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The Conference on Brauer Groups was originally titled Conference

on Brauer and Picard Groups. The present title 1s more nearly repre-

sentative of the contents of the conference and these proceedings.

The conference was sponsored by Northwestern University and was

held there (Evanston, Illinois) from October 11 to 15, 1975.

The list of participants which follows gives the university of

each participants at the time of the conference (Department of Mathe-

matics 1in each case).

Professor Chase had to cancel his attendance

but kindly submitted his manuscript for these Proceedings.

Besides the papers published here, the following were read:
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NON-ADDITIVE RING AND MODULE THEORY IV

The Brauer Group of a Symmetric Monoidal Category

Bodo Pareigis

In [5],[6] and [7] we introduced general techniques in the theory of
a monoidal category, i.e. of a category C with a bifunctor
g: C x C —> C , an object I € C and natural isomorphisms
a: Am(BeC)¥ (AeB)aeC, Xx: I@ATA and g: A®I= A which
are coherent in the sense of [3, VII. 2]. In this paper we want to in -
troduce the notion of a Brauer group of C . For this purpose we are
going to assume that C is symmetric, i.e. that there is a natural
isomorphism y: AgB =B & A which is coherent with a, X and g
[3]. One of the main models for such a category C is, apart from the
category of k-modules for a commutative ring k , the dual of the cate -
gory of C-comodules for a cocommutative coalgebra C . This category
is a symmetric monoidal category, but it is not closed.

Another type of monoidal categories, which are not symmetric but
which allow the construction of Brauer groups, are for example catego -
ries of dimodules over a commutative, cocommutative Hopf algebra Bﬂ.
Their general theory will be discussed elsewhere,

In many special cases of symmetric monoidal categories the basic ob
ject I turns out to be projective, i.e. the functor C(I,-) preserve
epimorphisms. In the general situation, however, it turns out that ther
may be constructed two Brauer groups B,(C) and BZ(C) and a group-ho
momorphism BQ(C) — Bl(C) , which is an isomorphism if I projective

We will construct these two Brauer groups and discuss under which co
dition for a functor F: C — D we get an induced homomorphism

Bi(F): Bi(C) — Bi(D)
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Preliminaries

In [7] we proved analogues of the Morita Theorems which will be used
in this paper. For the convenience of the reader we will collect the
most important definitions and facts of [5],[6] and [7].

If P 1is an object of € we denote by P(X) the set C(X,P) for
X € C . Elements in P & Q (X) will often be denoted by p ® q . If
the functor C(P ®m -,Q) 1is representable then the representing object
is [P,Q] , so that C(P ® X,Q) ¥ C(X,[P,Q]) = [P,Q)(X) . The "evalua-
tion" P(X) x [P,Q](Y) — Q(X & Y) , induced by the composition of
morphisms, is denoted by P(X) x [P,Q](Y)> (p,f) = <p>f ¢ Q(X & Y)
Thus the "inner morphism sets" [P,Q] operate on P from the right.
In [5, Proposition 3.2] we prove that any natural transformation
P(X) — Q(X ® Y) , natural in X , is induced by a uniquely determined
element of [P,Q](Y) , if [P,Q] exists.

We call an object P € C finite or finitely generated projective if
[P,I] and [P,P] exist and if the morphism [P,I] ® P — [P,P] in -
duced by P(X) x [P,I]J(Y) x P(2)> (p,f,p') +— <p>fp' ¢ P(X & Y & Z)
is an isomorphism. For [P,I] ® P — [P,P] to be an isomorphism it is
necessary and sufficient that there is a "dual basis"
£, ® P, € [P,I] ® P(I) such that <p> fp, = p for all p e P(X) and
all X e C . The difference between finite and finitely generated pro -
jective objects, as discussed in [8] , does not appear here.

A finite object P 1is called faithfully projective if the morphism
P = [P,I] —> I , induced by the evaluation, is an isomorphism. This
igpéglivalent to the existence of pl[PtinP]f1 € P[P?P [P,I] (I) with
<p1>f‘1 = 1 e I(I) . If there exists an element p, ® f1 e Pwm [P,I] (1)
with <p1>f‘1 =1, then P 1is called a progenerator. Now
P = [P,I] —> P = [P,I] is an epimorphism; if I is projective,
then P is faigi%i%ly projective iff P 1is a progenerator.

Let AC denote the category of A-objects in C with A a monoid.
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Then a functor AC > X+—>Pa Xe BC with P, a left B right A
biobject is a category equivalence iff BP is faithfully projective
and A £ [P,P] as has been proved in [7]. For this Morita equivalence
all the usual conclusions hold, in particular the centers

A[A,A]A and B[B,B]B of A resp. B are isomorphic monoids if they

exist.

