The Roots of Modern Biochemistry

Fritz Lipmann’s Squiggle and its Consequences

Editors
Horst Kleinkauf · Hans von Döhren
Lothar Jaenicke

Walter de Gruyter Berlin · New York 1988
Editors

Horst Kleinkauf, Professor Dr.
Hans von Döhren, Priv. Doz., Dr.
Institut für Biochemie und Molekulare Biologie
Technische Universität Berlin
Franklinstraße 29
D-1000 Berlin 10
Federal Republic of Germany

Lothar Jaenicke, Professor Dr.
Institut für Biochemie
Universität Köln
An der Bottmühle 2
D-5000 Köln 1
Federal Republic of Germany

Library of Congress Cataloging in Publication Data
p. cm.
"Fritz Lipmann: bibliography, 1924–1985": Includes bibliographies and indexes.
ISBN 0-89925-489-6 (U.S.)

All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced in any form – by photoprint, microfilm or any other means nor transmitted nor translated into a machine language without written permission from the publisher.
Typesetting and printing: Tutte Druckerei GmbH, Salzweg/Passau.
Printed in Germany.
Contents

1 Fritz Lipmann 1899–1986 .. 1

Hall-Lipmann, F.
Life with Fritz ... 3

Lipmann, F.
A Long Life in Times of Great Upheaval 9

De Duve, C.
Fritz Lipmann: In Memoriam ... 37

Maruyama, K.
Lipmann’s Remarkably Fulfilled Life as a Researcher 43

Zachau, H.G.
Fritz Lipmann: June 12, 1899–July 24, 1986 63

Kalckar, H.M.
Fritz Lipmann Molding the Design of Molecular Bioenergetics ... 67

Barker, H.A.
Recollections of Fritz Lipmann, 1941–1945 73

Ratner, S.
In Celebration of the Scientific Genius of Fritz Lipmann 81

Bennett, T.P.
Lipmann and “Not Strictly Biochemistry” 85

Gevers, W.
Communication in Metabolic Control. Intuition and Method in Biochemistry: Four Years each with Krebs and Lipmann 95

Petrack, B.
Fritz Lipmann: Squiggle to Protein Sulfation 105

Parther, B.
Fritz Lipmann (1899–1986), Honorary Member of the Leopoldina Academy ... 109

Krebs, H.A. and Lipmann, F.
Dahlem in the Late Nineteen Twenties 111

Blaschko, H.
Our Apprenticeship .. 125

Karlon, P.
The Kaiser-Wilhelm-Institutes in Berlin-Dahlem in the Late 1930ies and Early 1940ies: Reminiscences of a Student of Biochemistry 129

Srere, P.A.
On the Origin of the Squiggle (〜) 135
2 Biochemistry Comes of Age.. 139

Moulton, L.J. and Akers, H.A.
The History of Metabolites Isolated from Urine 141

Horecker, B.L.
The Pentose Phosphate Pathway .. 147

Rapoport, S.M.
Glycolysis and the Dawn of Modern Biochemistry 157

Fruton, J.S.
Energy-Rich Bonds and Enzymatic Peptide Synthesis 165

Krampitz, L.O.
A Nostalgic View of the TCA Cycle in Bacteria 181

Dimroth, P.
The Role of Vitamins and their Carrier Proteins in Citrate Fermentation.... 191

McElroy, W.D.
Lipmann's Influence on Firefly Luminescence 205

Wieland, Th.
Sulfur in Biomimetic Peptide Syntheses 213

Baddiley, J.
The Function of Teichoic Acids in Walls and Membranes of Bacteria 223

Buchanan, J.M.
The Amidotransferases: Origins of the Concept of Affinity Labeling of Enzymes ... 231

Grisolia, S., Knecht, E. and Hernández-Yago, J.
Intracellular Protein Degradation: Past, Present and Future 251

Herrmann, H. and Hiskes, A.L.
Lipmann's Squiggle and the Unification of Cellular Structure and Function . 261

Siekevitz, P.
The Historical Intermingling of Biochemistry and Cell Biology 285

Racker, E.
Regulation of Function of Membrane Proteins by Phosphorylation and Dephosphorylation ... 295

Richter, D., Meyerhof, W., Morley, S.D., Mohr, E., Fehr, S. and Schmale, H.
Molecular Biology of Brain Peptides and their Cognate Receptors 305

Najjar, V.A.
The Biological Activity of Tuftsin, Thr-Lys-Pro-Arg 323

Kubota, K.
Biosynthesis of Linear Gramicidin, Pentadeca Peptide, is Tight Linked to Serine Metabolism and to Membranous Phosphoglyceride 331

Kurahashi, K., Ikeuchi, T. and Kudoh, J.
From Phosphoenolpyruvate Carboxykinase to Sporulation: Personal Reflections on Dr. F. Lipmann ... 339

Döhren, H. von, and Kleinkauf, H.
Research on Nonribosomal Systems: Biosynthesis of Peptide Antibiotics 355
Bauer, K.
Metabolism of Carnosine and Related Peptides 369

3 Molecular Biology Sharpens its Tools .. 377

Schweiger, M., Schneider, R., Hirsch-Kaufmann, M., Auer, B., Klocker, H.,
DNA Repair in Human Cells: Molecular Cloning of cDNAs Coding for
Enzymes Related to Repair ... 379

Goldberg, I. H.
Acyl ~ Phosphate Intermediates in Oxidative DNA Sugar Damage by
Antibiotics ... 389

Kaji, A., Okawa, N., Tanaka, M., Mori, K. and Finver, S.
Rts1: A Multiphenotypic, Unusual Temperature Sensitive Drug Resistance
Factor ... 397

Hierowski, M. T., McDonald, M. W., Dunn, L. and Sullivan, J. W.
The Partial Dependency of Human Prostatic Growth Factor on Steroid
Hormones in Stimulating Thymidine Incorporation into DNA 407

Lara, F. J. S.
Developmentally Regulated Gene Amplification in Rhynchosciara 417

Mommaerts, W. F. H. M.
Fritz Lipmann, a Few Personal Memories, and: What Else Came Out of the
High-Energy Phosphate Bond? ... 423

Herrlich, P. and Karin, M.
Regulation of Gene Expression by Posttranslational Modification of
Transcription Factors ... 431

Maas, W. K.
How Does the Arginine Repressor Regulate the Synthesis of Arginine
Biosynthetic Enzymes? ... 441

Shoeman, R. L., Maxon, M. E., Coleman, T., Redfield, B., Brot, N. and
Weissbach, H.
The Biochemistry and Molecular Biology of the Terminal Reactions of
Methionine Biosynthesis in Escherichia coli ... 447

Lane, B. G.
The Wheat Embryo, Then and Now ... 457

Suiko, M.
Mechanism of Cytotoxic Action and Structures of Thiadiazolo-pyrimidines . 477

Wittmann, H. G. and Yonath, A.
Architecture of Ribosomal Particles as Investigated by Image
Reconstruction and X-Ray Crystallographic Studies 481

Nomura, M.
Initiation of Protein Synthesis: Early Participation and Recent Revisit 493

Hadjiolov, A. A.
Structure of Ribosomal RNA Genes of Eukaryotes: Some Solved and
Unsolved Questions ... 505
Spirin, A.S.
Energetics and Dynamics of the Protein-Synthesizing Machinery 511

Fox, J. L.
Expression ... 535

Ganoza, M. C.
Punctuation in the Genetic Code: A Plausible Basis for the Degeneracy of
the Code to Initiate Translation... 539

Ganoza, M. C., Baxter, R. M. and J. L. Fox
Reconstruction of Translation: Role of EF-P in Regulation of Peptide Bond
Formation ... 551

Kučan, Z.
On the Role of Spermine in Protein Synthesis............................. 555

4 Functional Dynamics .. 565

4.1 The Squiggle-Symbol of Bioenergetics 565

Jencks, W. P.
Energy-Rich Compounds and Work .. 569

Wood, H. G.
Squiggle Phosphate of Inorganic Pyrophosphate and Polyphosphates 581

Mukai, J.-I.
Enzymology of 3'-Squiggled Nucleotides 603

Hilz, H.
Pyridine Nucleotides as Group Transferring Coenzymes 609

Slater, E. C.
The Nature of Squiggle in Oxidative Phosphorylation 625

Harting Park, J., Moore, T. K., Anderson, B. and Park, C. R.
Motional Dynamics of Fatty Acids: Advantages of 15N and Deuterium
Substituted Fatty Acid Spin Labels for Studies of Lipid-Protein Interactions
and Motion in Membrane Bilayers 631

Hoch, F. L.
Thyroid Hormones and Oxidative Phosphorylation 645

Anke, T., Schramm, G., Steglich, W. and von Jagow, G.
Structure-Activity Relationships of Natural and Synthetic
E-β-Methoxyacrylates of the Strobilurin and Oudemansi Series 657

Bessman, S. P. and Mohan, C.
The Intracellular Mechanism of Insulin Action 663

Duine, J. A.
Unity and Diversity in Biological Redox Catalysis: Comparative
Enzymology of Some Microbial Oxidoreductases Showing Variation in
Cofactor Identity .. 671

Liu, M.-C. and Peck, H. D., Jr.
Ammonia-Forming, Dissimilatory Nitrite Reductases as a Homologous
Group of Hexaheme C-Type Cytochromes in Metabolically Diverse Bacteria 683
Lanyi, J. K.
Halorhodopsin ... 693

Bakker, E. P.
Control of Futile Transmembrane Potassium Cycling in Escherichia coli 699

Pfanner, N. and Neupert, W.
Bioenergetics of Protein Transport into Mitochondria: Role of $\Delta\psi$ and of Nucleoside Triphosphates .. 707

Witt, H. T.
Some Recent Functional and Structural Contributions to the Molecular Mechanism of Photosynthesis .. 713

