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Summary  
Pressures for survival drive sensory circuit adaption to a species’ habitat, making it essential to               

statistically characterise natural scenes. Mice, a prominent visual system model, are dichromatic            

with enhanced sensitivity to green and UV. Their visual environment, however, is rarely             

considered. Here, we built a UV-green camera to record footage from mouse habitats. We              

found chromatic contrast to greatly diverge in the upper but not the lower visual field, an                

environmental difference that may underlie the species’ superior colour discrimination in the            

upper visual field. Moreover, training an autoencoder on upper but not lower visual field scenes               

was sufficient for the emergence of colour-opponent filters. Furthermore, the upper visual field             

was biased towards dark UV contrasts, paralleled by more light-offset-sensitive cells in the             

ventral retina. Finally, footage recorded at twilight suggests that UV promotes aerial predator             

detection. Our findings support that natural scene statistics shaped early visual processing in             

evolution. 

 

Keywords 

Mouse vision, colour vision, visual ecology, natural movies, natural scene statistics, retina,            
ultraviolet light, convolutional autoencoder, efficient encoding, ON/OFF pathways 

 

Lead contact 
Further information and requests for resources and reagents should be directed to and will be               
fulfilled by the Lead Contact, Thomas Euler (thomas.euler@cin.uni-tuebingen.de )  

2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416172doi: bioRxiv preprint 

mailto:thomas.euler@cin.uni-tuebingen.de
https://doi.org/10.1101/2020.12.08.416172
http://creativecommons.org/licenses/by-nc-nd/4.0/


Qiu et al. | Manuscript 

Introduction 
During evolution, the structure and function of neural circuits have been shaped to improve the               

species’ chances to survive and procreate in their specific natural environments. Such            

adaptations have long been described and discussed in the visual system (Attneave, 1954;             

Barlow, 1961; Simoncelli and Olshausen, 2001). Some of these adaptations are already in eye              

placement: For example, predators, such as cats, usually have frontally placed eyes,            

maximizing the binocular field to improve stereovision. Prey animals, such as mice, have             

laterally placed eyes, expanding the field-of-view (FOV) to detect threats as reliably as possible              

(reviewed in Baden et al., 2020).  

Given such specific adaptations, characterising the properties of natural visual environments is            

crucial for advancing our understanding of the structure and function of the visual system              

(Masland and Martin, 2007), in particular for species whose visual systems are different from              

ours, such as mice. Yet, studying the visual system and behaviour of mice in the context of their                  

natural environment is only starting (Datta et al., 2019; Hasson et al., 2020; reviewed in               

Krakauer et al., 2017), despite the fact that mice have become a prominent model system for                

vision research in the past decade (reviewed in Huberman and Niell, 2011; Seabrook et al.,               

2017). The importance of considering ethologically relevant stimuli and behaviours for studying            

mouse vision is highlighted in recent work, showing, for example, superior spatial frequency             

tuning for V1 neurons when probed with ecologically inspired visual stimuli instead of drifting              

gratings (Dyballa et al., 2018), which might potentially underlie accurate visually-driven           

approach performance during prey capture (Hoy et al., 2016). 

The relationship between properties of natural scenes and principles of visual coding has been              

powerfully addressed using computational modeling (reviewed in Turner et al., 2019). A classic             

example is the finding that simple cell-like receptive fields (RFs) emerge in models that learn a                

sparse code for natural images (Olshausen and Field, 1996). Along these lines, Ocko and              

coworkers (2018) recently showed that a convolutional autoencoder (CAE; Ballard, 1987; Hinton            

and Salakhutdinov, 2006) trained to reconstruct pink ( ) noise learned center-surround spatial       /f1      

filters reminiscent of the RFs of different retinal ganglion cell (RGC) types. In addition, imposing               

constraints on encoding models to drive optimal performance in specific natural vision tasks,             

has proven fruitful to generate principled hypotheses about the underlying neural or perceptual             

mechanisms (Burge and Jaini, 2017; Geisler et al., 2009). Such a task-driven framework has              

been fueled in the last years by advances in deep convolutional neural networks (DNNs) based               

on discriminative learning from large databases of natural images (reviewed in LeCun et al.,              
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2015; Turner et al., 2019). Interestingly, such layered networks learn features that share             

representational similarities with neuronal activity in several processing stages along the visual            

hierarchy (Yamins and DiCarlo, 2016).  

In natural scenes, colour is an ethologically highly relevant visual feature, and depending on              

which colours an animal can see, this will influence its ability to forage and hunt, select mates,                 

and avoid predators. Indeed, beyond the absence of a fovea in mice, a major difference               

compared to primates is that mice are dichromats and see UV light. Next to a medium (M)                 

wavelength-sensitive opsin peaking at 510 nm (green), mice have a short (S)            

wavelength-sensitive opsin peaking at 360 nm in the UV (Jacobs et al., 2004; Röhlich et al.,                

1994). Due to co-expression of the S-opsin in ventral M-cones (Baden et al., 2013; Szél et al.,                 

1992) and a peak in S-cone density in the ventral periphery (Nadal-Nicolás et al., 2020), the                

mouse retina is subdivided into a more green-sensitive dorsal and a strongly UV-sensitive             

ventral half. Notably, ventral cones are tuned to signal dark contrasts (Baden et al., 2013) and,                

hence, may support the detection of dark shapes against the sky. Such dorso-ventral             

regionalization of the mouse retina suggests a functional specialization, according to which the             

ventral retina “monitors” the overhead space to detect predators (Wallace et al., 2013; Zhang et               

al., 2012), whereas the dorsal retina supports foraging and hunting for food (Hoy et al., 2019;                

Shang et al., 2019). An important consequence of this regionalization is that any statistical              

analysis of the mouse’s visual environmentー like quantifying spectral content of natural scenes              

ー should consider the upper and lower visual field separately. However, recording the             

chromatic information available to mice under natural conditions is challenging, since standard            

cameras fail to capture UV light. 

To analyze the spectral properties of the environment of mice, we have therefore built a               

hand-held camera that is mounted on a gimbal for image stabilization and covers the spectral               

bands – UV and green – relevant for mice. We used this camera to record footage near mouse                  

tracks in the field, capturing various outside scenes at different times of the day – providing a                 

resource of natural scenes for vision research in mice. Focusing on spectral information, we              

found that the contrast in the two spectral channels greatly diverged in the upper but not in the                  

lower visual field, paralleling the superior chromatic opponency in the ventral retina (Szatko et              

al., 2020) and behavioural colour discrimination in the upper visual field (Denman et al., 2018).               

Notably, our analysis of the footage suggests that the mouse’s UV sensitivity may help detecting               

aerial predators also at dusk and dawn. Finally, computational modelling predicts that            

colour-opponent filters are more likely to emerge in unsupervised models trained with images             
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from the upper visual field than from the lower visual field. Together, this lends further support to                 

the idea that retinal circuits have evolved to process natural scene statistics in a              

species-specific manner (reviewed in Baden et al., 2020). 

Results 

A camera for recording visual scenes from the mouse’s perspective 

The goal of this study was to capture the visual environment of mice mimicking key aspects of                 

mouse vision. Specifically, we focused on three main aspects: (i) the perspective from only a               

few centimeters above the ground, (ii) the large FOV that for each eye approaches ~180°               

(Sterratt et al., 2013), and (iii) the spectral sensitivities of the mouse photoreceptors, peaking at               

360 and 510 nm for UV-cones and rods/M-cones, respectively.  

 

Figure 1 | Mouse-camera module. a, Schematic drawing of mouse-camera with two spectral channels              
(UV, green). CS, camera sensor; P, pinhole; L01-05, lenses; BPUV, UV bandpass filter (350-419 nm); M,                
silver mirror; LED, light-emitting diode; BPG, green bandpass filter (470-550 nm); DM, dichroic mirror              
(>90% reflection: 350-442 nm; >90%, transmission: 460-650 nm). b, Picture of the assembled camera              
module. c-e, Pictures of assembled camera module, with gimbal (1), UV camera (2), green camera (3),                
and fisheye lens (4). f, Normalized transmission spectra of DM, BPUV and BPG, with normalized               
absorption spectra of mouse cone opsins (S, M) and rhodopsin (Rh) overlaid (Franke et al., 2019). g,                 
Movie frame with UV (left), green (centre) channel, and overlay (right). 

To this end, we developed a “mouse-camera” that simultaneously captures movies in the UV              

and green spectral bands (Fig. 1; for components, see Table 1; for camera settings, see Table                
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2; for additional details, see Methods). The two spectral channels were simultaneously recorded             

on flash memory by two single-board Raspberry Pi microcomputers attached to the camera             

modules. As an objective, we used a fisheye lens with a FOV of 180° (Fig. 1a-e). The camera                  

was mounted on an active gimbal for stabilization, such that it could be moved close to the                 

ground (Fig. 1c-e).  

