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SUMMARY
Up-down states (UDS) are synchronous cortical events of neuronal activity during non-REM sleep. The
medial entorhinal cortex (MEC) exhibits robust UDS during natural sleep and under anesthesia. However, lit-
tle is known about the generation and propagation of UDS-related activity in the MEC. Here, we dissect the
circuitry underlying UDS generation and propagation across layers in the MEC using both in vivo and in vitro
approaches.Weprovide evidence that layer 3 (L3)MEC is crucial in the generation andmaintenance of UDS in
theMEC. Furthermore, we find that the two sublayers of the L5MEC participate differentially during UDS. Our
findings show that L5b, which receives hippocampal output, is strongly innervated byUDS activity originating
in L3MEC. Our data suggest that L5b acts as a coincidence detector during information transfer between the
hippocampus and the cortex and thereby plays an important role in memory encoding and consolidation.
INTRODUCTION

During non-rapid eye movement (NREM) sleep, many cortical

structures display synchronous activity that is characterized

by slow-wave oscillatory activity (<1 Hz). Slow-wave oscillatory

activity is characterized by alternating between active (depolar-

ized) up states and quiescent (hyperpolarized) down states of

neurons, which constitute a sequence of up-down states

(UDS). UDS were reported to occur in many species and were

detected in several cortical structures (Nir et al., 2011; Steriade

et al., 1993; Wilson and Groves, 1981; for a review, see Tukker

et al., 2020). It has been shown that UDS can entrain entire

cortical columns and propagate between cortical areas as trav-

eling waves (Massimini et al., 2004; Luczak et al., 2007; for a re-

view, see Neske, 2016). The role of UDS is proposed to facilitate

information transfer between memory-encoding structures

such as the hippocampus and memory consolidation struc-

tures in the neocortex (for a review, see Neske, 2016) by influ-

encing synaptic transmission (Bartram et al., 2017) and plas-

ticity (González-Rueda et al., 2018). UDS have been observed

during natural sleep (Vyazovskiy et al., 2011) under anesthesia
C
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(Steriade et al., 1993; Wilson and Groves, 1981) and in brain sli-

ces (Mann et al., 2009; Sanchez-Vives and McCormick, 2000;

Tahvildari et al., 2012). The similarities in the spatiotemporal or-

ganization of UDS in vivo and in vitro enable studies of the un-

derlying circuitry for the generation, propagation, and modula-

tion of UDS at different resolutions by using different

techniques.

The entorhinal cortices situated in the temporal lobe are

known to be an important relay center for neuronal information

between the hippocampus and neocortex. In vivo (Hahn et al.,

2012; Isomura et al., 2006) and in vitroUDS have been described

both in the lateral (Namiki et al., 2013) and medial (Mann et al.,

2009; Tahvildari et al., 2012) parts of the entorhinal cortices.

Themedial entorhinal cortex (MEC) is involved in spatial informa-

tion processing and memory. Recent studies in the MEC ad-

dressed questions pertaining to the stability of spatial maps

(place and grid cells) during sleep (Gardner et al., 2019; Trettel

et al., 2019). Therefore, a better understanding of the local circuit

architecture that could maintain and propagate rhythmic activity

during different sleep cycles and especially during UDS is gain-

ing importance.
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Previous studies provided evidence that UDS activity can be

recorded in vitro in slice preparations of the MEC. Local field po-

tential and single-cell recordings in superficial layers of the MEC

revealed robust slow oscillatory activity indicative of UDS (Mann

et al., 2009; Salkoff et al., 2015; Tahvildari et al., 2012). Excitatory

and inhibitory neurons in layer 2 (L2) and L3 of the MEC were

shown to be active during UDS (Neske et al., 2015; Tahvildari

et al., 2012), and inhibition was demonstrated to play an impor-

tant role in the termination of up states (Craig et al., 2013; Mann

et al., 2009).

Although the circuitry that underlies UDS in the MEC has been

investigated, questions regarding the generation and propaga-

tion of this activity across the laminar architecture of MEC (espe-

cially in the deeper layers) remain unanswered. Using in vivo re-

cordings, in vitro population imaging of calcium activity, and

in vitro multi-patch recordings, we show in this study that the

generation of UDS activity originates in L3 and propagates to

L5 of the MEC. Interestingly, L5 pyramidal cells differentially

participate during UDS in the MEC—in particular, L5b pyramidal

cells, which also receive hippocampal output (S€urmeli et al.,

2015), receive UDS-related input from L3 pyramidal cells,

whereas L5a pyramidal cells are not recruited. This differential

processing of cortical UDS in the deeper layers of theMEC could

have wider implications for the circuitry underlying information

transfer and memory consolidation between the hippocampus

and the cortex (Kitamura et al., 2017; Ohara et al., 2018; Roy

et al., 2017).

RESULTS

Up-Down States in the MEC
We recorded stable in vivoUDS in the MEC of anesthetized wild-

typemice (C57Bl6/n under urethane anesthesia; Figures 1A–1C).

Both the frequency (five recordings from five animals; median

frequency in the first 5 min ± interquartile range [IQR] = 0.1500

± 0.0117, average frequency = 0.1480 Hz; median frequency in

the last 5 min ± IQR = 0.1500 ± 0.0558, average frequency =

0.1613 Hz; p = 0.8175, U = 11, Mann-Whitney U test) and up

state duration (five recordings from five animals; median duration

in first 5 min ± IQR = 1.855 ± 0.3187, average duration = 1.51 s,

median duration in last 5 min ± IQR = 1.5338 ± 0.9538, average

duration = 1.756 s; p = 0.4206,U = 8, Mann-WhitneyU test) were

stable across several minutes of recording (Figure 1D). These

measurements are consistent with previously published reports

on UDS in the MEC under urethane anesthesia (Isomura et al.,

2006; Hahn et al., 2012). Silicon probes were positioned in the

superficial layers of the MEC (recording sites mostly in L3; Fig-

ure 1B) and slow wave oscillations with nested gamma oscilla-

tions were recorded (Figure 1C). We proceeded with an in vitro

model of UDS in the MEC to investigate in more detail the cir-

cuitry that can support the generation and propagation of such

slow wave activity.

Since UDS is a population activity, we decided to usemice ex-

pressing the genetically encoded calcium indicator GCamp6f in

pyramidal cells in the neocortex by breeding these mice with

Nex-Cre mice (Goebbels et al., 2006). This enabled us to image

UDS activity at the population level to test for synchronous acti-

vation of L3 pyramidal cells in our in vitro model (Figure S1). We
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imaged the superficial layers of the MEC in five slices from two

animals and analyzed between 20 and 33 cells per slice. In

sum, we detected 42 synchronous events with coactive cells in

a time window of 1 s. In 50% of these events, we observed

>10 coactive cells (median of active cells ± IQR: 11.5 ± 17; Fig-

ures S1A–S1D).

Up-Down States in L3 MEC
It has been shown previously that several cell types, including

excitatory and inhibitory neurons in the superficial layers of the

MEC, take part in UDS (L1–L3, Mann et al., 2009; Tahvildari

et al., 2012). To further differentiate single-cell activity during

UDS, we used a multi-patch approach and recorded such

slow-wave oscillatory activity simultaneously from two to four

cells in the superficial layers of the MEC (Figures 1E and 1F).

