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Abstract
Knowledge Graphs (KGs) represent real-world information or facts in the form of

entities and relationships between them. In KGs, facts are represented in the form
of "SPO" triples (subject, predicate, object). Popular examples of KGs are Wikidata,
YAGO, DBpedia, NELL, Freebase and Google Knowledge Graph. Many of the KGs that
have been created are done separately for a particular purpose. However, applications
that use KGs have a more diverse knowledge requirement that a single KG cannot satisfy.
To tackle this problem, it is essential to integrate multiple KGs into a unified KG, which
can satisfy the diverse knowledge requirements of applications. Integration of these
heterogeneous KGs can be done via entity alignment, i.e. identification of entities in
different KGs that represent the same real-world entity. Manually doing so might ensure
high quality, but soon becomes infeasible when confronted with large graphs.

Hence, this study "evaluate different Active Learning Heuristics for the task of entity
alignment in KGs" so that the best performing AL heuristics can be identified. To achieve
this, instances(sample points) will be picked according to an active learning heuristic and
the relationship between performance and the number of instances is studied. AL heuris-
tics implemented in the study are centrality-based and model-based. As per the findings,
best performing AL heuristics are based on the centrality where betweenness centrality
performs the best.

Keywords: Active Learning, Entity Alignment, Knowledge Graphs
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Chapter 1

Introduction

Recently, the use of knowledge graphs(KGs) has become wider and diverse. For example, KGs are
used extensively in areas such as search engines, artificial intelligence-related applications, Natural
language processing, etc. The main aim of KGs is to organize human knowledge in a machine-
readable format so that it can be accessed and used easily. Therefore, KGs can be used as an
important infrastructure facilities for many of these above applications. KGs are dynamic in the
sense that they can be easily extended to incorporate new data, which will enable KGs to re-purpose
and provide new insights and inferences. These qualities distinguish KGs from regular databases
which get populated and ultimately become dormant. Therefore, the use of KGs in the above
applications makes them more efficient and effective. In this respect, many research fields related
to KGs have been established and a considerable number of research papers are published in recent
years.

1.1 Motivation
As discussed earlier, KGs have become widely used to organize information. Popular examples of
KGs are Wikidata1, DBpedia2, NELL [1], Freebase [2], YAGO [3] and Google Knowledge Graph3.
These KGs conatin millions of facts. We can define a knowledge graph as a semantically structured
collection of facts. In KGs, facts are represented in the form of "SPO" triples. SPO triple can be
defined as below;

(Subject, Predicate/Relationship,Object)

So the existence of a SPO triple indicates a particular fact in the KG.
To construct a KG, we combine all SPO triples to form a multi-graph where nodes represent

entities(all subjects and objects) and directed edges represent relations. The direction of the edge is
subject to an object. Also, we give a type or label to the edge to represent different relation types.
This formation of data can be identified as relational data. Often, these existing KGs miss many
facts and some of the edges they contain are incorrect. Hence statistical Relational learning (SRL) is
applied for these KG relational data to get relational models. SRL is the creation of statistical models
for relational data. These SRL models of KGs will enable tasks such as KG completion(identifying
missing edges), entity resolution and link-based clustering [4].

1www.wikidata.org
2https://wiki.dbpedia.org
3https://developers.google.com/knowledge-graph
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Many of the KGs that have been created are done separately for a particular purpose, therefore
most KG models focus on modeling single KG. Moreover, most of these KGs are heterogeneous,
such as they are multilingual. However, the application that uses KGs has a more diverse knowledge
requirement that a single KG cannot satisfy. To tackle this problem, it is essential to integrate
multiple KGs into a unified KG, which can satisfy the diverse knowledge requirements of applications.
The integration of these heterogeneous KGs can be done via entity alignment method. That is the
identification of entities in different KGs that denote the same real-world entity. In recent times,
there is an uptick on the research published in this regard. For example, entity alignment techniques
such as JE [5], MTransE [6], JAPE [7] and GCNAlign [8] have been published. These methods mostly
are based on the embedding of entities and relations of two KGs into a common embedding space.
These methods will be discussed in detail in the Chapters 3. However, the main drawback of these
methods is that these methods rely heavily on existing entity alignment as training data. In practical
real-world KGs, the accessible prior alignment between two KGs is small compared to the size of
the KGs. This limited training data will prevent learning accurate embedding from these models.
To tackle this problem of limited pre-alignment data, we can manually align entities of two KGs
and use them as training data. But manually aligning would be very complicated and expensive. In
this regard, we can use Active Learning (AL), which would enable us to obtain training data that
would maximize the performance of the above methods with limited training data. In this context,
the motivation of the study is to explore the application of active learning techniques to the task of
entity alignment.

1.2 Specification of Contribution
The main objective of the study is to "evaluate different Active Learning Heuristics for the task of
entity alignment in KGs" so that the best performing AL heuristics can be identified. To achieve
this, instances(sample points) will be picked according to an active learning heuristic and analyze the
relationship between performance with the number of instances. As per the secondary objectives,
the following will be studied with respect to the use of AL for entity alignment task:

• Compare different active learning heuristics under different settings (e.g - different data-sets,
different performance measures).

• Compare the performance of heuristics and Identify the best performing AL heuristic for
different circumstances.

• Identify the factors that the performance of heuristic depends on.

1.3 Significance of the Study
The use of Active learning in machine learning or other related fields are reasonably limited. In a
survey conducted among researchers, who do annotation for natural language processing [9], only
20% of the respondents mentioned they had ever decided to use active learning. This shows the
skepticism among researchers about the practical usefulness of AL. When consider the entity align-
ment task, AL is not used at all (per my knowledge) for it. As mentioned above, AL can be a major
solution for the main problem most KG alignment models currently have, lack of prior alignment
data for training. This setting is perfect for AL as it is best suited when there is limited labeled data
and abundant unlabelled data. Therefore this study will focus on studying the use of AL techniques
for the task of entity alignment. The findings of the study will help understand whether AL can be
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successfully used for KG alignment. Also, the study will be useful for further studies related to KG
alignment to use as a basis.

1.4 Outline
The basic overviews of the chapters that are included in the thesis can be outlined as follows. Chapter
1 gives a brief introduction to the study area and highlights the significance and objectives of the
study. Chapter 2 consists of details about theories and definitions related to the thesis. It gives a
basic overview of the theories and definitions used in the study, which will help better understand the
methods and techniques used in the study. Chapter 3 focuses on the published literature regarding
the study area. This mainly includes studies that focused on "entity alignment of knowledge graphs"
and "active learning". Chapter 4 gives an overview of the settings such as setup for the study and
also gives how the experiments were implemented to achieve the objectives. Chapter 5 analyze
the data gathered from experiments and give findings from the analysis. In Chapter 6, a general
discussion about the experiments, analysis, results will be given. Further, Chapter six will explore
shortcomings and suggest future improvements to the study. Finally, it will give conclusions from
the study.

3



Chapter 2

Theory and Definitions

This chapter provides information about the most important theories and definitions used throughout
the study.

2.1 Knowledge Graphs
Knowledge graphs represent real-world information or facts in the form of entities and relationships
between them. KG typically consists of a set of entities, a set of relations and a set of triples. There
exist some KGs with attribute information. However we do not use attribute information, therefore
we will focus on defining KG without considering it.

Entity of a KG can be considered as a real-world object with a unique id. Relation describes
connections between these entities. Triples consist of entities and relations which represent real-world
fact. These triples are referred as relational triples and we can represent relational triples in the form
(entity1, relation, entity2). For example, in YAGO Albert_Einstein and ETH_Zurich are entities
and graduatedFrom is a relation. Then (Albert_Einstein, graduatedFrom,ETH_Zurich), is
a relational triple. Now let denote the sets of entities and relations E,R respectively. Also let
TR ⊂ E×R×E be a set of relational triples. Now we can represent a KG as G = (E,R, TR), which
we will use throughout the report.

2.2 Entity Alignment
Entity Alignment refers to the matching of entities in different KGs with each other, which cor-
respond to similar objects in the real world. There are two commonly used approaches for entity
alignment; string-similarity based entity alignment and embedding based entity alignment. String-
based aligned models use string similarity of entities as the main tool for alignment. For examples,
alignment models LIMES [10], RDF-AI [11] and SILK [12] use the this approach. These methods
use the string value of entity labels to do a comparison between entities. For example, LIMES first
calculates the approximate similarity between entities using string labels and the triangle inequality.
Then, the actual similarity of entity pairs with high approximate similarity is calculated and pairs
with the highest actual similarity are returned. When KG alignment is cross-lingual these approach
can become a little more cumbersome. In this situation, a method like multi-lingual BERT [13] to
compare strings across different languages will be needed.
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In recent time, KG embedding models has been successfully used to model KGs. This has lead
to the introduction of embedding-based models for entity alignment task. Most of these embedding
based alignment models are built on top of a KG embedding model such as TransE [14]. These models
are defined assuming alignment between two KGs, but can be extended to aligning of multiple KGs.
Further, models primarily focus on the structures of the KGs when aligning. We will discuss the KG
embedding and several embedding based KG alignments models in Chapter 3 including GCNAlign
[8], the model used in the study.