Based on the assumption that eye movements in mice serve mainly to stabilize the retinal               

image (Land, 2019; Meyer et al., 2018, 2020; Michaiel et al., 2020) and are typically coupled to                 

head movements (Meyer et al., 2020; Michaiel et al., 2020), we restricted our recordings to a                

view with the horizon oriented parallel to ground and positioned around the middle elevation of               

the camera image. This way, the lower half of the camera image captured information from the                

lower visual field of mice, while the upper half captured information from the upper visual field. 

The Raspberry Pi camera modules we used are consumer products (for specifications, see             

Table 3) and, hence, are optimized for taking colour pictures that look natural to a human                

observer. At the hardware side, this is achieved by a checkerboard-like pattern of thin RGB               

filters (Bayer filter) coated directly on the chip surface (for spectra, see resources listed in Table                

3). While the Bayer filter’s green component matches the spectral sensitivity of the mouse rods               

and M-cones ( ) (Jacobs et al., 2004, 2007), the Bayer filter largely blocks UV   ≈ 510 nmλPeak             

light. To address this issue, we mechanically removed the Bayer filter layer in case of the UV                 

channel camera chip (Wilkes et al., 2016). 

The effective spectral sensitivity of each camera channel is determined by the combination of              

bare chip sensitivity, Bayer filter (in case of the green channel), and a spectral bandpass filter                

(Fig. 1f). In addition, the cameras automatically adjust the image intensities to match gamma              

curves typically found in consumer displays. Since we do not know the chip’s exact sensitivity               

curve, we measured the sensitivity of the two camera channels using LEDs of defined spectrum               

and power (Suppl. Figure S1a; Methods). For each channel, we mapped image intensities to              

power meter readouts of UV or green LEDs, and fitted the data using an inverse gamma                

correction function (Suppl. Fig. S1b). We then used these fits to convert pixel values into               

normalized intensities (source vs. intensity-corrected images; see Suppl. Fig. S1c).  

To verify this intensity correction, we recorded outside scenes using a scanning spectrometer             

(Baden et al., 2013), which provides still images with each pixel containing the spectrum from               

300 to 660 nm (see Methods). By convolving each pixel’s spectrum with the mouse cone opsin                

absorption curves, we generated mouse-view corrected versions of the spectrometer images           

(Suppl. Fig. S1d). For representative scene elements, such as grass and trees, we found that               
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the normalized intensities in the corrected camera images matched well those in the             

spectrometer images for both the UV and green channel (Suppl. Fig. S1e).  

 

Figure 2 | Example scenes and intensity distribution. a , Example frames (UV, green, and overlay)               
from movies of different scenes recorded outside in the field (near Waldhäuser Ost, Tübingen, Germany;               
48°33'02.4"N 9°03'01.2"E). b, Normalized intensity for green (G) and UV as a function of elevation across                
the n=1,936 frames of one example movie (median w/ 25th and 75th percentile). c, 2D histograms of                 
intensities of the same movie as in (b), visualizing the G-UV intensity distribution for an image cut-out                 
(crop) in the upper (left) and lower (right) visual field (for region placement, see yellow boxes in (b, left)).                   
d, Distribution of mean intensities for 1,500 image crops from upper and lower visual field, selected                
randomly from 15 movies, and division into 3 intensity classes (percentiles I1-3). e, Example images from                
the three mean intensity classes. 
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Note that the intensity correction reached its limits for extensive sky regions, because the              

camera chip could saturate due to its limited dynamic range, when the spectrometer did not. We                

considered this potential issue by excluding oversaturated images (see Methods). Note also that             

we used the available range for both colour channels by mapping the intensities to pixel values                

(see Methods), although in the natural environment, the absolute intensity of UV is known to be                

lower than that of longer wavelengths (Hut et al., 2000; see Discussion). After intensity              

correction, the movies from the two channels were temporally synchronized and spatially            

overlayed (see Methods), resulting in a single UV-green movie (Suppl. Video V1). 

Movie recordings and first-order statistics 

Next, we used the camera to record footage of representative natural scenes outside in the field                

in places with traces of mouse activity (Fig. 2a). Most scenes were recorded in summer and                

spring during the day, and a few scenes at dusk or dawn (cf. Fig. 5; see Table 4).  

We first focused on first-order statistics, i.e. brightness, and explored the normalized intensity             

distribution in each channel as a function of elevation (Fig. 2b). Examining crops from an               

example movie, we found that the relative intensities in both channels were usually higher in the                

upper compared to the lower visual field (Fig. 2b, right). Interestingly, the two chromatic              

channels were less correlated in image crops from the upper than the lower visual field (Fig. 2c).                 

We therefore quantified the linear correlation between the two channels using principal            

component analysis (PCA; Buchsbaum and Gottschalk, 1983) and found a 2-5 times higher             

variance along the colour-opponent axis in images from the upper vs. the lower visual field (see                

colour opponency index in Suppl. Fig. S2). This indicates a higher variability in chromatic   COi             

intensity differences, i.e. contrasts, above the horizon (see also next section).  

Performing these analyses systematically across all recorded movies comes with the challenge            

that, depending on the time of the day, the weather, and the scene content, the brightness of                 

the recorded scenes could vary tremendously – for instance when comparing a scene with clear               

sky and a single tree (Fig. 2a, left-centre) with a scene recorded close to the forest (right-top).                 

We therefore split the footage crop-wise into three groups based on the mean intensity (Fig.               

2d,e; see Methods) and performed all subsequent analyses for each of these brightness             

categories.  
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Chromatic contrast is higher in the upper vs. the lower visual field 

Retinal output to the brain is also driven by second-order statistics, such as differences in               

brightness, i.e. contrast (Frazor and Geisler, 2006; Mante et al., 2005; Rieke and Rudd, 2009). If                

distributions of contrast differ between colour channels, this difference can be interpreted as             

chromatic contrast. Therefore, we next compared the contrast distribution in the chromatic            

channels in our natural scenes above and below the horizon and across the three mean               

intensity groups (Fig. 3).  

We first focused on root mean square contrast ( ), commonly used in psychophysics for        CRMS       

describing contrast in complex natural scenes (Bex and Makous, 2002; Mante et al., 2005). We               

extracted circular image patches (kernels) of various diameters (dRF, 2° to 14°), a range that               

includes the RF sizes of mouse RGC types (Baden et al., 2016), and computed as the              CRMS    

standard deviation of the normalized pixel intensities divided by mean intensity. To quantify             

differences between distributions, we used a two-sided permutation test as well as the  CRMS             

Jensen-Shannon divergence ( ), which measures the general similarity between probability  SDJ         

distributions, with  indicating identical distributions.SDJ = 0   

Our analysis of the distributions across 1,500 crops revealed three key features of the    CRMS            

recorded mouse natural scenes (Fig. 3): First, as illustrated by two representative examples             

(Fig. 3a-c; upper two vs. lower two rows; from Suppl. Video V1,2), was higher in the            CRMS      

upper compared to the lower visual field (for distributions, medians and JSD, see Fig.        CRMS        

3d-g). This difference was much more pronounced in the UV than the green channel and in the                 

low and medium mean intensity groups (compare columns in Fig. 3d-g). Second, for the tested               

kernel sizes, increased with kernel diameter (see examples in Fig. 3b; compare Fig. 3d  CRMS              

vs. e; for median and JSD, see Fig. 3f,g), consistent with the dominance of low-spatial               

frequencies in natural scenes (Burton and Moorhead, 1987; Field, 1987; Ruderman and Bialek,             

1994). Third, distributions of the UV and green channel differed more strongly in the  CRMS              

upper compared to the lower visual field (see example in Fig. 3c; for median and JSD, see Fig.                  

3f,g). These differences in distribution between chromatic channels and upper vs. lower    CRMS          

visual field were significant for all kernel diameters except in the high mean intensity group (for                

all comparisons, see Tables 5,6).  
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Figure 3 | Chromatic contrast is higher in image crops from the upper visual field. a, Examples for                  
image crops from upper (from I1 and I2) and lower (from I1 and I3 ) visual field. b, Images from (a) filtered                     
with different receptive field (RF) diameters, dRF , with each of the columns showing (from left): UV-green                
overlay, UV and green channel maps visualizing RMS contrast (CRMS), and difference between maps              
(UV-G). c, Distributions of CRMS for UV and green for dRF =10°. d,e , 1D (left) and 2D histograms for CRMS of                    
all n=1,500 image crops from randomly picked frames (out of n=15 movies) for the three intensity groups                 
(from Fig. 2d,e) and dRF =2° (d) and dRF=10° (e). f, Median CRMS as function of RF size for UV and green                     
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channels in the upper (solid lines) and lower (dashed) visual field, for the three intensity groups. g, Like (f)                   
but with median Jensen-Shannon divergence (JSD) between CRMS distributions of the two chromatic             
channels as function of dRF . Error bars in (f,g) represent 2.5 and 97.5 percentiles with bootstrapping (see                 
Methods). 