Based on simultaneously recorded L3 and L2 excitatory cells

(L3 = nine cells, L2 = 10 cells; Figures S2A and S2B), we deter-

mined that L3 pyramidal cells were the most active cell popula-

tion. L3 MEC pyramidal cells exhibited a higher spike probability

(L3 = 71.26% ± 11.67%, L2 = 18.41% ± 9.29%, p = 0.0029,

Mann-Whitney U test) and number of spikes per up state (L3 =

5.26 ± 1.18, L2 = 1.24 ± 0.50, p = 0.0042, Mann-Whitney U

test) compared to those in L2 stellate cells (Figure S2B). There-

after we focused only on dorsal MEC L3 pyramidal cells and

extended our analysis by recording from L3 duplets, triplets, or

quadruplets. We quantified the up state duration (1.76 ± 0.14

s, n = 33 cells; Figure 1H, first panel) and frequency (0.087 ±

0.008 Hz, n = 33 cells; Figure 1H, second panel) from L3 pyrami-

dal cells and found that our results were congruent with previ-

ously reported values (Mann et al., 2009; Tahvildari et al., 2012).

LocalMECCircuitry Can Sustain Up-DownState Activity
Next, we askedwhether theMEC alone is endowedwith themin-

imum circuitry necessary to generate and maintain UDS. To this

end, we prepared mini-slices of the MEC by making incisions

and removing the lateral entorhinal cortex (LEC), hippocampus,

and the parahippocampal structures such as the pre- and para-

subiculum. L3 pyramidal cells in the mini-slices of the MEC

showed robust UDS activity reminiscent of that in intact slices.

Up state duration (2.96 ± 0.12 s, n = seven cells; Figure 1H, third

panel) was longer in mini-slices (p = 0.0002, Mann-Whitney U

test), and up state frequency (0.109 ± 0.015Hz, n = seven cells;

Figure 1H, fourth panel) was comparable between mini-slices

and intact slices (p = 0.147, Mann-Whitney U test). Hence, we

conclude that the isolated MEC, and particularly L3, comprises

the circuitry that generates and maintains UDS.

Up-Down States Are Largely Suppressed in the MEC by
Silencing L3
Knowing that L3 MEC is the most active layer during UDS, we

sought to silence the activity of L3 pyramidal cells to study the

impact on UDS in the MEC. We reasoned that silencing L3 pyra-

midal cells would abolish field UDS activity, if L3 were the gener-

ating layer. Alternatively, if other layers in the MEC were respon-

sible and activity propagated to L3, then we would still be able to

detect field UDS activity. As a first approach, we uncaged GABA

locally on L3 in the MEC during ongoing UDS activity (Figures 2A

and 2B). We used a closed-loop photostimulation approach in
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Figure 1. Up-Down States (UDS) in the MEC

(A) Schematic of the sagittal view of the mouse brain, where the MEC is shaded in gray.

(B) Example in vivo recordings under urethane anesthesia were targeted to L3 of MEC, as shown by the silicon probe location (top panel in green) and overlay with

NeuN staining (lower panel in purple) sagittal section.

(C) UDS from L3 MEC showing slow oscillations (upper panel) with nested gamma frequency oscillations (center panel, band-pass filtered from 30 to 80 Hz).

Lower panel shows the spectrogram of the trace above calculated using a Stockwell transform.

(D) Up state frequency and duration remains stable over time under urethane-anesthetized recording conditions (n = five recordings from five animals).

(E) In vitromodel for UDS in theMEC. L3 ismarked in orange. The right panel shows two L3MEC cells with dense basal dendrites and apical dendrites reaching to

the pial surface.

(F) Raw traces showing alternating UDS from the two cells shown in (E) above.

(G) Mini-slices of the MEC were prepared by removing the adjoining hippocampal structures and the presubiculum, parasubiculum, and LEC. The right panel

shows a recording from a L3 MEC pyramidal cell demonstrating robust UDS in a reduced mini-slice of the MEC.

(H) Left panel: up state duration and frequency (n = 33 cells) in intact slices with hippocampal formation (HF); right panel: in amini-slice of theMEC (n = seven cells)

without HF.

Data are presented as means ± SEMs. n.s. (non significant) for p > 0.05, *p < 0.05 and **p < 0.01.
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which, as soon as a spike on an up state was detected, blue light

was triggered for 500ms to uncage Rubi-GABA locally. Upon un-

caging, we detected an immediate hyperpolarization of the

membrane potential to a down state, thereby significantly short-

ening the up state duration (no uncaging average duration: 3.09

± 0.07 s, L3 uncaging average duration: 1.79 ± 0.15 s, p <

0.0001, Mann-Whitney U test; Figure 2C). Subthreshold events

where no spikes were detected were not suppressed, and the

average duration of these subthreshold up states during photo-

stimulation trials was not significantly different from baseline (no
uncaging) trials (no uncaging average duration: 2.43 ± 0.21 s, L3

uncaging average duration: 2.63 ± 0.10 s, p = 0.1427, Mann-

Whitney U test; Figure 2D). The frequency of up states remained

unaltered during L3 uncaging and no uncaging trials (no uncag-

ing average frequency: 0.072 ± 0.008Hz, L3 uncaging average

frequency: 0.069 ± 0.018Hz, p = 0.9365, Mann-Whitney U test;

Figure 2E). We also analyzed the shortening of up states by

defining the duration as the time between the 1st spike on an

up state to the termination of that particular up state. The dura-

tion was significantly different between L3 uncaging and no
Cell Reports 33, 108470, December 8, 2020 3
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Figure 2. In Vitro Spontaneous Up States in the MEC Can Be Suppressed by L3 Hyperpolarization

(A) Schematic of closed-loop GABA uncaging experiments for spontaneously occurring up states. As soon as an up state with spikes was detected, 500 ms of

caged GABA was uncaged using blue LED (488 nm) in L3 with no uncaging as control.

(B) Example traces of control (no uncaging) versus GABA uncaging in L3 following a spike on the up state. The shaded gray and orange represent the width of the

detected up states. The right panel shows cutout up states in control (above, gray) versus GABA uncaging in L3 (below, black).

(C) Duration of up states with spikes were reduced when GABA was uncaged in L3 compared (n = 41 up states from five cells) to no uncaging control (n = 84 up

states from five cells).

(D) Duration of up states without spikes, which occurred intermittently to those with spikes, was unaltered between the two conditions (no uncaging: n = 23 up

states from five cells; L3 uncaging: n = 62 up states from five cells).

(E) Frequency of up states was unaltered (n = five cells for each condition).

(F) The time from the 1st to the end of up state as a measure of up state silencing shows that GABA uncaging in L3 (n = 41 up states from five cells) effectively

shortened and suppressed the up state as compared to the no uncaging controls (n = 84 up states from five cells).

Data are presented as means ± SEMs. n.s. (non significant) for p > 0.05, *p < 0.05 and **p < 0.01.
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uncaging trials, suggesting that GABA uncaging locally on L3 in

the MEC immediately triggered a down state (no uncaging

average duration: 1.73 ± 0.10 s, L3 uncaging average duration:

0.43 ± 0.11 s, p < 0.0001, Mann-Whitney U test; Figure 2F).