2.3 Active Learning
Active learning(AL) is a sub-field of artificial intelligence and machine learning, where the hall-
mark of an active learning system is that it eagerly develops and tests new hypotheses as part of a
continuing, interactive learning process [9]. Simply put, active learning will rank/choose instances
according to their importance. The importance can be defined as providing the most information to
the machine learning model or algorithm. For example, consider a binary classification task where
we learn a classifier (e.g. half-space) by training on some training data. The instances that would
provide most information here would be the instances that are situated near the Bayes optimal
classifier. Therefore, active learner develops a “line of inquiry” same way a scientist design a series of
experiments. Hence active learning is sometimes called “query learning” in the computational learn-
ing theory literature and is closely related to work in “optimal experimental design” or “sequential
design” in statistics.

An active learning setting is based on situations where we want to train a model with some
training data, but the training data contain no labels for the training instances. In statistical
modeling, this corresponds to no values for the dependent variable (mostly notated by Y). Therefore
the AL framework consists primarily of two components. They are;

• Query System which is used to query the instances from the training data which contain no
label.

• Oracle which will label the instances that are picked by the query system.

Among the above two components, most work on AL is focused on query system, where multiple
query strategies have been studied and researched with respect to various aspects of machine learning
techniques.

2.3.1 Use of Active Learning
As mentioned above, query selection algorithms are the most focused area in AL. However, before
diving into that section, it is important to identify scenarios in which AL is not appropriate.

Using AL in situations where instance labels come at little or no cost will not be appropriate if
AL implementation would create extra engineering overhead and not very cheap when labels can be
easily obtained with little to no cost. Another situation AL is inappropriate would be when we can
train a model accurately with a small number of randomly obtained label instances. The use of AL
framework in this situation might be more expensive than just collect the small number of labeled
instances that are required.

Therefore, AL is most appropriate when numerous (unlabeled) data instances that can be easily
collected or synthesized is available, and we expect our model needs a lot of labeled instances (or few
appropriately labeled instances) as training data to be properly trained. Further, it is also assumed
that the oracle gives the correct labels for the instance queries, and the hypothesis class (e.g. naive
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Bayes, decision trees, neural networks, etc.) that is going to be used for the problem is pre-decided
(for AL strategies that are model-based).

2.3.2 Settings for Active Learning
Given that active learning is appropriate, there are some common settings in which the learner will
query the labels of instances. The three main settings that appear in the literature are:

• Query Synthesis: In this setting, the learner generates an instance (from some underlying
natural distribution) within input space and query the label of that instance.

• Stream-based Selective Sampling: In this setting, it is assumed that obtaining an unla-
beled instance is free (or inexpensive). Then each unlabelled instance is drawn one at a time,
and the learner determines whether to query the label of the instance or reject it. There are
several ways to decide whether to query or discard an instance. One approach is to use the
informativeness of the instance where instances with higher informativeness are more likely to
be queried. Another approach is to compute a region of the instance space that is ambiguous
(region of uncertainty) to the learner, and only query instances that fall within it. These
approaches will be discussed in detail under query strategies.

• Pool-based Sampling:This setting assumes that there is a large pool of unlabeled data (U)
available with a small set of labeled data (L). Instances are then drawn from the pool which is
usually assumed to be closed (not-changing), although this is not strictly necessary. Queries are
chosen according to a utility measure (informative measure) which is applied to all instances
in the pool (if U is very large, a sub-sample of the pool). Typically queries with the highest
informativeness are selected.

When consider the setting Query Synthesis, sometimes it can be problematic. This is because
data-generating distribution is not taken into account (and may not even be known) when generating
an instance to query. Therefore active learner runs the risk of querying arbitrary instances devoid of
meaning. This limitation is avoided in stream-based and pool-based scenarios. The main difference
between stream-based and pool-based active learning is that stream-based AL sequentially draws
one instance at a time and make query decision of each instance individually, whereas in pool-based
active learning all unlabelled data is evaluated and ranked and then the best queries are selected.

When consider the applicability among these settings, the most applicable setting is Pool-based
Sampling. For many real-world learning problems, a large collection of unlabelled data can be
gathered at once which is the setting that pool-based AL is based on. However, there are some
settings where the stream-based approach is more appropriate. For example, when the data is large
and cannot load to memory and need to be scanned sequentially from disk. When consider the
setting of the study, like most real-world situation our AL framework is also based on pool-based
scenario.

2.3.3 Query Strategies
The main difference between active and passive learning is, in active learning, learners actively query
instance to learn from pool-of learning data whereas, in passive learning, the learner is provided with
a set of data to learn. As mentioned earlier, the main area in AL is the querying of the instances. To
query the instances, we need an informativeness measure of the unlabelled instances. All the query
strategies focus on this informativeness measure. Below we will discuss some main Query strategies
in AL literature. There does not exist an optimal query strategy, rather the best strategy depends
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on the specific circumstances of the AL framework. Main areas of query strategies in AL literature
are;

1. Uncertainty Sampling

2. Reducing the hypothesis space

3. Minimizing expected error and variance

4. Exploiting structure in the data

2.3.3.1 Uncertainty Sampling

The idea here is that the learner will query the instance that it is least confidence about or avoid
querying the instances that it is already confident. In other words, query the instances that the
learner is most uncertain about the decision of the label that should be given. So in uncertainty
sampling, we measure this decision uncertainty of each instance and select the instances with the
highest uncertainty.

To put this idea in a probabilistic perspective, we need a probabilistic classifier that will output
a posterior probability distribution Pθ(Y |x) over the label variable Y given the input x and learned
model parameters θ. Under this interpretation, what we want is to query the instance for which
Pθ(ŷ|x) is closest to a uniform distribution (here ŷ refers to the classifier’s most likely prediction for
x). For example, in the case of binary classification, query the instance for which Pθ(ŷ|x) is close to
0.5. However, when the model has posterior distributions over three or more labels we need a more
general measure of uncertainty or information content. Below given are the three main uncertainty
measures. We will denote the best instance that the utility measure A would select for querying as
x∗A.

• Least Confident: Query the instance for which the learner has the least confidence in the
predicted output. This can be defined as below;

x∗LC = argmin
x

Pθ(ŷ|x) (2.1)

= argmax
x

1− Pθ(ŷ|x)

where ŷ = argmaxy Pθ(y|x), the prediction with the highest posterior probability under the
model θ.

• Margin: Learner select the instance that has the smallest difference between the first and
second most probable labels, which is defined as below;

x∗M = argmin
x

[Pθ(ŷ1|x)− Pθ(ŷ2|x)] (2.2)

= argmax
x

[Pθ(ŷ2|x)− Pθ(ŷ1|x)]

where ŷ1 and ŷ2 are the first and second most likely predictions under the model, respectively.

• Entropy: The entropy(denoted by H) formula is applied to each instance. Instance which
has the highest entropy is then queried. Entropy is defined as below;

x∗H = argmax
x

Hθ(Y |x) (2.3)

= argmax
x

−
∑
y

Pθ(y|x) logPθ(y|x)

7



where y ranges over all possible labeling of x.

When consider the least confident measure, it only considers information about the best prediction.
Hence it does not use the rest of the information of the posterior distribution. This shortcoming is
addressed in Margin sampling by incorporating the second-best labeling in its assessment. However,
in multi-label models when the number of labels is large, the margin approach still ignores much
of the output distribution. So to utilize all the possible label probabilities, we can use entropy
sampling. Therefore entropy is the most commonly used utility measure in uncertainty sampling.
In our study, we will also use the entropy measure in our uncertainty sampling implementation.

