, L., Shechter-Barloy, L., Varech, D., Battioni, J. P., Donnadieu, B., Verelst, M., Bousseksou, A., Mansuy, D. & Tuchagues, J. P. (1995). *Inorg. Chem.* 34, 1514–1523.
- Wanner, M., Sixt, T., Klinkhammer, K.-W. & Kaim, W. (1999). Inorg. Chem. 38, 2753–2755.
- Westerling, J., Frank, J. & Duine, J. A. (1979). *Biochem. Biophys. Res. Commun.* 87, 719–724.
- Williams, P. A., Coates, L., Mohammed, F., Gill, R., Erskine, P. T., Coker, A., Wood, S. P., Anthony, C. & Cooper, J. B. (2005). *Acta Cryst.* D61, 75–79.
- Zhejiang Hisun Pharmaceutical Co. Ltd (2020). GRAS Exemption Claim for Pyrroloquinoline Quinone (PQQ) Disodium Salt; https:// www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/ NoticeInventory/ucm508141.pdf.

Acta Cryst. (2020). C76, 1051-1056 [https://doi.org/10.1107/S2053229620014278]

Crystal structure of a calcium(II)-pyrroloquinoline quinone (PQQ) complex outside a protein environment

Henning Lumpe, Peter Mayer and Lena J. Daumann

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015b).

Poly[[undecaaquabis(µ-4,5-dioxo-4,5-dihydro-1*H*-pyrrolo[2,3-*f*]quinoline-2,7,9-tricarboxylato)tricalcium(II)] dihydrate]

Crystal data

 $[Ca_{3}(C_{14}H_{3}N_{2}O_{8})_{2}(H_{2}O)_{11}] \cdot 2H_{2}O$ $M_{r} = 1008.81$ Triclinic, $P\overline{1}$ a = 6.9363 (3) Å b = 15.9791 (7) Å c = 16.9786 (7) Å a = 90.844 (1)° $\beta = 93.106$ (1)° $\gamma = 98.296$ (2)° V = 1858.93 (14) Å³

Data collection

Bruker D8 Venture TXS diffractometer Radiation source: rotating anode (TXS), Bruker TXS Focusing mirrors monochromator Detector resolution: 7.3910 pixels mm⁻¹ mix of phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.072$ S = 1.048166 reflections 689 parameters Z = 2 F(000) = 1040 $D_x = 1.802 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9854 reflections $\theta = 2.7-27.1^{\circ}$ $\mu = 0.56 \text{ mm}^{-1}$ T = 109 K Rod, brown $0.10 \times 0.02 \times 0.01 \text{ mm}$

 $T_{\min} = 0.88, T_{\max} = 0.99$ 33048 measured reflections 8166 independent reflections 7023 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.1^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -20 \rightarrow 20$ $l = -21 \rightarrow 21$

0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0198P)^2 + 1.5469P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.39 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.28 \text{ e } \text{\AA}^{-3}$

Refinement. H(C) constr, H(O,N) refall

The X-ray intensity data of Ca₃PQQ₂.13H₂O were measured on a Bruker D8 Venture TXS system equipped with a multilayer mirror monochromator and an Mo *Ka* rotating anode X-ray tube ($\lambda = 0.71073$ Å). The frames were integrated with the Bruker *SAINT* software package (Bruker, 2012). Data were corrected for absorption effects using the multi-scan method (*SADABS*; Sheldrick, 1996). The structure was solved and refined using the Bruker *SHELXTL* software package (Sheldrick, 2015).

The figures have been drawn at the 50% ellipsoid probability level (Farrugia, 2012). CCDC reference number 2019890 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

Fractional atomic c	oordinates and	isotropic or	equivalent	isotropic	displacement	parameters	$(Å^2)$?)
---------------------	----------------	--------------	------------	-----------	--------------	------------	---------	----

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0551 (2)	0.15843 (11)	0.45568 (10)	0.0109 (3)	
C2	0.0302 (2)	0.23438 (11)	0.50409 (10)	0.0109 (3)	
C3	0.0676 (3)	0.24585 (11)	0.58398 (10)	0.0118 (3)	
H3	0.044989	0.204050	0.622953	0.014*	
C4	0.1464 (2)	0.33192 (10)	0.59713 (10)	0.0106 (3)	
C5	0.2090 (3)	0.37785 (11)	0.67020 (10)	0.0112 (3)	
C6	0.2975 (2)	0.47079 (11)	0.66033 (10)	0.0101 (3)	
C7	0.2934 (2)	0.50827 (10)	0.57991 (10)	0.0093 (3)	
C8	0.3650 (2)	0.63184 (10)	0.51260 (10)	0.0092 (3)	
C9	0.2907 (2)	0.59109 (10)	0.44200 (10)	0.0097 (3)	
H9A	0.286091	0.622433	0.394992	0.012*	
C10	0.2233 (2)	0.50464 (11)	0.43996 (10)	0.0095 (3)	
C11	0.2231 (2)	0.46006 (10)	0.51131 (10)	0.0085 (3)	
C12	0.1552 (2)	0.37072 (11)	0.52343 (10)	0.0095 (3)	
C13	0.4498 (2)	0.72499 (10)	0.51886 (10)	0.0096 (3)	
C14	0.1589 (2)	0.46574 (10)	0.35822 (10)	0.0092 (3)	
C15	0.8745 (2)	-0.19201 (10)	-0.04981 (10)	0.0101 (3)	
C16	0.8334 (2)	-0.10395 (10)	-0.06229 (10)	0.0091 (3)	
C17	0.8475 (2)	-0.05705 (10)	-0.12909 (10)	0.0097 (3)	
H17	0.881560	-0.075253	-0.179338	0.012*	
C18	0.8015 (2)	0.02382 (11)	-0.10895 (10)	0.0096 (3)	
C19	0.7972 (2)	0.09630(11)	-0.15653 (10)	0.0107 (3)	
C20	0.7502 (2)	0.17425 (11)	-0.11221 (9)	0.0095 (3)	
C21	0.6921 (2)	0.16752 (10)	-0.02863 (9)	0.0083 (3)	
C22	0.5978 (2)	0.24379 (10)	0.07438 (9)	0.0089 (3)	
C23	0.6126 (2)	0.17681 (10)	0.12466 (10)	0.0099 (3)	
H23	0.584351	0.182354	0.178455	0.012*	
C24	0.6684 (2)	0.10142 (10)	0.09720 (10)	0.0088 (3)	