Salt Toxicity and Mineral Deficiency in Plants: Cytoplasmic Ion Homeostasis, a Necessity for Growth and Survival Under Stress 721

4.2 Molecular Recognition and Communication 735

Ebashi, S.
Dawn of Ca Research: Regulation of Muscle Contraction 737

Ogawa, Y.
Comparative Aspects of the Mechanisms of Energy Transduction in Sarcoplasmic Reticulum Between Rabbit and Frog Skeletal Muscle...... 747

Lardy, H., San Agustin, J. and Coronel, C.
Caltrin: A Versatile Regulator of Calcium Transport in Spermatozoa 759

Ogita, K., Kikkawa, U., Ase, K., Shearman, M. S., Nishizuka, Y., Ono, Y., Fujii, T., Kurokawa, T., Igarashi, K., Saito, N. and Tanaka, C.
Protein Kinase C, the Structural Heterogeneity and Differential Expression in Rat Brain .. 765

Tao, M.
Regulation of Erythrocyte Membrane Cytoskeletal Protein Interactions by Phosphorylation ... 771

Shaltiel, S., Seger, R. and Goldblatt, D.
A Kinase Splitting Membranal Proteinase: Use in the Study of Receptors Involved in the Cellular Response to Hormones 781

Roskoski, R., Jr.
Fritz Lipmann, Phosphoproteins and Regulation of Aromatic Amino Acid Hydroxylase Activity ... 791

Kaufman, S.
The Regulation of Hepatic Phenylalanine Hydroxylase by Phosphorylation-Dephosphorylation ... 805

Sy, J., Tamai, Y. and Toyoda, Y.
Catabolite Inactivation and Adenylate Cyclase in Yeast 813

Suiko, M. and Liu, M.-C.
Protein Modification by Tyrosine-Sulfation: Possible Functional Implications .. 817
Delbrück, A. and Gurr, E.
Proteoglycans and Connective Tissue Pathobiochemistry 827

Lees, M.B.
Acylation of Myelin Proteolipid Protein: A Link to the Past 835

Allende, J.E.
The Unusual Regulation of the Adenylyl Cyclase of Amphibian Oocytes by
Progesterone. – A Review .. 841

Bloch, K.
Sterol Synergism, A Tool for Studies on Sterol Function 853

Le, F., Zhang, Z.-G. and Zhou, T.-C. (Chou, T.C.)
Chemical Modification of Benzodiazepine Receptors of Cortical P2
Membranes ... 857

Kaufmann, E.E.
Dual Pathways for the Catabolism of γ-Hydroxy-butyrate: Cytosolic and
Mitochondrial Mechanisms ... 867

5 Evolution ... 879

De Duve, C.
Prebiotic Syntheses and the Mechanism of Early Chemical Evolution 881

Fox, S.W.
Prebiotic Roots of Informed Protein Synthesis: Nature of the Lipmann
Connection .. 895

Zubay, G.
A Case for an Additional RNA Base Pair in Early Evolution 911

Baltscheffsky, H., Baltscheffsky, M., Lundin, M. and Nyren, P.
Inorganic Pyrophosphate in Cellular Energetics and Evolution 917

Babloyantz, A.
Selforganization in Biosystems ... 923

List of Contributors .. 935

Acknowledgements ... 943

Lipmann’s Coworkers at Massachusetts General Hospital, Boston, and the
Rockefeller University, New York 945

Fritz Lipmann:
Bibliography 1924–1985 .. 949

Index ... 979
Bioenergetics of Protein Transport into Mitochondria: Role of $\Delta \psi$ and of Nucleoside Triphosphates

Nikolaus Pfanner and Walter Neupert

Introduction

The majority of mitochondrial proteins are encoded by nuclear genes. They are synthesized on cytosolic polysomes as soluble precursor proteins and are then transported into one of the four mitochondrial compartments (outer membrane, intermembrane space, inner membrane, and matrix) (for review see Ref. 1). Many precursors contain amino-terminal peptide extensions (presequences) which apparently carry information for the targeting to mitochondria (for review see Ref. 2). Recent studies, however, show that non-aminoterminal precursor regions can also contain information for specific import into mitochondria (3, 4). The precursor proteins bind to receptor sites on the mitochondrial surface (5–7) and are then translocated into or across the mitochondrial membranes. Many precursors are imported at sites of close contact between outer and inner mitochondrial membranes (contact sites) (7–11). The presequences are proteolytically processed by a processing peptidase located in the mitochondrial matrix (12, 13). Some precursors, which are destined for the intermembrane space or the outer face of the inner membrane, are first completely imported into the matrix and are then retranslocated across the inner membrane (‘conservative sorting’) (9, 14). Many precursors are assembled into multi-subunit complexes (9, 15).

Several steps on the import pathways of mitochondrial precursor proteins require energy, either in the form of nucleoside triphosphates (NTPs) or in the form of the membrane potential ($\Delta \psi$) across the inner mitochondrial membrane. NTPs and $\Delta \psi$ are necessary for different stages in the protein import pathways.

General Aspects of Energy Requirement of Protein Import

In very early studies on the biogenesis of mitochondrial proteins it was shown that energy was required for import of proteins into mitochondria. Uncouplers of oxidative phosphorylation (protonophores) prevented transport of proteins into mitochondria both in vivo and in vitro (16–18). Protonophores dissipate the electrochemical potential across the inner mitochondrial membrane. This subsequently leads to a decrease of the level of ATP. Hence, from these studies it could not be decided which form of energy (ATP or the electrochemical potential or both) was necessary for the protein import.
Role of the Membrane Potential

Schleyer et al. (19) generated conditions where the electrochemical potential across the inner membrane was abolished whereas the levels of ATP inside and outside the mitochondria were high. This involved the use of protonophores (CCCP and FCCP), \(K^+ \) ionophores (valinomycin), inhibitors of the electron transport chain (rotenone, antimycin A, and potassium cyanide), inhibitors of the \(F_0F_1 \)-ATPase (oligomycin) and of the ADP/ATP translocator (ADP/ATP carrier) of the inner membrane (carboxyatractyloside). The transport of precursor proteins, which were synthesized in vitro in rabbit reticulocyte lysates, into isolated mitochondria was then investigated. Only when the inner membrane was energized, could precursor proteins be transported into or across the inner membrane. Similar results were obtained by Gasser et al. (20) and Kolanski et al. (21).

Some precursor proteins are not translocated across the inner membrane. These include proteins of the outer membrane and the intermembrane space protein cytochrome c. The import of these proteins does not require an electrochemical potential (18,22–24). Other proteins of the intermembrane space (e.g., cytochrome c peroxidase and cytochrome b\(_2\)) are first transported across the inner membrane and are then retranslocated to the intermembrane space (25,26). Thus, their import needs the electrochemical potential across the inner membrane.

To understand the role of the electrochemical potential in protein import it was important to know which components of the total protonmotive force, i.e. the electrical component \(\Delta \Psi \) or the chemical component \(\Delta p\text{H} \) or both, were required. For this purpose, the electron transport chain and the \(F_0F_1 \)-ATPase were inhibited and a valinomycin-induced potassium diffusion potential was generated. The translocation of the precursor of the ADP/ATP carrier from the outer into the inner membrane could be driven by this \(K^+ \) diffusion potential. This import could not be abolished by protonophores and imposing a \(\Delta p\text{H} \) did not stimulate this import. Thus, a movement of protons across the inner membrane (driven by the total proton motive force or by the \(\Delta p\text{H} \)) was not required for protein import. We concluded that the electrical potential \(\Delta \Psi \) per se was the necessary energy source for protein transport into the inner membrane (27). It was calculated that relatively low potentials (20–40 mV) were able to drive import. It should be emphasized that the generation of translocation intermediates was a prerequisite for studies using a \(K^+ \) diffusion potential and for several of the studies on the role of NTPs (see below).

The protein import pathways could be divided into several subsequent steps and precursor proteins were reversibly accumulated on distinct stages of their import pathway (7,8,27,28). This permitted studying defined steps of the protein import. The overall import in vitro of the ADP/ATP carrier from the cytosol into the inner membrane was too slow to be driven by a \(K^+ \) diffusion potential: the diffusion potential was degraded before the binding of precursor to the mitochondrial surface had occurred. The translocation of precursor from the outer to the inner membrane, however, was rapid (less than 1 min) and therefore could be driven by the \(K^+ \) diffusion potential (27).

Only the initial entrance of precursor proteins into the inner membrane required \(\Delta \Psi \), the completion of translocation into or across the inner membrane was
observed to occur also in the absence of $\Delta \Psi$ (7, 8). In the cases of precursor proteins which are synthesized as larger precursors, the positively charged amino-terminal presequences are involved in their entrance into the inner membrane. In summary, we suggest that the role of the membrane potential $\Delta \Psi$ in mitochondrial protein import involves an electrophoretic effect on the positively charged presequences (or positively charged regions in precursors without cleavable peptide extensions). Thereby $\Delta \Psi$ triggers the initial entrance of the precursor into the inner membrane.

Role of Nucleoside Triphosphates (NTPs)

The \textit{in vitro} import system, rabbit reticulocyte lysates and isolated mitochondria, was depleted of ATP and ADP by pre-incubation with apyrase (an ATPase and an ADPase). A mitochondrial membrane potential was then established by addition of substrates of the electron transport chain and the F_0F_1-ATPase was inhibited to prevent dissipation of $\Delta \Psi$ and synthesis of ATP. Under these conditions, the import of the precursor of F_0F_1-ATPase subunit β ($F_1\beta$) was inhibited. Re-addition of ATP or GTP, but not of non-hydrolyzable ATP-analogues, restored the import (29). We concluded that both $\Delta \Psi$ and NTPs were required for transport of $F_1\beta$ into mitochondria. Similar results were obtained by studies using a purified precursor protein (30) or desalted reticulocyte lysate (31).