Furthermore, hyperpolarizing the deeper layers, namely L5,

had no suppressive effect on UDS activity in the MEC. Thus,

both spontaneous (Figures S3A–S3C) and evoked (Figures

S3D–S3F) up states remained unchanged.

Next, we crossed Oxr1-Cre mice (Suh et al., 2011) with an

ArchT (Ai40D) line to express the inhibitory opsin selectively in

L3 pyramidal cells in the MEC (Figure 3A1). We verified the

spatial selectivity of the expression by co-staining for Wfs1,

which marks L2 pyramidal cells (Kitamura et al., 2014). We found
4 Cell Reports 33, 108470, December 8, 2020
no co-expression of GFP (i.e., Oxr1+ putative L3 pyramidal cells)

andWfs1 (i.e., putative L2 pyramidal cells) (Figure 3A2). The GFP

expression had a sharp border between L3 and L2, and it was

possible to detect terminal branching of the L3 dendrites in L1.

As expected, we also saw axonal terminals of L3 MEC pyramidal

cells both in the proximal CA1 and distal subiculum, as reported

by others for this mouse line (data not shown; Suh et al., 2011).

Thereafter, we used in vitro slices to quantify the extent of

light-induced hyperpolarization L3 pyramidal cells receive (Fig-

ures 3B–3E). In current clamp mode, cells were hyperpolarized

on average by 3.46 ± 0.43 mV, n = 18 cells (Figure 3E) at resting

membrane potential, and in voltage clamp (clamped at�60 mV),

light-induced hyperpolarization was on average 20.18 ± 2.45 pA,
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n = nine cells (Figure 3E). This prompted the question of whether

this hyperpolarization sufficed to suppress spiking in L3 pyrami-

dal cells. Thus, while we injected a 35-pA current for 4 s to evoke

spikes, we shone light using a repetitive stimulus of 19 Hz and a

pulse width of 50 ms for 2 s (Figure 3F). We were able to

completely suppress spiking in 8/9 cells (Figure 3G). In the pre-

light period, the frequency of spiking was on average 2.74 ±

0.35 Hz, during light stimulation there was a reduction to 0.2 ±

0.2 Hz, and a subsequent recovery to 2.75 ± 0.31 Hz in the

post-light period (2-way ANOVA with multiple comparisons:

p < 0.0001 for pre versus light, p < 0.0001 for light versus post,

and p = 0.99 for pre versus post).

Inhibition of L3 Pyramidal Cells Suppresses the
Frequency of Up States In Vivo

Next, we recorded UDS in vivo in anesthetized animals as

described earlier (Figures 1A–1C) using silicon optrodes. We es-

tablished a stable baseline of UDS in L3 MEC in Oxr1-Cre x

Ai40D mice and then used green light light-emitting diode

(LED) (525 nm) to activate archaerhodopsin and silence Oxr1+

L3 pyramidal cells directly at the recording site (Figure 3H). The

green bars show light ON periods in Figure 3K, and the detected

up states are marked with gray-shaded areas. Silencing L3 pyra-

midal cells caused a large reduction in UDS activity during light

ON periods compared to matched light OFF periods (Figures

3I and 3J). During light OFF periods, up states occurred with a

median frequency ± IQR of 1.5791 ± 0.6752 Hz, average =

1.84 Hz. During light ON periods, up states were detected with

a median frequency ± IQR of only 0.3402 ± 0.1780 Hz, average =

0.209 Hz, or an average reduction of 79.1% (p = 0.016, Z =

�2.3664, n = seven recordings from seven animals, Wilcoxon

signed rank test). We conclude that L3 MEC pyramidal cells

are crucial in generating UDS in the MEC.

Our results using optogenetic inhibition suggest that L3 pyra-

midal cells are crucial for the generation of UDS in the MEC.

However, we wondered whether L3 activity could be controlled

in amore time-locked fashion during ongoingUDSactivity in vivo.

Therefore, we used a closed-loop stimulation system that guar-

anteed the firing of a light pulse each time an up state was de-

tected in anaesthetized mice (see Method Details; Figures

S4A–S4C). Here, we found that closed-loop stimulation of L3 py-

ramidal cells in Oxr1-Cre x Ai40D induced only a subtle, non-sig-
Figure 3. L3-Specific Optogenetic Inactivation Suppresses In Vivo UD

(A1) Oxr1-Cre x Ai40D showing specific expression of ArchT in L3 MEC pyramid

(A2) GFP expression is specifically restricted to L3 (top panel, Wfs1 staining delinea

line to L3 MEC pyramidal cells.

(B and C) Biocytin filled L3 pyramidal cell in (B) and characterization of firing pat

(D) Light-induced hyperpolarization in current and voltage clamp on single L3 py

(E) Quantification of average light-induced hyperpolarization in current clamp (C

n = nine cells) on L3 pyramidal cells upon activation of ArchT using 550 nm light

(F) Current injection-evoked spikes could be robustly suppressed by activating A

(G) Reduction of spiking activity in L3 pyramidal cells upon ArchT activation (n =

(H) Example sagittal section from L3 recording in MEC, showing GFP (left), DiI tr

(I) Frequency of up states during light OFF periods compared to light ON epochs

(J) Percentage reduction in upstate frequency from values shown in (I).

(K) Above: example raw LFP trace from L3 optrode recording. Green-shaded area

detected up states. Below: segments of trace magnified to show up states durin

Data are presented as means ± SEMs. n.s. (non significant) for p > 0.05, *p < 0.0
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nificant reduction of up state frequency (median baseline fre-

quency ± IQR = 0.27 ± 0.2458 Hz, average baseline

frequency = 0.2693 Hz, median stimulation frequency = 0.14 ±

0.1908 Hz, average stimulation frequency = 0.1700 Hz; p =

0.1250, Z = �1.7529 Wilcoxon signed rank test, five recordings

from five animals; Figure S4D), and the duration of up states

was unchanged (median baseline duration ± IQR = 1.13 ±

1.5701 s, average baseline duration = 1.8784 s, median stimula-

tion duration = 1.32 ± 1.5644 s, average stimulation duration =

2.0101 s, p = 0.0625, Z = �2.0226, Wilcoxon signed rank test,

five recordings from five animals; Figure S4E).

As a control, we repeated the experiment using wild-typemice

that were not injected with an optogenetic construct (data not

shown). Here, up state-triggered LED activation in L3 led to a

trend of increasing upstate frequency (median baseline fre-

quency ± IQR = 0.14 ± 0.0671 Hz, average baseline frequency =

0.1367 Hz, median stimulation frequency = 0.22 ± 0.1750 Hz,

average stimulation frequency = 0.1807 Hz, p = 0.1875, Z =

�1.4832, Wilcoxon signed rank test, five recordings from four

animals), while also not interfering with their duration (median

baseline duration ± IQR = 1.46 ± 0.5085 s, average baseline

duration = 1.4278 s, median stimulation duration = 1.49 ±

0.5339 s, average stimulation duration = 1.4852 s, p = 0.3125,

Z = �1.2136, Wilcoxon signed rank test, five recordings from

four animals; data not shown).