C25	0.7027 (2)	0.09418 (10)	0.01609 (9)	0.0077 (3)
C26	0.7593 (2)	0.02301 (10)	-0.02847 (9)	0.0085 (3)
C27	0.5362 (2)	0.32716 (10)	0.09921 (9)	0.0093 (3)
C28	0.6930(2)	0.03531 (11)	0.15995 (10)	0.0098 (3)
N1	0.0833 (2)	0.31067 (9)	0.46858 (9)	0.0101 (3)
N2	0.3651 (2)	0.59035 (9)	0.58038 (8)	0.0090 (3)
Н2	0.084 (3)	0.3176 (13)	0.4186 (13)	0.015 (5)*
N3	0.7800 (2)	-0.05460(9)	-0.00212(8)	0.0086 (3)
N4	0.6427 (2)	0.23938 (9)	-0.00095(8)	0.0086 (3)
H4	0.748(4)	-0.0682(15)	0.0449(15)	0.030 (6)*
01	-0.06633(18)	0 16506 (7)	0.38093(7)	0.0128(3)
02	-0.11654(18)	0.10300(7) 0.09119(7)	0.38033(7) 0.48944(7)	0.0120(3)
03	0.11034(10)	0.34051(8)	0.73630(7)	0.0150(3)
04	0.2007(2)	0.54951(0) 0.51241(7)	0.73030(7)	0.0109(3)
04	0.57574(18)	0.31241(7) 0.75182(7)	0.71090(7) 0.58571(7)	0.0127(3)
05	0.32338(18)	0.75162(7)	0.30371(7)	0.0120(2)
00	0.4403(2)	0.70708 (8)	0.43848 (7)	0.0104(3)
07	0.06140 (18)	0.50722 (8)	0.31437(7)	0.0130 (3)
08	0.21731 (18)	0.39705 (7)	0.34077 (7)	0.0125 (3)
09	0.87842 (18)	-0.21856 (8)	0.01978 (7)	0.0136 (3)
010	0.90747 (19)	-0.23220 (8)	-0.11050 (7)	0.0151 (3)
011	0.8269 (2)	0.10239 (8)	-0.22705 (7)	0.0171 (3)
012	0.76438 (18)	0.24116 (7)	-0.14539 (7)	0.0125 (3)
013	0.53948 (18)	0.38361 (7)	0.04724 (7)	0.0123 (3)
O14	0.48287 (18)	0.33522 (7)	0.16717 (7)	0.0122 (2)
015	0.74044 (19)	0.06498 (8)	0.22821 (7)	0.0151 (3)
O16	0.66342 (19)	-0.04197 (7)	0.14100 (7)	0.0134 (3)
O17	0.2228 (2)	0.21676 (8)	0.26500 (8)	0.0155 (3)
H171	0.173 (4)	0.2165 (17)	0.2180 (17)	0.042 (8)*
H172	0.130 (4)	0.1974 (16)	0.2943 (15)	0.032 (7)*
O18	0.7774 (2)	0.29042 (9)	0.29412 (8)	0.0191 (3)
H181	0.851 (4)	0.3119 (16)	0.2567 (16)	0.035 (7)*
H182	0.823 (4)	0.2513 (19)	0.3180 (17)	0.048 (8)*
019	0.4610 (2)	0.08055 (9)	0.37538 (8)	0.0166 (3)
H191	0.352 (4)	0.0580 (17)	0.3624 (15)	0.038 (8)*
H192	0.460 (4)	0.1327 (18)	0.3851 (15)	$0.037(7)^{*}$
020	1 07981 (19)	-0.01918(8)	0 36462 (8)	0.0138(3)
H201	1 099 (4)	-0.0466(18)	0.3251(18)	$0.049(9)^{*}$
H202	1.095 (4)	-0.0465(17)	0.3251(10) 0.4056(17)	0.041(8)*
021	0.6842(2)	-0.11057(9)	0.4050(17) 0.28711(8)	0.041(0)
U211	0.0042(2)	-0.1501(18)	0.20711(0)	0.0171(3)
11211	0.001(4)	0.1301(18) 0.0007(17)	0.2910(13) 0.2280(17)	$0.037(8)^{*}$
П212 022	0.079(4)	-0.0997(17)	0.2380(17) 0.45522(8)	$0.042(8)^{\circ}$
022	0.01/3(2)	-0.07002(9)	0.43323(0)	0.0218(3)
H221	0.010(4)	-0.056/(18)	0.4984 (18)	0.048 (9)*
H222	0.563 (4)	-0.1236(19)	0.4537 (16)	0.04/(8)*
023	0.3675 (2)	0.26664 (9)	-0.13577 (9)	0.0155 (3)
H231	0.307 (4)	0.2808 (16)	-0.1708 (16)	0.033 (7)*
H232	0.291 (4)	0.2457 (17)	-0.1028 (16)	0.039 (8)*
O24	0.6812 (2)	0.39272 (9)	-0.22016 (8)	0.0182 (3)