2.3.3.2 Reducing the Hypothesis Space/Version Space

In machine learning, a “hypothesis” is identified as a particular computational model that learns
its parameters through training data and make predictions on new data. Hypothesis space which
is denoted by H is the set of all hypotheses under consideration. For example, if we consider a
perceptron, then all possible weights for parameters in a perceptron could be considered as H. Now
let’s consider version space, which is denoted by V ⊆ H. Version space [15] is defined as a subset
of hypotheses that are consistent with the training data. That is, hypotheses in version space make
the correct decision for all labeled training instances (assume we already have some labeled data).
If we assume that there is a hypothesis that can perfectly explain the data(true hypotheses), then
as we collect more labeled data, the area of the version space |V | should become smaller. That is, a
set of hypotheses in V will approximate the true hypotheses more accurately. This suggests that an
active learning algorithm should try to obtain new training instances which will quickly minimize
|V |. Two active learning algorithms explicitly motivated by reducing the version space are;

• Query By Disagreement(QBD): QBD assumes the stream-based selective sampling sce-
nario (see Section 2.3.2), where data come in a stream and the learner decides whether to
query or discard them in real-time. The approach essentially maintains the working version
space V, and if a new data instance x comes along for which any two legal hypotheses disagree,
then x’s labeling cannot be inferred and its true label should be queried. However, if all the
legal hypotheses do agree, then the label can be inferred and x can be safely ignored.

• Query By Committee(QBC): Any disagreement based approach which uses a "committee"
is referred to as QBC. Here committee is an ensemble of hypotheses, where we can use general
ensemble algorithms such as bagging or boosting to construct a committee. So to implement
this, what is required is a method for obtaining hypotheses in the committee and a heuristic
for measuring disagreement among them. There are several ways for measuring disagreement
in classification tasks, but we will focus on two dominant trends. One is vote entropy, which
is defined as:

x∗V E = argmax
x

−
∑
y

voteC(y, x)

|C|
log

voteC(y, x)

|C|
(2.4)

where y ranges over all possible labelings, voteC(y, x) =
∑
θ∈C 1hθ(x)=y is the number of

“votes” that the label y receives for x among the hypotheses in committee C, and |C| is the
committee size.

Other disagreement measure is based on Kullback-Leibler (KL) divergence [16], which is an
information-theoretic measure of the difference between two probability distributions. In this
case, we want to quantify disagreement as the average divergence of each committee member
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θ’s prediction from that of the consensus C.

x∗KL = argmax
x

1

|C|
∑
θ∈C

KL(Pθ(Y |x) || PC(Y |x)) (2.5)

where KL(Pθ(Y |x) || PC(Y |x)) =
∑
y Pθ(y|x)log

Pθ(y|x)
PC(y|x)

However, we do not have any implementation of this version space reduction in our study. This is
because what we deal in our study is graph data and it would be hard to do a implementation of
AL framework using this query strategy.

2.3.3.3 Minimizing Expected Error and Variance

Here, we want a learner to choose instances that, once it knows the label, and trained with those
instances, the learner will most likely have the minimum error or variance that can be achieved in its
prediction. To compute the expected error, we need two probability distributions: 1) the probability
of the oracle’s label y in answer to query x; and 2) the probability that the learner will make an
error on some other instance x’, once the answer is known for query x. However, neither of these
probabilities are known. But for both these cases, the model’s posterior distribution can be used as
a reasonable approximation. If we have a large unlabeled pool U available, the learner can attempt
to minimize the expected error over it, assuming that it is representative of the test distribution.
For example, consider we want to minimize the expected classification error (or 0/1-loss) over the
unlabeled data U.

x∗ER = argmin
x

EY |θ,x

[ ∑
x′∈U

EY |θ+,x′ [y 6= ŷ]

]
= argmin

x

∑
y

Pθ(y|x)
[ ∑
x′∈U

1− Pθ+(ŷ|x′)
]

(2.6)

where θ+refers to the a new model after it has been re-trained using a new labeled set L ∪ (x, y),
that is, after adding the candidate query x and the hypothetical oracle response y.

Here, the use of 0-1 loss function means that the objective is to minimize the expected total
number of wrong predictions, not giving any credit to near misses. More flexibility can be obtained
by using some other loss function such as log-loss.

According to the paper [17] expected error can be decomposed to noise, bias, and variance.
Learner cannot do anything about the bias or noise, hence only option to reduce the expected
error is to reduce the variance. Therefore, minimizing variance guarantees that model’s future
generalization error will be minimized. Therefore, what we want is to pick the instances that are
expected to most reduce the model’s output variance over the unlabeled instances U :

x∗V R = argmin
x

∑
x′∈U

V arθ+(Y |x′) (2.7)

When we consider this strategy to the our situation, it is would be hard to have an implementation
of this strategy in our AL framework. Hence we ignore this strategy in our study.

2.3.3.4 Exploiting Structure in the Data

1) Density-weighted Heuristics

The basic idea is that informativeness of an instance not only based on information content but also
on the representative of the underlying distribution in some sense (e.g. inhabit dense regions of the
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input space). The generic information density heuristic captures the main ideas of this approach:

x∗ID = argmax
x

φA(x)×
(

1

U

∑
x′∈U

sim(x, x′)

)β
(2.8)

Here, U is the size of the unlabeled pool and φA(.) represents the utility of x according to some
other query strategy A, such as uncertainty sampling,QBC etc. The second term calculate the
representatives of x in terms of the density. Parameter β controls the relative importance of the
density term. Representatives of x is calculated by getting its average similarity to all other instances
in the input distribution, where similarity is calculate using some similarity measure(e.g. cosine
similarity).

2) Cluster-Based Heuristics

Another Exploiting structure method is Cluster-Based AL. Some methods in this regards are; pre-
cluster the data and begin by querying cluster centroids to comprise the initial label data, rather
than starting with a random sample [18], and another is to cluster the most informative instances
after each iteration and query the most representative instances of those clusters [19]. However,
these methods may have some problems which are given below.

• There may be no obvious clustering or a good similarity measure for clustering the data is
unknown.

• Difficulty of identifying a suitable number of clusters.

• Clusters may not correspond to the hidden class labels.

Even-though with these problems cluster-based AL can be used to take advantage of the data
structure when they happen to be informative.
Since in our study, we work with graph data, exploiting the structure of the data would be the
easiest and most cost-efficient way to implement AL frameworks. Hence most of the query strategies
we implement in our study are based on the concept of exploiting the structure in the data.

2.4 Other Theories and Definitions
Below gives some other basic theories and definitions used in the study, which will help understand
the study more clearly.

2.4.1 Loss Function
We use the Pair-wise Margin Loss function. Here, the margin loss for each given pair is calculated
and the mean of it is taken. Here the pair refer to node pair, which consists of a node from each
KG. Margin-based loss function focus on how well the prediction agrees with the sign of the target,
not on the difference between true target and prediction. In our case, pairs and margin are defined
the same as given in GCNAlign loss function.

2.4.2 Similarity Measures
There are multiple similarity measures exist to calculate similarity between two objects. These
measures use the embeddings derived for the objects (our case objects are entities) to calculate the
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similarity. In the study, we use L1-similarity which is based on L1-distance, to calculate the similarity.
Let X and Y be two embeddings with embedding dimension of n, where X = (x1, x2, ..xn) and Y =
(y1, y2, ..yn). Then, L1-distance is defined as follows; L1(X,Y ) = ‖X−Y ‖1 = |x1−y1|+ ...|xn−yn|.
Then the L1-similarity of X and Y , L1Sim(X,Y ) is defined as below;

L1Sim(X,Y ) =
1

1 + L1(X,Y )
(2.9)

Values for L1-similarity measure defined above fall in the boundary [0,1] where values close to 1
indicate higher similarity and values close to 0 indicate lower similarity.

2.4.3 Evaluation Metrics
To evaluate the performance in embedding based KG alignment models, typically used metrics are
Hit@k, Mean Rank (MR) and Mean Reciprocal Rank (MRR). To define these measures, assume we
have two sets of entities from two KGs we want to align. These two sets represent alignment data
where for each entity in a set, there is a corresponding align entity (similar entity) in other set. Now
consider an entity in a one set, calculate similarities between that entity and all other candidate
entities in other set, and rank those according to similarity (higher the similarity lower the rank).
Repeat this to all entities in that set. Now we can compare these ranks with the rank of actual align
entity. From this rank, the above measures can be defined as follows;

• Hits@k: The proportion of the correct entities ranked in the top k. Normally used k values
are 1/10/50/100 (Hits@1, Hits@10, Hits@50, Hits@100).

• Mean Rank: Average rank of the correct entity.

• Mean Reciprocal Rank: Mean of the reciprocal rank. Reciprocal rank is defined as 1
Rank

where rank is the position of the correct entity.