The differences in JSD between the upper and lower visual field likely reflect differences in               

chromatic contrast: When plotting green as a function of UV , the data points for the     CRMS       CRMS       

lower visual field tended to be distributed tightly along the identity line (e.g. Fig. 3d 1,e 1, bottom),                

indicative of a high correlation between the channels and, thus, low chromatic contrast. For the               

upper visual field, however, the distributions for UV compared to green were broader and     CRMS           

shifted towards higher values, in particular for larger RF kernel diameters (e.g. Fig. 3e 1, top),               

suggesting a lower channel correlation and high chromatic contrast, respectively.  

In summary, we found that except for bright scenes, UV-green chromatic contrast was higher in               

the upper compared to the lower visual field, particularly for the large RF kernel diameters (Fig.                

3g). Taken together, this suggests that the natural environment of mice above the horizon is rich                

in chromatic information, which may preferentially drive (colour-opponent) RGCs with large RFs.  

Natural scenes are biased towards dark contrasts 

It has been reported that the contrast distribution of (monochromatic) natural scenes is biased              

towards dark (negative) contrasts and that this bias is mirrored in the higher proportion of Off vs.                 

On responding neurons in the early visual system (Ratliff et al., 2010; Wang et al., 2015; Xing et                  

al., 2010). Therefore, we went on to study the distribution of dark and bright contrasts in the                 

recorded scenes (Fig. 4). To measure the contrast polarity distribution (“On-Off contrast”,            

) in each channel, we convolved the crops separately with the center and surround ofCOn−Off                

difference of Gaussian (DOG) kernels of various diameters (dRF, 2° to 14°) and computed the               

Michelson contrast between center and surround (Ratliff et al., 2010) (Fig. 4a-c). Like for ,              CRMS  

we analysed the distributions of separately in both chromatic channels for the mean     COn−Off          

intensity groups (Fig. 4d-f).  

In crops with low and medium mean intensities, we found the distributions ー despite           COn−Off     

being wide ー to be skewed to negative values, particularly in the upper visual field and for                 

larger RF kernel diameters (for examples, see Fig. 4a-c; for distributions, median and JSD, see               

Fig. 4d-g; for statistical comparisons, see Tables 7,8). The dark bias in the upper visual field                

scenes resonates with results from an earlier study (Baden et al., 2013), which showed that               
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mouse cone photoreceptors that survey the sky preferentially encode dark contrasts, suggesting            

a neural representation bias that starts already at the cone level. 

 

Figure 4 | The upper visual field is biased towards negative contrast . a, Example image crops from                 
upper and lower visual field (same as in Fig. 3a). b, Images from (a) after application of On-Off filter                   
kernel (Methods) with different RF diameters, dRF, with each of the two columns showing the UV-green                
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overlay (left), UV (centre) and green (right) channel maps visualizing On-Off contrast (COn-Off). c,              
Distributions COn-Off for UV and green for a medium-sized dRF of 10°. d,e , 1D (left) and 2D histograms for                   
COn-Off of all n=1,500 image crops from randomly picked frames out of n=15 movies) for the three intensity                  
groups (from Fig. 2d,e) and dRF=2° (d), dRF =10° (e). f, Median COn-Off (± 0.1 SD) as a function of dRF for UV                      
and green channels in the upper (solid lines) and lower (dashed) visual field; for the three intensity                 
groups. g, Like (f) but with Jensen-Shannon divergence (JSD) between COn-Off distributions (cf. 2D plots in                
(d,e)) of the two chromatic channels as a function of dRF . Error bars represent 2.5 and 97.5 percentiles                  
with bootstrapping (see Methods). Note that for larger RF kernel sizes, the distribution mode was slightly                
shifted to negative values (e.g. (e)), yet, when pooling images across chromatic channels, visual fields               
and intensity groups, the distribution mode of all four kernel sizes was at zero (data not shown), in line                   
with earlier observations (Ratliff et al., 2010). 

Hence, we next asked if such a neural representation bias is also present at the retinal output                 

level, where we would expect a bias towards Off responses in ventral, large-RF RGCs. To test                

this prediction, we used a published dataset of RGC responses recorded in the ventral retina               

(Baden et al., 2016). We extracted the On-Off index (On, ; Off, ), which          OiO > 0   OiO < 0   

indicates if a cell responds more strongly to light-on or light-off transitions, and the RF diameter (                

) for 2,380 RGCs (Suppl. Fig. S3a,b; see also Methods). We found that, indeed, Off cellsdRF                 

with large RF ( , equivalent to in diameter) displayed a dark-biased   °dRF > 8    40 µm> 2       OiO  

(Suppl. Fig. S3c) and were more frequent than their On cell counterparts (Suppl. Fig. S3d). This                

finding is consistent with the skewed distributions towards dark contrasts in our camera footage,              

suggesting retinal circuit adaptations that enable exploiting the dark bias present in natural             

scenes above the horizon.  

We also compared the distributions in the two channels and found chromatic On-Off    COn−Off           

contrast (quantified as ; Fig. 4g) to be systematically higher in the upper visual field, with   SDJ              

the exception of the high mean intensity group. Moreover, like for the analysis of , the              CRMS   

distribution seemed broader for UV, supporting the idea that the mouse’s UV channelCOn−Off               

provides the animal with more nuanced information about the sky region than the green              

channel.  

UV channel for predator detection? 

The high contrast available in the upper visual field and, specifically, in the animal’s UV channel                

may support detection of aerial predators (discussed in Cronin and Bok, 2016). However, so far,               

we focused on footage recorded during daytime and while mice are active during the day (Hut et                 

al., 2011), they also forage from dusk till dawn. We thus asked if UV sensitivity was also useful                  

for detecting objects in the sky at twilight. Interestingly, previous measurements of the spectral              

composition of sunlight over the course of a day revealed an overrepresentation of short              
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wavelengths in an approx. one-hour period during twilight (Hut et al., 2000; Johnsen et al.,               

2006). This effect is due to absorption by ozone, together with the scattering of sunlight in the                 

upper atmosphere, resulting in a blueish twilight sky (discussed in Johnsen et al., 2006). Since               

the ratio between 360 and 520 nm – near the sensitivity peaks of mouse opsins – was reported                  

to increase at twilight (Hut et al., 2000), we recorded with our mouse-camera before sunrise and                

after sunset (Fig. 5). Because of the camera chip’s relatively low light sensitivity, we recorded               

movies in the direction of the sun from a fixed camera position (Fig. 5a).  

 

Figure 5 | UV channel might facilitate detection of dark shapes in the upper visual field also at                  
dusk and dawn . a, Representative scenes recorded with the mouse-camera around sunrise. b, Intensity              
profiles along a line (dashed, see inset) starting at the sun for images from (a). c, Median intensities in                   
two image crops (see inset in (a); dashed box, tree; solid box, sky) as function of image series index. d,                    
CRMS (mean) in image crop at the edge of a tree (rectangle in inset) as function of image index. e, C RMS                     
(median) in image crop placed on the tree (rectangle in inset) as function of receptive field (RF) kernel                  
diameter (dRF). f, Image showing an approaching black drone mimicking a bird of prey. Panels recorded at                 
dawn (a-d) and dusk (e,f). Error bars in (c,d) and (e) representing 2.5 and 97.5 percentiles with                 
bootstrapping. 
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First, we explored for the example frames the intensity profiles along a 70° arc starting at the                 

sun’s position (Fig. 5b). In the vicinity of the sun, the intensity in the green channel was always                  

higher than that in the UV channel, whereas further away from the sun, UV and green reached                 

similar intensity levels (Fig. 5b; e.g. profiles from image #4 for ), in line with the           5°> 5      

observations by Hut et al. (2000). Moreover, for distances larger than approx. from the sun,            °5     

the UV intensity profile was much flatter than that of green, resulting in a more homogeneous                

UV illumination of the sky. Finally, in the sky’s dome, the intensity rose faster over the course of                  

the sunrise in the UV compared to the green channel (Fig. 5c). Akin to daytime scenes,                CRMS  

was significantly higher in the UV than the green (Fig. 5d; , for all images, two-sided           .0001p < 0      

permutation test,  repeats) and increased with kernel diameter (Fig. 5e).0, 00n = 1 0  

Together, these characteristics render the UV channel suitable for object detection, in particular             

for dark objects on top of a relatively bright (twilight) sky. We tested this hypothesis with a black                  

drone mimicking an approaching aerial predator (Fig. 5f). As predicted, the drone was much              

more easily detectable in the UV vs. green channel, suggesting that this also holds for birds                

preying on mice during twilight, and therefore may contribute to increasing the species’ survival              

chances in their natural habitat (Suppl. Video V3). 