H241	0.768 (4)	0.4241 (17)	-0.2383 (15)	0.036 (8)*	
H242	0.678 (4)	0.3485 (19)	-0.2459 (16)	0.043 (8)*	
O25	0.34868 (19)	0.45056 (8)	-0.11501 (8)	0.0143 (3)	
H251	0.367 (4)	0.5014 (18)	-0.0984 (16)	0.040 (8)*	
H252	0.336 (4)	0.4522 (17)	-0.1628 (18)	0.043 (8)*	
O26	0.7643 (2)	0.51788 (8)	-0.07189 (8)	0.0177 (3)	
H261	0.865 (5)	0.5441 (19)	-0.0459 (18)	0.054 (9)*	
H262	0.684 (4)	0.5490 (17)	-0.0700 (15)	0.035 (7)*	
O27	0.9930 (2)	0.37549 (9)	-0.04551 (8)	0.0152 (3)	
H271	1.082 (4)	0.3989 (18)	-0.0735 (16)	0.043 (8)*	
H272	1.021 (4)	0.3284 (17)	-0.0340 (14)	0.031 (7)*	
O28	0.9475 (2)	0.36727 (10)	0.17111 (9)	0.0212 (3)	
H281	1.013 (5)	0.333 (2)	0.1450 (19)	0.067 (10)*	
H282	1.030 (5)	0.409 (2)	0.182 (2)	0.069 (11)*	
O29	0.6350 (2)	0.24139 (9)	-0.30317 (9)	0.0210 (3)	
H291	0.640 (4)	0.2383 (16)	-0.3524 (16)	0.034 (7)*	
H292	0.711 (4)	0.2134 (17)	-0.2848 (16)	0.039 (8)*	
Cal	0.47149 (5)	0.33132 (2)	0.29935 (2)	0.00881 (8)	
Ca2	0.75264 (5)	0.02017 (2)	0.35950 (2)	0.00913 (8)	
Ca3	0.63978 (5)	0.37014 (2)	-0.08465 (2)	0.00934 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0099 (8)	0.0095 (8)	0.0132 (8)	0.0014 (7)	0.0000 (6)	-0.0006 (6)
C2	0.0104 (8)	0.0087 (8)	0.0134 (8)	-0.0004 (7)	0.0022 (6)	0.0016 (6)
C3	0.0136 (8)	0.0088 (8)	0.0126 (8)	-0.0004 (7)	0.0013 (7)	0.0009 (6)
C4	0.0111 (8)	0.0075 (8)	0.0126 (8)	-0.0004 (6)	-0.0009(7)	0.0013 (6)
C5	0.0119 (8)	0.0090 (8)	0.0126 (8)	0.0011 (7)	-0.0006 (7)	0.0010 (6)
C6	0.0095 (8)	0.0113 (8)	0.0096 (8)	0.0026 (7)	0.0007 (6)	-0.0005 (6)
C7	0.0081 (8)	0.0078 (8)	0.0119 (8)	0.0010 (6)	0.0006 (6)	0.0012 (6)
C8	0.0093 (8)	0.0074 (8)	0.0109 (8)	0.0009 (6)	0.0011 (6)	0.0008 (6)
C9	0.0099 (8)	0.0101 (8)	0.0090 (8)	0.0013 (7)	0.0001 (6)	0.0016 (6)
C10	0.0071 (8)	0.0105 (8)	0.0108 (8)	0.0013 (6)	0.0004 (6)	-0.0003 (6)
C11	0.0068 (8)	0.0077 (8)	0.0108 (8)	0.0003 (6)	0.0004 (6)	-0.0002 (6)
C12	0.0071 (8)	0.0093 (8)	0.0117 (8)	0.0005 (6)	0.0005 (6)	-0.0013 (6)
C13	0.0094 (8)	0.0081 (8)	0.0110 (8)	0.0002 (6)	0.0019 (6)	-0.0007 (6)
C14	0.0083 (8)	0.0085 (8)	0.0096 (8)	-0.0034 (6)	0.0022 (6)	-0.0003 (6)
C15	0.0061 (8)	0.0084 (8)	0.0152 (8)	-0.0010 (6)	-0.0001 (6)	0.0000 (6)
C16	0.0072 (8)	0.0095 (8)	0.0103 (8)	0.0008 (6)	-0.0006 (6)	-0.0024 (6)
C17	0.0080 (8)	0.0093 (8)	0.0115 (8)	0.0009 (6)	0.0000 (6)	-0.0024 (6)
C18	0.0090 (8)	0.0105 (8)	0.0091 (8)	0.0012 (6)	-0.0012 (6)	-0.0011 (6)
C19	0.0117 (8)	0.0113 (8)	0.0091 (8)	0.0023 (7)	-0.0001 (6)	-0.0011 (6)
C20	0.0094 (8)	0.0107 (8)	0.0082 (8)	0.0014 (6)	-0.0012 (6)	0.0001 (6)
C21	0.0070 (8)	0.0081 (8)	0.0091 (8)	-0.0007 (6)	-0.0009 (6)	-0.0010 (6)
C22	0.0086 (8)	0.0083 (8)	0.0093 (8)	0.0001 (6)	-0.0005 (6)	-0.0001 (6)
C23	0.0112 (8)	0.0102 (8)	0.0079 (8)	0.0003 (7)	0.0003 (6)	-0.0005 (6)
C24	0.0071 (8)	0.0095 (8)	0.0093 (8)	-0.0002(6)	-0.0011 (6)	0.0004 (6)