A requirement for NTPs has now been demonstrated for the import of a number of precursor proteins, including that of porin (an outer membrane protein) (32), cytochrome b_2 (an intermembrane space protein) (33), ADP/ATP carrier and cytochrome c_1 (inner membrane proteins) (33, 34), $F_1\beta$ (inner face of the inner membrane) (29, 31, 34), and of chimaeric proteins consisting of (parts of) mitochondrial precursors and non-mitochondrial passenger proteins (30, 34, 35). It is especially interesting that the import of porin into the outer membrane, which is independent of $\Delta \Psi$, requires NTPs.

NTPs were required both for the initial interaction of precursor proteins with mitochondria and for the completion of transport of precursor proteins from the mitochondrial surface into mitochondria. The latter reaction required higher levels of NTPs than the former initial interaction. The precursor of F_0F_1-ATPase subunit 9 and a fusion protein consisting of the entire subunit 9 precursor and cytosolic dihydrofolate reductase required very different levels of NTPs for import into mitochondria. The requirement for NTPs did therefore not seem to be correlated to a specific step occurring at the mitochondrial membranes (like e.g. binding of precursor to receptor sites). We concluded that NTPs were necessary to confer import-competence to the precursor proteins (34). NTPs may act in concert with a recently proposed defolding enzyme ('unfoldase') (36) to keep mitochondrial precursor proteins in an import-competent conformation. This view is supported by the following two observations. 1. Whereas the import of \textit{in vitro} synthesized porin required NTPs (32; see above), was the import of a denaturated ('defolded') form of the porin precursor independent of NTPs. The other import properties such as binding to a specific receptor protein were identical for both forms of the porin.
precursor. Thus, the differential requirement for NTPs seems to be caused by different conformations of the precursors (Pfanner, Pfaller, Kleene and Neupert, in preparation). 2. The import of incompletely synthesized precursor chains into mitochondria required lower levels of NTPs than the import of the corresponding completed precursor proteins (35). On the assumption that incompletely synthesized chains are more loosely folded than completed chains, this result again supports the model that NTPs are involved in modulating the folding state of precursor proteins. It is not known if the proposed defolding enzyme is located in the cytosol or is associated with the mitochondrial membranes. Furthermore, since the import system used contains nucleoside phosphate kinases, it has not been possible so far to decide which form of NTP, e.g. ATP or GTP, is directly required.

Energy Requirement of Protein Translocation across Other Biological Membranes.

The translocation of proteins into chloroplasts (37–39) and across the membrane of the endoplasmic reticulum (ER) (40–44) were shown to require ATP. Wiech et al. (45) proposed that the ATP requirement for protein transport into the ER was related to the preservation of transport competence of the precursor protein. So far, a requirement for an electrochemical potential could not be demonstrated with chloroplasts and the ER. The export of proteins in *Escherichia coli* requires both the electrochemical potential across the plasma membrane and ATP (46,47).

In summary, it appears that the energy requirements for translocation of proteins across different biological membranes are similar in several aspects. It remains unclear if the inability to show a requirement for an electrochemical potential in the cases of chloroplasts and the ER is caused by membrane-specific properties or by experimental conditions.

Perspectives

The molecular details of the action of NTPs and of the membrane potential in mitochondrial protein import are still unknown (as is the case for protein transport across other biological membranes). Purification and characterization of the participating components are an important step to an understanding of these processes. This includes – besides the precursor proteins themselves – the proposed defolding enzyme(s) and components in the mitochondrial membranes (e.g., in contact sites) which mediate the protein translocation into the inner membrane.

The interaction of chemically synthesized mitochondrial presequences with artificial lipid membranes has been shown to depend on a transmembrane electrical potential (48). However, the significance of this biophysical model system for mitochondrial protein import remains unclear, since protein import into mitochondria has been shown to occur through a hydrophilic (probably proteinaceous) membrane environment (7,10). Thus, the *in vitro* reconstitution of all participating components will be necessary to understand mitochondrial protein import at the molecular level.
An undeveloped field which might attract much interest in the near future is the energy requirement for protein transport out of the mitochondrial matrix into or across the inner membrane. This protein export includes mitochondrially synthesized precursor proteins and also cytoplasmically synthesized precursor proteins which are first imported into the matrix and are then retranslocated across the inner membrane (9, 14). This protein translocation into or across the inner mitochondrial membrane could occur in analogy to protein export in prokaryotes.

Acknowledgement

We thank Rosemary A. Stuart for critically reading the manuscript.

References

1,3-diphosphoglyceric acid 625
2,3-biphosphoglycerate 253
2,4-diamino-6-hydropyrimidine 912 ff
3'-pyrophosphate 603
3'-pyrophospho CoA 605
3'-pyrophospho nucleotides 603 ff
3'-pyrophosphokinase 604
3'-pyrophosphokinase 604
3'-pyrophosphokinase 604
3-adenosine-5'-phosphosulfate 106
4'-phosphopantetheine 25, 178, 194, 359 ff, 525
5'-phosphoribosylformylglycinamide amidotransferase 232 ff
5-hydroxytryptophan 796
5-phosphoribosyl-1-pyrophosphate 231 ff
5-phosphoribosyl-dephospho-CoA 194
6-diazooxo-L-norleucine 231
7-methylguanine 541
80 kDa protein 302
acetyl phosphate 21, 49, 70, 74 ff, 82 ff, 168, 581
acetyl-CoA 176
acetylcholine 267, 289
acetylcholine receptor 267
actin 265, 575, 771 ff
actin, bundling of 268
activated sulfate 106
activation, amino acid 511
activation, carboxyl 511 ff
active transport 569
actomyosin 423, 575, 737
actomyosin-ATPase 423
acyl adenylates 208
acyl carrier protein 193 ff
acyl phosphate 625
acyl-enzyme intermediate 172 ff
acyl-enzymes 172 ff
acyl-phosphate intermediates 389 ff
acylation 835, 837 ff
adenosine 3'-phosphate 5'-phosphosulfate 818
adenosine 5'-phosphosulfate 818
adenosine triphosphate 168, 170, 176, 671
adenosine-5'-phosphosulfate 106
adenylate cyclase 653, 813 ff
adenylate, luciferine 208
adenylation, glutamine synthetase 431
adenylyl cyclase 841 ff
adenylyl cyclase, regulation by hormones 844
ADP ribosylation 846 ff
ADP-ribosyl transferase 379 ff
ADP/ATP carrier, mitochondria 650
affinity labeling, concept 231 ff
affinity labeling, reagent design 244
age depressed functions, restoration 326
aggregation process 929
Akers, H. 34
alamethicin 362
albizzin 231, 235 ff
alcohol oxidoreductases 674 ff
aldehyde oxidoreductases 675 ff
aldehyde oxidoreductases, cofactor containing 676
aldehyde oxidoreductases, NAD(P) dependent 677
aldose sugar oxidoreductases 677 ff
alternative splicing 765 ff
amidotransferases 231
amine oxidoreductases 676
amine oxidoreductases, copper-quinoprotein 676
amine oxidoreductases, flavoprotein 676
amino acid copolymerization 897
amino acids, activated 213 ff
aminoacyl adenylate 511
aminoacyl compounds 213
aminoacyl migration 217 ff
aminoacyl phosphates 168 ff
aminoacyl-tRNA synthetase 526
aminothioic acids 215
Ammon, R. 45
ammonia forming 683
ankyrin 771 ff
Anderson, B. 631
anhydride intermediate 196
anion binding sites, halorhodopsin 695
Anke, T. 657
anserine 369 ff
Anson, M. L. 18, 166
antenna pigments 713 ff
Anthony, R. 360
anthranilate synthase component I 238
antibiotic production 339
antibiotics 657
antibiotics, DNA damage 389 ff
antibiotics, polypeptide 32 ff
antifungals 657
antineoplastic activity, tuftsin 325
apo-enzyme 675
APS 106, 818
ARG boxes 441
arginine repressor 441 ff
Aristotelian teleology 272 ff
Aristotle 274 ff
arthritis, rheumatoid 832
aryl sulfatase A 836
arylsulfatases 821
Ase, K. 765
Astrup, E.G. 361
ATP 168, 170, 176, 671
ATP binding proteins 919f
ATP nucleotide 3'-pyrophosphokinase 603
ATP, as energy carrier 917
ATP, balance 163f
ATP, central role 168
ATP, discovery of 160
ATP, function in luminescence 205f
ATP, in protein import 707
ATP, photosynthesis of 158
ATP, producing pathways 163
ATP, reaction with myosin 423
ATP, synthesis of 628
ATP-ADP conversion 263
ATP-ADP exchange 740, 749
ATPase 628, 709
ATPase, Ca^{2+} 570f
ATPase, ion transport related 264
ATPase, Rsp. rubrum 918f
ATPase, tonoplast 728
Aub, Joe 7
Auer, B. 379
autolysins 227
autophagy 252
azaserine 231
B12-methyltransferase 448
Babloyantz, A. 923
Bacillus brevis 349
Bacillus stearothermophilus 481ff
Bacillus subtilis 340ff
bacitracin-synthetases 362
bacterial membranes 223ff
bacterial photosynthesis 917
bacterial walls 223ff
bacterio-chlorophyll 716
bacteriophage T7 432
bacteriorhodopsin 577ff, 693
Baddiley, J. 7, 25, 223
Baker, E. P. 699
Balls, A.K. 242
Baltscheffsky, H. 589, 917f
Baltscheffsky, M. 589
Barker, H.A. 7, 23, 50, 73, 82
Barron, G. 19
Bates, H. 51
Bauer, K. 34, 369, 791
Bauer, W. 7
Baxter, R.M. 551
Beatty, B.R. 289
Belits, V. 168
Belousov, B.P. 925
Bennett, H.S. 289
Bennett, P. 841
Bennett, T.P. 85
benzodiazepine 857
Berg, P. 39, 51, 200, 231, 535
Berg, Trine-Lise 357
Bergmann, M. 166, 897, 904
Bernal, 23
Bessman, S.P. 663
binding energy 569
Biochemical Journal 43
Biochemische Zeitschrift 117
biochemistry 285ff
Biochimica Biophysica Acta 44
biological phenomena, reduction of 274
biomimetic peptide synthesis 213, 216ff
biosynthesis, arginine 441ff
biosynthesis, gramicidin 331ff
biosynthesis, methionine 447ff
biosynthesis, omega-aminoacyl amino acids 370f
biosynthesis, peptide antibiotics 331ff, 339, 355ff
biosynthesis, purine nucleotide 231
biosynthesis, teichoic acid 226f
biosystems, selforganization 929f
biotin 191
biotin-containing enzymes 197ff
Birnstiel, M. 288
Bizzozero, O. 837f
Blaschko, H. 45f, 111, 114, 125
bleomycin 389
Bloch, K. 173, 246, 853
blue copper proteins 679
Bohr, N. 6
bond energy, phosphate 15
Borsook, H. 171
Boyder, 627ff
Boyland, E. 125
bradykinin 302
brain peptides 305
brain research 923
Brattleboro rat 309ff
Braunstein, A. 168
Brazhnikova, M. 355
Brenner, M. 174
Breslow, 152
Breslow, 152
Brot, N. 447
Brodie, A.F. 149
Brody, A. 664
Bronk, D. 28, 40
Brot, N. 447
Brown, D.D. 288
Buchanan, J.M. 231
Buchner, E. 43
Burk, D. 6, 20ff, 38, 40, 48f, 111, 122
Burnett, G. 793
Butenandt, A. 131
BZ reaction 926f