Our in vitro experiments indicated that L2 cells weremuch less

active than L3 cells during up states (Figure S2). L2 stellate cells

receive strong feedforward projections from L3 pyramidal cells

(Winterer et al., 2017), and they selectively target L5b pyramidal

cells (S€urmeli et al., 2015). Thus, we took recourse to the Uchl1

mouse line, which allows specific targeting of L2 stellate cells

in the MEC (Fuchs et al., 2016), to test whether manipulating

L2 neuronal activity interferes with up state dynamics in vivo. Us-

ing the same optogenetic protocol on Uchl1-Cre mice injected

with adeno-associated virus (AAV) conditionally transducing hal-

orhodopsin (Uchl1-Cre x AAV-eNpHR3.0-EGFP; Figures S4F

and S4G), we found that, akin to wild-type controls, optogenetic

activation of L2 led to a very slight increase in up state frequency

(median baseline frequency ± IQR = 0.25 ± 0.2185 Hz, average =

0.2788 Hz, median stimulation frequency = 0.31 ± 0.1733 Hz,

average = 0.3250 Hz, p = 0.1250, Z = �1.8257, Wilcoxon signed

rank test, four recordings from three animals; Figure S4H) and no
S in MEC

al cells. The rectangular box is magnified in A2.

tes the border to L2 (center panel). Themerge shows the specificity of theOxr1

tern in (C).

ramidal cells upon activation of ArchT using 550 nm light.

C hyperpolarization, n = 18 cells) and voltage clamp (VC hyperpolarization,

.

rchT on individual L3 pyramidal cells.

nine cells).

ace (center), and magnified overlay (right).

(n = seven recordings from seven animals).

s indicate light stimulation (light ON periods), and gray-shaded areas show the

g light ON and light OFF periods.

5 and **p < 0.01.
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Figure 4. Up States Propagate Unidirectionally from L3 to Deeper Layers

(A) Schematic of the experimental setup. We evoked up states by stimulating in L3 (stim) and recording simultaneously from a L3 (Rec1) and a L5b (Rec2)

pyramidal cell.

(B) Parallel recordings from L3 and L5b pyramidal cells while stimulating in L3 evokes reliable up states in both layers.

(C) High probability of evoking up states in L3 and L5b pyramidal cells by stimulating in L3 (n = nine cell pairs each having one L3 and one L5b pyramidal cell).

(D) Stimulation electrode was moved to L5b (stim) while recording from the same duplet (Rec1 and Rec2), as in (A).

(E) Parallel recordings from L3 and L5b pyramidal cells while stimulating in L5b failed to evoke reliable up states in either of the cells (n = nine cell pairs each having

one L3 and one L5b pyramidal cell).

(F) Low probability of evoking up states in L3 and L5b pyramidal cells by stimulating in L5b.

Data are presented as means ± SEMs. n.s. (non significant) for p > 0.05, *p < 0.05 and **p < 0.01.
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change in up state duration (median baseline duration ± IQR =

1.61 ± 0.9190 s, average = 1.5587 s, median stimulation dura-

tion = 1.52 ± 0.6700 s, average = 1.4271, p = 0.1441, Z =

1.4606, Wilcoxon signed rank test, four recordings from three

animals; Figure S4I).

Taking these data together, a Kruskal-Wallis test demon-

strated a near-significant difference in up state frequency across

these three mouse lines (H = 5.643, p = 0.0502; Figure S4J). A

Dunn’s multiple comparisons test revealed that closed-loop

stimulation produced a significant difference in frequency for

Oxr1-Cre x Ai40D compared towild-typemice (p = 0.0467), while

there was no difference between wild-type and Uchl1-Cre x

AAV-eNpHR3.0-EGFP mice (p > 0.99).

Up-Down States Propagate to Deeper Layers
Unidirectionally
The deep layers of the MEC include two sublayers of L5 (L5a and

L5b) and L6. Recently, L5 MEC has gained renewed attention in

regard to pathways and cell types linked to memory consolida-

tion (Ohara et al., 2018; Roy et al., 2017; S€urmeli et al., 2015).

Wewanted to better understand the propagation of entorhinal in-

puts during UDS from superficial to deeper layers, particularly in

L5b, which also receives hippocampal output. To have a better

temporal handle on UDS activity, we evoked up states via a stim-

ulation electrode placed in L3 (evoked up states; Figures 4A and

4B; Mann et al., 2009). We saw robust and reproducible evoked

up states in L3 pyramidal cells (9/9 cells). Simultaneously, we re-
corded L5b pyramidal cells, and we detected evoked up states

in both L3 and L5b pyramidal cells (8/9 cells exhibited up states)

upon stimulation in L3. The probabilities with which up states

could be evoked were L3 97.78% ± 0.88% and L5b 77.22% ±

12.19% (Figure 4C). However, when we moved the stimulation

electrode to L5b, we failed to evoke up states with reliable prob-

ability in either L5b or L3 pyramidal cells from the same cell pairs

(Figures 4D and 4E). We did observe subthreshold depolariza-

tion, which could be classified as a putative up state, in 3/9

L5b pyramidal cells; however, the probability was <10% on

average (L5b – 8.89% ± 6.16% and L3 – 6.67% ± 3.99%; Fig-

ure 4F). These results suggest that stimulation-evoked up states

in L3 very likely propagate to deeper layers such as L5b. In

contrast, up states could not be evoked by stimulating L5b cir-

cuits. Our data strongly suggest that L3 harbors the circuitry sup-

porting the generation of up states and that these propagate uni-

directionally to deeper layers.

L5b but Not L5a Pyramidal Cells Participate during Up-
Down States in the MEC
L5 MEC can be subdivided into two sublayers, 5a (L5a) and 5b

(L5b). L5a comprises etv1+ excitatory cells and projects mostly

to the cortex (Kitamura et al., 2017), whereas L5b contains

ctip2+ cells and receives input from the hippocampus (S€urmeli

et al., 2015). To compare up state propagation between these

two sublayers, we recorded either a L5a or a L5b pyramidal

cell simultaneously with a L3 pyramidal cell during spontaneous
Cell Reports 33, 108470, December 8, 2020 7
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Figure 5. Differential Participation of L5 Pyramidal Cells during UDS

(A) Schematic of the experimental setup. Right panel: reconstruction of biocytin-filled cells with L3 pyramidal cell in orange and L5a pyramidal cell in red. Lower

panel: upper trace from L3 pyramidal cell shows clear UDS, and lower trace from L5a pyramidal cell shows the absence of UDS activity.

(B) Schematic of the experimental setup. Right panel: reconstruction of biocytin-filled cells with L3 pyramidal cell in orange and L5b pyramidal cell in blue. Lower

panel: upper trace from L3 pyramidal cell shows clear UDS, and lower trace from L5b cells shows synchronous UDS activity.

(C) Frequency of up states were not significantly different between L3 pyramidal cell (n = 16 cells) and L5b pyramidal cell (n = 22 cells). Most of the L5b pyramidal

cells show synchronous UDS with L3 pyramidal cells, as shown in the trace in Figure 4B.

(D) Up state duration was shorter in L5b pyramidal cells (n = 22 cells) compared to L3 pyramidal cells (n = 16 cells).

(E) L5b pyramidal cells (n = 22 cells) mostly showed subthreshold depolarizations during up states with little or no spiking activity, unlike L3 pyramidal cells (n = 16

cells).