C25	0.0054 (7)	0.0079 (8)	0.0093 (8)	0.0002 (6)	-0.0011 (6)	0.0009 (6)
C26	0.0064 (8)	0.0090 (8)	0.0098 (8)	0.0004 (6)	-0.0008 (6)	0.0003 (6)
C27	0.0090 (8)	0.0087 (8)	0.0093 (8)	-0.0008 (6)	-0.0012 (6)	-0.0009 (6)
C28	0.0100 (8)	0.0106 (8)	0.0089 (8)	0.0006 (7)	0.0024 (6)	0.0017 (6)
N1	0.0122 (7)	0.0086 (7)	0.0087 (7)	-0.0003 (6)	0.0002 (6)	-0.0008 (6)
N2	0.0079 (7)	0.0079 (7)	0.0112 (7)	0.0008 (5)	0.0001 (5)	0.0004 (5)
N3	0.0103 (7)	0.0074 (7)	0.0080 (7)	0.0004 (6)	0.0005 (5)	0.0004 (5)
N4	0.0086 (7)	0.0084 (7)	0.0088 (7)	0.0015 (5)	-0.0003(5)	0.0003 (5)
O1	0.0168 (6)	0.0104 (6)	0.0104 (6)	-0.0005 (5)	0.0003 (5)	0.0006 (5)
O2	0.0190 (7)	0.0086 (6)	0.0117 (6)	-0.0022 (5)	0.0001 (5)	0.0010 (5)
O3	0.0247 (7)	0.0132 (6)	0.0115 (6)	-0.0004 (5)	-0.0031 (5)	0.0037 (5)
O4	0.0152 (6)	0.0110 (6)	0.0111 (6)	-0.0003 (5)	-0.0018 (5)	-0.0002 (5)
O5	0.0172 (6)	0.0082 (6)	0.0096 (6)	-0.0005 (5)	-0.0016 (5)	-0.0004 (5)
O6	0.0270 (7)	0.0093 (6)	0.0108 (6)	-0.0036 (5)	-0.0029 (5)	0.0029 (5)
07	0.0153 (6)	0.0127 (6)	0.0108 (6)	0.0022 (5)	-0.0022 (5)	0.0006 (5)
08	0.0133 (6)	0.0115 (6)	0.0126 (6)	0.0020 (5)	0.0008 (5)	-0.0026 (5)
09	0.0154 (6)	0.0116 (6)	0.0142 (6)	0.0027 (5)	0.0016 (5)	0.0039 (5)
O10	0.0199 (7)	0.0110 (6)	0.0150 (6)	0.0052 (5)	-0.0014 (5)	-0.0032 (5)
O11	0.0295 (7)	0.0152 (6)	0.0085 (6)	0.0080 (6)	0.0053 (5)	0.0013 (5)
O12	0.0185 (6)	0.0098 (6)	0.0095 (6)	0.0028 (5)	0.0014 (5)	0.0024 (5)
O13	0.0193 (7)	0.0092 (6)	0.0096 (6)	0.0051 (5)	0.0026 (5)	0.0015 (5)
O14	0.0161 (6)	0.0120 (6)	0.0088 (6)	0.0022 (5)	0.0024 (5)	-0.0006 (5)
O15	0.0236 (7)	0.0125 (6)	0.0092 (6)	0.0029 (5)	-0.0010 (5)	0.0009 (5)
O16	0.0206 (7)	0.0088 (6)	0.0108 (6)	0.0020 (5)	0.0022 (5)	0.0016 (5)
O17	0.0171 (7)	0.0154 (7)	0.0123 (6)	-0.0029 (5)	-0.0003 (6)	-0.0010 (5)
O18	0.0175 (7)	0.0242 (8)	0.0178 (7)	0.0091 (6)	0.0042 (6)	0.0068 (6)
O19	0.0143 (7)	0.0103 (7)	0.0247 (7)	0.0012 (6)	0.0002 (6)	-0.0026 (5)
O20	0.0164 (7)	0.0133 (6)	0.0116 (6)	0.0024 (5)	0.0001 (5)	-0.0013 (5)
O21	0.0323 (8)	0.0115 (7)	0.0108 (7)	-0.0053 (6)	-0.0008 (6)	0.0016 (5)
O22	0.0384 (9)	0.0119 (7)	0.0127 (7)	-0.0064 (6)	0.0073 (6)	-0.0008(5)
O23	0.0165 (7)	0.0166 (7)	0.0128 (7)	0.0001 (6)	-0.0001 (6)	0.0041 (5)
O24	0.0285 (8)	0.0130 (7)	0.0132 (6)	0.0013 (6)	0.0066 (6)	0.0013 (6)
O25	0.0204 (7)	0.0112 (7)	0.0114 (7)	0.0028 (5)	-0.0005 (5)	-0.0005 (5)
O26	0.0158 (7)	0.0117 (6)	0.0255 (7)	0.0033 (6)	-0.0026 (6)	-0.0011 (6)
O27	0.0145 (7)	0.0110 (6)	0.0204 (7)	0.0026 (5)	0.0013 (5)	0.0024 (5)
O28	0.0222 (8)	0.0179 (7)	0.0239 (7)	0.0028 (6)	0.0040 (6)	-0.0008 (6)
O29	0.0337 (9)	0.0179 (7)	0.0101 (7)	0.0007 (6)	-0.0029 (6)	0.0014 (5)
Ca1	0.01094 (16)	0.00795 (16)	0.00727 (16)	0.00073 (13)	0.00000 (12)	-0.00028 (12)
Ca2	0.01122 (17)	0.00735 (16)	0.00825 (16)	-0.00045 (13)	0.00028 (12)	0.00033 (12)
Ca3	0.01280 (17)	0.00742 (16)	0.00802 (16)	0.00195 (13)	0.00126 (13)	0.00085 (12)

Geometric parameters (Å, °)

C1—O2	1.256 (2)	C28—O15	1.255 (2)	
C101	1.274 (2)	C28—O16	1.256 (2)	
C1—C2	1.486 (2)	N1—H2	0.86 (2)	
C1—Ca2 ⁱ	2.8519 (17)	N2—Ca1 ⁱⁱ	2.5069 (14)	
C2—C3	1.372 (2)	N3—H4	0.86 (2)	

C2—N1	1.379 (2)	N4—Ca3	2.5460 (14)
C3—C4	1.415 (2)	O1—Ca2 ⁱ	2.4812 (12)
С3—Н3	0.9500	O2—Ca2 ⁱ	2.5279 (12)
C4—C12	1.405 (2)	O4—Ca1 ⁱⁱ	2.5928 (12)
C4—C5	1.445 (2)	O5—Ca1 ⁱⁱ	2.3784 (12)
C5—O3	1.217 (2)	O8—Ca1	2.3137 (12)
C5—C6	1.538 (2)	012—Ca3	2.5703 (12)
C6—O4	1 216 (2)	013—Ca3	2 3963 (12)
C6—C7	1.500(2)	014—Cal	2.2514(12)
C7—N2	1.334(2)	015—Ca2	2.2511(12) 2.3522(12)
C7-C11	1.331(2) 1.411(2)	017 - 012	2.3522(12) 2 3694(13)
C8—N2	1.411(2) 1.337(2)	017 - 017	2.3074(13)
C_{0}	1.337(2) 1.303(2)	017 H172	0.85(3)
C_{0}	1.595(2) 1.520(2)	017 - 11172 018 Col	0.80(3)
$C_0 = C_{10}$	1.320(2) 1.302(2)	010 - Cal	2.3143(14)
C_{9}	1.392 (2)		0.88(3)
C10 C11	0.9300	010 6-2	0.64(3)
	1.414(2)	019—Ca2	2.3894 (14)
C10—C14	1.529 (2)	019—H191	0.81 (3)
	1.458 (2)	019—H192	0.85 (3)
C12—NI	1.350 (2)	020—Ca2	2.4382 (13)
C13—O6	1.244 (2)	O20—H201	0.82 (3)
C13—O5	1.262 (2)	O20—H202	0.84 (3)
C14—07	1.241 (2)	O21—Ca2	2.3824 (14)
C14—O8	1.260 (2)	O21—H211	0.80 (3)
C15—O10	1.255 (2)	O21—H212	0.85 (3)
C15—O9	1.261 (2)	O22—Ca2	2.3383 (14)
C15—C16	1.491 (2)	O22—H221	0.76 (3)
C16—C17	1.369 (2)	O22—H222	0.87 (3)
C16—N3	1.380 (2)	O23—Ca3	2.4362 (14)
C17—C18	1.416 (2)	O23—H231	0.76 (3)
С17—Н17	0.9500	O23—H232	0.83 (3)
C18—C26	1.413 (2)	O24—Ca3	2.3607 (13)
C18—C19	1.425 (2)	O24—H241	0.81 (3)
C19—O11	1.229 (2)	O24—H242	0.82 (3)
C19—C20	1.530 (2)	O25—Ca3	2.5787 (14)
C20—O12	1.210 (2)	O25—H251	0.85 (3)
C20—C21	1.497 (2)	O25—H252	0.81 (3)
C21—N4	1.331 (2)	O26—Ca3	2.3962 (14)
C21—C25	1.414 (2)	O26—H261	0.86 (3)
C22—N4	1.336 (2)	O26—H262	0.80 (3)
C22—C23	1.391 (2)	O27—Ca3	2.4924 (14)
C22—C27	1.517 (2)	O27—H271	0.85 (3)
C23—C24	1.399 (2)	O27—H272	0.83 (3)
C23—H23	0.9500	O28—H281	0.89 (4)
C24—C25	1.416 (2)	O28—H282	0.83 (4)
C24—C28	1.531 (2)	029—H291	0.84(3)
$C_{25} - C_{26}$	1 468 (2)	029—H292	0.79(3)
C26—N3	1 349 (2)	Ca2—H212	2.77 (3)
	···· ·· (~)		