Ca uptake 747ff
Ca$^{2+}$ ATPase 653
Ca$^{2+}$ ATPase reaction 747
Ca$^{2+}$, mobilization 765
Callan, H. G. 288f
calmodulin 265, 269, 743
Calvin cycle 158
Calvin, 150
cAMP 158, 298, 301, 781, 929f
cAMP dependent protein kinase 265ff, 781, 813f
cAMP levels, induction of maturation 843f
CAP 541
Cappelci, M. R. 535
carbamoyl phosphate 253
carbamoyl phosphate synthase 238, 253
carbamyl phosphate 26f, 50, 441
carboxyl activation 511f
carboxyltransferase 198
carboxytransphosphorylase 584
carnosine 369ff
carnosine synthetase 370
carnosine, metabolism 369ff
Carpenter, F. H. 171
carrier proteins 191ff
cascade of controls 264
catabolism 822
catabolism, gamma hydroxybutyrate 867
catabolite inactivation 813
catabolite repression 347f
catecholamines 796
cation control, bacterial membrane 225
cDNA, protein kinase C 765f
cell biology 285ff
cell cultures, protein kinase 253f
cell cultures, short-lived proteins in 253f
cell differentiation, poly(ADP-ribosyl)ation 616
cell individuality 299
cell turgo 699ff
cell wall, bacterial 223
cellular energetics, pyrophosphate 917ff
chain growth, headward 512
Chain, E. B. 45
Chance, B. 663
channeling 96, 98
Chantrenne, H. 168
Chapeville, F. 43, 59, 535, 841
Chargaff, E. 115, 458
chemical oscillations 926
chemiosmotic theory 714
Chibnall, A. C. 167, 423
chlorophyll aI/aII 713f
chloroplasts, ion content 722
chloroplasts, protein translocation 710
cholecystokinin 106
cholera toxin 844
cholesterol 853
choline, acetylation 835
chondroitin sulfate 827
Chou, T.C., see Zhou 25, 857
Christian, W. 111f
chromatin, reorganization 270
chromosomes 288f
Churchill, E. 23
chymotrypsin 166, 172ff
citramalate lyase 193
citrate fermentation 191ff
citrate lyase 191ff
citrate lyase, subunit structure 192
citrate synthase 82f
citric acid 136
citric acid cycle 167, 867
Clark, W. M. 165
Clarke, H. T. 165
clothrin 266
Claude, A. 37, 167, 287
clock, chemical 925
clonal identification 316
Clowes, George H. A. 50
CoA transferase 196
coated pits 266
Cockayne syndrome 381
code, complexity 915f
coenzyme A 24f, 49, 82, 183, 191, 213, 604, 625, 795, 835
coenzyme A, function in luminescence 209
coenzymes, group transferring 609
cofactors 671ff, 679
Cohen, 27
Cohn, A. 5
Coleman, T. 447
colestanol 853
collagenase gene 433
collagenase, induction 434
colloidology 159
compartmentation, of translation proteins on polyribosomes 528f
Conant, 7
conformational change, transmittance 263
connective property 101
control coefficient 101
control of eucaryotic replication 269f
control, of K$^+$ cycling 702
control, shared 102
control, theory of 161
Conway, T. 792, 841
Cope, O. 6, 23
copper proteins, blue 679
Cori, C. F. 6, 39, 149, 168, 323, 581, 663
Cori, Gerti 6, 139, 168
Correns, C. E. 111
Corryett, C. 140
coupled reactions 168 f
coupled vectorial processes 569
coupling mechanisms 569 f
coupling, of gradients 729
coworkers, Lipmann's 53, 943 f
creatine phosphate 13, 15, 114
Cremer, W. 111
Crick, F. 28, 39, 176 f, 493
crystallization, arrays 482
crystallization, PS complexes 716 ff
crystallization, ribosomes 488 ff
crystallization, seeding 488 ff
CTP synthetase 238
Curtius, T. 174
cyclic nucleotide phosphodiesterase 653
cyclosporine 366
cytidine diphosphoethanolamine 332
cytochrome b 678
cytochrome bc1 650
cytochrome c 287, 657, 679
cytochrome oxidase 650
cytochromes, bacterial 683 ff
cytoplasmic pH 699 ff
cytoskeletal elements, modification of 264
cytoskeletal proteins, interaction 771 ff
D'Abramo, F. 827
D-amino acid oxidase 22
D-glucuronate 871
D-glucuronate reductase 871
Darwinian evolution 923 f
Darwinian selection 672
Darwinian theory, extension 902 ff
Davis, B. D. 189
De Duve, C. 7, 37
De Robertis, E. D. P. 289
decarboxylases 198 f
decarboxylation mechanism 199
decouplers 649
decoynine 347
De Duve, Janine 7
deficiency, tuftsin 327
degeneracy, of the code 539 ff
degradation, carnosine 373
del Castillo, J. 289
Delbrück, A. 827
DeLuca, Marlene 210
dephosphorylation 295 ff
dermatan sulfate 828 ff
Desulfovibrio desulfuricans 684, 687
developmentally regulated gene amplification 417
di-aminoacylamines 218
diabetes insipidus 309 f
diacylglycerol 765
diacylglycerol, stimulation of kinase C 800
dibutyryl cAMP 298, 301
dicarboxylate carrier 650
Dickens, F. 148, 150
dihydrocholesterol 853
dihydropterine reductase 806
dihydroxyphenylalanine 796
disopropylfluorophosphate 243
diketopiperazine, D-phenylalaninyl-L-prolyl 339
Dimroth, P. 191
Dische, Z. 157 f, 168
dissimilatory nitrite reductase 683
DNA damage, antibiotics 389 ff
DNA damage, oxidative 389 ff
DNA double helix 157, 263
DNA ligase 617
DNA puffs 417 ff
DNA repair 379 ff
DNA replication 417
DNA, bonding of spermine 555 f
DNA, historical 457 f
Dobry, A. 171
DOPA 796
Doudoroff, 26
du Vigneaud, 48 f
Dubos, R. 22, 364, 355
Duine, J. A. 671
Dunn, Lily 407
Dupuytren's contracture 830
DuToit, C. H. 646
DuVigneaud, 21
Du Vigneaud, 21
Ebash, S. 43, 54, 570, 737 ff, 747, 749
E protein 465
Edwards, T. 441
Edstrom, J.-E. 288
EDTA, relaxing effect 738
EGF receptor 297, 301 ff, 782 ff
EGTA 738
Ehrlich ascites tumor 301
Einstein, Albert 111
Eisinger, W. 360
elasticity coefficient 101
ELDOR spectroscopy 641
Eldridge experiment 427 f
Eldridge preparation 427 f
electron chemical Na+ gradient 202
electron microscopy, gold thioglycollate 484
electron microscopy, PS complexes 716 ff
electron microscopy, ribosomes 482
electron microscopy, staining 482
electron microscopy, uranyl acetate 484, 487
electron paramagnetic resonance 631
electron transfer chain 657
electron transport chain 678 ff
Index 983