The Brauer group 8,(C)

Let C be a symmetric monoidal category. A monoid A in C is
called 1-Azumaya if C > X+— A & X¢ ACA is an equivalence of cate -
gories. Thus the Morita Theorems, in particular [7, Theorem S.i] can

be applied.

Proposition 1: A monoid A 1is 1-Azumaya iff A ¢ C is faithfully pro-
jective and
v: AgA(X)> ambi— (A(Y)> c+—>acbe A(X & ¥)) € [A,A](X)

is an isomorphism.

Proof: Let A be faithfully projective and ¢ be an isomorphism. Let

A°P be the monoid on A with inverse multiplication. Then

VR AP g A — [A,A] is an isomorphism of monoids. Thus the categories

ACA g C[A,A] are equivalent with the functor M r—— M . Furthermore

C3 X—> Az Xe C[A,A] is an equivalence by [7, Theorem 5.4] hence

C3 X— AmXce ACA is an equivalence and A 1is 1-Azumaya.
Conversely if A 1is 1-Azumaya the morphism ¢ which exists for

any monoid A induces a commutative diagram

¢c ——¢
(A,]

A ®- l

C

A"A



115

Hence A ¢ C 1is faithfully projective in C Dby [7, Theorem S.JJ and
so Y must induce a category isomorphism and must even be an isomor-
phism [7, Theorem 5.1 d)] . Q.E.D.

Recall that the center of a monoid A 1is the object A[A,A]A , if
it exists. A[A,A]A is the representing object of the functor
CeX — ACA(A ® X,A) ¢ S . Observe that for this definition we need
the symmetry of the monoidal category C

Let A be a monoid in C . Since we have ,[A,A],(X) < A(X) , the
inclusion given by the isomorphism A[A,A] £ A using the multiplica -
tion with A from the right, it is easy to see that
ae ,[A,A],(X) iff ab = ba for all b e A(Y) and all Y e C . Since
ab = ba for all a e Im(x(X): I(X) — A(X)) and all b e A(Y) , all
X,Y € C , we get that (X) maps I(X) into A[A,A]A(X) . If this mor -
phism is an isomorphism then A 1is called a central monoid.

Let A be 1-Azumaya. Then [A,A] is Morita equivalent to I hence
the center I of I coincides with the center of [A,A] via the mor -
phism r: I — (A,A][7, Corollary 6.3] . Thus the morphism

T %59 Aa A L [a,4]

is injective. § is defined by ® (a) = 1 ®a . Hence I(X) is con
tained in the center A[A,A]A(X) . Now let a € A(X) such that ab = ba
for all b e A(Y) , all Ye C . Then (1 @ a)(b®c) =bmac =b & ca
(b m ¢)(1 ®m a) for all b ® c ¢ Aog A(Y) . Thus ¢ (a) is in the center

of Aog A or wj(a) in the center of [A,A] , which was I . Further -
more ¥ 1s a monomorphism, even a section with retract

pi AmA—> A . Thus ace Im(T(X): I(X) — A(X)) , so that I is

the center of A
Corollary 2: If A is 1-Azumaya then A 1is central.

Proposition 3: Let A , B be 1-Azumaya then A ® B 1is 1-Azumaya.
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Proof: Let fo ®a, resp. g ® bo be a dual basis for A resp. B 4
Then fo ®g, ®a @b ¢ [A & B,I] ® A ® B(I) is a dual basis for
A @ B where we identified [A,I] @ [B,I] with [A = B,I| . Further -
more we have [A,A] = [B,B] * [A = [A,I] , [B,B]] * [A =B & [A,I],B] ¢
[AeB, AmB] since A and B are finite [8, Theorem 1.2] . Hence
[AmB,I] and [A @B, A ® B| exist.

Let AS - Am A and A'c oC_ be the daual [A,I] of A . With
the analogous notation for BA wi get

(A = B) 4 : e (A'w B) ¥ (A ge A) & (B ge B) ¥1I
since A , B are faithfully projective. Hence A ® B 1is faithfully

projective in C

n

Finally since [A,A] = [B,B] ¥ [A 8B , A ® B] we get that

y: AsBwAwaB—>[AaB, ArB|] is an isomorphism.

Proposition 4: Let P be faithfully projective then [P,P] is

1-Azumaya.

n

Proof: We know that [P,I] @ P ¥ [P,P] as [P,P] - [P,P] - objects.

Furthermore € » X — [P,I] = X and

€ C
[P,E]
Ca3sX— XmbPeld are equivalences. Hence

[p,P
C> X+ [P,Pl e X *[P,I]] X mPe is an equivalence,

c
[r,F] [p,P]

since C>Y— Yz P is also an equivalence.