C27—O14	1.241 (2)	Ca3—H242	2.79 (3)
C27—O13	1.270 (2)		
O2—C1—O1	122.57 (16)	Ca2—O20—H202	108.7 (19)
O2—C1—C2	119.37 (15)	H201—O20—H202	111 (3)
01—C1—C2	118.05 (15)	Ca2—O21—H211	131.1 (19)
O2—C1—Ca2 ⁱ	62.38 (9)	Ca2—O21—H212	108.2 (18)
O1—C1—Ca2 ⁱ	60.30 (9)	H211—O21—H212	104 (2)
C2—C1—Ca2 ⁱ	174.96 (12)	Ca2—O22—H221	122 (2)
C3—C2—N1	108.35 (15)	Ca2—O22—H222	133.1 (18)
C3—C2—C1	131.39 (16)	H221—O22—H222	105 (3)
N1—C2—C1	120.24 (15)	Ca3—O23—H231	115.6 (19)
C2—C3—C4	106.75 (15)	Ca3—O23—H232	116.1 (18)
С2—С3—Н3	126.6	H231—O23—H232	108 (3)
С4—С3—Н3	126.6	Ca3—O24—H241	125.7 (19)
C12—C4—C3	107.73 (15)	Ca3—O24—H242	113.0 (19)
C12—C4—C5	122.41 (15)	H241—O24—H242	104 (3)
C3-C4-C5	129.85 (15)	Ca3 = 0.25 = H251	114.2 (18)
03-C5-C4	126.34 (16)	Ca3 = 0.25 = H252	106(2)
03-05-06	118 97 (15)	$H_{251} = 0.25 = H_{252}$	100(2)
C4-C5-C6	114 67 (14)	$C_{a3} = 0.26 = H_{261}$	131(2)
04	120.52(15)	Ca3_026_H262	1155(19)
04-C6-C5	120.02(15) 120.10(15)	$H_{261} = 0.26 = H_{262}$	105 (3)
C7-C6-C5	119 34 (14)	$C_{a3} = 0.027 = H_{271}$	122.3(18)
N_{2} C7 C11	$124 \ 30 \ (15)$	$C_{a3} = 0.27 = H_{272}$	1122.3(10) 1124(17)
$N_2 - C_7 - C_6$	113 14 (14)	$H_{271} = 0.27 = H_{272}$	107(2)
$C_{11} - C_{7} - C_{6}$	122.55(15)	$H_{281} = 0.28 = H_{282}$	107(2) 103(3)
$N_{2} = C_{8} = C_{9}$	122.33(15) 121.27(15)	$H_{201} = 0.20 = H_{202}$	103(3) 107(3)
$N_2 = C_8 = C_{13}$	115 32 (14)	014-021 - 08	107(3) 110 58(4)
C_{9} C_{8} C_{13}	113.32(14) 123.41(15)	$014 - C_{21} - 018$	83 93 (5)
$C_{10} - C_{9} - C_{8}$	120.33(15)	$08-C_{2}1-018$	160.87(5)
C10 - C9 - H9A	110.8	014—Ca1—017	81.08 (5)
	119.8	$08-C_{2}1-017$	84.33 (5)
C_{0} C_{10} C_{11}	119.8	018-01-017	110.98(5)
$C_{2} = C_{10} = C_{14}$	115.60(14)	013 - Ca1 - 017	147.08(3)
$C_{11} = C_{10} = C_{14}$	125 56 (15)	$08-01-05^{ii}$	92 68 (4)
C7 - C11 - C10	125.50(15) 116.10(15)	018-01-05	79 85 (5)
C7-C11-C12	115.64(14)	$017 - C_{2}1 - 05^{ii}$	79.85 (5) 78.35 (4)
C_{10} C_{11} C_{12}	128 24 (15)	017 - Ca1 - 03	139 18 (5)
N1 C12 C4	126.24(15) 106.95(15)	$O_{14} = Ca_{11} = N_{2}$	80.01 (4)
N1 = C12 = C4	100.93(15)	$0.18 \text{ Col} \text{ N2}^{ii}$	80.01 (4)
C_{12} C_{12} C_{11}	127.93(15) 125.07(15)	$017 \text{ Cal} \text{ N2}^{ii}$	13074(5)
06 C13 05	125.07(15) 126.02(15)	O_1^{ii} Col N2 ⁱⁱ	139.74(3)
06	117 71 (14)	0.14 Ca1 0.14	79 80 (4)
05 - 013 - 08	116.27(14)	$08-C_{2}1-0^{ii}$	80 02 (A)
05 - 015 - 08	126.49 (15)	$018 - 01 = 04^{ii}$	80.92 (4)
07 - 014 - 00	116 37 (15)	$017 Ca1 04^{ii}$	1/0 80 (/)
0^{-14} 0^{-14} 0^{-10}	110.37(13) 117.05(14)	$O_1 = Ca_1 = O_4$	147.07 (4)
00-014-010	11/.03(14)	0.0 - 0.01 - 0.04	120.23 (4)