2.4.4 Early Stopping
Early stopping is a regularization technique that is used to stop models from over-fitting on training
data. The approach is that set the model to train for a large number of training epochs. In the
training, after every k epoch (k=1,2,... and can be changed depending on the situation) model is
evaluated on a holdout validation data-set. If the model performance on the validation data starts
to decrease (or does not increase), then the training is stopped and the model at that time is chosen.
Normally, the first decrease in performance is not the best time to stop training. That is because the
model may in a phase of slight performance decrease before getting much better. To avoid this, we
can add a delay trigger in terms of the number of epochs with decreases (or no improvements) after
which training will be stopped. This is known as “patience” argument in Early stopping. Model
performance decrease would refer to things like increase in loss or decrease in accuracy. In our case,
we use "Hits@1" and once its value on the validation set starts decreasing we stop the training.

2.4.5 Centrality Measures
Graph Centrality is a concept used to identify the importance of a node in a graph. Here the
importance of a node can be considered as to how central a node is in the graph. This importance of
a node depends on the angle it is defined. Here, angle refers to characteristics of the nodes such as
connectivity, reachability, etc. There are various methods to measure the centrality of a node, from
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classic methods (e.g. degree centrality, closeness centrality) to recent eigen-vector based methods
(e.g. page rank centrality). Below we will define centrality measures used in the study.

Degree Centrality

The degree centrality for node e is the fraction of nodes that it is connected to. That is, degree
centrality of node e, CD(e);

CD(e) =
degree(e)

N − 1
(2.10)

where degree(e) is the number of other nodes that node e is connected and N is the total number
of nodes in graph.

Closeness Centrality

Closeness centrality, CC(e) of node e is the reciprocal of the average shortest path distance to node
e over all n-1 reachable nodes, which is defined as;

CC(e) =
n− 1∑
v 6=e d(v, e)

(2.11)

where d(v, e) is the shortest-path distance between v and e, and n is the number of nodes that can
reach node e.

Betweenness Centrality

Betweenness centrality of node e is the sum of the fraction of all-pairs shortest paths that pass
through node e. Let CB(e) denote the betweenness centrality, then it can be defined as;

CB(e) =
∑
s,t∈E

σ(s, t|e)
σ(s, t)

(2.12)

where E is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths, and σ(s, t|e) is the number
of those paths passing through some node e other than s, t. If s = t, σ(s, t) = 1, and if e ∈ (s, t),
σ(s, t|v) = 0.

Harmonic Centrality

Harmonic centrality of a node e is the sum of the reciprocal of the shortest path distances from all
other nodes to node e. This is defined as;

CH(e) =
∑
v 6=e

1

d(v, e)
(2.13)

where d(v, e) is the shortest-path distance between nodes v and e.
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Page Rank Centrality

Page Rank ranks the nodes in a graph based on the structure of the incoming links. To calculate
page rank, two components are required; Transition matrix, and initial importance vector. Let
there be N nodes in the graph. Then dimensions of transition matrix and initial importance vector
is N × N and N × 1. Let node e has de out links, then element Mve = 1

de
if e → v else Mve = 0.

Page rank is defined as the solution of R =MR where R is page rank importance vector. To derive
R, we solve the equation using power iteration by using the initial importance vector r. That is
R = Mkr where we increase value of k = 1, 2, 3, ... until solution to R converge. Hence, the final
values in R are the Page Rank values of the nodes in the graph.

For all these centrality measures considered, higher values indicate higher centrality and hence
the nodes with higher centrality will have a higher importance in the graph.
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Chapter 3

Related Work

This chapter provides a brief description and comparison of studies that have been done regarding
Knowledge Graph Alignment. Also, we will discuss studies that have used active learning techniques
with respect to Graphs. Proper study of published literature on the study area will help identify
areas that study should focus on, and provide a road map on how to conduct the study.

3.1 KG Embedding
In recent years, many works are done in the area of KG embedding. KG embedding models give
embeddings of entities and relations of KG. Here, embeddings are either a function from the enti-
ties/relation to a lower-dimensional vector space or it is the result, i.e. a vector. These embedding
then can be used to relationship prediction(KG completion), information extraction and other tasks.
The most prominent KG embedding model is the TransE [14].

Given a relationship triple (h, r, t), TransE suggest that embedding of the tail entity t should be
close to the embedding of the head entity h plus the embedding of the relationship r (predicate),
h + r ≈ t. Let S be the training set of triples (h, r, t) composed of two entities h, t ∈ E (the set of
entities in KG) and a relationship r ∈ R (the set of relationships in KG). When consider embeddings
of these, we use boldface characters (used throughout the Chapter).

The model learn the embeddings by minimizing the margin-based objective function L;

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

(h,r,t)

[γ + d(h+ r, t)− d(h′ + r, t′)]+ (3.1)

where [x]+ denotes positive part of x, γ > 0 is a margin hyper-parameter, d(h + r, t) energy of
triplet for some dissimilarity measure d (normally L1 or L2 norm), and S′(h,r,t) = {(h′, r, t)|h′ ∈
E} ∪ {(h, r, t′)|t′ ∈ E} is the set of corrupted triples. Corrupted triples(negative triples) are created
by replacing the head or tail of a valid triple by an random entity.

Loss function can be trivially minimized by artificially increasing the embedding norms and
shaping the embeddings. To stop this, there is an additional constraint, that the L2-norm of the
embeddings of the entities is 1 (no norm constraint on relation embeddings), which will stop the
trivial minimization of the loss function in the training process.

TransE is a representative KG embedding approach that tries to get similar embeddings for
similar entities. That is to capture the semantic similarity between entities in embedding space. For
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example, if a KG includes two entities such as Germany and France, the embedding of Germany
should be close to the embedding of France. This is also called structure embedding.

TransE model is simple but powerful and gives good results on link prediction and triple classifi-
cation problems. In recent years, several studies improving the TransE model have been published;
which include TransH [20], TransR [21] and TransD [22]. These approaches introduce a new repre-
sentation of relational translation. There are many other KG embedding approaches, which is given
in the survey paper [23] with comparisons among each method.

3.2 Embedding-based KG Alignment
In the study we use GCNAlign which is an embedding based KG alignment model. There are other
embeddings based KG Alignment methods also. We will discuss and compare these models below.

3.2.1 JE
JE [5] , jointly learns the embeddings of multiple KGs in a uniform vector space to align entities in
KGs. For this, JE uses a set of seed entity alignments. To learn the embeddings, JE minimizes a
margin-based loss function, which is given below;

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

(h,r,t)

[γ + d(h+ r, t)− d(h′ + r, t′)]+ +

λ1
∑

y∈(h,h′,r,t,t′)

|‖y‖2 − 1|+ λ2
∑

(ei,e′i)∈A

‖ei − e′i‖2
(3.2)

Here, first term is exactly the same as TransE loss fuction, which was defined above. In other
two terms, λ1 and λ2 are ratio hyper-parameters, and A is the selected seed alignments whose
entities are represented by ei in KG1 and e′i in KG2. Second term (the λ1 part) is to stop the
trivial minimization of loss function (the λ1 part) in the training process. Third term is the entitity
alignment loss term (the λ2 part). Addition in JE compared to TransE is the entity alignment loss
term which is used to learn the alignment information between KGs. Therefore, the core of the JE
is to align two KGs using embeddings in a uniform space that jointly learned via the overlapping
parts between the two KGs.

3.2.2 MTransE
MTransE [6], consists of two components that learn on the two facets of KG; the knowledge model
that encodes the entities and relations of each KG, and the alignment model that learns the similar
entities between different KGs from the existing alignment. In the knowledge model part, TransE is
applied for each KGs. So for this part, the loss function is similar to the TransE loss function. Let
G be a set of KGs and GKG is a specific KG in G. T=(h,r,t) denotes a triple where h,t are entities
and r is relations of a KG. Assuming that aliment is between two KGs (KG1 and KG2). Then loss
function for the knowledge model is given below:

SK =
∑

G∈(KG1,KG2)

∑
(h,r,t)∈GKG

‖h+ r − t‖ (3.3)
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The alignment model part constructs the transitions between the vector spaces of KGs. And the
alignment loss function is defined as below;

SA =
∑

(T,T ′)∈δ(KG1,KG2)

Sa(T, T
′) (3.4)

Here δ(KG1,KG2) refers to the alignment set which contains the pairs of triples that have already
been aligned between KG1 and KG2. Further Sa(T, T ′) denotes the alignment score obtained by
iterating through all pairs of aligned triples. The align score between a pair can be calculated in
three ways; distance-based axis calibration, translation vectors, and linear transformations. Each of
them is based on a different assumption, and constitutes different forms of Sa alongside.