Autoencoder model predicts colour opponency in the ventral retina 

So far, we characterized the contrast statistics of scenes from the mouse natural environment              

and found significant differences in chromatic contrast between upper and lower visual field.             

Next, we wanted to explore if these differences can give rise to colour opponency and, hence,                

shape neural representations. Recently, Ocko and colleagues (2018) trained a convolutional           

autoencoder (CAE; Ballard, 1987; Hinton and Salakhutdinov, 2006) model to reconstruct pink            

( ) noise and showed that the model learned spatial filters with center-surround organisation/f1              

resembling the RFs of different RGC types. Thus, we next asked if such CAE models can also                 

learn colour opponent RFs (Fig. 6). Autoencoder models feature a “bottleneck” that forces them              

to learn a “compressed” representation of the input images. This conceptually resembles the             

early visual system, where the information flow from the retina to downstream targets in the               

brain is constrained by bandwidth limitations (Gjorgjieva et al., 2014; Perge et al., 2009; Van               

Essen et al., 1991). We optimized our CAE model to yield good reconstructions under the               

qualitative constraint that the learned filters resemble smooth, centre-surround RFs (Suppl. Fig.            

S4). We then tested if colour-opponent kernels emerge in a CAE trained with our UV-green               
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scene crops, and whether the total number of such kernels differed between the upper vs. lower                

visual field.  

 

Figure 6 | Convolutional autoencoder (CAE) model learns colour opponent kernels from upper             
visual field footage . a, Architecture of the CAE mode (FC, fully-connected; numbers indicate feature              
shapes; for details, see Methods)l. b, Reconstruction performance measured as structural similarity            
(SSIM) under different regularization strengths α (L2) and β (L1), with two example images (input; top-left)                
and the corresponding CAE outputs depicted for certain combinations of α and β (red boxes). c,                
Convolutional kernels learned by the model from upper (top) and lower (bottom) visual field scenes (for                
α=104, β=1/256; see solid red box in (b); correlation indicated above each kernel pair; p<0.05 for all kernel                  
pairs except third one in bottom row (p=0.9)). Example for colour-opponent kernel indicated by box. d, 2D                 
histogram showing total number of colour-opponent kernels per random seed learned from upper (top)              
and lower (bottom) visual field scenes (n=10 random seeds). e,f, 16 kernels for UV and green, each for                  
upper and lower visual field crops; same presentation and dataset as in (c). In (e), first kernels from PCA                   
(Methods), with colour-opponent kernels indicated by boxes. The colour opponency index (COi; cf. Suppl.              
Fig. S2 and Methods) of the upper and lower visual field is 0.0393 and 0.0182, respectively. In (f),                  
randomly selected kernels from ZCA whitening (Methods). Here, all 162 kernels (9x9 x2 channels; cf. (a))                
were colour-opponent for the upper visual field, while only 143 were colour opponent for the lower visual                 
field. 

Classically, autoencoders are encouraged to learn an efficient encoding of the input by reducing              

the number of neurons in the hidden layer. Instead, we here encouraged redundancy reduction              
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of the input by adding Gaussian noise and imposing an L1 penalty ( ) to the activations of the            β       

encoder’s output (Doi and Lewicki, 2007; Field, 1994; Ocko et al., 2018; for details, see               

Methods; van Rossum et al., 2003). To encourage smooth kernels akin to those measured in               

early visual neurons (e.g. Hubel and Wiesel, 1959; Marr and Hildreth, 1980), we additionally              

used L2 regularization ( ) on the convolutional and deconvolutional layers, effectively   a         

constraining the norm of the weights (Vincent and Baddeley, 2003). 

We trained the CAE model to minimize the mean squared error (MSE) for reconstructing images               

from the upper and lower visual field, separately for different regularizations and different             

random initialization seeds. We then quantified the model’s performance in reconstructing the            

input images (Fig. 6b) using structural similarity as metrics (SSIM; Wang et al., 2004).              

Qualitatively, we searched for combinations of (L2) and (L1) that used smooth      α    β      

centre-surround-like kernels in the presence of a bottleneck to reliably yield good reconstruction             

performance ( ; Fig. 6c). For these parameter combinations, we ran the model with SIM  ≥ 0.6S             

random seeds and determined the number of colour-opponent spatial kernels (Fig. 6d).0n = 1              

Kernels were considered colour-opponent if their UV and green channel were negatively            

correlated ( ; Pearson correlation; cf. Fig. 6c)..05p < 0   

We found that colour-opponent kernels were significantly more frequent in CAEs trained with             

scenes from the upper vs. the lower visual field ( , permutation test; Fig. 6d). This         .012p = 0       

predicts that in systems with an information bottleneck, UV-green colour-opponent kernels           

preferentially emerge when encoding visual scenes above the horizon.  

We compared our CAE model with classical approaches that explain the unsupervised            

emergence of colour-opponency (Buchsbaum and Gottschalk, 1983) or centre-surround RF          

structure from natural stimuli (Bell and Sejnowski, 1997; Graham et al., 2006). We first applied               

PCA (Suppl. Fig. S2) to 9x9 image patches randomly drawn from the same set of image crops,                 

and found that crops from the upper visual field have a higher (higher variance along the            COi      

colour-opponent dimension; cf. Suppl. Fig. S2) than ones from the lower visual field (Fig. 6e).               

Unlike the CAE, the PCA kernels did not resemble the centre-surround RFs known in RGCs.               

Similarly, we applied zero-phase component analysis whitening (ZCA; Methods; Bell and           

Sejnowski, 1997). Also here, we found more colour-opponent kernels with images from the             

upper visual field (Fig. 6f). However, while these kernels were centre-surround, they were small              

and mainly different in spatial position.  
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In summary, all three unsupervised models confirm that specific chromatic statistics in the upper              

visual field may be sufficient to drive the emergence of colour-opponent spatial RFs.  

Discussion 
Using a custom-build camera with spectral channels matching the UV and green sensitivities of              

mouse photoreceptors, we captured scenes from the natural visual environment of mice.            

Statistical analyses of these scenes revealed that chromatic contrast was stronger above the             

horizon, and that such contrast would preferentially drive large RFs. This enrichment of             

chromatic contrast in the upper visual field might underlie the preferential emergence of             

colour-opponent RFs found in the ventral retina, as suggested by a convolutional autoencoder             

model trained to represent our UV-green scenes. Furthermore, we found the upper visual field,              

and in particular the UV channel, to be biased towards dark contrast, which supports the view                

that UV could be an important source of information about dark objects (i.e. birds) against a                

brighter sky. Together, our findings lend further support to the idea that retinal circuits have               

evolved to optimally process natural scene statistics (reviewed in Baden et al., 2020). 

Recording natural scenes  

Because we aimed at a camera that was portable, low-cost, and easily reproducible, we opted               

for the well-documented OV5647 camera chip of the second-generation Raspberry Pi camera.            

The main disadvantage of this choice was the relatively low light sensitivity of the chip, which                

restricted the recordings of dynamic natural scenes to daytime and twilight. With other camera              

chips ー e.g. the new Raspberry Pi High Quality camera or smartphone cameras optimized for               

low-light recordings ー a more nighttime-enabled mouse-camera, potentially also with a larger            

dynamic range, may be in reach. A further improvement may be opsin-matched filters (Tedore              

and Nilsson, 2019). Another interesting direction would be to miniaturize the camera to allow it               

to be mounted on a mouse while it roams its environment. Current head-mounted cameras for               

mice are restricted to grayscale or RGB (Froudarakis et al., 2014; Meyer et al., 2018, 2020;                

Michaiel et al., 2020) and therefore miss the UV channel altogether (see discussion in Franke et                

al., 2019). For an indoor environment lacking UV illumination this may not be relevant, but, as                

demonstrated in our study, when the settings approach the natural habitat of mice, a UV               

channel is a rich source of potentially behaviour-relevant visual information. 
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Mouse camera movies as natural stimuli 

Stimuli used in vision research cover a broad spectrum, ranging from artificial stimuli, like              

gratings and noise (reviewed in Rust and Movshon, 2005) or screen-rendered 3D objects             

(Froudarakis et al., 2020; Zoccolan et al., 2009), to more naturalistic ones (e.g. Baddeley et al.,                

1997; Betsch et al., 2004; Froudarakis et al., 2014). We argue that the movies recorded here                

represent suitable natural stimuli to probe mouse vision for the following reasons: (i) They were               

recorded outdoors in fields where mice can be seen during the day, and (ii) contain the spectral                 

bands perceivable by mice. If presented on a UV-capable stimulator, they should drive the              

mouse visual system more efficiently than gray-scale stimuli on a standard monitor (discussed             

in Franke et al., 2019). (iii) Because our camera was mounted on a gimbal, the movies                

approximate well the input that reaches the mouse’s eye, since a large fraction of eye               

movements in mice serve to stabilize the retinal image in the presence of head movements               

(Meyer et al., 2020). A first validation of these stimuli could be to test if they allow separating                  

anatomically defined RCG types that so far could not be reliably disambiguated based on their               

responses to standard synthetic stimuli (Baden et al., 2016). 