¢, 7] * 5] (o8]

Proposition 5: Let P , Q be faithfully projective, then P ® Q is
Peq,Paq as

n

faithfully projective and [P,P] = [Q,Q]

monoids.

Proof: Since P and @Q are finite we get for all X, Y € C that
¢: [PX] ® [Q,¥)> fegr—> (pmqr— <p> f B <g> gle[PmQ, Xm Y]

is an isomorphism and the right side exists. In particular
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[PmQq,I] and [P ® Q,P @ Q] exist. Furthermore we have

<p & @>9(f & g)y(f'& g) = <p>ff'm <q>gg' = <p @ q>j(ff'm gg) and
§(idp m idy) = idp o o, hence p: [P,P] ® [Q,Q] — [P = Q,P = Q]
is an monoid isomorphism.

If fo ® p, resp. g, &4q are dual bases of P and @Q then

o [¢]

f(f0 [ go) ] (po ® qo) is a dual basis of P ® Q for
<p ® q{f(fo ® go)(pO ] qo) = <p>f0pO ® <q>g.q, = p & Q . Hence P & Q
is finite.

Now let p,_=®m by resp. be elements such that

q g _g
1 1 1
[r,P] [Q.q] .
<p1>f1 = 1 and <q,>g, = 1 . Then (p1 ® ql) g f(f& ® gl) with

B =[P aQ,PaQ has the property

<p, ® q1>jo(f1 ® gl) = <py>fy<qu>gy = 1 . Thus P aQ is faithfully

projective.

Now we can define the Brauer group Bl(C) of a symmetric monoidal
category C . Let A be the(illegitimate) set of isomorphism classes
of 1-Azumaya monoids A in C . Then we define an equivalence rela -
tion on A by A~ B iff there exist faithfully projective P,Q € C
such that A ® [P,P] ¥ B ® [Q,Q] as monoids. Denote the set of
equivalence classes by Bl(C) . Bl(C) becomes a commutative group
in the usual way by [A][B] = [A & B] with unit element [I] and
inverse [A°P?] for [A] , where A°P is the 1-Azumaya monoid A

with inverse multiplication A ® A ¥f5 A ® A 5 A

Separable monoids

Let A be a monoid in C . A 1is called a separable monoid if the
multiplication m#: A ® A —> A has a splitting 0 : A— A ® A in

C such that ao = ig Observe that A(X)>3 ar——> a® 1¢ A a A(X)

A"A A
is a splitting for M in AC but it is no A-right-morphism.
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Proposition 6: Let A e C be a monoid. Equivalent are

a) A 1is separable

b) There is an element a ® b € A ® A(I) such that
i) Vce A(X): camb=ambceArA (X)),

ii) ab = 1 ¢ A(I)

Proof: a) = b): Define a ® b: = o(1). Then 1 =/40(1) =/L(a ® b) = ab
which is condition (ii). Since o 1is an A-A-morphism we have
ca®b = co(1) = og(ec) = 0(1l)c = a ® bc for all a e A(X).
b) =a): Let o: A(X) —> A ® A(X) be defined by o(c) = ca & b
By (i) o 1is an A-A-morphism. By (ii) we get

pole) =/u(ca ® b) = cab = ¢ , hence fo = id, .

Observe that (i) does not depend on a symmetry in C , since
a@beArA(I) and I & X 2 X & I even without a symmetry. The
element a ®@ b will be called a Casimir element.

Every Casimir element a ® b € A ® A(I) induces a map
Tr: € (M,N)3 f +—— (M(X) 3 m+—> af(bm) e N(X)) € AC (M,N) for any
two objects M,N e AC . In fact for any c € A(Y) we have
ca @b = a & bc hence c(af(bm)) = (ca)f(bm) = af(bem) = af(b(em)).
This map is called the trace map.

Since the trace map is a natural transformation, natural in X ,

Tr: C(M & X,N) — AC(M @ X,N) ,
we get Tr: [M,N] — A[M,N] , if both objects exist.
Since ab = 1 we even get that
ACOLN) — c(u,N) 55 ACOTN)
is the identity on AC(M,N) since Tr(f)(m) = af(bm) = abf(m) = f(m)
and hence Tr(f) = f , if f e AC(M,N) . Similarly
AN — [M,N] — A[M,N] is the identity on A[M,N] .
If M,N e ,C then we clearly get Tr: CA(M,N) — ACA(M,N) and

A”A
Tr . . .
ACA(M’N) —> CA(M,N) —_ ACA(M,N) is the identity on ACA(M’N)' The
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same holds for [M,N], and A[M,N]A
I ,[A,A], exists then
W[AA], — [AA], E—éA[A,A]A
is the identity on A[A,A]A . Observe that [A,A]A exists, since
[a,A], ¥ A . Since the last isomorphism is an antiisomorphism of mo -
noids, A[A,AJA is the center of A and ,[A,A], — A is a mo -

noid homomorphism, we get

Proposition 7 [1, Prop. 1.2]: If A is a separable monoid, then the

center A[A,A]A (if it exists) is a "direct summand" of A

Let f: A — B be monoid homomorphism. P ¢ BC is called

(B,A)-projective if for each commutative diagram

K
g
M—D 5N

with g,h in C and k in C there is a g'eBC(P,M) with

B A
ng = g . The dual notion is that of a (B,A)-injective object [8] .