Combining the above knowledge and alignment models, MTransE minimizes the following loss
function L = SK + αSA, where α is a hyper-parameter that weights SK and SA.

3.2.3 JAPE
JAPE [7], uses both structure embedding and attribute embedding to match entities in different
KGs, where it jointly embeds the structures of two KGs into a unified vector space and further
refines it by leveraging attribute correlations in the KGs. JAPE employs two models, structure em-
bedding (SE) and attribute embedding (AE), to learn embeddings based on two facets of knowledge
(relationship triples and attribute triples) in two KGs, respectively.

SE models the geometric structures of two KGs using existing alignments given beforehand as
a bridge to overlap their structures. For this TransE model is implemented, which learns vector
representations of entities in the overlay graph of two KGs. Let tr = (h, r, t) be a triple and the
plausibility of tr is measured by the score function f(tr) = ‖h+ r− t‖22. Then the SE minimize the
following loss function;

LSE =
∑
tr∈T

∑
tr′∈T ′tr

(f(tr)− αf(tr′)) (3.5)

Where tr′ is the negative triples (defined earlier), α is a ratio hyper-parameter and T and T ′tr are set
of all positive and negative triples respectively. It is important to make sure that each pair in the
seed alignment share the same embedding during training, to bridge two KGs. Note that Eq 3.5 is
different from Eq 3.1. Eq 3.1 aims at distinguishing positive and negative triples, and expects that
their scores can be separated by a large margin. However, for the entity alignment task, in addition
to the large margin between their scores, it is required to assign lower scores to positive triples and
higher scores to negative triples. This will reduce the drift of embeddings in the unified space and
better capture the common semantics of two KGs. Therefore, Eq 3.5 is used here.

In attribute embedding (AE), attributes are embedded in a way that it captures the correlations
of attributes. Here, attributes are considered to be correlated if they are commonly used together
to describe an entity. So AE minimizes the following objective function:

LAE =
∑

(a,c)∈H

Wa,c logP (c|a) (3.6)

Where H denotes the set of positive (a, c) pairs, i.e., c is actually a correlated attribute of a, and
the term P (c|a) denotes the probability. Wa,c = 1 if a and c have different range types, otherwise
Wa,c = 2 which increases the probability of embeddings be similar. To establish correlations between
attributes of aligned entities, seed entity pairs are used. So, given an aligned entity pair (e(1), e(2)),
then attributes of e(1) is correlated to each attribute of e(2), and vice versa. This is added to H
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when deriving attribute embedding. The above Eq 3.6 can be modify to include negative samples
also, for that term logP (c|a) is replaced with the below term;

logσ(a.c) +
∑

(a,c′)∈H′a

logσ(−a.c′) (3.7)

Where σ(x) = 1
1+e−x ,H

′
a is the set of negative pairs for attribute a generated according to a log-

uniform base distribution, assuming that they are all incorrect, and a and c are attribute embeddings.
Using the attribute embeddings, calculate two matrices of vector representations for entities KG1

and KG2, denoted by E(1)
AE ∈ Rn(1)

e ×d and E(2)
AE ∈ Rn(2)

e ×d respectively. In the matrices, rows are
represented be vector representation of entities, which is calculated as e = [

∑
a∈Ae a]1 where Ae is

the set of attributes of e and [.]1 denotes the normalized vector. Using these, cross-KG similarity
matrix S(1,2) ∈ Rn(1)

e ×n
(2)
e , and inner similarity matrices S(1) ∈ Rn(1)

e ×n
(1)
e , S(2) ∈ Rn(2)

e ×n
(2)
e will be

calculated. These matrices are defined as follows;

S(1,2) = E
(1)
AEE

(2) T
AE , S(1) = E

(1)
AEE

(1) T
AE , S(2) = E

(2)
AEE

(2) T
AE (3.8)

The similarity matrix S holds the cosine similarities among entities and Si,j is the similarity between
the i-th entity in one KG and the j-th entity in the same or the other KG. Note that cosine similarity
of two entities e, e′, is calculated by cos(e, e′) = e.e′

‖e‖.‖e′‖ = e.e′ as entity vectors are normalized
(lenght of of any embedding vector is enforced to 1).

Now, the aim is to cluster similar entities across KGs together so that their embeddings would
be similar. For that following loss function is minimized.

LS = ‖E(1)
SE − S

(1,2)E
(2)
SE‖

2
F + β

(
‖E(1)

SE − S
(1)E

(1)
SE‖

2
F + ‖E(2)

SE − S
(2)E

(2)
SE‖

2
F

)
(3.9)

Where β is a hyper-parameter that balances similarities between KGs and their inner similarities.
ESE ∈ Rne×d denotes the matrix of entity vectors for one KG in SE with each row an entity vector.
In the loss function (Eq 3.9), alignment term is ‖E(1)

SE−S(1,2)E
(2)
SE‖2F , which by minimizing it, similar

entities across KGs will be embedded similarly.
Finally, to preserve both the structure and attribute information of two KGs, jointly minimize

the following objective function;
Ljoint = LSE + δLS (3.10)

where δ is a hyper-parameter weighting LS .

3.2.4 GCNAlign
GCNAlign [8] model is based on the Graph Convolution Networks (GCN). Therefore, before moving
into GCNAlign, let’s look at the theory behind GCNs [24].

GCN is a neural network type that was designed to implement on graph data. GCN takes feature
vectors of nodes and the structure of the graph as input. Then it will learn a function of features
on input graph and output embeddings of nodes. These embeddings of the nodes will capture the
information about the neighborhood of a node (structure information). Also, GCN combines this
structure information with attribute information of a node. In KG alignment, it is assumed that
equivalent entities have similar attributes and similar neighborhoods. So the GCN is idle for KG
alignment as it captures the attributes and similarity of the nodes.
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GCN contains multiple stacked GCN layers. Layer-wise propagation rule of GCN is defined as
below;

H(l+1) = σ
(
D̂−

1
2 ÂD̂−

1
2H(l)W (l)

)
(3.11)

Here H(l) ∈ Rn×d(l) is input to the l-th layer, where n is the number of nodes and d(l) is the number
of features in l-th layer. Further, σ(.) is an activation function chosen as ReLU = max(0, .); A is a
n×n connectivity matrix(more details below) that represent the structural information of the graph;
Â = A + I, and I is the identity matrix; D̂ = is the diagonal node matrix of Â, where diagonal
element is defined as D̂ii =

∑
j Âij ; W(l) ∈ Rd(l)×d(l+1)

is the weight matrix of the l-th layer, d(l+1)

is the dimensionality of new node features.
To include both structures and attribute information in GCN, two feature vector for each entity

is used, denoted as hs and ha for structure and attribute feature vectors respectively. In the input
layer, h(0)s is randomly initialized and updated in training whereas h(0)a is the attribute vectors of
entities and fixed during the training. Then let Hs and Ha be structure and attribute feature matrix,
which consists of feature vectors of entities (each row corresponds to feature vector of an entity).
Now layer-wise propagation is modified as;

[H(l+1)
s ;H(l+1)

a ] = σ
(
D̂−

1
2 ÂD̂−

1
2 [H(l)

s W (l)
s ;H(l)

a W (l)
a ]
)

(3.12)

Where W (l)
s and W (l)

a are weight matrix for structure and attribute features in the l-th layer respec-
tively; [ ; ] denotes concatenation of two matrices.

GCNAlign Implementation

In GCNAlign, GCN is implemented on each KG separately to generate embeddings of entities. The
number of layers used in GCN is two. Initially, input the structure matrices and attribute matrices
for each KG with the connectivity matrix. The dimensionality of structure feature vectors is set
to ds and kept same on all the layers for both GCNs, and structure weight matrices are shared
among two GCNs for two layers, W (1)

s and W
(2)
s . For attribute feature vectors, input attribute

vector dimensionality can be different because two KGs may have a different number of attributes.
So the first layer of each GCN transforms input attribute feature vector to dimensionality da, so
that two GCN models give attribute embedding of the same dimensionality. Final output is entity
embeddings of ds + da dimensionality.

As per Connectivity matrix A, it is computed as follows. Let aij ∈ A, denotes the amount of
information propagates from i-th entity to the j-th entity. To compute this, two measures for each
relation called functionality and inverse functionality is computed.

fun(r) =
#Head_Entities_of_r

#Triples_of_r
(3.13)

ifun(r) =
#Tail_Entities_of_r

#Triples_of_r
(3.14)

where #Triples_of_r is the number of triples of realtion r; #Head_Entities_of_r and
#Tail_Entities_of_r are the no of head entities and tail entities of r respectively. Then aij
is calculated as follows;

aij =
∑

(ei,r,eJ )∈G

ifun(r) +
∑

(ej ,r,ei)∈G

fun(r) (3.15)
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Connectivity matrix will inlude the aij as elements. Use of this method allows to capture the
structure in a KG which is relational multi-graph where entities are connected by relations.