electron transport, vectorial 713f
elongation factor P 551ff
elongation factor Tu 526f
elongation factors 30f, 515ff, 793
elongation, headward 511f
elongation, principle of 361
Em protein 465
Embden, G. 19, 43, 59, 67, 116, 123, 157, 159, 168
Embden-Meyerhof cycle 123
Embden-Meyerhof pathway 19, 112
embryonic development, hormone expression 312f
embryonic development, phosphorylation 268f
Emerson, R. 111
endocytosis, of multilamellar liposomes 255
endoplasmic reticulum 710
energy carrier, pyrophosphate 583
energy for proteolysis 251
energy of respiration 627
energy, luminescence 206
energy-rich bonds 165ff, 168, 220, 609
energy-rich compounds 220
energy-rich compounds, and work 569ff
Engelhardt, W. A. 69, 262, 625
Engström, L. 841
enniatin synthetase 361
energy-rich bond 625
environmental stabilization of proteins 257
enzymatic peptide synthesis 165ff
Enzyme Club 81, 106
enzyme specificity 570
enzyme templates 305
enzymes, far-from-equilibrium 99
erythrocyte membrane 771f
erythrocyte plasma membrane 266
erythrocyte, membrane proteins, phosphorylation 772f
crythrocytes, glycolysis of 161
Escherichia coli K 12 684, 687
Estabrook, R. W. 288
ethanolamine, donor 331ff
evolution 672, 879
evolution, additional RNA base pair in early 911
evolution, direction of 895
evolution, of protein synthesis 902
evolutionary theory 906
expression 535
expression, differential 765, 767f
external signals, transduction 267
F₀/F₁-ATPase 709
F₁-ATPases 920
F₁-F₀ ATPase 573ff
factors, ATP utilizing 270
Fanconi's anemia 381
fatty acid synthesis 361
fatty acid synthetase ACP 194
fatty acids, motional dynamics 631ff
fatty acyl CoA desaturation systems 648
Fedyniak, B. 360
Fehr, Susanne 305
Fernandez-Moran, H. 288
FGAR amidotransferase 238
fibrinogen 817
fibrinopeptide B 817
fibronectin 107
fibronectin, desulfation 820
Fischer, A. 4, 16, 41, 47
Fischer, E. 111, 174
Fischer, H. 7
Fischer, R. 4
Fiske, C. 67
flavoproteins 682
Florkin, 159
fluoride, effect 46
fluoride, effect of 13
fMet-tRNA 495
Folch, J. 835
formyl-methionyl-tRNA 495
formylation, N-terminal 331
Förtsch, B. 899, 905
Fox, J. L. 535, 551
Fox, S. 85, 895
Fraenkel-Conrat, H. 166, 897
Franke, W. W. 289
free energy, of concentration gradients 726f
Frenkel, A. W. 917
fructose-1,6-bisphosphatase 813
fructose-2,6-biphosphatase 123, 588, 591
Fruon, J. S. 139, 165ff
Fujii, T. 765
Fujita, A. 111
Fukami, Y. 32, 65, 295
futile cycle 699, 703
G-proteins 314f
GABA receptor 317
Gaffron, H. 38, 111
Gall, J. G. 288
Gamov, 7
Ganoza, C. 535, 539, 551
Gause, G. 355f
Gavrilova, L. P. 514
Geiger, P. 664
Gemmell, C. 125
gene amplification 417ff
gene expression, phosphorylation 270f
gene expression, regulation 431ff
gene structure 305ff
gene, firefly luciferase 210f
genes, DNA puff genes 419
genes, K⁺ transport 700ff
984 Index

Gerard, R. W. 6, 111, 122, 125
Gerlach, U. 841
Germain 457 ff
Germain, signal properties 467
Germination, RNA population during 463 f
Germination, wheat embryo 462 ff
Gevers, W. 32, 34, 51, 95, 359 f, 791
Gilhuus-Moe, C. C. 360
Gilvarg, C. 189
Glanzdorf, P. 925
Glutamate dehydrogenase 253
Gluconeogenesis 813
Glucosamine-6-phosphate synthetase 240
Glucose anomers 814
Glucose transport system 814
Gluconol-CoA decarboxylase 198
Glutamate-alanine-tyrosine polypeptide 296
Glutamin utilizing enzymes 232 ff
Glutamine 173 ff
Glutathione 173 ff, 214, 702, 704
Glyceraldehyde-3-phosphate dehydrogenase 253, 631
Glycogen phosphorylase 296
Glycogen phosphorylase, phosphorylation 264
Glycogen synthase 296
Glycolysis 112, 157 ff, 170, 299 f
Glycolysis, carnosine 369
Glycolysis, energy yield 15
Glycolysis, inhibition by iodoacetate 14 f
Glycolysis, of erythrocytes 161
Glycolysis, topological complexes 163
Glycolytic cycle 19
Glycolytic oscillations 929
Glycosaminoglycan 829
Glycosaminoglycan pattern 830
GMP-synthetase 238
Goldberg, Irving 27
Goldberg, I. H. 27, 389
Goldberg, M. 178
Goldblatt, D. 781
Goldschmidt, R. 111, 130
Golg apparatus 253 f
Gordon, J. 360, 514
Gramicidin, linear 22, 33 f, 49, 85, 178, 305, 356
Gramicidin J 356
Gramicidin S 32 ff, 178, 339, 356, 524
Gramicidin S-synthetases 362
Gramicidin, linear biosynthesis 331 ff
Gramicidin-synthetases 362
Green, D. E. 287
Gregory, J. 28, 841
Griffith, O. 360
Grisolia, S. 27, 251

group activation 620
group potential 23, 158, 168, 511
group transfer concept 50, 620
group transfer, NAD-derived 608
group transfer, NADP-derived 618 f
growth factor, human prostatic 407 ff
growth factors 299 ff
Grundfest, H. 835
Guanosine monophosphate 347
Gurdon, J. B. 288
Gurr, E. 827
Guthrie, C. 496
Haas, E. 111 f, 154
Haber, F. 111
Hadjiolov, A. A. 505
Hahn, O. 111
Hall, C. E. 286
Hall, E. (Freda) 3, 14, 16, 40 f, 43, 46 f, 55, 81, 90, 124
Halobacterium marismortui 490 ff
Halorhodopsin 693
Hamburger, V. 111
Hämmerling, J. 111
Hammett, L. P. 165
Hanes, C. 173
Hanson, J. 262, 424
Harden, 157, 159
Hardesty, B. 535
Harris, I. F. 458
Harvey, E. N. 205
Hasegawa, E. A. 827
Hasseltbach, W. 747
Heber, U. 721
Hecht, S. 165
Heilbrunn, L. V. 737
Henriques, V. 68
Heparin-Sepharose 407
Hepatocytes, heterogeneity of 254
Herman, H. 6
Hernández-Yago, J. 251
Herriott, R. 166
Herrlich, P. 360, 431
Herrmann, H. 261
Herter, C. 43
Herzog, H. 379
Hess, B. 7
Hexaheme c-type cytochrome 683
Hierowski, M. T. 407
High energy bond 135
High energy bond, concept 795
High energy phosphate bond 423
High energy phosphate bond, concept 271 f
High-energy bond, extension of concept 630
High-energy intermediate 645
Hill, A. V. 67, 125
Hilz, H. 27, 609
Index

Himwich, H.E. 125
Hirsch-Kaufmann, M. 379
Hiskes, A.L. 261
histone H 1, phospho ADP-ribosylation 618
history of biochemistry 139, 141
history of glycolysis 157 ff
history, biochemical 261 ff
history, biochemistry and cell biology 285 ff
Hoagland, M. 28, 39, 51, 177, 231, 664
Hoch, F. 664
Hofmeister, F. 43
Hogeboom, G.H. 287
Holley, R.W. 39, 459
Holter, H. 6
Holtz, P. 126
Holzer, 152
homeostasis 699, 721 ff
homology screening 319
Homsher, E. 424
Hopkins, F.G. 44, 54, 116, 251, 279
Hoppe-Seyler 116
Horecker, B.L. 147
Horio, T. 917 f
hormone receptors 314 ff
Hotchkiss, R.D. 22, 48 f, 70, 287, 355, 458
Huffman, H.M. 171
Huggins, C. 407
Hugli, T. 792
Huxley, H.E. 262, 286
hyaluronate 827
hydrazine 240
hydroxamates 175
hydroxylamine 240
hydroxylase, aromatic amino acid 791
hypothesis 306

I Ching 135 ff
Igarashi, K. 765
image analysis, PS complex 716 ff
image reconstruction 482
immunogenic stimulation, tuftsin 324
impulse coding, in nerve 424 f
information, origins and transfer 901
inhibition of respiration 657 f
inhibitor, suicide 246
inositol-1,4,5-trisphosphate 765
Inouye, K. 172
insulin 132, 297, 300 ff, 663
insulin receptor 297, 300 ff, 317, 782 ff
interleukin 2, stimulation 326
intermediate, phosphorylated 748 ff
intracellular effectors 653
intracellular mechanism of protein degradation 252
intron 536
ion circulation 699, 702
ion gradients, compensation 725 f

ion transport, ATPases 264
ion uptake 722
ionic pumps 693
isogene selections 424
isoproteins 424 f
isozymes 673
Ito, E. 900
Ivanov, O.C. 899, 905
Iwasaki, K. 3, 45 f, 59, 111, 122

Jacob-Monod concept 535
Jaenicke, L. 359
Jencks, W.P. 569, 663, 735
Johnston, R. 173
Jones, Mary Ellen 26, 50, 173, 664
Joseph, A. 360
Journal of Biological Chemistry 43

Kaempfer, R. 496
Kaiser, G. 721
Kaiser, W.M. 721
Kaiser-Wilhelm-Gesellschaft 111, 117
Kaiser-Wilhelm-Institut 129 ff
Kalcakar, H. 6, 48, 67, 139, 165, 168, 205, 263, 581, 625
Kaplan, N.O. 7, 24, 45, 50, 209 ff
Karlin, M. 431
Karlson, P. 129
Katz, B. 289
Kaufman, S. 625, 805
Kaufmann, E. E. 867 ff
Kaziro, 30 f
Kempner, W. 111
Kennedy, E.P. 287, 793
keratan sulfate 827
Kielley, W.W. 742 f
Kikkawa, U. 765
kinases, cyclic nucleotide dependent 270
kinesin 270