O10—C15—O9	126.01 (16)	N2 ⁱⁱ —Ca1—O4 ⁱⁱ	62.59 (4)
O10-C15-C16	115.89 (15)	O22—Ca2—O15	148.18 (5)
O9—C15—C16	118.07 (15)	O22—Ca2—O21	78.62 (5)
C17—C16—N3	108.57 (14)	O15—Ca2—O21	77.75 (5)
C17—C16—C15	129.10 (15)	O22—Ca2—O19	81.60 (5)
N3—C16—C15	122.28 (15)	O15—Ca2—O19	87.27 (5)
C16—C17—C18	106.85 (15)	O21—Ca2—O19	110.91 (5)
С16—С17—Н17	126.6	O22—Ca2—O20	98.71 (5)
С18—С17—Н17	126.6	015—Ca2—020	98.27 (5)
C26—C18—C17	107.48 (14)	O21—Ca2—O20	80.94 (5)
C_{26} C_{18} C_{19}	122.96 (15)	019—Ca2— 020	167.84 (5)
C17 - C18 - C19	129.55 (15)	0.22—Ca2—O1 ⁱⁱⁱ	127.21(5)
011 - C19 - C18	127.61 (16)	015—Ca2— 01 ⁱⁱⁱ	81 48 (4)
011 - C19 - C20	118 19 (15)	$021 - Ca2 - 01^{iii}$	151 55 (5)
C18 - C19 - C20	114 20 (14)	019—Ca2— 01 ⁱⁱⁱ	87 10 (5)
012 - C20 - C21	121.02(15)	$020 - Ca^2 - 01^{iii}$	83.06 (4)
012 - 020 - 021	118 84 (15)	020 - 012 - 01 $022 - 022 - 02^{iii}$	75 46 (5)
$C_{21} = C_{20} = C_{19}$	120.12(14)	015 —Ca2— 02^{iii}	133.97(4)
N4-C21-C25	120.12 (11)	$021 - Ca^2 - 02^{iii}$	135.37(1) 145.39(5)
N4-C21-C20	112 30 (14)	$019 - C_{2}^{2} - 02^{2}$	87.61.(5)
C_{25} C_{21} C_{20}	122.68 (15)	$020 - Ca^2 - 02^{iii}$	80 74 (4)
N4-C22-C23	122.00(15) 121.19(15)	01^{iii} —Ca2—O2 ⁱⁱⁱ	52 58 (4)
N4-C22-C27	11453(14)	$022 - Ca^2 - C1^{iii}$	101.03(5)
C^{23} C^{22} C^{27}	124 27 (15)	015-022 = 012 = 01	107.87(5)
$C_{23} = C_{23} = C_{24}$	120.98 (15)	0^{21} 0^{22} 0^{21} 0	167.67(5) 162.54(5)
$C_{22} = C_{23} = C_{24}$	119.5	019-02	86 13 (5)
C_{24} C_{23} H_{23}	119.5	020-02 01	81 88 (5)
$C_{23} = C_{23} = C_{23}$	118.04 (15)	020 - Ca2 - C1	2649(4)
C_{23} C_{24} C_{25} C_{23} C_{24} C_{28}	115 57 (14)	0^{2} 0^{2	26.49(4)
$C_{25} - C_{24} - C_{28}$	126 36 (14)	$O_2^2 - C_{a2}^2 - C_1^2$	94.6 (6)
$C_{23} = C_{24} = C_{26}$	115.00 (15)	$O_{22} = Ca_2 = H_{212}$ $O_{15} = C_{22} = H_{212}$	60 7 (6)
$C_{21} = C_{23} = C_{24}$	113.33(13) 114.23(14)	$O_{13} = C_{a2} = H_{212}$	17.0(6)
$C_{21} = C_{23} = C_{20}$	120 67 (15)	$O_{21} = Ca_{2} = H_{212}$	17.0(0) 107.9(6)
$N_{24} = C_{25} = C_{20}$	129.07(13) 106.02(14)	$O_{19} = Ca_2 = H_{212}$	107.9 (0)
$N_{3} = C_{20} = C_{10}$	100.32(14) 127.74(15)	$O_{20} = Ca_{2} = H_{212}$	1377(6)
113 - 220 - 223	127.74(15) 125.34(15)	$O_1 = Ca_2 = H_2 I_2$	160 4 (6)
014 027 013	123.34(15)	$C_{2} = C_{2} = C_{12}$	160.4 (0)
014 - 027 - 013	124.01(13) 118 70 (14)	C1 - Ca2 - 11212	100.3(0)
014 - 027 - 022	116.79(14) 116.58(14)	024 - Ca3 - 020	161.70(5)
015 - 027 - 022	110.36(14) 125.21(15)	024 - Ca3 - 013	101.79(3)
015 - 028 - 010	123.31(13) 114.02(14)	020 - Ca3 - 013	83.73 (3)
015 - 028 - 024	114.92(14) 110.76(14)	024 - Ca3 - 023	82.30 (3)
010 - 020 - 024	119.70 (14)	0_{20} Ca3 0_{23}	144.90(3)
$C_{12} = N_1 = C_2$	110.20(13) 124.5(14)	013 - 023 - 023	90.20 (3) 06.15 (5)
C_{12} N_1 H_2	124.3(14)	$O_2 = O_2 $	75.12 (5)
C_2 — N_1 — H_2 C_7 N_2 C_8	124.9 (14)	020 - 0a3 - 027	13.13(3)
C_{1} N2 C_{1}	119.04 (14)	$O_{13} = C_{a3} = O_{27}$	95.21 (4) 128.25 (5)
$C / - N 2 - C a 1^{"}$	123.03 (11)	023 - 027	138.33 (5)
C8—N2—Ca1"	117.70(11)	U24—Ca3—N4	132.11 (5)