Now the GCN models are trained by minimimzing below margin-based ranking loss functions
with the set of known alignment S as training data.

Ls =
∑

(e,v)∈S

∑
(e′,v′)∈S′

(e,v)

[f(hs(e),hs(v)) + γs − f(hs(e′),hs(v′))]+ (3.16)

La =
∑

(e,v)∈S

∑
(e′,v′)∈S′

(e,v)

[f(ha(e),ha(v)) + γa − f(ha(e′),ha(v′))]+ (3.17)

where [x]+ = max(0, x), S′(e,v) denotes set of negative (corrupt) alignments constructed by
randomly replacing entities of alignment set, and γs, γa > 0 are margin hyper-parameters. Ls and
La are loss functions for structure and attribute embeddings, which are independent and hence
optimized separately.

We will implement GCNAlign model as implemented in the paper [25]. We do not use attribute
features. So the implementation is much simpler and follows the same steps described above without
considering the attribute features. Connectivity matrix is computed with setting fun(r) and ifun(r)
at 0.3 as minimum. Further input node features are normalized to unit euclidean length. Finally,
there are no convolution weights W (1)

s and W (2)
s . This indicates that GCN is just a fixed function

on the learned node embeddings. The final output from GCNAlign model applied to two KGs with
prior alignment set is embedding of entities (we set embedding dimension to 200) of both KGs in a
unified vector space. For aligned entities, it is expected that these embeddings are pretty similar.

3.2.5 Comparison Between KG Alignment Models
When compare among the first three approaches JE, MtransE, and JAPE, they all have a somewhat
similar implementation. They all use a version of TransE to learn embeddings of entities and define
some transformation between the embeddings of aligned entities. As all these above methods use
TransE to embed entities initially, all these approaches also embed relations. Also, JE and JAPE
use negative triples but MTrasE does not, which is reflected in the respective loss functions used.
As per the use of attribute information, JAPE facilitates the use of it, whereas JE and MTransE do
not. Further, all these approaches need some initial alignment data in the form of triples, between
KGs to successfully implement the model to identify alignments.

When compare the first three approaches with the GCNAlign (model implemented in the study),
there are certain differences. GCNAlign uses graph convolution networks (GCNs) for embedding
instead of using TransE. Therefore GCNAlign does not learn embeddings of relations and only
embed the entities. Further, GCNAlign also supports using attribute features in the model similar
to JAPE. As per initial alignment data, GCNAlign only needs a list of align entities of two KGs,
it does not require aligned triples as other models. Therefore, when consider all these comparisons
among different approaches, GCNAlign seems to be the most flexible and simple method. Also,
the accuracy of GCNAlign is high compared to other methods discussed. Hence the decision to use
GCNAlign in our study.

3.3 Active learning for Knowledge Graph Embedding
As discussed earlier, active learning can be a solution to the main problem associated with the above
alignment models, lack of initial alignment data. As per my knowledge, there exists no study that
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directly investigates the use of active learning for entity alignment task. However, there are some
studies that explore the use of Active Learning with respect to KGs.

For example, paper [26] discuss using active learning for graph embedding. Authors implement
multiple active learning query strategies. Query strategies are based on two main categories; graph
structure and learned node embeddings. Under graph structure, centrality measures and under
node embeddings, node classification uncertainty and node density are used to rank the nodes.
In centrality measures AL framework, every nodes’ centrality is calculated using page rank and
the nodes with the highest centrality value are chosen first. In the uncertainty AL framework, the
uncertainty of each node is calculated using entropy and the node with the highest entropy (or highest
uncertainty) is chosen. In the density AL framework, each node density is calculated and nodes
with the highest density are chosen. Furthermore, paper introduces an AL framework combining all
these strategies named "Active Graph Embedding (AGE)". AGE uses all three strategies to rank the
nodes, and the weightings of each strategy depend on the number of queries. AL framework is defined
as follows; high weight for centrality measure and low weights for uncertainty and density when the
number of queries is low. When number of queries is high, density and uncertainty measures get
high weight and centrality measure gets low weight. The reason for this is that uncertainty and
density are calculated using node embeddings, which is updated with each query, whereas centrality
does not use embeddings. These embeddings at initial stages will not be very accurate because of
limited training data, however as AL framework query more instances, more training data, and more
accurate embeddings. This is the main idea of the AGE framework. The implementation of these
AL frameworks was done using GCNs, which closely parallels the GCNAlign. Therefore, these ideas
and concepts in the paper were very influential in the design of AL frameworks used in our study.
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Chapter 4

Settings and Implementation

This chapter gives details of the settings for the experiments conducted and the implementation
of the experiments. This includes a detail description of the implementation of query strategies,
oracle, model and performance evaluation. Further, descriptions about the data-sets used for the
experiments also will be given. Therefore the chapter can be considered as a link that will combine
all the preceding and subsequent chapters.

4.1 Experimental Setup
The framework on how the experiments were conducted, is given in Figure 4.1; In the figure, all the
elements inside the grey box can be considered as the major components in the framework. The first
step of the setup is to obtain the KG Alignment data-set. Once the data-set is obtained, we will
organize the data-set such that we have two KGs and Alignment data. Alignment data is further
divided to train, validation and test data. The next step is the AL framework, which consists of
two components; query system and oracle. Data-set will be provided to both the query system and
oracle. First, the query system will query the nodes according to an AL heuristic. Then, the query
system will send the selected nodes to the oracle to label (label means finding selected node’s all
matching nodes in the other KG). Here we simulate the oracle to identify the label of a node by
feeding the data-set to oracle. Also, the oracle will provide the query system with specific nodes to
consider for querying (referred to as available nodes). This is to avoid querying the nodes that were
already queried. After the oracle label the nodes, align entities will be used to fit the model. Here
we use the validation data to use in early stopping. After the model fit, embeddings will be used
to evaluate performance with test data. Note that, some AL heuristic use embedding for querying
of the nodes. Arrows in the figure which are drawn with dotted lines indicate that the process
represented will not always happen. All these steps will be discussed in much more in-depth in the
implementation section.

4.2 Datasets
Before moving to the implementation, we will discuss the two data-sets used in the study DBP15K
and WK3l-15K.
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Figure 4.1: Implementation framework in the study

4.2.1 DBP15K
DBP15K data-sets were built for JAPE paper [7]. The data-sets were created using DBpedia,
which is a large-scale multi-lingual KG. It includes Inter-Language Links (ILLs) between different
languages. To build the data-sets, 15 thousand ILLs pairs with popular entities (entities with at
least 4 relationship triples) from English to Chinese, English to Japanese and English to French were
extracted. Table 4.1 gives the number of elements in each set of the specific KG.

Table 4.1: Details of the data-set DBP15K
Dataset Entities Relations Attributes Rel. triples Attr. triples

DBP15K Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,317 7,173 237,674 567,755

DBP15K Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

DBP15K French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

On top of this data-set, JAPE authors have also built another 5 data-sets to use for the JAPE
model. We will use one of these subsets in our study. Table 4.2 gives details of the data-sets we use
in DBP15K. Since we don’t use any attribute information in the model, we ignore any information
about it.
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Table 4.2: Details of DBP15K subsets used in the study

Dataset Entities Relations Triples Aligned
test

Aligned
train

Aligned
validation

DBP15K Chinese 19,388 1,701 70,414 10,500 3,600 900English 19,572 1,323 95,142

DBP15K Japanese 19,814 1,299 77,214 10,500 3,600 900English 19,780 1,153 93,484

DBP15K French 19,661 903 105,998 10,500 3,600 900English 19,993 1,208 115,722

As shown in Figure 4.1, we will organize the data-set as two KGs and Alignment data-set. Two
KGs can be referred to as Match KG (or left KG) and Reference KG (or right KG). The alignment
model will try to match the entities of match KG with the reference KG and vice versa. For alignment
data, data-sets consist of 15,000 alignment entity pairs for each language pair, which is divided into
training, testing and validation as shown in Table 4.2. This data-set is available in this website1.