Proposition 8: Let A be a separable monoid. Then every A-object is

(A,I)-projective and (A,I)-injective.

Proof: Let g ¢ AC(P,N) , he AC(M,N) and k € C(P,M) be given such
that hk = g . Then g = Tr(g) = Tr(hk) = h Tr(k) and
Tr(k) € AC(P,M) , so that P is (A,I)-projective.Just by reversing

the arrows one can prove that each object in AC is (A,I)-injective.

In [8] we prove that in (C,%,E), a monoidal category with the pro-
duct as tensor-product and E a final object, there are no non-tri -

vial finite objects. In Theorem 14 we shall show that [P,P] is a
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separable monoid for certain finite objects P € C . So this con -
struction will not produce examples of separable monoids in (C, x, E).

In fact, there are no non-trivial separable monoids in € at all.

Proposition 9: Let A be a separable monoid in the monoidal category

(C, x, E) . Then A ¥ E as monoids.

Proof: Let (a,b) be the Casimir element for A . Then

(ca,b) = (a,bc) for all c¢ € A(X) , hence ca = a and b = bc . Here
we use A x A(X) = A(X) x A(X) and A(E)—A(X) by the unique mor -
phism X — E . We also have 1c = ¢ and ab = 1 , hence

¢ = 1c = abc = ab = 1 for all c¢ e A(X) , so that A(X) = {1} which

proves A % E .Finally observe that E has a unique monoid structure.

If A and B are monoids in C , then A ® B 1is a monoid by

(a1 -] bl) : (a2 ® b2) = aja, ® b1b2

Proposition 10: Let A and B be separable monoids. Then A ® B 1is

separable.

Proof: Let a, ® a and b, ® b2 be Casimir elements of A resp. B.

1 2 1
Then (a1 ® bl) ® (a2 ® b2) is a Casimir element for A ® B . In fact
let x ®my € A @ B(X) then

(x ® y)(a1 ® bl) ® (a2 ® b2)-= (xa1 ® ybl) ® (a2 ® b2) =

(a1 ® bl) ® (a2x ® b2y) = (a1 = b1) ® (32 ® b2)(x 3 y)

Furthermore (a1 ® b1)(a2 ® b2) = aja, ® b1b2 = 1@ 1

Proposition 11:Let A be a separable monoid with Casimir element

a®b . Assume that A[A,A]A exists and that I — A is a mono -

morphism. Then A 1is central if and only if axb e I(X) for all

x € A(X).
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Proof: Since ca @ b = a ® bec for all c¢ e A(Y) we get

c(axb) = (axb)ec hence axb € A[A,A]A(X) for all x e A(X).

If A is central then axb € A[A,A] A(X) = I(X) for all x e A(X).
Conversely let axb € I(X) for all x € A(X). Let x € A[A,A]A(X)

then x = xab = axb ¢ I(X) hence ,[A,A],(X) = I(X)

The Brauer group B,(C)

A monoid A is called 2-Azumaya if [A,I] and [A,A] exist and
mit I —> A is a monomorphism and if there are elements
a@beArgA(I) and cmdmee Arw Aa A(I) such that

i) v Xe €C Vxe A(X): xamb=a2amzbx,
ii) ab = 1 ¢ A(I) ,
iii) ac m dbe = 1 ®1 ¢ Am A (I),

iv) ¥ X e C Vx e A(X): axb € I(X)

Clearly a 2-Azumaya monoid is a central, separable monoid which
follows from i), ii), and iv) by Proposition 6 and 11 . We do not
know if the existence of ¢ & d @ e with iii) follows from the other

conditions.

Theorem 12: Let A be a monoid in C . Equivalent are

a) A is 2-Azumaya.

b) A e C is a progenerator and the morphism
Y: AmAX)3> xmy—> (A(Y))> z+—3> xzy € A(X ® Y)) ¢ [A,A](X)
is an isomorphism.

¢c) A 1is separable and 1-Azumaya.