(F) L5b pyramidal cells followed L3 pyramidal cells as the onset of up states in L5b pyramidal cells experienced a delay when compared to L3 pyramidal cells.

Data are presented as means ± SEMs. n.s. (non significant) for p > 0.05, *p < 0.05 and **p < 0.01.
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UDS (Figures 5A and 5B). To our surprise, of all the duplet re-

cordings from L3 and L5a pyramidal cells, none of the L5a pyra-

midal cells showed UDS activity, whereas all L5b pyramidal cells

had UDS activity that was synchronous with L3 pyramidal cells

(Figures 5A and 5B, lower panels). The frequency of up states

was the same in the paired L3 and L5b recordings (L3 =

0.0858 ± 0.009 Hz, n = 16 cells; L5b = 0.0714 ± 0.006Hz, n =

22 cells; p = 0.2875, Mann-Whitney U test; Figure 5C), the dura-

tion of up states was shorter in L5b pyramidal cells compared to

that of their paired L3 pyramidal cells (L3 = 1.79 ± 0.09 s, n = 16

cells; L5b = 1.44 ± 0.08 s, n = 22 cells; p = 0.016, Mann-Whitney

U test; Figure 5D). Furthermore, unlike L3 pyramidal cells, L5b

pyramidal cells hardly spiked on up states at resting membrane

potential (L3 = 6.92 ± 1.98, n = 16 cells; L5b = 0.39 ± 0.24, n = 22

cells; p < 0.0001, Mann-Whitney U test; Figure 5E). We analyzed

the temporal relationship between L3 and L5b pyramidal cells

and found that most pyramidal cells in L5b followed the paired

L3 pyramidal cell (with a delay of �100 ms; Figure 5F), thereby

confirming that in MEC, UDS activity propagates from L3 to L5b.

To conclude, we asked whether the absence of up state prop-

agation to L5a pyramidal cells was due to a lack of synaptic con-

nectivity between L3 and L5a pyramidal cells. We mapped L3

pyramidal cell inputs onto both L5a and L5b pyramidal cells us-

ing the Oxr1 x Chr mice and observed that L5a receive nomono-

synaptic inputs from L3 pyramidal cells (Figure S5). On the con-

trary, L5b pyramidal cells received strong and monosynaptic

inputs from L3 pyramidal cells, thereby showing synchronized

activity during UDS with L3 pyramidal cells.
8 Cell Reports 33, 108470, December 8, 2020
DISCUSSION

During NREM sleep, the cortex enters a synchronous state char-

acterized by rhythmic UDS. Aswas previously shown both in vivo

(Hahn et al., 2012; Isomura et al., 2006) and in vitro (Mann et al.,

2009; Tahvildari et al., 2012), we demonstrate here that the MEC

exhibits prominent UDS activity. Since the MEC is laminated in

distinct layers that are associated with different input-output

projections, connectivity patterns, and cell types, a laminar pro-

file of UDS activity could shed light on the generation and prop-

agation of such activity. Our results indicate that L3 MEC is the

site of origin for UDS in the MEC and that they propagate from

there unidirectionally to deeper layers.

Previous work onUDS in theMEC focused on the participation

of different neurons in the superficial layers, including excitatory

(L3 and L2 cells) and inhibitory neurons (mainly L3; Tahvildari

et al., 2012). It was shown that L3 pyramidal cells are most excit-

able compared to other cells types, and that parvalbumin inter-

neurons are the most strongly modulated among the inhibitory

neuron population during UDS in the MEC (Salkoff et al., 2015).

It has also been shown that GABAergic transmission is important

for the frequency of spikes during up states and in regulating the

duration of up states (Mann et al., 2009). We extend these find-

ings by using multi-patch recordings combined with optoge-

netics in a mouse line (Oxr1-Cre) that allows target specificity

for L3 MEC, and show that L3 pyramidal cells in the MEC are

the generators of UDS in the MEC. We analyzed and compared

the spiking activity of L3 pyramidal cells to that of L2 and L5
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excitatory neurons at the single-cell level and found that L3 had

the most active cell population during UDS in the MEC. In addi-

tion, mini-slices of MEC exhibited UDS activity, thereby confirm-

ing that MEC alone contains the circuitry that is necessary to

generate this slow-wave oscillatory activity.

The L3 MEC occupies an important position both structurally

and functionally when considering cortico-hippocampal interac-

tions. Our lab has previously shown that L3 is strongly connected

to L2 stellate cells (Winterer et al., 2017). The findings of this

study, and the availability of the L3 MEC-specific Cre mouse

line, could prompt further investigation, addressing questions

as to the role of L3 pyramidal cells during sleep, spatial memory,

and behavior. The role of L3 pyramidal cells in development

could also be explored. Of note, Namiki and colleagues (2013)

studied L3 pyramidal cells in the lateral entorhinal cortex and de-

tected synchronized waves between postnatal days 1 and 6.

However, this activity may represent early network oscillations

and may thus be different from UDS-related synchrony.

Our findings show that the two L5 sublayers (L5a and L5b)

participate differentially during ongoing UDS activity. L5a sends

output to distant cortical areas, including the prefrontal cortex

(Kitamura et al., 2017; S€urmeli et al., 2015), nucleus accumbens,

and amygdala, whereas L5b receives input from the hippocam-

pus as well as from stellate cells in the MEC (Roy et al., 2017;

S€urmeli et al., 2015). We report that L5a pyramidal cells do not

participate in UDS activity in the MEC and receive no input

from L3 pyramidal cells, whereas the activity of L5b is strongly

synchronized and follows that of L3 pyramidal cells. This differ-

ence could be due to direct synaptic connections between L3

and L5b cells and a lack thereof between L3 and L5a cells (Fig-

ure S5). L5b has been shown to receive hippocampal output

from both the subiculum and CA1 areas (Ohara et al., 2018),

and therefore could be important for the cortical consolidation

of hippocampal information by acting as a coincidence detector.

As UDS occur in vivo during slow-wave NREM sleep, L5b forms

an important structural and functional interface between hippo-

campal sharp wave activity and cortical UDS activity.