4.2.2 WK3l-15K
WK3l data-set was built for the MTransE paper [6]. It contains English (En), French (Fr), and
German (De) knowledge graphs under DBpedia’s dbo: Person domain. To construct the alignment
data-set, triples are aligned by verifying the ILLs on entities, and multilingual labels of the DB-
pedia ontology on some relations. Using this, two data subsets, WK3l-15K and WK3l-120K are
constructed. Statistics of these data-sets is given below.

Table 4.3: Details of the data-set WK3l
Data-set #En triples #Fr triples #De triples #Aligned triples

WK3l-15K 203,502 170,605 145,616 En-Fr: 16,470
En-De: 37,170

WK3l-120K 1,376,011 767,750 391,108 En-Fr: 124,433
En-De: 69,413

For our study, we use WK3l-15K data-set and it is organize according to our requirements.
Details of the organized data-set is given below;

Table 4.4: Details of WK3l-15K subsets used in the study

Data-set Entities Relations Triples Aligned
test

Aligned
train

Aligned
validation

WK3l-15K English 15,127 1,841 209,041 7,268 2,492 623German 14,603 596 144,244
WK3l-15K English 15,170 2,228 203,356 5,617 1,925 482French 15,393 2,422 169,329

1https://github.com/nju-websoft/JAPE
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4.3 Implementation
Below, the implementation of the components of our framework is discussed. Specifically, We will
give details on the following; how querying of instances is done using AL, how the oracle operates,
how the model is implemented and how the performance is evaluated.

4.3.1 AL Framework Implementation
Once the data is obtained and organized, it is feed to the AL framework (as shown in Figure 4.1).
AL framework consists of two components; 1) query system, 2) oracle. Data is feed to both query
system (not always) and oracle separately. To initialize the oracle, full KG Alignment data-set is
fed into the oracle. Query system will get the nodes to consider for querying from the oracle. Some
AL heuristics (centrality-based heuristics) require the structure of the KGs, in that case, that is
provided by feeding it the two KGs of the data-set. Further, some AL heuristic requires embeddings
of the entities in the implementation. In that situation, it is provided by the fitted model. These
are shown with the dotted arrows in Figure 4.1.

4.3.1.1 Query System

The query system is the main component of the AL framework. First, the query system takes all
candidate nodes to label from the oracle. Query system includes multiple AL heuristics, which will
choose a node to label, where labeling is done by the oracle. This choosing of the node is done
by ranking all the available nodes. This is the pool-based scenario in the AL setting. We have
implemented multiple methods to do this ranking of the nodes. Those methods are discussed below.

1) Centrality-Based Active Learning

This is the most simple implementation of AL heuristic in the study. We will calculate the centrality
of each node using a centrality measure. Then the node with the highest centrality is chosen as the
node to label. We use five different centrality measures; Degree, Betweenness, Page Rank, Closeness
and Harmonic. All these measures are defined in Chapter 2. Calculation of centrality measures was
done using the python package networkx2.

If we consider the query strategies discussed in section 2.3.3, this can be considered as an AL
implementation that uses the structure of the data. .

2) Uncertainty Sampling

Uncertainty Sampling is the most common implementation of AL. As discussed in section 2.3.3, we
need a posterior distribution to calculate the uncertainty of an instance. For this, we will define
a posterior distribution for each candidate nodes (i.e nodes that will be queried by the system) in
both KGs. To derive the posterior distribution of a node, we calculate the similarities between that
node and all other candidate nodes in the other KG given node embeddings. Node embeddings are
derived from the fitted GCNAlign model. Figure 4.1 shows this use of embeddings with the dotted
arrow from GCNAlign to Query System. Assume that the probability that two nodes from different
KGs are aligned is the similarity between them. However, these similarities calculated for a specific
node cannot be considered as its’ posterior distribution yet, because these similarity values are not
normalized (does not add up to one). We will derive two uncertainty sampling implementations
with the way we normalize the similarity values. Once we have the posterior probabilities, we can

2https://networkx.github.io
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calculate an entropy score associated with posterior probability distribution of each node. Then the
higher entropy score, higher priority in choosing in AL framework.

We implement two uncertainty sampling methods by normalizing the similarity values of each
node and using it to calculate the entropy of the node. Entropy equation is given in the equation
2.3.

• For each node, get the maximum of the similarities calculated with nodes from other KG and
use it to calculate the entropy score. To calculate the entropy score we need to normalize the
probabilities associated with the node. Therefore we define the posterior distribution of each
node such as; (maximum similarity, 1-maximum similarity).

• For each node, get the maximum k number of similarities calculated with nodes from other
KG. Use these k similarities to calculate the entropy score. To normalize the similarity values,
we apply softmax function before calculating entropy. Also, we will set k=10.

In uncertainty sampling, we are not looking for the nodes that have the highest probability to have
an alignment in other KG. We want to query the nodes which model is most uncertain about having
an alignment. In theory, these nodes should have the highest information about the alignments
between two KGs. We will investigate whether this holds up for our situation also in the section 5.2.

3) Information Density

Density-based heuristic is built on the idea of exploiting the structure of data. As discussed in
Chapter 2, we want to incorporate this idea into the query the nodes from the dense region in KGs.
As given in equation 2.8, we will use generic information density heuristic implementation. For the
information part (given by φA(x) ) in the equation, we will use a version of uncertainty sampling.
The information density of a node is calculated as follows;

1. For a node in a KG, calculate the similarities with all other nodes in the same KG and get the
average similarity. This is the density part of the equation.

2. For a node in a KG, calculate the average of the similarities with nodes from other KG. Use it
to calculate the entropy score (same as maximum similarity method in uncertainty sampling
implementation). This is the information part of the equation.

3. We will set β = 1 in the equation 2.8. This indicates that equal importance is given to both
information and density parts in querying. Therefore to get the information density of a node,
we will simply multiply information and density scores.

Then, the higher the information density of a node, the higher the priority in querying.

4) Cluster-Based Active Learning

Cluster-based AL can be used to retrieve information of the structure of the data. To implement
this, we use the embeddings derived from the model. So the algorithm to get cluster score of each
node is given below;

1. Get the embeddings of available nodes of two KGs separately.

2. Apply K-means clustering on those two sets of embeddings separately and derive clusters and
cluster centroids.
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3. For each node, calculate the similarity between the node and its’ corresponding cluster centroid.

We take the similarity of the node with it’s cluster centroid as the node cluster score. A higher
cluster score means that the node is more closer to it’s cluster centroid. Then the nodes with high
cluster scores are given priority when querying. To apply K-means we set the number of the cluster
as the square-root of the number of available nodes [27].

5) Maximum Shortest Path Distance

Maximum Shortest Path Distance (MSPD), try to infer information from the nodes that are found
to be aligned. For the implementation we use the multi_source_dijkstra3 algorithm in networkx.
This function will return the shortest paths and lengths between one of the source nodes and all
other reachable nodes. Here, as source nodes, we provide the aligned nodes and get the shortest
path distance for all available nodes with one of these aligned nodes. For example, consider a node,
the function will compute the shortest path distance of this node with all the aligned nodes (source
nodes) and return the smallest of these distance for that node. If there is no shortest path between
the node and all source nodes, it will not be considered for querying. After getting the shortest path
distance for all the available nodes, we will select the nodes that have higher values for the distance
first.

We will discuss more about implementation steps of AL strategies and reasons for taking these
steps in more detail in section 6.2.

4.3.1.2 Oracle Simulation

To simulate the task of the oracle in AL Framework, we implemented an Oracle that does the
following main tasks;

1. Provide the query system with the candidate nodes to select

2. Label the queries that are selected by the query system

3. provides the training data to GCNAlign-model.

When the oracle receives the data-set initially, it will allocate the nodes in the testing and validation
to the forbidden set that cannot be accessed by the query system, and all other nodes will be
available to query system to query. Once the query system sends a node to label, oracle will look
at the training alignment data it has and gives labels to that node. That is whether there are align
nodes in the other KG for the node selected by the query system. So if there is an alignment, then
those align pairs will be put into a set(referred as alignment set) and if there is no alignment, that
node put to another set (referred as exclusive set). Also, in both those situations, these nodes will
be removed from the available set. We do not use exclusive set in our implementation. But we give
future implementation suggestions on a method to use it in section 6.6. Finally, the oracle provides
alignment data (node pairs in alignment set) as training data for the GCN-Align model to fit the
model.