Proof: Let A be 2-Azumaya. Define g: Awg A— [A,I] by
<z>(f(x ® y)): = axzyb where a ® b 1is a Casimir element for A

Then axzyb € I(X) by iv) hence y is well-defined. Now
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¢(c @ d) m e is a dual basis for A since <x>(7(c ® d)e) =
acxdbe = x for all x € A(X) . So A is finite.

Now we show that A = [A,I] ——> I , the morphism induced by the
evaluation, is rationally surjective, i.e. that
Am [A,I] (I) — I(I) is surjective. We have to find

a; @ £, ¢ Aw [A,I](I) with <a,>f, = 1 ¢ I(I) . Take a, = 1 and

171 1

fl = (Tr: A -——>AI},A]A 2 I) , the last isomorphism exists in view of
Propositions 6 and 11 by the properties i), ii), and iv) of A . Then
<1>f1 = 1 , hence A 1is a progenerator.

To show that ¢ 1is an isomorphism we construct the inverse mor -
phism

[A,A](X)3> 6 +— <ac>0odb @ e € A ® A(X)
This morphism is in fact an inverse of ¢ since

<x> ¢y (<ac>odb ® e) = <ac>cdbxe = <xac>odbe

= <x1>01 = <x>0 ,

hence ¥ (<ac>odb ® e) = ¢ , and

xacydb @ e = x ®m acydbe = x ® 1yl = x B ¥y

Now assume that b) holds. By Proposition 1 the monoid A 1is
1-Azumaya. Let fo B a be a dual basis for A and

o

a, ® £, e A @ [A,I]J(I) such that <a,>f; = 1 ¢ I(I) . Let

g, € [A,I](1) be defined by <x>g_ = <xa,;>f, . Let ambe Aam A(I)

be the element which corresponds to g, ®1lce [A,I] ® A(I) under the
isomorphism A & A ¢ [A,A] 2 [A,I] = A . Then we have

ab = alb = <1>g01 = <a1>f11 = 1 € A(I) . Furthermore we have

xayb = x<y>g = <y>g,x = aybx for all y € A(Y) , hence
xa ® b = a®bx for all x € A(X) . So a®b is a Casimir element

for A . Thus c¢) holds.
Assume that c¢) holds. By Proposition 1 A is faithfully'projective

and ¥ is an isomorphism. Construct a, ® f. € A ® [A,I](I) with

1 1
<al>f1 = 1 ¢ I(I) as in part one of the proof. Then b) holds.

We still have to show that b) and c¢) imply a). Let fg ® aé and
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fi ® ai be two copies of the dual basis of A . Let

a,mf chAa [A,I](I) with <a,>f, = 1 be given. Then define

171

a ® b as above corresponding to g, and c ® d @ e :=

ug vexyeAegAsgA (L), where ugvaexeyelAsAzgAzgA (I

1 2 2 1 Ta
corresponds to f_ @ a_ & f_ & a_ € A, Il = A = [A,I] @ A(I) under

the isomorphisms

(A,I] s Awm [A,I] @ A% [A,A] m [A,A] A @A @ A=A . Then

>f11>f2a1 =

aczdbe = auzvbxy = <uzv>goxy = <<<z>fga2a P

o1
1.2 2.1 _ 2.2 1.1 _ _
<z>fo<aoai f1<1>foao = <<1>foaoa1>f‘1<z>foao = z = 1z1 for all
z € A(Z) , hence ac ® dbe = 1 ® 1 . Thus iii) for a monoid to be
2-Azumaya holds. i) and ii) hold by Proposition 1 , iv) by Proposi -

tion 11

Corollary 13: Let A and B be 2-Azumaya , then A ® B 1is 2-Azu -

maya.

Proof: In view of the equivalence of a) and c) in Theorem 12 this

follows from Proposition 3 and Proposition 10.

Theorem 14: Let P € C be a progenerator. Then [P,P] is 2-Azumaya.

Proof: By Proposition 4 we get that [P,Pl is 1-Azumaya so that we
only have to show that [P,PI is separable. Let fo g P, be a dual
basis for P and p, @ f, € P m [P,I](1I) with <p,>f, = 1 . Identify
[p,P] with [P,I] ® P with the multiplication

(f m p)(£'m p') = £ & <p>f'p'. Then define

a @b := (fo ® p1) ® (f‘1 ® po) . For every g & q € [P,I] ® P(X) we

have

(g & q)(fO ® p1) ® (f1 ® po) = (g m <q>fop1) ® (f‘1 ® po) =

(g ® pl) ® (f1 ® <q>f0po) = (g = pl) ® (f1 ® q) =
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(fo<po>g g pl) ] (f1 ® q) = (fo ® p1) ® (f1 ® <po>gq) =
(fO ® p1) ® (f1 ® po)(g ® q)
so that b) i) of Proposition 6 holds. Furthermore
(fo 8 pl)(fl & po) = fo 8 <p1>f1po = fo &P
which corresponds to 1 € [P,E](I) , shows b) 1ii)

o >

It may be interesting to have an explicit description of the ele -

ment c ® d @ e in the definition of 2-Azumaya for this case [P,P] .