C26—N3—C16	110.18 (14)	O26—Ca3—N4	137.02 (5)
C26—N3—H4	119.6 (16)	O13—Ca3—N4	64.53 (4)
C16—N3—H4	129.8 (16)	O23—Ca3—N4	73.39 (5)
C21—N4—C22	118.67 (14)	O27—Ca3—N4	77.41 (5)
C21—N4—Ca3	122.66 (11)	O24—Ca3—O12	70.98 (4)
C22—N4—Ca3	118.65 (11)	O26—Ca3—O12	134.27 (5)
C1—O1—Ca2 ⁱ	93.21 (10)	O13—Ca3—O12	126.46 (4)
C1—O2—Ca2 ⁱ	91.50 (10)	O23—Ca3—O12	69.44 (4)
C6-O4-Ca1 ⁱⁱ	120.35 (11)	O27—Ca3—O12	70.85 (4)
C13—O5—Ca1 ⁱⁱ	124.78 (10)	N4—Ca3—O12	62.01 (4)
C14—O8—Ca1	146.93 (11)	O24—Ca3—O25	81.28 (5)
C20—O12—Ca3	121.20 (11)	O26—Ca3—O25	73.38 (5)
C27—O13—Ca3	125.58 (10)	O13—Ca3—O25	81.59 (4)
C27—O14—Ca1	161.86 (11)	O23—Ca3—O25	72.78 (5)
C28—O15—Ca2	139.74 (11)	O27—Ca3—O25	148.49 (5)
Ca1—O17—H171	115.5 (18)	N4—Ca3—O25	127.07 (4)
Ca1—O17—H172	125.2 (16)	O12—Ca3—O25	135.26 (4)
H171—O17—H172	107 (2)	O24—Ca3—H242	15.8 (6)
Ca1—O18—H181	117.1 (16)	O26—Ca3—H242	98.7 (6)
Ca1-018-H182	129 (2)	013—Ca3—H242	168.8 (6)
H181—O18—H182	113 (3)	O23—Ca3—H242	72.2 (6)
Ca2—O19—H191	125.4 (19)	O27—Ca3—H242	95.9 (6)
Ca2—O19—H192	123.7 (18)	N4—Ca3—H242	116.6 (6)
H191—O19—H192	109 (3)	O12—Ca3—H242	56.6 (6)
Ca2 = O20 = H201	112 (2)	025—Ca3—H242	89.7 (6)
0		0.20 0.00 112.12	0,1,1 (0)
O2—C1—C2—C3	4.2 (3)	C27—C22—C23—C24	179.30 (15)
01-C1-C2-C3	-177.26 (18)	C22—C23—C24—C25	-2.2(2)
O2—C1—C2—N1	-174.51 (15)	C22—C23—C24—C28	175.81 (15)
O1—C1—C2—N1	4.0 (2)	N4—C21—C25—C24	-3.8(2)
N1—C2—C3—C4	-0.1 (2)	C20—C21—C25—C24	171.68 (15)
C1—C2—C3—C4	-178.94(18)	N4—C21—C25—C26	179.55 (15)
C2-C3-C4-C12	-0.2 (2)	C20—C21—C25—C26	-5.0(2)
C2-C3-C4-C5	179.25 (18)	C23—C24—C25—C21	4.9 (2)
C12—C4—C5—O3	177.69 (17)	C28—C24—C25—C21	-172.84(15)
C3—C4—C5—O3	-1.7 (3)	C23—C24—C25—C26	-179.05 (16)
C12—C4—C5—C6	-3.6(2)	C28—C24—C25—C26	3.2 (3)
C3—C4—C5—C6	176.96 (17)	C17—C18—C26—N3	0.23 (19)
O3—C5—C6—O4	7.4 (3)	C19—C18—C26—N3	-179.13 (15)
C4—C5—C6—O4	-171.33 (16)	C17—C18—C26—C25	-179.41 (15)
Q3—C5—C6—C7	-174.98(16)	C19—C18—C26—C25	1.2 (3)
C4—C5—C6—C7	6.2 (2)	C21—C25—C26—N3	-179.48(16)
04—C6—C7—N2	-5.9(2)	C24—C25—C26—N3	4.4 (3)
C5—C6—C7—N2	176.54 (14)	C21—C25—C26—C18	0.1 (2)
04	173.13 (16)	C24—C25—C26—C18	-176.01(16)
C5—C6—C7—C11	-4.4 (2)	N4—C22—C27—O14	176.56 (15)
N2-C8-C9-C10	-3.1 (3)	C23—C22—C27—O14	-4.9 (2)
C13—C8—C9—C10	177.06 (15)	N4—C22—C27—O13	-2.0(2)
			$ \sqrt{-1}$