Natural scene representations in the mouse early visual system 

Retinal opsin gradient, colour opponency and colour vision 

Like many vertebrates, mice display regional opsin co-expression in cone photoreceptors           

(reviewed in Peichl, 2005): Specifically, ventral M-cones co-express S-opsin (Applebury et al.,            

2000; Baden et al., 2013; Röhlich et al., 1994; Szél et al., 1992), a challenge for a colour vision                   

mechanism that relies on comparing signals from spectrally distinct cone types. Yet, our scene              

analysis showed chromatic contrast to be higher in the upper visual field, which is “viewed” by                

the heavily S-opsin dominated ventral retina. Moreover, the results from our autoencoder model             

suggests that the chromatic information in the upper visual field may have driven the presence               

of colour-opponent cells in the ventral retina over the course of evolution. In line with this                

prediction, a recent neurophysiological study showed that colour-opponent RGCs are indeed           

more frequent in the ventral retina (Szatko et al., 2020). At least some of these colour-opponent                

RGCs rely on antagonistic centre-surround RF mechanisms, with the RF centre dominated by             

signals from UV-biased S/(M)-coexpressing cones and the green-biased RF surround being           

mediated by rods (Joesch and Meister, 2016; Szatko et al., 2020) and/or by long-ranging inputs               

from M-cones in the dorsal retina (Chang et al., 2013). We also found more colour-opponent               

kernels for the upper vs. the lower visual field when employing a similar definition of               
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centre-surround opponency as Szatko and coworkers (Szatko et al., 2020). Interestingly, these            

mechanisms should profit from pooling signals from a large surround, which resonates well with              

our finding that larger RF cells should be better suited to pick up chromatic contrast. Further                

support for a crucial role of the ventral retina in promoting colour vision comes from behaviour:                

By probing the visual field of mice with chromatic stimuli, Denman et al. (2018) found that the                 

animals succeeded in a colour change detection task for stimuli presented in the upper visual               

field.  

If this chromatic regionalization of the retina was indeed evolutionary advantageous, why is it              

not more widespread among critters in similar habitats? For instance, some members of the              

subfamily Murinae, like the steppe mouse (Mus spicilegus), shares S/M opsin regionalization            

with the house mouse (Mus musculus), whereas others lack it (Apodemus sylvaticus) or lost the               

S-opsin completely (Apodemus microps) (Szel et al., 1994). Interestingly, these Apodemus           

species live in shrubberies, where a “bird-in-the-sky” detector may not be as useful as in               

relatively open spaces, as inhabited by M. spicilegus. Hence, spectral retinal regionalization in             

some mice may reflect an environmental adaptation ー akin to the UV-sensitive “strike zone” in               

the ventral retina of zebrafish larvae, which helps the animal detect UV-reflecting prey and avoid               

potential predators (large dark shapes) in the upper visual field (Zimmermann et al., 2018).              

Curiously reminiscent of this “strike zone”, Nadal-Nicolás and colleagues (2020) recently found            

a S-cone “hotspot” in the ventral periphery of the mouse retina. 

UV vision 

UV sensitivity is thought to play an important role in the behaviour of many vertebrates and                

invertebrates, including navigation, orientation, communication, foraging, as well as predator          

and prey detection (reviewed in Cronin and Bok, 2016). In rodents, UV vision has been mainly                

discussed in the context of communication via urine marks (Chávez et al., 2003; Joesch and               

Meister, 2016) and predator detection (e.g. Baden et al., 2013), but it may also play a role in                  

foraging with respect to enhanced chromatic contrast of foliage (Tedore and Nilsson, 2019) and              

fruit (Altshuler, 2001). Our results shed light onto why mice specifically profit from UV sensitivity               

for predator detection: Consistent with previous studies (Baden et al., 2013; reviewed in Cronin              

and Bok, 2016), our results suggest that during daylight, when S-cones are at their prime, UV                

sensitivity enhances the detection of dark silhouettes against the bright sky. At twilight, the              

spectrum becomes more dominated by short wavelengths (e.g. increase in ratio between 360             

and 440 nm, see Hut et al., 2000). From our footage, we estimated the intensity of the sky’s                  

dome around sunset in the UV channel to be equivalent to per cone. This is well           00 R s~ 3 * −1       
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above the S-cone’s threshold of per cone (Naarendorp et al., 2010), even when     0 R s~ 2 * −1          

including some UV-filtering by the mouse optics (33% transmission at 360 nm; Henriksson et al.,               

2010), and above the levels of per rod below which rods are thought to take over      00 R s~ 1 * −1           

(Rodieck, 1998). Moreover, recent V1 recording and modeling results suggest that around            

sunrise, mouse vision becomes quickly dominated by cones (Rhim et al., 2020). Under these              

conditions, S-cones, which are also less noisy than M-cones (Ala-Laurila et al., 2004), may              

indeed contribute to detecting dark shapes in front of the sky. Finally, at even lower intensities,                

when the rod photoreceptors dominate (Naarendorp et al., 2010), UV light from the sky may still                

play a role, because rhodopsin ー like any opsinー features a secondary sensitivity peak (“beta                

band”) around ~350 nm (Govardovskii et al., 2000). Therefore, it is conceivable that at low light                

levels, mice may perceive near-UV via the rods (discussed in Cronin and Bok, 2016).  

Bias towards dark contrasts  

Our analysis of mouse natural scenes is consistent with previous studies, showing that the              

distribution of contrast in natural scenes is biased towards dark contrasts (Cooper and Norcia,              

2015; Ratliff et al., 2010). The dark bias in our natural scene footage was more prominent in the                  

upper visual field and specifically in the UV channel, which resonated well with earlier retinal               

recordings showing that light-off steps are particularly faithfully encoded by ventral cones            

(Baden et al., 2013). Similar to previous findings that describe an overrepresentation of Off              

information in the visual system (Kremkow et al., 2016; Schröder et al., 2020; Yeh et al., 2009),                 

we also found that dark contrasts elicited stronger responses than bright contrasts, particularly             

in ventral RGCs. Interestingly, the dark bias was most prominent in large-RF RGCs, which ties               

into an ongoing controversy if Off cells are expected to feature large (e.g. Cooper and Norcia,                

2015) or small RFs (see discussion in Mazade et al., 2019; e.g. Ratliff et al., 2010). We currently                  

lack the corresponding RF data for dorsal RGCs, and therefore the question remains if the               

balanced contrast distribution in the lower visual field is also reflected in a more balanced               

distribution of On/Off preferences.  

Eye movements in the context of a horizontally regionalized visual field 

As discussed above, several lines of evidence suggest that the dorsal and ventral mouse retina               

are functionally specialized. Such dorso-ventral regionalization is expected to be advantageous           

only if it is ensured that the upper and lower visual field is reliably projected onto the ventral and                   

dorsal retina, respectively. This requires a different visual orienting strategy compared to            

primates, who scan the visual environment with their foveas using head-motion independent            
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eye movements (Baden et al., 2020; reviewed in Land, 2015). Eye movements in mice are               

tightly coupled to head movements, and often serve to stabilize the retinal image with respect to                

the ground (Meyer et al., 2018, 2020; Michaiel et al., 2020). This presumably ensures that the                

temporo-nasal retinal axis is aligned with the horizon and would thus allow the mouse retina               

with its dorso-ventral specialization to make use of the respective differences in natural scene              

statistics.  

Are natural scene statistics encoded in retinal circuits? 