Kleinschmidt, H. 32, 34, 51, 96, 178, 355, 359 f, 524, 791, 900, 902
Klenow, 150
Klingenberg, M. 918
Klopper, H. 379
Knecht, E. 251
Knoop, F. 115 f
Kornberg, A. 39, 157, 231, 583, 595
Kossel, 116
Kosterlitz, H. 45
Kozak, M. 501
Krumm, L.O. 152, 181
Krebs cycle 135 ff, 287, 664
Krebs, E.G. 793
Krebs, H. 25, 38, 40, 44, 52, 59, 69, 95, 109, 111 ff, 119, 148, 158, 167, 181, 792 f
Krisko, I. 360
Kubowitz, F. 111 f
Kunitz, M. 166, 168
Kurahashi, 70
Kurahashi, K. 51, 355
Kurokawa, T. 765
L-gulonate 871
Laland, S.G. 339, 355, 359
Landsteiner, K. 167
Lane, B.G. 457
Langan, T. 841
Lanyi, J.K. 693
Laqueur, E. 45
Laskowski, M., Jr. 171f
Lawes, J.B. 251
Le, F. 857
Lee, S.G. 34, 361, 791
Lees, M.B. 835
Leeuwenhoek, A. 555
Lehninger, A.L. 148, 287
Lehman, J. 20
Lehmann, H. 125
Lenard, L. 360
Lenya, Lotte 3
Leopoldina Academy 109f
leukodystrophy, metachromatic 836
Levene, P.A. 17, 48, 124, 664, 793
ligand binding 750ff
ligand translocations 521
Lim, D. 441
Linderström-Lang, K. 5, 19, 21, 48, 70, 166, 171, 174f, 177
Lineweaver, H. 242
lipid-protein interactions 631ff
Lipmann, Freda Hall, see Hall, Elfried 3
Lipmann, Freda Hall, see Hall, Elfried 3
Lipmann, H. 3, 10, 13, 40, 57
Lipmann, S. 7, 26
liposomes 253f
Liu, M.-C. 58f, 590, 683, 817
liver, heterogenity 254
Ljubimova, M.W. 262
Lohmann reaction 114
Lohmann, K. 12, 38, 48, 67, 111, 114, 122, 123f, 129, 157, 159
Loomis, W.F. 50, 626, 645, 699
Lucas-Lenard 30
luciferase 207
luciferin 205ff
luciferyl adenylate 208
luminescence, firefly 205ff
luminescence, function of CoA 209
Lundin, M. 917
Lundsgaard, E. 6, 14, 38, 48, 67f
Lundsgaard, Helle 6
Lynen, F. 7, 25, 39, 50, 83, 139, 176, 213, 359f, 525, 795
Lynen-Lipmann model 366, 525
lysosomal proteolysis, inhibition of 255
lysosomal proteolysis, mechanism of 252
Maas, W.K. 8, 441
Mach, B. 355
MacLeod, C. 167
Magendie, F. 251
Makino, M. 747
malate dehydrogenase, cytoplasmic 813
Manning, J. 792
Mano, Y. 841
Marahiel, M. 349, 365f
Marcker, K. 535
Martin, E. 721
Maruyama, K. 43
Matsuno, 899
Matthei, I.H. 493
maturation, meiotic 842ff
Max-Planck-Gesellschaft 11
Maxon, M.E. 447
McDonald, M.W. 407
McElroy, W.D. 205ff
McEwen, B. 791
mechanism of protein degradation 252
mechanism, of decarboxylation 199
mechanism, of oxidative phosphorylation 626
Meerwein, H. 12, 45, 139
Meier, R. 125
Meister, A. 173, 208
Meitner, L. 111
melatonin 796
membrane potential 708ff
membrane proteins, regulation by phosphorylation 295ff
membrane receptors 267ff
membrane, bacterial, cation control 225
membranes, abnormalities 639ff
Meselson, M. 496
messenger-free amino acid polymerization, spermine 561f
met-genes 449ff
metabolic control 95ff
metabolic control analysis 101
metabolic conversions 671
metabolic dynamo 569
metabolic energy, conversion 263
metabolic intermediates, phosphorylated 261
metabolic pathways 157
Index

metabolic pathways, regulation of 160 ff
metabolic regulation 96
metabolic systems, steady state 97 f
metabolic wheel 135
metabolites, from bladderstones 143 f
metabolism, polyphosphates 591 ff
metabolism, pyrophosphate 591
metabolism, role of pyrophosphate 583 ff
metabolite history 141 ff
metabolites, from urine 141 ff
metallothioneins 465 f
methanol oxidoreductases 674
methionine 300
methionine biosynthesis 447 ff
methionine regulon, apo repressor 448
methylmalonyl-CoA decarboxylase 198
methylotrophs 674
Meyer, K. 45, 111, 122
Meyerhof, O. 4, 12, 15, 37, 43, 46, 52, 58, 67,
111, 112 ff, 119 ff, 125 ff, 129, 139, 147, 157 ff,
581, 742 f
Meyerhof, W. 305
Michaelis, L. 12, 19, 45, 116, 119, 165, 167
microtubule motility 270
microtubules 264 ff
Mikelsaar, H. N. 899, 903
Miller, O. L., Jr. 289
mineral deficiency 721
Mirsky, A. S. 16, 262
Mirsky, R. 5, 18
misonidazole 393
Mitchell, P. 288, 627, 699, 714, 793
mitochondria, history of isolation 287 f
mitochondria, membranes 647 ff
mitochondria, membranes, cardiolipins 647 ff
mitochondria, membranes, fatty acyl composition 647 f
mitochondria, membranes, proton circuits 649 ff
mitochondria, membranes, transporters 649 ff
mitochondria, protein transport 707 ff
mitochondrial enzymes, half-life of 253
mitochondrial enzymes, intercellular heterogeneity of 253
mitochondrial enzymes, intracellular homogeneity 253
mitochondrial proteins, uptake and processing of 254
mitochondrial proteins, “push-pull” model of 254
mitochondrial proteins, release of 253
mitochondrial substructure 288
mitochondrial RNA, endosymbiont hypothesis 461
mitosis 270
modifying reagents 243
Mohan, C. 663
Mohr, Evita 305
Mohr, H. 362
Moldave, K. 535
molecular selection 903
Mommaerts, W. 423
mono(ADP-ribosylation) reactions 610 ff
Monod, Jacques 7
Monro, R. 841
Moore, B. 43
Moore, S. 792
Moore, T. K. 631
Morley, S. D. 305
morphogenesis 923
Mothes, K. 109 f
mRNA, conserved in mature seeds 465
mRNA, in germinating wheat embryos 464
Mukai, J. 603
multi-enzyme systems 98
multi-enzyme complex, ligand translocations 521
multi-enzyme complexes 98, 287, 521, 900
multi-enzyme thiotemplate mechanism 178
multifunctional synthetases 362
muscle contraction 15, 261 ff, 569, 575 ff, 737 ff
muscle contraction, carnosine 369
muscle relaxing factor 285 f
muscle, slow type, fast type 425
myelin 835, 827
myofibril 424 f
myosin 262, 423, 575, 628
myosin-ATPase 262 ff, 42
N-acylimidazoles 220
N-ethylmaleimide 702
N5,10-methylene tetrahydrofolate reductase 447 f
Na+ pump 424
Na+K+ pump 300
Nachmansohn, D. 3, 16, 73, 76, 111, 119, 122,
126, 835
NADH dehydrogenase 678
Najjar, V. A. 323
Nathans, D. 52, 841
Needham, D. 39, 168
Needham, J. 262
Ngelein, E. 111 f
Nelson, J. M. 165
neo-Darwinistic concept 903
neocarzinostatine, thiol activated 389
neocarzinostatine, chromophore 389
nerve crossing 427 f
Neuberg, C. 14, 43, 46, 111, 119, 172, 581, 707
Neupert, W. 707
Neurath, H. 172
neurochemistry 289
neuropeptides 305
neuropeptides, receptors 314 ff
neurophysins 306
neurotransmitter 289
Niemann, C. 167
Nilson, R. 19
Nilsson, 123
Nirenberg, M.W. 493, 535
Nishizuka, Y. 765, 793
nitrate reduction 683
nitrate respiration 689 ff
nitrite reductase 683
Nomura, M. 493
non-B12-methyltransferase 447 ff
non-ribosomal synthesis 513
non-ribosomal systems 355 ff
Nord, F. F. 76
norepinephrine 265
Northrop, J.H. 165
Nose, 7
Novelli, D. 7, 24, 45, 50, 663 ff
nuclear proteins, ADP-ribosylation 614
Nyrén, Pål 917

Ochoa, S. 52, 82, 114, 149, 157, 535, 581
Ofengand, J. 841
Ogawa, Y. 747
Ogita, K. 765
oligomycin 627, 918
Ono, Y. 765
Onsager, 35 pantetheine 33
oocytes, amphibian 841
Oppenheim, J. 441
Oppenheimer, E. 49
origin of life 923
Osborne, T. F. 458
oscillating reactions 926
oscillations, glycolytic 929
oscillatory behaviour 925
osmoadaptation 699
osmotic compensation 725
osmotic work 569
osteoarthritis 832
Ostwald, W. 169
ouabain resistant revertant 301, 303
oudemansins 657 ff
oxaloacetate decarboxylase 197 ff
oxidative phosphorylation 625 ff
oxidative phosphorylation, membrane dependency 647
oxidative phosphorylation, respiration, state 3 651 ff
oxidative phosphorylation, respiration, state 4 649 ff
oxidoreductases 671, 867
oxytocin 305 ff
oxytocin, precursor 306 ff
p-aminobenzoate synthetase 238
Palade, G. E. 285 ff, 740
Palay, S. L. 289
panthetene 216
pantothenic acid 24, 191
pAp 606
papain 166, 172 ff, 242
PAPS 106, 818, 835 ff
Park, C. R. 631
Park, J. H. 631
Parnas, J. 168, 170
Parsons, D. P. 288
Parthier, B. 109
Pasteur effect 20
Pasteur, 113
pathobiocchemistry, connective tissue 827
pathway, pentose phosphate 147 ff
PDGF 299, 301 ff
PDGF receptor 299, 301 ff
Pease, D. C. 289
Peck, H. D., Jr. 590, 683
Peneisky, H. S. 628
pentose phosphate pathway 147 ff
pepsin 166
peptide antibiotics, enzymic machinery 522
peptide bond formation, regulation 551 ff
peptide bond synthesis 165, 172
peptide bond, energy 364
peptide bond, synthesis 166
peptide synthesis, biomimetic 213
peptide synthetases 362
peptides, non-ribosomal synthesis 513
peptidoglycan 223
peptidyl transferase 177, 551 ff
periodicity hypothesis 167
Perlmann, Gertrude 6, 20, 76
Perry, R. P. 288
pertussis toxin 847
Pestka, S. 514
Petrack, Barbara 105
Pfanner, N. 707
Pflüger, E. 116
phage receptor sites 227
phagocytic cells, activation 323
phenylalanine hydroxylase 297, 796 ff
phenylketonuria 796
phorbol ester 298, 433
phosphate bond energy 206
phosphate bond, high energy 261
phosphate cycle 158
phosphate, energy rich 15
phosphatidylethanolamine 331 ff
phosphatidylinositol 296
phosphatidylinositol-4,5-biphosphate-765
phospho adenyllylation, eucaryotic proteins 618
phospho ADP-ribosylation, histone H1 618
Index