In conclusion, our finding that L3 orchestrates UDS within the

MEC is an important piece of the puzzle for understanding ento-

rhinal-hippocampal information flow. Up-down state transitions

in superficial layers have been shown to propagate to the hippo-

campus (Sirota et al., 2003) and facilitate hippocampal sharp

waves (Sirota et al., 2003; Isomura et al., 2006; Mölle et al.,

2006). Conversely, sharp waves in CA1 precede sharp wave-

like LFP patterns in the deep layers of the entorhinal cortex

(Chrobak and Buzsáki, 1996). Thus, the local spread of UDS

from L3 to L5b reported here may activate the hippocampus to

replay stored patterns and at the same time set the L5b pyrami-

dal cells in a ‘‘receive mode’’ to read out the hippocampal output

in the form of integration or coincidence detection. Considering

the findings presented here, one can envisage future studies to

further dissect the role of different cortico-hippocampal path-

ways during slow-wave sleep and behavior.
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and upon author request

Experimental Models: Organisms/Strains
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10-electrophysiology-data-acquisition-%26-analysis-

software-download
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Kilosort2 (Pachitariu et al., 2016) Pachitariu et al., 2016 https://github.com/MouseLand/Kilosort
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Code related to this paper This paper https://github.com/Schmitz-lab/MEC-Up-States

and upon author request

(Continued on next page)

Cell Reports 33, 108470, December 8, 2020 e1

https://doi.org/10.6084/m9.figshare.13154321.v1
https://fiji.sc/wiki/index.php/Fiji
https://imagej.nih.gov/ij/
https://de.mathworks.com/?s_tid=gn_logo
https://de.mathworks.com/products/simulink.html
https://mdc.custhelp.com/app/answers/detail/a_id/18779/%7E/axon%E2%84%A2pclamp%E2%84%A2-10-electrophysiology-data-acquisition-%26-analysis-software-download
https://mdc.custhelp.com/app/answers/detail/a_id/18779/%7E/axon%E2%84%A2pclamp%E2%84%A2-10-electrophysiology-data-acquisition-%26-analysis-software-download
https://mdc.custhelp.com/app/answers/detail/a_id/18779/%7E/axon%E2%84%A2pclamp%E2%84%A2-10-electrophysiology-data-acquisition-%26-analysis-software-download
https://mdc.custhelp.com/app/answers/detail/a_id/18779/%7E/axon%E2%84%A2pclamp%E2%84%A2-10-electrophysiology-data-acquisition-%26-analysis-software-download
https://mdc.custhelp.com/app/answers/detail/a_id/18779/%7E/axon%E2%84%A2pclamp%E2%84%A2-10-electrophysiology-data-acquisition-%26-analysis-software-download
https://andor.oxinst.com/products/iq-live-cell-imaging-software/
https://andor.oxinst.com/products/iq-live-cell-imaging-software/
http://www.geb.uma.es/mauds
https://github.com/MouseLand/Kilosort
https://www.graphpad.com/scientific-software/prism/
https://github.com/samuroi/SamuROI
https://github.com/Schmitz-lab/MEC-Up-States


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Neurostar Robot Stereotax NeuroStar https://robot-stereotaxic.com/drill-injection-robot/

Silicon probes and optrodes NeuroNexus https://neuronexus.com/wp-content/uploads/2018/11/

2019_NNxCatalog_20181113.pdf

RHD2000 recording system Intan http://intantech.com/RHD_system.html

525nm PlexBright LED Plexon https://plexon.com/products/plexbright-table-top-

modules/#1501022507108-0524a9b7-10bf

BNC-2110 Shielded Connector Block National Instruments Cat # 777643-01

DMI4000 B Fluorescence Microscope Leica https://www.leica-microsystems.com/products/light-

microscopes/p/leica-dmi4000-b/

Vt1200 Semiautomatic vibrating blade

microtome

Leica https://www.leicabiosystems.com/histology-

equipment/sliding-and-vibrating-blade-microtomes/

vibrating-blade-microtomes/leica-vt1200/

BX61WI Upright microscope Olympus https://www.olympus-lifescience.com/en/

microscopes/upright/bx61wi/

DMZ Universal Puller Zeitz https://www.zeitz-puller.com/

Multiclamp 700A/B Amplifiers Science Products https://science-products.com/en/shop/23/9/

amplifiers-etc/amplifiers/patchclamp_amplifier/

axon-multiclamp-700b

Axon Digidata 1550B data acquisition system Molecular Devices https://www.moleculardevices.com/products/

axon-patch-clamp-system/digitizers/axon-

digidata-1550b-plus-humsilencer#gref

Borosillicate glass capillaries Harvard Apparatus Cat# W330-0057

CoolLED pE-300 CoolLED https://www.coolled.com/

ISO-Flex Stimulus Isolator A.M.P.I. http://www.ampi.co.il/isoflex.html

CSU22 Spinning Disk Microscope Yokogawa https://www.yokogawa.com/de/solutions/

discontinued/csu22/

488nm Laser Coherent https://www.coherent.com/lasers/main/

sapphire-lasers

Ixon DU-897D CCD Andor http://occult.mit.edu/instrumentation/MORIS/

Documents/DU-897_BI.pdf
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Lead Contact
Further information and requests related to this study should be directed to and will be fulfilled by the lead contact, Prateep Beed

(prateep.beed@charite.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets and code supporting related to this study can be found on online repositories (see Key Resources Table), or upon

request to the lead author. Original data have been deposited to Figshare: https://doi.org/10.6084/m9.figshare.13154321.v1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All in vivo experiments were conducted according to regulations of the Berlin Landesamt f€ur Gesundheit und Soziales (G0150/17). All

animal maintenance for in vitro experiments was performed in accordance with Berlin Landesamt f€ur Gesundheit und Soziales (Berlin

T 0100/03).

For the first portion of this study (Figure 1), adult C57Bl6/nmice of both sexes were used. For subsequent experiments, L3-specific

Oxr1-Cre mice (https://www.jax.org/strain/030484, Suh et al., 2011) were crossed with Ai40D mice (https://www.jax.org/strain/

021188) or Ai32 mice (https://www.jax.org/strain/012569, Madisen et al., 2015) for selective expression of archaeorhodopsin or
e2 Cell Reports 33, 108470, December 8, 2020

mailto:prateep.beed@charite.de
https://doi.org/10.6084/m9.figshare.13154321.v1
https://www.jax.org/strain/030484
https://www.jax.org/strain/021188
https://www.jax.org/strain/021188
https://www.jax.org/strain/012569
https://robot-stereotaxic.com/drill-injection-robot/
https://neuronexus.com/wp-content/uploads/2018/11/2019_NNxCatalog_20181113.pdf
https://neuronexus.com/wp-content/uploads/2018/11/2019_NNxCatalog_20181113.pdf
http://intantech.com/RHD_system.html
https://plexon.com/products/plexbright-table-top-modules/#1501022507108-0524a9b7-10bf
https://plexon.com/products/plexbright-table-top-modules/#1501022507108-0524a9b7-10bf
https://www.leica-microsystems.com/products/light-microscopes/p/leica-dmi4000-b/
https://www.leica-microsystems.com/products/light-microscopes/p/leica-dmi4000-b/
https://www.leicabiosystems.com/histology-equipment/sliding-and-vibrating-blade-microtomes/vibrating-blade-microtomes/leica-vt1200/
https://www.leicabiosystems.com/histology-equipment/sliding-and-vibrating-blade-microtomes/vibrating-blade-microtomes/leica-vt1200/
https://www.leicabiosystems.com/histology-equipment/sliding-and-vibrating-blade-microtomes/vibrating-blade-microtomes/leica-vt1200/
https://www.olympus-lifescience.com/en/microscopes/upright/bx61wi/
https://www.olympus-lifescience.com/en/microscopes/upright/bx61wi/
https://www.zeitz-puller.com/
https://science-products.com/en/shop/23/9/amplifiers-etc/amplifiers/patchclamp_amplifier/axon-multiclamp-700b
https://science-products.com/en/shop/23/9/amplifiers-etc/amplifiers/patchclamp_amplifier/axon-multiclamp-700b
https://science-products.com/en/shop/23/9/amplifiers-etc/amplifiers/patchclamp_amplifier/axon-multiclamp-700b
https://www.moleculardevices.com/products/axon-patch-clamp-system/digitizers/axon-digidata-1550b-plus-humsilencer#gref
https://www.moleculardevices.com/products/axon-patch-clamp-system/digitizers/axon-digidata-1550b-plus-humsilencer#gref
https://www.moleculardevices.com/products/axon-patch-clamp-system/digitizers/axon-digidata-1550b-plus-humsilencer#gref
https://www.coolled.com/
http://www.ampi.co.il/isoflex.html
https://www.yokogawa.com/de/solutions/discontinued/csu22/
https://www.yokogawa.com/de/solutions/discontinued/csu22/
https://www.coherent.com/lasers/main/sapphire-lasers
https://www.coherent.com/lasers/main/sapphire-lasers
http://occult.mit.edu/instrumentation/MORIS/Documents/DU-897_BI.pdf
http://occult.mit.edu/instrumentation/MORIS/Documents/DU-897_BI.pdf