Autoencoders have long been used to learn efficient representations by restricting the coding             

capacity of the hidden layer(s) (Hinton and Salakhutdinov, 2006; Kramer, 1991). Therefore, they             

are a natural choice for exploring feature transformations in the early visual system, such as               

between retina and primary visual cortex (V1), where visual information has to pass the optic               

nerve, posing a severe bottleneck. Recently, Ocko and colleagues (2018) trained a            

convolutional autoencoder with pink ( ) noise, which mimics the distribution of spatial    /f1         

frequencies in natural scenes (Field, 1987). They found that it learned spatial filters that              

resembled centre-surround RFs of a subset of primate RGC types. We used a similar CAE               

architecture trained with natural UV-green images, which learned, in line with Ocko et al. (2018),               

not only spatial filters resembling diverse RGC RFs, but also colour-opponency (Buchsbaum            

and Gottschalk, 1983). While other approaches, such as PCA and ZCA whitening, also revealed              

colour-opponency and, in case of ZCA whitening, centre-surround structure, the CAE was            

unique in the diversity of resulting spatial filters reminiscent of different RGC types. In the future,                

it would be informative to investigate which types of regularization mimic the specific constraints              

represented by bottlenecks in the early visual system (and why) and, by systematically             

manipulating the input images, what particular features give rise to colour opponency            

(discussed in Chalk et al., 2018). Also, it would be interesting to explore if the kernels learned by                  

the CAE indeed help predicting RGC responses to natural or synthetic stimuli.  
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Part  
(part number) 

Company Distributor (link) # of 
parts 

Gimbal 
(Crane 2) 

Zhiyun, China Zhiyun Tech  1x 

DM 
(F48-442) 

AHF, Germany AHF 1x 

GPF 
(F47-510) 

AHF, Germany AHF  1x 

UPF 
(F37-424) 

AHF Analysentechnik AG, 
Germany 

AHF  1x 

Raspberry PI Zero W 
(EXP-R12-143) 

Raspberry Pi Foundation , 
UK 

e.g. EXP-TECH, Germany 2x 

Zero spy camera 
(EXP-R15-1309) 

Raspberry Pi Foundation , 
UK 

e.g. EXP-TECH, Germany 2x 

Powerbank 
(ANKER 1252011) 

Anker Technology, UK e.g. Reichelt, Germany 1x 

Fisheye lens 
(LS-40180) 

 e.g. Watterott, Germany  1x 

Bi-Convex lens, L04, 
(LB4879-A)5 mm  f = 3  

Thorlabs, Germany Thorlabs, Germany 1x 

Bi-Convex lens, L05, 
(LB4854-A)0 mm  f = 2  

Thorlabs, Germany Thorlabs, Germany 1x 

Plano convex lens, L03, 
, (LA4874-A)50 mm  f = 1  

Thorlabs, Germany Thorlabs, Germany 
 

1x 

Plano convex lens, L01/02, 
, (LA4148-A)0 mm  f = 5  

Thorlabs, Germany Thorlabs, Germany 
 

2x 

Iris diaphragm, P1, 2 
(SM1D12C) 

Thorlabs, Germany Thorlabs, Germany 
 

2x 

Protected silver mirror 
(PF10-03-P01) 

Thorlabs, Germany Thorlabs, Germany 1x 

Kinematic mirror mount 
(KCB1/M) 

Thorlabs, Germany Thorlabs, Germany 
 

1x 

Generic 3.3V green LEDs 
for camera synchronisation 

Conrad, Germany Conrad, Germany 2x 

Cage Cube 
(CM1-DCH/M) 

Thorlabs, Germany Thorlabs, Germany 
 

1x 

Slip Plate Positioner 
(SPT1/M) 

Thorlabs, Germany Thorlabs, Germany 
 

1x 

Cage Plate Thorlabs, Germany Thorlabs, Germany 1x 
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(CP02T/M)  

Cage Plate 
(CP02/M) 

Thorlabs, Germany Thorlabs, Germany 
 

8x 
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Parameter UV camera (CS1) Green camera (CS2) 

Resolution (720,540) (720,540) 

Frame rate [Hz] 25 25 

Exposure_mode off off 

Shutter speed [ms] 35 35 

ISO 800 100 

Analog_gain 8.0 - 8.2 1.0 - 1.2 

Awb_mode off off 

Awb_gains (1,1) (1,1) 

, with normalized pixelv  P = a b + c  
value , and power (in [µW])v P  

.741, b .102, c .015  a = 0  = 2  = 0  .197, b .331, c .366  a = 6  = 4  = 0  
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Table 3  | Resources (except camera parts).  
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Resource Company, source, description Link 

Python 3.6 Python programming language https://www.python.org/  

OpenCV Framework for computer vision https://opencv.org/  

Pytorch Machine learning library https://pytorch.org/  

FreeCAD Open source 3D construction software https://www.freecadweb.org/  

VNC Viewer Screen-sharing and remote-control 
software, RealVNC Ltd, UK 

https://www.realvnc.com/  

Spectrometer 
(STS-UV) 

UV-enabled spectrometer,  
Ocean Optics, Germany 

Product sheet 

Power meter 
(842-PE) 

Newport, Germany Newport power meter detector overview 

360 nm LED 
(XSL-360-5E) 

Roithner, Austria  

380 nm LED 
(VL380-5-15) 

Roithner, Austria  

400 nm LED 
(XRL-400-5E) 

Roithner, Austria  

490 nm LED 
(LED490-06) 

Roithner, Austria  

525 nm LED 
(G58A5111P) 

Roithner, Austria  

Spectral sensitivity of 
Raspberry Pi camera 

Depending on the camera version, 
different chips are used 

Camera module versions 
Sensitivity spectra 
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28 

Movie file name 
(yyyymmdd_hh_#) 

Duration 
(mm:ss) 

Example frames Brief description 

20180713_13_1 
20180713_13_2 

01:52 
01:17 

 

Daytime, early summer, few trees 

20180713_13_3 01:27 

 

Daytime, early summer, open sky 

20180713_14_1 01:53 

 

Daytime, early summer, few trees 

20180905_14_1 
20180905_14_2 

01:44 
01:52 

 

Daytime, early fall, close to the forest 

20180911_14_1 
20180911_14_2 

01:38 
01:42 

 

Daytime, early fall, close to the forest 

20190329_12_1 
20190329_12_2 

01:54 
01:54 

 

Daytime, early spring, grass 

20190329_12_3 
20190329_12_4 

01:50 
01:54 

 

Daytime, early spring, close to the 
forest 

20190329_13_1 
20190329_13_2 

01:43 
01:47 

 

Daytime, early spring, close to the 
forest 

20190329_13_3 01:51 

 

Daytime, early spring, few trees 

20190329_18_1 
20190329_18_2 

00:07 
00:02 

 

Dusk, early spring, a black drone 
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Table 5 | Statistics of between chromatic channels and upper vs. lower visual field as a     CRMS             
function of kernel diameter. Two-sided permutation test with 10,000 repeats. White, light orange             
and dark orange indicating ,  and .0001p < 0 .0001 .050 ≤ p < 0 .05p ≥ 0   

29 

Group d RF(°) Upper UV 
vs. 

Upper G 

Upper UV 
vs. 

Lower UV 

Upper UV 
vs. 

Lower G 

Upper G 
vs. 

Lower UV 

Upper G 
vs. 

Lower G 

Lower UV 
vs. 

Lower G 

I1 2 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

6 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

10 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

14 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

I2 2 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

6 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

10 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

14 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

I3 2 <0.0001 0.003 <0.0001 <0.0001 0.9249 <0.0001 

6 <0.0001 0.0114 <0.0001 <0.0001 <0.0001 <0.0001 

10 0.0009 <0.0001 0.0268 <0.0001 0.206 <0.0001 

14 0.0082 <0.0001 0.0003 <0.0001 0.1825 <0.0001 
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Table 6 | Statistics of between kernel diameters. Two-sided permutation test with 10,000     CRMS          
repeats.  

30 

Group  2° vs. 6° 2° vs. 10° 2° vs. 14° 6° vs. 10° 6° vs. 14° 10° vs. 
14° 

I1 Upper UV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Upper G <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Lower UV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Lower G <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

I2 Upper UV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Upper G <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Lower UV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Lower G <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

I3 Upper UV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Upper G <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Lower UV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Lower G <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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Table 7 | Statistics of between chromatic channels and upper vs. lower visual field as a     COn−Off             
function of kernel diameter. Two-sided permutation test with 10,000 repeats. White, light orange             
and dark orange indicating ,  and ..0001p < 0 .0001 .050 ≤ p < 0 .05p ≥ 0   
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Group d RF(°) Upper UV 
vs. 

Upper G 

Upper UV 
vs. 

Lower UV 

Upper UV 
vs. 

Lower G 

Upper G 
vs. 

Lower UV 

Upper G 
vs. 

Lower G 

Lower UV 
vs. 