phosphocreatine 170
phosphoenolpyruvate carboxykinase 339
phosphoenolpyruvate carboxylase 605
phosphofructokinase 588, 590 f
phosphoinositide cycle 855
phosphoproteins 735, 773, 791
phosphoroclastic reaction 581 f
phosphoryl potential 31 f
Phosphorylase b kinase 743
Phosphorylase kinase 296
phosphorylated proteins 18
phosphorylation 26 f, 107, 158
phosphorylation, calmodulin dependent 802
phosphorylation, cell replication 269 f
phosphorylation, calmodulin dependent 802
phosphorylation, cell replication 269 f
phosphorylation, cytoskeletal proteins 771 ff
phosphorylation, embryonic development 268 f
phosphorylation, enzyme 571
phosphorylation, FBPase 813
phosphorylation, gene expression 270
phosphorylation, hydroxylases 797 ff
phosphorylation, phenylalanine hydroxylase 805
phosphorylation, ribosomal proteins 271
phosphorylation, tyrosine 267
phosphorylations, understanding of cellular 261 ff
phosphoserine 781
phosvitin 31, 295
photoreaction centers 713
photoreactions, halorhodopsin 695
photoreceptor components, Drosophila eye 268
photosynthesis 713 ff
photosynthesis of ATP 158
photosynthesis, bacterial 917 ff
photosynthesis, water cleavage cycle 715
phytase 469
phytate 469
Pick, L. 119
Planelles, J. 45
Plapp, B. 792
plasma membrane, dynamics 266
plastein reaction 166
Polanyi, Michael 111
poly(ADP-ribose) 609
poly(ADP-ribose)ylation 612
poly(ADP-ribose)ylation, cell differentiation 617
poly(ADP-ribose)polymerase 612
poly(P) fructokinase 599
poly(P) glucokinase 596
poly(P) kinase 595 f
polyalcohol oxidoreductases 674 f
polyenzymes 33
Polypeptide antibiotics 32 f
polypeptide chain elongation 29
polyphosphates 581 ff
polyphosphates, isolation 594 f
polyphosphates, metabolism 591
polyphosphates, size determination 592
polyphospho glucokinase 594
polyproteins 305, 308 f
polyproteins, precursors 308 f
polyribosomes 528 f
Pontremoli, S. 152
Porter, K. R. 285 f
posttranslational processing 308 ff
posttranslational modification 431 ff, 837
potassium efflux 699 f
potassium transport 699 f
potassium uptake 700 ff
ppApp 603 f
ppGpp 603 f
PQQ (pyrroloquinoline quinone) 673 ff
prebiological times, pyrophosphate 591
prebiotic proteins 899
prebiotic roots 895
prebiotic routes 911 ff
precursor, of oxytocin 306 f
precursor, of vasopressin 306 f
pretemplate protein synthesis 897
Prigogine, I. 925
processing 305 ff
processing, of mitochondrial proteins 254
progesterone 841 f
promoter recognition 346
protein 4.1 771 ff
protein biosynthesis 339
protein degradation 251 ff
protein degradation, intracellular mechanism 252
protein import, energy requirement 707 f
protein kinase C 765 ff
protein kinase P 297, 302
protein kinase, cAMP-dependent 813
protein kinase, phosphorylation 433
protein kinases 773
protein modification 817
protein phosphatase 295, 298
protein phosphorylation 781
protein serine kinase 295, 301 f
protein sulfation 105 ff
protein synthesis 28 f, 168
protein synthesis, energetics and dynamics 511 ff
protein synthesis, evolution 902
protein synthesis, expression 535 ff
protein synthesis, informed 895
protein synthesis, initiation 493 ff
protein synthesis, nucleic acid templated 900
protein synthesis, on a protein template 900
protein synthesis, role of spermine 555 ff
protein synthesis, scanning model 501
protein template 339, 899
protein template mechanism 178
protein thiomodule mechanism 178, 339, 359
protein translocation 710
protein transport 707 ff
protein tyrosine kinase 295, 301
protein tyrosine sulfation, transformed cells 817 ff
proteinase, kinase splitting 781 ff
proteinoid microspheres 896
proteins, phosphorylated 18
proteoglycans 827
proteoglycans, extracellular 827
proteoglycans, turnover 830
proteoheparan sulfate 829
proteolipids 836 ff
proteolytic enzymes 305 ff
proteolytic enzymes 305 ff
protobioelectricity 899
protocell 899
protomembrane 899
protometabolism 899
proton pump ATPase 297
proton pumps 699
protonophore 699
protoribosomes 899
PRPP-glutamine amidotransferase 240
pseudouridylate 458
pterin coenzyme 805
putrescine 555
pyridine nucleotides, as group transferring enzymes 609 ff
pyrophosphatase, membrane-bound 589
pyrophosphatase, pyrophosphate formation 918
pyrophosphatase, tonoplast 728
pyrophosphate 581 ff, 917 ff
pyrophosphate binding proteins 919 ff
pyrophosphate, group transfer 231
pyrophosphate, in membrane-bound bioenergetics 589 ff
pyrophosphoryl acetate kinase 589
pyrophosphoryl enzyme 586
pyrophosphoryl group potential 511
pyrophosphoryl phosphofructokinase 588
pyrophosphoryl serine kinase 589
pyruvate, phosphate dikinase 585
pyruvic acid oxidation 21
quinoprotein enzymes 673
quinoproteins 680 ff
Rabinowitz, M. 31, 295, 663, 793
Racker, E. 150 ff, 288, 295, 625
Rapoport, S. M. 157
Ras 300 ff
Raskas, H. 496
rat embryo fibroblasts 818
rates of protein degradation, heterogeneity of 257
Ratner, Sarah 81 ff
Rayleigh-Benard instability 924
receptor families 317
receptor identification 314 ff
receptor sites, phage 227
receptor, benzodiazepine 857
receptor, definition 301
receptors 267 ff
receptors, hormone response 781 ff
receptors, neuropeptides 314 ff
receptors, of brain peptides 305
receptors, transmembrane regions 319
receptors, tuftsin 326 ff
recombination, mechanism 270
Redfield, B. 447
redox catalysis 671 ff
redox factors 681
Reeves, R. 584
regulation, aromatic amino acid hydroxylase 791 ff
regulation, by phosphorylation 295 ff
regulation, of expression 307 ff
regulation, of metabolic pathways 160 ff
regulation, of peptide bond formation 551 ff
regulation, phenylalanine hydroxylase 805
regulations, biochemical 923
regulatory network 437
Reich, E. 355
Reichert, E. 213
relaxing factor 738, 742 ff
replication, control of 269
replication, E. coli 269
replication, eucaryotic 269
repressor ribosomal proteins 498 f
resact 268
respiratory chains 680
respiratory control 663
retinal 577
reversibility of protein kinase 295, 298
Rhodes, W. C. 208
rhodopsin 317, 693
Rhynchosciara 417 ff
ribose-5-phosphate 231
ribosomal proteins, genes for 498 ff
ribosomal proteins, regulation of synthesis of 498 ff
ribosomal RNA 460
ribosomal RNA, gene organization 505 ff
ribosomal RNA, genes of eucaryotes 505 ff
ribosomal RNA, transcription unit 505
ribosome binding sites 541 ff
ribosome, 70s model 520
ribosome, assembly 497
ribosome, dissociation into subunits 494, 497
ribosome, elongation cycle 513 ff
Index

ribosome, ligand translocations 521
ribosome, reassociation 497
ribosome, translating 519
ribosomes, 50s subunit 482ff
ribosomes, 70s particle 485ff
ribosomes, architecture 481ff
ribosomes, cleft 482
ribosomes, crystalline arrays 482ff
ribosomes, electron microscopy 482
ribosomes, halobacteria 490f
ribosomes, history of discovery 286
ribosomes, mammalian cells 505
ribosomes, tRNA binding 559ff
ribosomes, tunnel 482
ribozymes 911
ribulose 5-phosphate 149
Ricci, C. 152
Rich, A. 286
Richter, D. 305, 360
Rilke, R. M. 280
Ringer, S. 737
RNA first dogma 911
RNA polymerase 270
RNA polymerase, Ehrlich ascites 477
RNA polymerase, sigma factors 345ff
RNA polymerase, T 7 infection 432
RNA synthesis 288f
RNA, as catalyst 911
RNA, historical 458ff
RNA, modified nucleotides 458f
RNA, ribosomal 460
RNA, selfpairing activity 901
RNase inhibitor, human 383f
Robbins, P. W. 27, 106, 827
Robinson, R. 19
Rona, P. 12, 45, 119
Rose, W. C. 251
Roskoski, R., Jr. 34, 83f, 96, 360, 791
Rothschild, P. 122
Runnstrom, J. 19
Rutter, 153
Ryan, G. 360
Ryazanov, A. G. 529
S-acetyl-CoA 213
S-adenosylmethionine 448
S-adenosylmethionine synthetase 448
Saito, Y. 361
Salas, M. 360, 793
salt toxicity 721
Sanger, F. 535
sarcoplasmic reticulum 739f, 747ff
sarcoplasmic reticulum, calcium uptake 741f
Scherzer, E. 379
Schiff-base mechanisms 152f
Schimmel, P. 535
Schlessinger, D. 496