Report
ll

OPEN ACCESS
channelrhodopsin, respectively. Uchl1-Cre mice were obtained from the Mutant Mouse Regional Resource Center. (MMRC, USA,

Fuchs et al., 2016). For calcium imaging experiments, Nex-Cre mice (Goebbels et al., 2006) were crossed with Ai95 animals

(https://www.jax.org/strain/024105; Madisen et al., 2015) for constitutive GCaMP6f expression in pyramidal cells only. Naive

offspring of both sexes for all lines were used. Analyses of the influence of sex in our results were not performed due to small sample

sizes. Adult mice (p > 30) were used for in vivo experiments (Figures 3 and S4), whereas brain slices for in vitro experiments were

obtained from mice p12–18 (Figures 1, 2, 4, 5, S1, S2, and S3) and p12–28 (Figures 3 and S5). All animals were housed with a

12-hour light/dark cycle in group cages, with ad libitum access to water and standard rodent chow.

METHOD DETAILS

Surgery
For viral injections, mice were deeply anaesthetized with 2% isofluorane and a craniotomy was performed, exposing the transverse

sinus 3.3ML from themidline. An injection needle was slowly lowered 0.3mm anterior to the edge of the sinus at an angle of�8� in the
antero-posterior axis to a depth of 1.8DV using a micromanipulator. 500nl of pAAV-Ef1a-DIO eNpHR 3.0-EYFP (a gift from Karl De-

isseroth; Addgene viral prep # 26966-AAV1) was injected at a speed of 50nl/min (Neurostar, T€ubingen, Germany), waiting several

minutes before withdrawing the needle. Mice were provided with carprofen and metamizol and left to recover for one month in their

home cages before acute recordings.

For acute recordings, mice were deeply anaesthetized by intraperitoneal injection of a 10% urethane solution (1-1.5g/kg, Sigma

Aldrich, Munich Germany). A craniotomy was performed above the MEC based on coordinates from the Paxinos and Franklin Brain

Atlas (2001) at approximately ± 3.3ML and 0.5 anterior to lambda.

32-channel linear silicone probes or optrodes (NeuroNexus, Ann ArborMI) were paintedwith the fluorescent dye DiI (Thermo Fisher

Scientific, Schwerte Germany) and lowered slowly into the craniotomy at a 20� angle in the sagittal plane using a micromanipulator.

An Ag/AgCl ground wire was placed into a well with saline anterior to the recording site. Signals were sampled at 20KHz with an

RHD2000 amplifier (Intan Technologies, Los Angeles, California), and visualized using on-board recording software. Recordings

began after a minimum 10min waiting period at a depth at which clear up states could consistently be seen at a frequency of approx-

imately 0.1Hz. During recordings, body temperature was maintained at 36� using a heating pad.

In Vivo Recordings
For optogenetic pulse barrage experiments, a 10min baseline was first recorded. Then, a 10Hz light ON protocol (for 5 s) was applied

using a 525nm PlexBright LED (Plexon, Dallas TX) coupled directly to the silicon optrode. This was repeated after a 5 s light OFF

period. These dual barrages were repeated every 10 s over 20 min.

A closed-loop optogenetic stimulation systemwas created by routing one channel of the LFP via a National Instruments BNC-2110

shielded connector block (National Instruments, Austin TX) to a computer running Simulink (Mathworks, Natick NJ). Whenever a

threshold detecting event was detected, a pulse was emitted to the LED, with a delay of approximately 50ms (data not shown).

After recordings were completed, mice were given a further urethane overdose, then perfused transcardially with 0.1M PBS fol-

lowed by 4%paraformaldehyde. Brains were kept in PFA overnight, then sliced using a vibratome (LeicaMicrosystems,Wetzlar Ger-

many) into 100mM sagittal slices and mounted for post hoc anatomical identification of recording sites and immunohistochemical

stainings (see ‘Histological Procedure’, below). Images of probe tracks and stainings were obtained using a Leica DMI 4000B fluo-

rescence microscope (Leica, Wetzlar, Germany). Only recordings with clear probe tracks in superficial layers of the MEC were used

for subsequent analysis.

Analysis of In Vivo Data
All analysis was performed using custom scripts written in MATLAB (Mathworks, Natick NJ). For each recording, a sample channel

was taken from the tip of the silicon probe in L3, and down-sampled from 20 to 0.2 kHz. Up states were detected using a modified

version of the MAUDs algorithm (Seamari et al., 2007). Briefly, the LFP was filtered between 1 and 4 Hz, and smoothed using a Sa-

vitzky-Golay filter. Deflections two standard deviations above themedianwere calculated with amoving window, and comparedwith

periods of elevated multiunit activity extracted with Kilosort2 (Pachitariu et al., 2016) to find indices of up states. From these indices,

the spectral content of these up states could be calculated with the Stockwell Transform (Stockwell et al., 1996), as well as informa-

tion about their duration and frequency.

The effect of LED pulse barrages was calculated by detecting the number of up states occurring inside of stimulation epochs, and

comparing it to the same number of light OFF epochs of equivalent length (i.e., 50ms) randomly sampled from the rest of the recording.

The effect of closed loop stimulation was measured by comparing the properties of up states detected in a 10 min baseline and

10 min period of stimulation.

In vitro Slice Preparation
Near horizontal slices (�15� off the horizontal plane) of the medial entorhinal cortex (MEC) were obtained from C57Bl6/n mice. An-

imals were anesthetized with isofluorane and decapitated. The brains were quickly removed and placed in ice-cold (�4�C) artificial
cerebrospinal fluid (ACSF) (pH 7.4) containing (in mM) 85 NaCl, 25 NaHCO3, 75 Sucrose, 10 Glucose, 2.5 KCl, 1.25 NaH2PO4,
Cell Reports 33, 108470, December 8, 2020 e3
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3.5MgSO4, 0.5 CaCl2, and aerated with 95% O2, 5% CO2. Tissue blocks containing the brain region of interest were mounted on a

vibratome (Leica VT 1200, Leica Microsystems), cut at 400 mm thickness, and incubated at 35�C for 30 min. In the case of mini-slices

a needle (diameter = 0.60 mm) was used to dissect the MEC from the LEC and the hippocampus proper. The slices were then trans-

ferred to ACSF containing (in mM) 85 NaCl, 25 NaHCO3, 75 Sucrose, 10 Glucose, 2.5 KCl, 1.25 NaH2PO4, 3.5 MgSO4, 0.5 CaCl2.