Let f; = p; s 1 =1, 2, 3 be copies of the dual basis of P . Then
L 1 2 3 1 2 3 . . o
crgdme := (fo ® po) ® (fo ® po) = (fO ® po) satisfies condition

iii) for 2-Azumaya as is easily checked.

To define a Brauer group of 2-Azumaya monoids we need one more

lemma.

Lemma 15: Let P and Q be progenerators. Then P @ Q is a pro -

[}

generator and [P,P] & [Q,Q] ¥ [P = Q,P = Q] as monoids.

Proof: Let p1 4 f1 resp. Qq, ® g, with <p1>f1 = 1 resp.

<q,>8q = 1 be given. Then form the element (p1 ® ql) &j(fl ® gl) €
(PmQ) m [P & Q,I](I), where ¢: [P,I] & [Q,I]

"n

[P = Q,I] 1is the
isomorphism used in the proof of Proposition 5 . We get
(p1 1 ql)f (f1 & gl) s <p1>f1<q1>g1 = 1, hence P ®8 Q 1is a progene -

rator in view of Proposition 5

Now we can define the Brauer group B2(C), using 2-Azumaya monoids,
in the same way as Bl(C) . Since each 2-Azumaya monoid is 1-Azumaya
and since each progenerator is faithfully projective we get a group
homomorphism §&: 82(C) — Bl(C) . Since the notions of progenerator
and faithfully projective coincide, if I € C 1is projective, the

notions of 1-Azumaya and 2-Azumaya coincide by Theorem 12, b) and Pro-
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position 1 . So does the equivalence relation used in the construction

of the two Brauer groups and we get

Theorem 16: The group homomorphism £: BQ(C) — BI(C) is the

identity in case I € C 1is projective.

Splitting Azumaya monoids by monoidal functors.

Now we want to discuss the behaviour of the Brauer groups under a
monoidal functor. Let € and D be symmetric monoidal categories
and F: C —> D be a covariant functor. Denote the tensor products
and the associativity, the symmetry and unity isomorphisms in C and
D by the same signs &, o,y , A, and g - Assume that there are na -
tural transformations

§: FX 8 FY — F(X & Y)

z: J — FI
such that the following diagrams commute

FXaFletBb fxaJ

F
F(xm 1) —F@) sy px

FI w FXx <221 5 g rx

L |
F(I s x) 2 5 Fx

FXae (FY s F2) 2B 8 rmxarvez) S5 Fxa (Yaz)

la ir(w

(FXa FY) 8 FZ S B Lrxav) a FZ 33 F((X® Y) & 2)

If C and 0 are symmetric we require in addition the commutativity

of
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Fxafy L5 Fyoa Fx
ls | e
F(X m Y) Eiz)% F(Y = X)

Such a triple (F, 8, r) will be called a weakly monoidal functor.
Let m: X ® [X,Y] —>Y and 7t: Y —> [X,X ® Y] be front and
back adjunction for the adjoint pair of functors X ®- and [X,—] s
if [X,-] exists. Again we use the same notation in both categories

C and D . Let x: C(X m ¥,2) ¥ c(¥, [X,Z]) and

w: C(Y, [X,Z]) ¥ C(X ® Y,Z) be the corresponding adjointness isomor =
phisms in C resp. also in D . It is an easy exercise in diagram
chasing for adjoint functors to show that there is a natural trans -
formation @: F[X,Y] —> [FX,FY] whenever [X,Y] and [FX,FY]

exist, just take ¢ = x(F(w)8) . Furthermore the diagrams

FX m FIX,Y] 25 F(X & [X,Y]) ry D 5 Fx,x m Y]
11 @ o l F(m) LT Lo
FX & [FX,FY] T S Fy [FX,FX ® FY] M [FX,F(X & Y)] and

g - [Fx,Fx]
4 ]
Fr EA) F1x,x]
commute. Here i: I —> [P,P] is x(y) where ¢ : X ® I —> X and
j 1is defined analogously in D .
Omitting special arrows for the associativity o we get the
commutative diagram on the next page.
If we abbreviate [1,m @ 1]t by p: [X,¥] @ 2 — [X,Y ® 2] then
the following diagram (the outer frame of the given diagram) commutes
FIx,v] = Fz <55 F(IX,Y) ® 2) B9 F([x,Y & 2])
¢ =1 o

[Fx,FY] ® Fz £ [Py w Fz) 805 [rxrey @ 2)] .