Schmale, H. 305
Schmidt, G. 19, 45, 76
Schmitt, F. O. 111, 125
Schneider, R. 379
Schneider, W. C. 287
Schoenheimer, R. 45, 251, 423
Schramm, G. 133, 657
Schroeder, 122
Schultz, W. 122
Schweiger, M. 360, 379
Schwinger, 7
scientific understanding 272
Sebb, Friedel 3, 10f, 13f, 20
seduhtulose 7-phosphate 150
Seegmiller, J. E. 148f
Seger, R. 781
self-ordering, primordial 899
selforganization 923ff
selforganization, birth of 923f
Seliger, H. H. 210
sequential translation 498ff
serine metabolism 331f
serine phosphate 31, 431
serine-arginine polypeptide 296
serine-threonine protein kinase 433
serotonin 289, 796
Shaltiel, S. 781
shared control 102
Shearman, M. S. 765
Shine-Dalgarno region 541ff
Shine-Dalgarno sequence 497
Shoeman, R. L. 447
Siekevitz, P. 285ff
sigma factors 340ff
signal peptide 306
signal properties, germin 467
signal transducing complexes 267
signalling routes 437
signals, extracellular 765
signals, initiation of translation 540
Simon, E. 664
Simpson, M. W. 85, 251
Saito, N. 765
Siu, P. M. L. 917
Sjöstrand, F. S. 287
Slater, E. C. 625
Slayter, H. S. 286
Smyrniotis, P. Z. 148f
Snell, E. 176
sodium ions, electrochemical gradient 202
sodium ions, transport 200
soluble relaxing factor 742f
species specificity 747, 750ff
Spector, L. 26f, 50, 58, 360, 841
spectrin 266, 771
speract 268
spermine, binding to nucleic acids 555ff
spermine, role in protein synthesis 555ff
Spiegelman, S. 493
spin labels 631ff
Spirin, A.S. 511
splicing, alternative 765ff
splicing, mechanism 271
splicing, alternative 765ff
SpoO mutants 340ff, 365
sporulation 339ff
sporulation associated events 350
sporulation mutants 340ff
sporulation process 340
Spyrides, G.J. 286, 841
squiggle 15, 39, 105, 135ff, 158, 231, 261ff, 565, 581, 603, 625
Srere, P.A. 26, 98, 135, 664
Stadtman, E. 25f, 82
Steiner, W. 167
steady state metabolic system 97f
Steglich, W. 657
Stein, B. 6
Stein, P. 6
Stephenson, M. 177
Stern, C. 111
Stern, J. 82
steroid hormones 407
sterol synergism 853ff
stimulating protein, phenylalanine hydroxylase 807
stimulation, by hormones 781
stringent control 603f
stroblurins 657ff
Strominger, J.L. 900
structure and function, unification 274ff, 279ff
structure of proteins, and degradation 252
structure-activity relationship 657
structure-function relationships, of catalysts 679
Stumpf, P. 151
Sturtevant, J. 171
substrate cascade phenomenon 298
substrate, channeling 98
succinyl CoA 625
suicide inhibitor 246
Suiko, M. 58f, 477, 817
sulfate activation 27, 818
sulfate transfer 606
sulfatides 835
sulfitation 105ff, 817ff
sulfation, in transformed cells 107
sulphydryl group, amidotransferase 235
sulfotransferase 106ff
Sullivan, J.W. 407
summation property 101
suppressor gene 303
surface layer, erythrocyte 266
Sutherland, E. 41
Svedberg, T. 133
Sy, J. 813
synapsin 268
synaptic vesicles 289f
synthesis of proteins, coordination with degradation 253
Szent-Györgyi, A. 44, 69, 158, 164, 262, 565, 737, 903
Szilard, L. 7
Szymona, M. 596
Szymona, O. 596
Takeda, C. 3
Tamai, Y. 813
Tanaka, C. 765
Tao, M. 771, 793
Tao, P. 360
Taubner, H. 175
Taylor, J.H. 288
TCA cycle 181ff
teichoic acid, biosynthesis 226ff
teichoic acids 223ff
techuronic acids 223
tetrahydrobiopterin 805
tetrahydrofolic acid 331
TGFβ 301
Thach, R. 495
Thannhauser, S. 49
theory of control 161
thermal polymerization, of aspartic acid 897
thiadiazolo-pyrimidines 477ff
thiamin pyrophosphate 150ff
thioester bond cleavage 82f
thiol 20
thiol activated NCS 389
thiol group, modification 242f
thiolester 240, 359, 625
thiols, in peptide synthesis 213ff
thiotemplate mechanism 178, 339, 359
Thomas traction case 85ff
Thurnher, M. 379
thyroid hormones, mechanisms 645ff
thyroid hormones, signals 653
thyrotropin releasing hormone 305, 791
Tissieres, A. 286
tissue culture 16
tobacco mosaic virus 133, 167
tonoplast 727ff
topoisoisomerase 270, 383
topological complexes 163
Toyoda, Y. 813
transacetylase 82f
transcription factor AP-1 434
transcription factors 431ff
transcription factors, modulation 432
transcription, discovery of 288f
transfer RNA, cloverleaf structure 459
transient kinetics 750ff
translation fidelity, role of spermine 561
translation, energetics and dynamics 505 ff
translation, initiation 539 ff
translation, machinery 505 ff
translation, ribosomal cycle 513 ff
translation, sequential 498
translational coupling 498 ff
translational repression 498 ff
transmembrane regions 319
transpeptidation 172, 177, 515 ff
transport mechanism, mesophyll cell 731
transport systems, K^+ 700 ff
transport, of Na^+ ions 200
transport, tonoplast as catalyst and barrier 727 ff
transporter proteins 650 ff
Traut, R. 841
TRH 305, 791
tricarboxylic acid cycle 181 ff, 605
tRNA 459
tRNA, binding of spermine 556 ff
tRNA, binding of ribosomes 560 f
tropomyosin 742
tropomyosin, native 743
troponin 742 f
trypsin 166, 173 f
tryptophan hydroxylase 796
tuftsin 323
tuftsin deficiency 323
tuftsin, receptors 326
Turing, A. M. 930
Tuttle, Constance 7, 24
Tyr-phosphate bond 107
tyrocidine 22, 33 f, 49, 178, 305, 339, 349, 356
tyrocidine-synthetases 362
tyrosine hydroxylase 796
tyrosine hydroxylase, phosphorylation 797
tyrosine phosphate 32
tyrosine phosphorylation 431
tyrosine sulfation 106, 817 ff
tyrosine-glutamate polypeptide 296
tyrosine-O-sulfate 817
atyrosyl-sulfated proteins 822
tryptophan-sulfotransferase 106, 818
tryrothin 355

ubiquinone 657, 678
ubiquitin 252
ultrasensitivity 103
uncoupler 699, 707
unification, of structure and function 274
urinary metabolite 143
urine, history of metabolites 141 ff
uronic acid 829
urophilia 141
Utter, M. F. 70, 339, 581, 585
v-src protein kinase 296, 302
Van Slyke, D. 167
vasopressin 305 ff
vasopressin, precursor 306 ff
Venkataraman, R. 152
Vennesland, Birgit 76
Vestling, C. 793
Vibrio fischeri 684 ff
Vincent, W. S. 288
vinculin 296
vitamins 191 ff
vitellinic acid 18
voltage-clamped oocytes 315 f
von Döhren, H. 355, 361
von Ehrenstein, G. 43
von Euler, H. 609
von Jagow, G. 657
von Laue, M. 111
von Stedingk, L.-V. 917 ff
von Voit, K. 251
Vosberg, H.-P. 379

Wade, N. 85 f
Wagner, E. F. 379
Wald, G. 165
Walsh, C. 26, 360
Warburg, E. 6
Warburg, O. 4, 17, 20, 43, 52, 59, 69, 109, 111, 112 ff, 129, 147, 159, 168, 565, 609, 792
Watson, J. D. 133, 286, 493
Weaver, W. 28
Weber, A. 742, 747
Weber, H. H. 45
Weidel, W. 133
Weil, K. 3
Weiss, S. 29
Weissbach, H. 447
Werkman 23
wheat embryo 457
wheat embryos, wheat germ, relation to 457
wheat germ system 460 ff
Whitehead, A. N. 279
Whittaker, V. P. 289
Wieland, T. 213 ff
Williams, R. J. P. 24, 627
Willstätter, R. 22
Willstätter, R. 111
Winnick, T. 357
Winzler, R. 22
Witt, H. T. 713
Wittmann, H. G. 481, 535
Wittmann-Liebold, Brigitte 535
Wolfenden, D. 841
Wolinella succinogenes 684, 687
Wood, H. G. 581, 583, 917
Woods, P. S. 288
Wyatt, G. R. 458
x-ray crystallography, ribosomes 488 ff
xanthine 912 ff
xanthine dehydrogenase 676
xanthine oxidase 676

yeast 813
Yonath, A. 481

Zachau, H. G. 29, 63
Zamecnik, P. 28, 39, 48 f, 177, 285, 535

Zeitschrift für die gesamte Biochemie 43
Zelko, K. 841
Zervas, L. 166 f
Zhang, Z.-G. 857
Zharikova, G. G. 362
Zhou, T.-C. 857
Zigmond, R. 791
Zimmer, Trine-Lise 357, 359
Zubay, G. 286
Zubay, G. 911