Lower G 

I1 2 <0.0001 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 

6 <0.0001 <0.0001 <0.0001 0.0021  0.9848 0.0042 

10 <0.0001 <0.0001 <0.0001 0.82 <0.0001 <0.0001 

14 <0.0001 <0.0001 <0.0001 <0.0001 0.0014 <0.0001 

I2 2 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0584 

6 <0.0001 <0.0001 <0.0001 0.0305 0.0005 0.2765 

10 <0.0001 <0.0001 <0.0001 0.0007  0.0002 0.5104 

14 <0.0001 <0.0001 <0.0001 0.0006 <0.0001 <0.0001 

I3 2 0.0007 0.0383 0.0207 0.1577 0.1809  0.8714 

6 0.3987 0.393 0.0194 0.9813 0.1046 0.1114 

10 0.0011 0.8974 0.0407 0.0016 0.4223 0.0338 

14 <0.0001 <0.0001 0.0011 0.0047 0.0001 0.0468 
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Table 8 | Statistics of between chromatic channels and upper vs. lower visual field as a     COn−Off             
function of kernel diameter. Two-sided permutation test with 10,000 repeats. White, light orange             
and dark orange indicating ,  and .0001p < 0 .0001 .050 ≤ p < 0 .05p ≥ 0  
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Group  2° vs. 6° 2° vs. 10° 2° vs. 14° 6° vs. 10° 6° vs. 14° 10° vs. 
14° 

I1 Upper UV <0.0001 <0.0001 <0.0001 0.0645 0.0002 0.0317 

Upper G <0.0001 <0.0001 <0.0001 0.0051 0.0022 0.7299 

Lower UV 0.004 0.0383 <0.0001 0.4436 <0.0001 <0.0001 

Lower G 0.0001 0.1376 0.0005 0.0449 0.7307 0.0862 

I2 Upper UV <0.0001 <0.0001 <0.0001 0.0176 <0.0001 <0.0001 

Upper G <0.0001 <0.0001 <0.0001 0.0003 <0.0001 <0.0001 

Lower UV 0.25 0.0029 <0.0001 0.0919 <0.0001 <0.0001 

Lower G 0.0694 <0.0001 <0.0001 0.023 <0.0001 0.0635 

I3 Upper UV 0.0482 0.2692 0.8564 0.3549 0.0308 0.1902 

Upper G <0.0001 <0.0001 <0.0001 0.0008 <0.0001 <0.0001 

Lower UV 0.3934 0.4386 <0.0001 0.9422 <0.0001 <0.0001 

Lower G 0.0062 0.0013 <0.0001 0.538 0.0039 0.0308 
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Methods 

Camera design 

As the front lens of our camera (Fig. 1a), we used a fisheye lens ( , , LS-40180,              .05 mmf = 1  /2f   

Watterott, Germany) with a FOV of approx. 180°. Following an inverted periscope design, the              

lens was mounted at the bottom end of the camera, which allowed us to capture the scene from                  

a distance of approx. 2-5 cm to the ground (Fig. 1b-f). After passing two relay lenses (L04,                 

LB4879-A, ; L05, LB4854-A, ; both Thorlabs, German ), which allowed us to 5 mmf = 3    0 mmf = 2         

transfer the fisheye lens’ FOV to the camera sensor, a silver mirror reflected the light towards a                 

dichroic mirror (F48-442, AHF, Germany; reflection, ; transmission,      90%, 350 42 nm  >   − 4   

; Fig. 1c) that reflected wavelengths shorter than approx. towards0%, 460 50 nm  > 9  − 6          40 nm4   

the first camera sensor (CS1) and transmitted longer wavelengths towards the second camera             

sensor (CS2; Fig. 1a). An additional spectral bandpass filter in front of each camera chip (BPG,                

F47-510, ; BPUV, F37-424, ; both AHF) restricted the 0%, 470 50 nm  > 9  − 5   90%, 350 19 nm  >   − 4      

light reaching the chips to the approx. spectral ranges relevant for mouse opsins (Fig. 1c).               

Because the spectral properties of dichroic filters (DM, BPUV, BPG) change with the incident              

angle of the light, we used relay lenses L1, L2 (LA4148-A, ; Thorlabs, Germany) and           0 mmf = 5     

L3 (LA4874-A, ; Thorlabs) to ensure that light passes the dichroic bandpass filters  50 mmf = 1            

collimated before being focussed onto the camera chips. In addition, we added iris diaphragms              

(SM1D12C; adjusted to pinhole diameter) directly in front of the cameras to optimize   2 mm∼            

depth-of-field and image contrast. For the parts list, including mechanical parts, see Table 1. 

For each chromatic channel, we used a Zero spy camera module (EXP-R15-1309, EXP-TECH,             

Germany) connected to separate Raspberry Pi Zero W single-board computers (EXP-R12-143,           

EXP-TECH), which were powered by a 15 Ah USB power bank (Anker 1252011, Reichelt,              

Germany). Lenses and infrared filters had been removed from the camera modules. To increase              

the UV sensitivity of the chip in the UV pathways, we mechanically removed its RGB Bayer                

layer, following a procedure described by Wilkers et al. (2016).  

Movie recordings 

Movies were recorded onto the Raspberry Pi’s Flash memory card; movie capture was             

remote-controlled from a laptop connected to the Raspberry Pis either via USB cable or an               

ad-hoc Wifi network (VNC Viewer, RealVNC Ltd, UK). Camera parameters were fixed for all              

recordings (Table 2). To stabilize the camera during the recordings, we mounted it on a gimbal                
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(Crane 2, Zhiyun, China; Fig. 1d,e). Since the camera weighed around 1 kg and its point of                 

gravity was not centred, we added counterweights for the gimbal to work properly. When              

moving, we tried to maintain an azimuth angle of between the optical axis of the fisheye         60°∼         

lens and movement direction, close to the azimuth angle of the mouse’ eye (Oommen and               

Stahl, 2008; Stabio et al., 2018; Sterratt et al., 2013).  

Temporal alignment 

Since we recorded with two camera chips simultaneously, the resulting movies needed to be              

temporally and spatially (next section) synchronized. For temporal alignment, we used LEDs            

mounted close to each camera chip (Fig. 1a) and flashed (200-ms pulses every 20 seconds)               

them as synchronisation markers. In addition, we manually checked the temporal alignment by             

comparing frames from the two channels (e.g. during fast movements).  

Spatial alignment 

Because we used optical rails to build the mouse-cam’s optical pathway, the UV and green               

channels captured almost the same scene. To account for potential spatial offsets and             

differences in image magnification, we used a homography matrix ( ) to spatially relate a point         H       

 in the first channel to a corresponding point  in the other channel:(x , )1 y1
T (x , )2 y2

T  

.  

To this end, we first extracted at least 20 feature points from both channels using the                

scale-invariant feature transform (SIFT) approach (Lowe, 2004) and matched these feature           

points using the k-nearest neighbors algorithm. Next, was determined by a random sample       H        

consensus algorithm (Fischler and Bolles, 1981), allowing us to project all pixels in the first               

channel (green) to those in the second channel (UV), with the same typically working for all            H      

frames of a particular recording. 

Spectral calibration 

To map image pixel values ( , ) to absolute intensities (in [ ]), we first      vRaw  0...255      Wµ    

intensity-calibrated LEDs peaking in the UV ( ; see Table 3; Suppl. Fig.      60, 380, 400 nmλPeak = 3         

S1a) or the green band ( ) using a power meter (842-PE, Newport,     90, 525 nm  λPeak = 4         

Germany). Next we recorded images of these LEDs set to different intensities to determine the               
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relationship between normalized pixel value ( , ) and power ( ) by fitting the data to      v  ...10     P       

(Suppl. Fig. S1b; for coefficients, see Table 2) using the Levenberg-Marquardtv  P = a b + c             

algorithm for least squares curve fitting. Ground-truth spectral images of the natural scenes             

were acquired with a scanning spectrometer, as described earlier (Baden et al., 2013). In brief,               

this custom-built device consisted of two servo motors that moved the fibre of a              

USB-spectrometer (STS-UV, Ocean Optics, Germany) to rasterize the scene with a resolution of             

of visual angle (Suppl. Fig. S1d,f, right).10°∼   

To use the available range for both colour channels, our intensity correction linearly mapped an               

intensity range of (UV) and (green) to pixel values between   .02 0.76 μW  0 −     .37 6.56 μW  0 −        

and , respectively (see Discussion). Note that for better visualisation, we555 − 2   4 551 − 2           

applied gamma correction ( , with ; (Poynton, 2003)) to the images in the figures    v′ = v1/γ   .2γ = 2          

(e.g. Suppl. Fig. S1c,d vs S1f). 