F(t)

FO[X,Y] = 2) FIXxx = [X,v] a7] —FLLreal o FIX,Y & 2]

[T \[(D [<b
° [FX,FX & F([X,Y] & 2)] ——D—ﬁ—) [FX,F(X & [X,Y] & 2)] [1,F(m = 1)] [FX,F(Y = 2)]

N
/‘\[1,1 ® §] [1,6]

FIX,Y] ® Fz 5 [FX,FX & F[X,Y] ® FZ] M-) [FX,F(X = [X,Y]) =& FZ] [1,6]

l@ g 1 l[1,1 B 0@ 1] l [1,F(m) = 1]

[FX,FY] ® FZ2 5> [FX,FX & [FX,FY] & FZ] Ji:ui]—) [FX,FY & FZ)]

x4’
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Theorem 17: Let F: C — D be a weakly monoidal functor. Assume that

t: J — FI 1is an isomorphism and that

¢: F[P,I] ® FP — F([P,I] ® P) is an isomorphism for all finite ob -
jects Pe C . If P is finite in C and if [FP,-] exists in D

then FP is finite in 0 .

Proof: Since finiteness is equivalent to the fact that

i: I —> [P,P] can be factored through [P,I] ® P the following
commutative diagram shows that j: J — [FP,FP] can be factored
through [FP,J] = FP

FI

F(fo & po) F(i)
FIp,I] m PP <8 F([p,T) ® 2) FE), F([p,T @ 2]) FELA Fefe ]y |
[ J ] ¢

(Fp,FI] = FP £ [FP,FI & FP] Iizﬂa [FP,F(I m P)] «[iﬂl% [Fp,FP]

N

[1,2] & 1 [1,c & 1] 1]

[Fp,J] w FP # [FP,J w FP]

thus FP is finite.

Corollary 18: Under the assumption of Theorem 17 is the morphism

¢: F[P,X] —> [FP,FX] an isomorphism for all X e C and all finite
PeC

Proof: Let f_ & p,: I —> [P,I] ® P be the dual basis for P and
-fo ® 50: J —> [FP,J] & FP be the dual basis for FP . Define
y: [FP,FX] — F[P,X] to be
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-1
s F([p,1] & P) = [Fp,Fx] &1y
F[P,T] = FP & [Fp,FX] 12 "5 #[p,1] & FX —> F[P,X] .

F(f mp)s1l
[Fp,Fx] 2 FI = [FP,FX] °o_ o0

Omitting some of the obvious isomorpiisms we get a commutative dia -

gram

[rp,Fx]

$ F(fO -4 po) ® 1
F[P,I] = FP & [FP,Fx] X255 F[p,I] ® FX — F[P,X]
v 1m 1 ¢ = 1 ¢

(Fe,FI] = FP & [FP,FX] 12Ty [Fp,FI] & FX ¥ [FP,FX]

where the left triangle commutes by the construction of ?o ® 50
in Theorem 17 and right square commutes in the same way as the
middle of the diagram in the proof of Theorem 17 does. If we look at
the lower part of our diagram we see that the morphism
[Fp,FX] — [FP,FX] 4is the identity since ?0<50>g = g for all
g € [FP,FX](Y) . The upper part is %% , hence oY = id. Conversely
the commutative diagram _

FIp,x] — F[P,I] = FP & F[P,x] 2%, F[p,1] & F(P = [P,X])

l@ L1n1m¢ l/lmF(‘n)
[Fp,FX] —> F[P,I] = FP ® [FP,FX] +2T5 f[p,I] & FX —> F[P,X]

shows VY& = id .

Corollary 19: Under the assumptions of Theorem 17 if P is a pro -

generator then FP is a progeneratoc. If F preserves difference

cokernels and P 1is faithfully projsctive then FP 1is faithfully

projective.

Proof: Let P be finite. P is a progenerator iff there is a mor -

phism f: I — P ® [P,I] such that
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I
£ ll
Pm [P,I] T»1I
commutes. Now the diagram
J
Fif)e RZ
F(p = [P,I]) __Fm FI
(1w [1,279)(1 = e)s”t mgl
FP & [FP,J) —r 3y g
commutes hence FP 1is a progenerator. In the case of a faithfully
projective P we have to replace
Pa& [P,I] by P PNP [P,1] and FP ® [FP,J] by

FP_ = [Fp,7] §’F(P B [P,I]) . The last isomorphism is a conse -

quence of the fact that F preserves difference cokernels.

Theorem 20: Let F: C — D be a weakly monoidal functor such that

t: J —> FI is an isomorphism, 6: FX ® FP —> F(X ® P) 1is an iso -
morphism for all X € C and for all finite P e C , [FP,-] exists

for all finite P e C and F preserves difference cokernels. Then

F induces homomorphisms of Brauer groups B;(F): B;(C) — B, (D)

B
for i = 1, 2 such that Bz(C) ——g——9 52(0)

e 3
l B, (F) l
B,(C) ——> B, (D)

commutes.