The slices were stored at room temperature in a submerged chamber for 1–5 hr before being transferred to the recording chamber.

In Vitro Electrophyisiology
For recordings, a slice was transferred to a submersion style recording chamber located on the stage of an upright, fixed-stage mi-

croscope (BX51WI, Olympus, Hamburg Germany) equipped with a water immersion objective and a near-infrared charge-coupled

device (CCD) camera. The slices were perfused with ACSF (�35�C bubbled with 95% O2%–5% CO2) at 3–5 m/min to maintain

neuronal health throughout the slice. The ACSF had the same composition as the incubation solution except for the concentrations

of calcium and magnesium, which were reduced to 1.2 and 1.0 mM, respectively. Recording electrodes with impedance of 3–5

MOhm were pulled from borosilicate glass capillaries (Harvard Apparatus, Kent, UK; 1.5 mm OD) using a micropipette electrode

puller (DMZUniversal Puller, Zeitz, Martinsried Germany). The intracellular solution contained the following (in mM): 135 K-gluconate,

6 KCl, 2 MgCl2, 0.2 EGTA, 5 Na2-phosphocreatine, 2 Na2-ATP, 0.5 Na2-GTP, 10 HEPES buffer, and 0.2% biocytin. The pH was

adjusted to 7.2 with KOH. Recordings were performed using Multiclamp 700A/B amplifiers (Science Products, Hofheim Germany).

The seal resistancewas >1GU. Capacitance compensation wasmaximal and bridge balance adjusted. Signals were filtered at 6 kHz,

sampled at 20 kHz, and digitized using the Digidata 1550 and pClamp 10 (Molecular Devices, San Jose, CA, USA).

Stimulation experiments were performed using a bipolar micro-electrode (glass pipet filled with ACSF solution, wrapped by a fine

grounding wire). A 4x objective was used to visually guide the stimulating electrode into the MEC. The inter-stimulus interval was ten

seconds with a duration of 50 ms for each stimulus, using an isolated voltage stimulator (ISO-Flex, A.M.P.I., Israel).

In vitroGABA uncaging was done by a blue light LED (CoolLED pE-300 systemwith 470nm light) which photolysed the caged Rubi-

GABA (Tocris, UK). When a spike was detected on an upstate, 500ms of blue light was used to uncage Rubi-GABA. In vitro optoge-

netic stimulation was done using a green light LED for stimulation of ArchT positive cells. For current and voltage clamp recordings of

ArchT mediated hyperpolarization we used a 500ms light pulse. For suppression of spikes we used 50ms light pulse at 19Hz for 2 s.

Calcium Imaging
For population Ca2+ imaging of neonatal spontaneous synchronous network events, the genetically encoded Ca2+ indicator (GECI)

GCaMP6f was used. Ca2+ imaging was performed using a Yokogawa CSU-22 spinning disc microscope (Yokogawa, Wehr, Ger-

many) at 5000rpm. The spinning disc confocal permitted the generation of a large field of view time series at a high acquisition

rate. A 488nm laser (Coherent, Santa Clara, CA, USA) was focused onto the field of view using a 4x, 40x or 60x objective. Emission

light was filtered using a 515 ± 15nm bandpass filter. Fluorescence was detected using an Andor Ixon DU-897D back-illuminated

CCD (Andor, Belfast, UK), with a pixel size of 16mm. Andor iQ software was used for data acquisition.

For data analysis, we used the SAMUROI python package (Rueckl et al., 2017) in combination with custom python routines. Events

were detected using a template matching based algorithm, the onset was determined as the time point in an event when the signal

reached two standard deviations above themean standard deviation of the baseline. Signal onsets were used for synchrony analysis.

Histological Procedure
At the end of the recording session, the electrode was carefully detached from the recorded cell and the slice was fixed with 4%

paraformaldehyde in 0.1 M phosphate buffer (PB) for at least 24 h at 4�C, then washed three times in 0.1 M PBS. Slices were

then incubated in PBS containing 1% Triton X-100 and 5% normal goat serum for 4 hr at room temperature (RT). To visualize bio-

cytin-filled cells we used Streptavidin Alexa 488/ 555 conjugate (S32354/S21381, 1:500, Invitrogen). CTIP2 (1:500 Rat, Abcam, Cam-

bridge, UK) was used to visualize L5b, WFS1 (1:1000, Rabbit, Proteintech, IL, USA) to visualize L2 border with L3 as it stains for L2

pyramids in theMEC, antiGFP (ab18465, 1:1000, Chicken, Abcam, Cambridge, UK) for visualizing the expression of Arch in the Oxr1-

Cre x Ai40D mice, and NeuN for visualizing neuronal cell bodies (ABN90, 1:1000, Guinea Pig, Millipore, Darmstadt Germany). Slices

were incubated with primary antibodies for 48 hr at RT. After rinsing two times in PBS, sections were incubated in the PBS solution

containing 0.5% Triton X-100, and Streptavidin Alexa 488/ 555 conjugate (for biocytin-filled neurons, S32354/ s21381, Invitrogen

Corporation, Carlsbad, CA) or goat anti-rat conjugated with Alexa fluor 555 (for CTIP2, A-21434, 1:500 Invitrogen Corporation, Carls-

bad, CA) or goat anti-guinea pig Alexa fluor 405 (for NeuN, ab175678, Abcam, Cambridge UK). Slices were mounted in Mowiol

(Sigma Aldrich, Darmstadt Germany) under coverslips 2-3 hr after incubation with the secondary antibodies and stored at 4�C.
Labeled cells were visualized using 20x or 40x objectives on a confocal microscope system (Leica, Wetzlar Germany). Z stack pro-

jectionswere optimized to examine the full extent of somato-dendritic compartments and axonal arborization. Image stacks obtained

were registered and combined in Fiji (Schindelin et al., 2012) to form a montage of the sections.

Analysis of In Vitro Data
Up state onset, frequency and duration in vitro were quantified by using a modified version of the MAUDS algorithm that was pub-

lished in Seamari et al. (2007). Spike probability is defined as the ration of the number of up states with spikes to total number of up

states, spike frequency is the total number of spikes divided by the whole recording time and spikes per up state denotes the number
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of spikes elicited only during up states. Analyses were performed using custom scripts written in MATLAB (The MathWorks, Natick,

MA), Microsoft Office Excel (Microsoft, Redmond, WA), and ImageJ (Schneider et al., 2012).

QUANTIFICATION AND STATISTICAL ANALYSES

No randomization or blinding was performed during the execution of experiments or data analysis for this paper. No statistical

methods were used for predetermining sample sizes. Data are presented in figures as mean ± SEM unless otherwise stated. Statis-

tical analyses were performed using MATLAB (The MathWorks, Natick, MA), and Graphpad Prism (La Jolla, CA, USA). For data

violating assumptions of normality (determined via a Kolmogorov-Smirnov test), non-parametric tests were used. Reported p values

were all based on tests mentioned in the text. Significance was accepted at p < 0.05 and labeled as: n.s. (non significant) for p > 0.05,

*p < 0.05 and **p < 0.01.
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