C8—C9—C10—C11	3.0 (2)	C23—C22—C27—O13	176.54 (15)
C8—C9—C10—C14	-175.77 (15)	C23—C24—C28—O15	-28.3 (2)
N2-C7-C11-C10	-2.8 (3)	C25—C24—C28—O15	149.54 (17)
C6—C7—C11—C10	178.32 (15)	C23—C24—C28—O16	150.92 (16)
N2—C7—C11—C12	178.55 (15)	C25—C24—C28—O16	-31.3 (2)
C6—C7—C11—C12	-0.4 (2)	C4—C12—N1—C2	-0.58 (19)
C9—C10—C11—C7	-0.2 (2)	C11—C12—N1—C2	-178.32 (16)
C14—C10—C11—C7	178.43 (15)	C3—C2—N1—C12	0.5 (2)
C9-C10-C11-C12	178.31 (16)	C1—C2—N1—C12	179.42 (15)
C14—C10—C11—C12	-3.1 (3)	C11—C7—N2—C8	2.7 (3)
C3—C4—C12—N1	0.49 (19)	C6—C7—N2—C8	-178.26 (14)
C5-C4-C12-N1	-179.02 (16)	C11—C7—N2—Ca1 ⁱⁱ	-171.66 (12)
C3—C4—C12—C11	178.31 (16)	C6—C7—N2—Ca1 ⁱⁱ	7.34 (19)
C5-C4-C12-C11	-1.2 (3)	C9—C8—N2—C7	0.3 (2)
C7—C11—C12—N1	-179.28 (16)	C13—C8—N2—C7	-179.89 (15)
C10-C11-C12-N1	2.2 (3)	C9—C8—N2—Ca1 ⁱⁱ	175.00 (12)
C7—C11—C12—C4	3.4 (2)	C13—C8—N2—Ca1 ⁱⁱ	-5.19 (19)
C10-C11-C12-C4	-175.13 (17)	C18—C26—N3—C16	-0.16 (19)
N2-C8-C13-O6	-175.07 (15)	C25—C26—N3—C16	179.48 (16)
C9—C8—C13—O6	4.7 (3)	C17—C16—N3—C26	0.02 (19)
N2-C8-C13-O5	4.8 (2)	C15-C16-N3-C26	177.55 (15)
C9—C8—C13—O5	-175.37 (16)	C25-C21-N4-C22	-0.5 (2)
C9—C10—C14—O7	-42.5 (2)	C20-C21-N4-C22	-176.42 (14)
C11—C10—C14—O7	138.90 (17)	C25-C21-N4-Ca3	177.66 (12)
C9—C10—C14—O8	134.37 (16)	C20-C21-N4-Ca3	1.78 (18)
C11—C10—C14—O8	-44.3 (2)	C23—C22—N4—C21	3.7 (2)
O10-C15-C16-C17	-8.1 (3)	C27—C22—N4—C21	-177.79 (14)
O9—C15—C16—C17	170.08 (16)	C23—C22—N4—Ca3	-174.62 (12)
O10-C15-C16-N3	174.93 (15)	C27—C22—N4—Ca3	3.93 (18)
O9—C15—C16—N3	-6.9 (2)	O2-C1-O1-Ca2 ⁱ	3.95 (18)
N3—C16—C17—C18	0.13 (18)	C2-C1-O1-Ca2 ⁱ	-174.56 (14)
C15—C16—C17—C18	-177.18 (16)	O1—C1—O2—Ca2 ⁱ	-3.87 (17)
C16—C17—C18—C26	-0.22 (19)	$C2-C1-O2-Ca2^{i}$	174.62 (14)
C16—C17—C18—C19	179.08 (17)	C7—C6—O4—Ca1 ⁱⁱ	1.8 (2)
C26—C18—C19—O11	-178.07 (17)	C5—C6—O4—Ca1 ⁱⁱ	179.39 (11)
C17—C18—C19—O11	2.7 (3)	O6—C13—O5—Ca1 ⁱⁱ	177.84 (13)
C26—C18—C19—C20	2.1 (2)	C8—C13—O5—Ca1 ⁱⁱ	-2.1 (2)
C17—C18—C19—C20	-177.06 (16)	O7—C14—O8—Ca1	97.5 (2)
O11—C19—C20—O12	-7.9 (2)	C10-C14-O8-Ca1	-79.0 (2)
C18—C19—C20—O12	171.94 (15)	C21—C20—O12—Ca3	-10.8 (2)
O11—C19—C20—C21	173.47 (15)	C19—C20—O12—Ca3	170.58 (11)
C18—C19—C20—C21	-6.7 (2)	O14—C27—O13—Ca3	-179.65 (12)
O12—C20—C21—N4	6.0 (2)	C22—C27—O13—Ca3	-1.2 (2)
C19—C20—C21—N4	-175.40 (14)	O13—C27—O14—Ca1	-135.4 (3)
O12—C20—C21—C25	-170.03 (15)	C22—C27—O14—Ca1	46.2 (4)

C19—C20—C21—C25	8.6 (2)	O16-C28-O15-Ca2	-14.3 (3)
N4—C22—C23—C24	-2.3 (3)	C24—C28—O15—Ca2	164.88 (12)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H2…O8	0.86 (2)	2.01 (2)	2.7232 (19)	139.6 (19)
N3—H4…O16	0.86 (2)	1.83 (2)	2.6163 (19)	151 (2)
O17—H171···O10 ^{iv}	0.85 (3)	1.91 (3)	2.7543 (18)	170 (3)
O17—H172…O1	0.86 (3)	2.08 (3)	2.9287 (19)	170 (2)
O18—H181···O28	0.88 (3)	1.82 (3)	2.681 (2)	166 (2)
O18—H182…O1 ⁱⁱⁱ	0.84 (3)	1.97 (3)	2.8107 (19)	176 (3)
O19—H191…O20 ⁱ	0.81 (3)	2.10 (3)	2.8789 (19)	161 (3)
O19—H192…O5 ⁱⁱ	0.85 (3)	1.89 (3)	2.7350 (18)	174 (3)
O20—H201…O11 ^v	0.82 (3)	2.00 (3)	2.8221 (18)	173 (3)
O20—H202···O2 ^{vi}	0.84 (3)	1.94 (3)	2.7620 (18)	169 (3)
O21—H211····O29 ^{iv}	0.80 (3)	2.05 (3)	2.845 (2)	173 (3)
O21—H212…O16	0.85 (3)	1.90 (3)	2.7320 (18)	163 (3)
O22—H221···O19 ^{vi}	0.76 (3)	2.26 (3)	2.958 (2)	152 (3)
O22—H222···O6 ^{vii}	0.87 (3)	1.83 (3)	2.6985 (19)	175 (3)
O23—H231···O3 ^{viii}	0.76 (3)	2.10 (3)	2.8398 (19)	164 (3)
O23—H232···O9 ^{iv}	0.83 (3)	1.90 (3)	2.7217 (19)	169 (3)
O24—H241…O7 ^{ix}	0.81 (3)	2.03 (3)	2.8040 (19)	163 (3)
O24—H242···O29	0.82 (3)	1.93 (3)	2.750 (2)	172 (3)
O25—H251…O13 ^{ix}	0.85 (3)	2.02 (3)	2.8578 (18)	168 (3)
O25—H252···O3 ^{viii}	0.81 (3)	2.41 (3)	3.0258 (19)	133 (2)
O25—H252···O4 ^{viii}	0.81 (3)	2.28 (3)	3.0405 (18)	155 (3)
O26—H261···O27 ^x	0.86 (3)	2.11 (3)	2.9018 (19)	154 (3)
O26—H262…O13 ^{ix}	0.80 (3)	2.06 (3)	2.8506 (19)	170 (3)
O27—H271···O25 ⁱⁱⁱ	0.85 (3)	2.08 (3)	2.9022 (19)	164 (3)
O27—H272···O9 ^v	0.83 (3)	1.99 (3)	2.8125 (18)	171 (2)
O28—H281…O10 ^v	0.89 (4)	1.88 (4)	2.721 (2)	159 (3)
O28—H282···O26 ^x	0.83 (4)	2.59 (3)	3.098 (2)	121 (3)
O29—H291…O6 ^{ix}	0.84 (3)	1.85 (3)	2.6582 (19)	160 (3)
O29—H292…O11	0.79 (3)	2.27 (3)	3.021 (2)	159 (3)
O29—H292…O12	0.79 (3)	2.40 (3)	2.7789 (19)	110 (2)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*, -*z*; (v) -*x*+2, -*y*, -*z*; (vi) -*x*+1, -*y*, -*z*+1; (vii) *x*, *y*-1, *z*; (viii) *x*, *y*, *z*-1; (ix) -*x*+1, -*y*+1, -*z*; (x) -*x*+2, -*y*+1, -*z*.