Proof: Let A be a monoid in C . Then FA is a monoid in 0 with
the multiplication FA ® FA _ﬁé F(A & A) f§&la FA and unit

J —Ea FI fi%le FA . If A is i-Azumaya, i = 1, 2, then FA is
faithfully projective resp. a progenerator by Corollary 19, Proposi -
tion 1 and Theorem 12. So we only have to show that

Y: FA® FA — [FA,FAI is an isomorphism. ¥ 1is induced by
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T: Ag Aw A(X)> ambmcr—bace A(X) , so that ¢ = x(T) where
X: C(X & Y,2) ¥ C(Y,[X,2])
Now the diagram
Fam A —XT) 5 TFa FA]
; T
F(ama) EX(T)) F[A,A]
commutes, since

FA & (FA @ FA) ——3 FA

l 1@ T‘F(T)

FA @ F(AmA) —S3 F(A = (A m A))

commutes so that by applying x we get
¢ F(x(T))*8 = X(F(T)e8)e8 = [1,F(T)]ox(8)08 = x(T) . The first
identity results from the commutativity of

CX m ¥,2) 4 0(F(x = ) , Fz) 28815 o(Fx & FY,F2)
X

ey, ﬁx,xz]) s oery,Fx, 7)) —— 280 pry, [Fx,F2])
Now ¢: F[A,A] —> [FA,FA] 1is an isomorphism by Corollary 18 and
F(x(T)) = F(y) is an isomorphism since A is Azumaya. Since ¢ 1is
an isomorphism, too, we get that = x(T): FA & FA — {TA,F@] is
an isomorphism.

If P e C is faithfully projective or a progenerator in € then
as above FP 1s faithfully projective or a progenerator in D0 and
F(P,P]

proved for ¢

"

[FP,FR] as monoids using the first commutative diagram we

Thus if A and B are i-Azumaya, then FA and FB are i-Azu -
maya. If A and B are equivalent w.r.t. Bi(C) , then so are FA

and FB . Finally we have F(A ® B) 2 FA ® FB and FI = J so that

F induces homomorphisms Bi(F): Bi(C) —_—> Bi(D) such that the dia -
gram in the theorem commutes.

If F: C —» D is a functor satisfying the conditions of Theo -
rem 20 then we define the kernel of Bi(F) as Bi(C,F) so that we

get exact sequences
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0 —> B, (C,F) —» B, (C) — B, (D)
for i =1, 2 . Bi(C,F) containes those elements [A] of Bi(C)
with [FA] = [[P,P]J for some P € D which is faithfully projective
resp. a progenerator. These i-Azumaya monoids A are called F-split.
From Theorem 20 follows immediatly a homomorphism
g: 32(C,F) —_> Bl(C,F)

If C 1is a symmetric monoidal closed category with difference
kernels and difference kokernels and K € C is commutative monoid,
then KC is again a symmetric monoidal closed category with @, as
tensor product and K as basic object. Then the functor
Cs X— Kz Xe KC has all properties required in Theorem 20 hence

there are homomorphisms Bi(C) —_— Bi(KC) with kernels Bi(K/C)



133

References:

[1] Auslander, M. and Goldmann, O.: The Brauer group of a commutative
ring, Trans.Amer.Math.Soc. 97 (1960), 367 - 409.

[2] Long, F.W.: The Brauer group of dimodule algebras, J. of Algebra
30 (1974), 559 - 601.

[3] MacLane, S.: Categories for the working mathematician, Graduate
Texts in Mathematics. Springer New York - Heidelberg - Berlin 1971.

[4] Orzech, M. and Small, Ch.: The Brauer group of commutative rings.
Leisure notes in Pure and Applied Mathematics. Marcel Dekker
New York 1975.

[5] Pareigis, B.: Non-additive ring and module theory I: General
theory of monoids.
To appear in: Publicationes Mathematicae Debrecen.

[6] Pareigis, B.: Non-additive ring and module theory II: C-catego -
ries, C-functors and C-morphisms.
To appear in: Publicationes Mathematicae Debrecen.

[7] Pareigis, B.: Non-additive ring and module theory III: Morita
theorems over monoidal categories.
To appear in: Publicationes Mathematicae Debrecen.

[8] Pareigis, B.: Non-additive ring and module theory V: Projective
and flat objects.
To appear in: Algebra-Berichte.

[9] Fisher-Palmquist, J.: The Brauer group of a closed category,

Proc.Amer.Math.Soc. 50 (1975), 61 - 67.