Statistical analysis of the natural scenes 

A movie frame contained a circular FOV of ~180°, corresponding to 437 pixels along the               

diameter. To minimize the influence of potential chromatic and spatial aberrations introduced by             

the fish-eye lens, we focused on image cut-outs (“crops”; (53°)2, equivalent to (128 pixels)2 in               

size) from the central upper and lower visual field. For contrast analysis, we excluded image               

crops that contained more than 30% underexposed ( , ) or       (G) 5  vRaw < 1  (UV )  vRaw < 6   

overexposed ( ) pixels. We randomly sampled one image crop every 10 (G), (UV ) 54  vRaw vRaw > 2           

frames from all movies (Fig. 1b,e) until we had 1,500 crops for each upper and lower visual field.                  

Next, the image crops were divided into three “intensity classes” ( , , ) by two          I low  Imedian  Ihigh    

percentiles (  and ) by their mean intensities./31 /32   

Note that scene content varied somewhat with the image group, because scenes in or near the                

forest were usually dimmer (“low mean”) than those with open skies, bare ground and little               

vegetation (“high mean”). Since this bias was merely a side-effect of our mean intensity              

criterion, we refrained from linking statistics to scene content. In the future, it would be               

interesting to explore how scene content affects chromatic contrast statistics, for instance by             

classifying the images with pre-trained CNN models like VGG (Simonyan and Zisserman, 2014)             
before the statistical analyses. This could, for example, shed light on the question why contrast               

differences generally tended to decrease towards the high mean intensity group ー that is,              

whether this is simply due to the limited dynamic range of the camera or in fact scene                 
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content-dependent. To determine and , we randomly picked in each class for all    CRMS  COn−Off          

images 10 locations per crop.  

Root mean square (RMS) contrast 

In psychophysical studies, is commonly used for estimating contrast in natural scenes   CRMS           

(Mante et al., 2005) and defined as: 

 

where and are standard deviation and mean, respectively, of the (I (x, ))σ Centre y   (I (x, ))μ Centre y          

normalized pixel intensities contained in an image spot (“receptive field”; RF) centred at             x, )( y  

within the image crop. Spot diameters ( ) ranged from 2 to 14 degrees of visual angle.dRF   

On-Off contrast 

We measured On-Off contrast ( ) at a point using a difference-of-Gaussians (DOG)    COn−Off     x, )( y      

kernel with a normalized denominator to restrict the value range to :− , ][ 1 1  

 

where and represent the summed pixel intensities after convolving the (x, ) ICentre y  (x, )ISurround y          

image with the centre and surround Gaussian kernels, respectively. The spatial relationship            

between centre and surround Gaussians were ; the total DOG kernel size      .5σσSurround = 1 Centre       

was . Note that  was defined by the zero crossing radius of the kernel:3σCentre dRF  

 

where and are centre and surround Gaussians, respectively. (r|μ, )f σ2
Centre

   (r|μ, )g (1.5σ )Centre
2        

We ensure that the kernel response to a homogeneous input image by setting .           0    .2σr = 1 Centre  

A negative kernel response resulted in , indicating a negative contrast at this sample      COn−Off < 0         

location. As for ,  ranged from 2° to 14°.CRMS dRF  

On-Off index 

To test if ventral mouse RGCs prefer dark contrasts, we reevaluated a published dataset with               

recordings of ventral RGCs (Baden et al., 2016). From this dataset, we extracted for all On                

(groups 1-9) and Off (groups 15-32) RGCs that passed the quality criterion ( ;            i .2Q > 0  , 80n = 2 3  
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cells) the On-Off index (cell_oo_idx, ; see below) and the RF diameter (rf_size, in [μm]). The     OiO            

latter was converted from [μm] into [°] of visual angle, assuming on the mouse retinal           °≈30 μm1      

surface. The On-Off preference ( ) of a cell and was defined as:OiO  

 

with and defined as the activity during the response to the leading and the trailing edge rOn   rOff                

of a bright-on-dark moving bar stimulus, respectively. 

Comparing contrast distributions 

To test if two contrast distributions originate from the same distribution, we performed a              

two-sided permutation test with 10,000 repeats to estimate the p-value. In addition, as a metric               

for similarity between the contrast distributions in the UV ( ) and the green ( ) channel,          PUV      PG   

we used Jensen-Shannon divergence (JSD): 

 ,  

with the Kullback-Leibler (KL) divergence ( ) defined as:D   

,  

and . Instead of KL divergence, we used JSD because it is symmetric and .5  M = 0 (P )UV + PG              

bounded (  for log base 2)....10  

PCA and ZCA whitening 

Buchsbaum and Gottschalk (1983) have shown that achromatic and chromatic visual channels            

can be obtained using principal component analysis (PCA). As an extension, zero-phase            

component analysis (ZCA) whitening was shown to decorrelate signals and learned           

centre-surround-like kernels (Bell and Sejnowski, 1997). Accordingly, we defined a covariance           

matrix of the original centred data . By applying transformation matrix , we would get C       x→      W     

uncorrelated data x→̂  

. 

We performed PCA (without whitening) on the image crops using: 
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ZCA whitening was performed using 

             

where and contain eigenvectors and eigenvalues of , respectively, and for U   D       C    ε = 10−8   

numerical stability. 

We first applied PCA on intensities of chromatic channels. The eigenvector with two positive or               

two negative entries corresponds to an achromatic transformation and the other eigenvector            

with one positive and one negative entry corresponds to a chromatic (colour-opponent)            

transformation. We also applied PCA on 9x9 image patches. We defined the colour-opponent             

transformation when the kernels from the UV and green channels were negatively correlated             

(pearson correlation coefficient, ). In both cases, the colour opponency index ( ),   .05p < 0         COi  

which represents the ratio between signal variance in the colour-opponent dimensions to the             

variance in all dimensions, was defined as: 

 

where denotes the eigenvalues of the colour-opponent transformation, and all λCO          λ   
eigenvalues. 

Convolutional autoencoder model  

We prepared datasets from the upper and the lower visual field separately. For both datasets,               

10,000 image crops ( and represents image index) with 56x56 pixels each were randomly   xi
→   i           

picked and then rescaled to 28x28 pixels. These image crops met the same quality criteria               

(fewer than 30% of pixels under/over-exposure) as those for the statistical analysis. Among             

them, 9,000 image crops were used for training and the rest for validation and testing. The                

images were offset-corrected separately in each chromatic channel (by subtracting the           

channel’s mean intensity). 

We implemented a simple convolutional autoencoder model (CAE; Fig. 6a) following (Ocko et             

al., 2018) using PyTorch (Paszke et al., 2019). The encoder contained a single convolutional              

layer (with weights denoted ) followed by a rectified linear unit (ReLU) function, one    wc
→           

fully-connected (FC) layer and another ReLU function. Following Ocko et al. (2018), Gaussian             

noise with was added to the encoder output to restrict the channel capacity. The decoder  σ = 1               

contained one FC layer, one ReLU function, a single deconvolutional layer (with weights             

denoted ), and a hyperbolic tangent (tanh) function to map back to the original data range wd
→                
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(-1...1). We used 16 convolutional kernels with a filter size of 9x9 pixels for each chromatic                

channel, with zero-padded boundaries and without downsampling. Correspondingly, the         

deconvolutional kernels consisted of 9x9 pixel filters per input channel. Thus, the size of the               

activation tensor after the first convolution was 28x28x16 (height x width x channel), which was               

flattened into a 12,544 dimensional vector before it was fed into the FC layer. The two FC layers                  

had the same input and output size. The loss function was defined as: 

 

The first term is the MSE between prediction and ground truth , the second term is the L2        xi
→̂     xi

→        

penalty (hyperparameter ) on the weights of the convolutional ( ) and deconvolutional ( )  α        wc
→    wd

→  

layers, and the third term is the L1 penalty (hyperparameter ) on the encoder output (see also          β        

Results). 

The CAE models were trained for 100 epochs with 100 image crops in each mini-batch (learning                

rate, ) using the Adam optimizer (Kingma and Ba, 2014) to minimize the loss functions. η = 10−4               

Image reconstruction performance of the CAE was estimated based on structural similarity            

(SSIM; Wang et al., 2004) and MSE (Fig. 6b; Suppl. Fig. S4b, respectively).  

Hyperparameters and were adjusted via grid search. We aimed at a trade off between α   β              

reconstruction performance ( or ) and regularizations (mitigation of  SIM≥0.6S   SE≤0.01M      

overfitting), which we found for combinations of and . Next, we       ,α = 103 104   /16β = 0 − 1    

performed a permutation test with 10,000 repeats to check if the models trained with images               

from the upper visual field learned colour-opponent kernels more frequently than those trained             

with lower visual field images. We compared the number of colour-opponent kernels generated             

under the two input conditions using a two-sided permutation test.   
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