3https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.
algorithms.shortest_paths.weighted.multi_source_dijkstra.html
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4.3.2 GCNAlign Implementation
Once the oracle label some set of nodes and send the alignment set, we can use the alignment set to
fit the model. Oracle labeling of the nodes is done in step sizes, which will be explained in the next
section, Performance Evaluation. Using this alignment set, loss function defined in equation 3.16
will be minimized. Apart from the alignment set, we also need a negative sample set for the loss
function. To get the negative sample, for each aligned pair in alignment set, we randomly replace one
of the nodes with another node from the same KG. To make this simpler for explanation, consider
keeping all the left KG nodes in align set same and replace the right KG nodes with some other
nodes from right KG (for training we use both sides). When replacing, we avoid nodes that are
in exclusive set. For the minimization of the loss function, we will use the optimization algorithm
Adam [28]. Also, we will use the regularization technique of Early stopping. To implement early
stopping we will use the validation data set. For other parts in the GCNAlign model (fitting GCNs
for KGs) which is explained in section 3.2.4, we will use the KG-Alignment data-set, as shown in
Figure 4.1.

4.3.3 Performance Evaluation
One of the main requirements of the study is to study the use of AL heuristic to entity alignment.
For this, we plot the performance with number of AL queries. We will define a set of step sizes
and evaluate the performance after each step size. Step sizes are the total number of AL queries
considered at a specific point. The difference between the step-sizes will be small at the beginning
and become larger as the value of step size increases. For example, step size list will look like this;
(20,40,60,80,100,150,200,...). The final step size would be something closer to the number of all
available nodes for querying. However, we stop the process without going through all step sizes if we
locate all the align data before ruining that many queries. Our implementation will be as follows;
first, ask for 20 AL queries, and label those queries, fit the model with these queries and calculate
the performance and store the results. Next step size is 40, therefore we ask for another 20 queries
(the difference between step size) and repeat the same steps described. Do this for all the step sizes
in the list. For performance evaluation we will use the metrics defined in section 2.4.3.
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Chapter 5

Analysis and Results

This chapter gives details on the analysis of the data and the result derived. As per the objectives, we
first compare the performance of active learning heuristics implemented for five different data-sets.
We will use several methods to do this, one is, we plot the performance of each AL heuristic with
the number of queries. Also, we plot the performance with the percentage of the training data used.
We will use several performance measures to make sure that performance is consistent across all the
measures. Also, the use of multiple data-sets will validate the consistency of the results obtained.

5.1 Performance of AL Heuristics with Number of Queries
To identify the performance of AL heuristics, we analyze the performance of each heuristic with
respect to the number of queries. Four performance measures used are Hits@1, Hits@10, Hits@50
and mean reciprocal rank (MRR). To act as a base to compare performance, we used a random
heuristic. In random heuristic, instead of using AL heuristic to select an instance (node) to label, an
instance will be randomly selected. Performance evaluation will be similar to that of using an AL
heuristic. AL heuristic to be useful, it’s performance should be better than that of random heuristic.

We will first look at the performance of AL heuristic with DBP15K data-sets. As shown in the
figures 5.1, 5.2 and 5.3, we can see that best performing AL heuristics are degree, betweenness and
page rank for all data-sets in DBP15k over all performance measures. All other heuristics considered
do not consistently outperform Random heuristic. When consider among the better-performing
heuristics, degree and betweenness significantly perform better than the page rank. Among degree
and betweenness, betweenness slightly performs better than degree. These results are very consistent
across all measurement types and DBP15K data-sets.

When consider among heuristics that do not out-perform random, all embedding based heuris-
tics(two uncertainty sampling, cluster and information density implementations) perform noticeably
worse at the start than other heuristics. This is expected as, at the beginning loss function is mini-
mized with limited training data, therefore the embeddings derived from the model will be not very
accurate. However, our expectation was that once some training data was used, performance of these
heuristics should increase significantly and performs better or at least on-par with the other heuris-
tics. However, this is not the case as it takes a significant number of queries (around 6000-8000) for
these heuristics to come on-par with the other heuristics.
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(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.1: Performance of AL heuristics for dataset DBP15K- French to English

(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.2: Performance of AL heuristics for dataset DBP15K- Japanese to English
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(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.3: Performance of AL heuristics for dataset DBP15K- Chinese to English

(a) Data-set DBP15K-French to English (b) Data-set DBP15K-Japanese to English

(c) Data-set DBP15K-Chinese to English

Figure 5.4: Number of alignment pairs with number of queries-DBP15K
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Further, note that in degree and betweenness, all the aligned data is found before other heuris-
tics. That is the reason that the total number of queries for these heuristics are less than other
heuristics. This means that these heuristics queries’ are more successful in finding alignment pairs
than other heuristics. The reason for this high success will be discussed in section 5.4. Figure 5.4
plots the number of alignment pairs with the number of queries, which clearly shows that degree
and betweenness have a significantly higher success rate than other heuristics. This is the main
reason for the better performance of degree and betweenness over other heuristics. When consider
the page rank, which has a better performance than random, we can see a slightly higher success
rate initially over other heuristics except for degree and betweenness, which can be attributed to this
better performance of page rank than random. For other AL heuristics, the success rate of finding
aligned pairs is pretty much similar to each other. For most of these heuristics success rate at the
start (until around 2000 queries) is below or pretty similar to that of random. This may be the
reason for them to not perform better than random. To validate the results we derived so far, we
will get the performance of AL heuristics with another data-set, WK3l. We will do the same steps
did above and derive similar plots for it also.

Figures 5.5 and 5.6 depicts the performance evaluation of each AL heuristics derived for two data-
sets of WK3l. Results derived for these data-sets are noticeably different from that of DBP15K.
For the data-set Wk3l-English to German (Figure 5.5), only AL heuristic that seems to have a
significantly better performance than random heuristic is the betweenness. All other heuristics do
not perform better than random consistently over all the measurement types considered. However,
for the data-set Wk3l-English to French (Figure 5.6), results seem a little different. It seems that
betweenness, degree, page rank and maximum shortest path distance heuristics have better perfor-
mance than random for all measurement types. However, betweenness clearly out-performs other
heuristics significantly.

To identify the rate of query success we plot the number of queries with the number of aligned
pairs for the two data-sets of WK3l, which is given in Figure 5.7. The query success rate of be-
tweenness is slightly better than that of random in the data-set WK3l-English to German. However
there is other AL heuristics that have a better query success rate than random for that data-set, but
any heuristic other than betweenness does not significantly outperform random heuristic in terms
of performance. And when consider the query success-rate for data-set WK3l-English to French,
betweenness clearly out-performs other heuristics including random at the beginning to until around
5000 queries. Other heuristics such as degree and page rank also have a significantly higher query
success rate than random at the beginning. This may explain the better performance of page rank
and degree over random for this data-set. When consider the other noticeably better-performing
heuristic for this data-set, which is the maximum shortest path distance, it’s query success rate is
very similar to random. However, the maximum shortest path distance only perform better than ran-
dom only for the data-set WK3l-English to French. Therefore we can conclude that it’s performance
is not consistent.

So when we consider the performance of each AL heuristic over all five data-sets, the only
heuristic that consistently and significantly outperform random heuristic is betweenness. Heuristics
degree and page rank out-perform random in four data-sets out of five. All the other heuristics
do not consistently and significantly outperform random heuristic. We identified that one of the
main factors of the performance of AL heuristic is the query success rate. However, we found that
even-though query success rate is higher than random heuristic, it does not always guarantee better
performance than random heuristic (Figure 5.5). Therefore we can derive that the performance of
AL heuristic will depend on two factors; Rate of successful queries and information contained on
successful queries. Therefore, AL heuristic to have a good performance, it has to choose instances
that are not only more likely to have an alignment but also contain high information content.
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(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.5: Performance of AL heuristics for dataset WK3l- English to German

(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.6: Performance of AL heuristics for dataset WK3l- English to French
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(a) Data-set WK3l- English to German (b) Data-set WK3l- English to French

Figure 5.7: Number of alignment pairs with number of queries- WK3l

5.2 Performance of AL Heuristics with the Training Data Size
In our AL implementation, if a query returns a node that does not have an alignment, we will
ignore it. Hence, it is important that AL heuristics query the instances that are more likely to
have an alignment. However, most existing AL heuristics in literature aims to query the instance
with the most information. In the above section, we also identify that the information contained
in the query instance has a role in the performance of AL heuristic. To study this effect, we will
plot the performance with the percentage of training data used. As similar to number of queries,
AL heuristic should perform better than random heuristic with respect to data percentage used for
considered to be a useful heuristic. Further, if AL heuristic chooses nodes with more information,
then it should have a higher rate of performance increase at the start. That is, the slope of the plot
of performance with the percentage of training data used should be decreasing.

We will first, examine performance with percentage of data used for DBP15K data-set. Figures
5.8, 5.9 and 5.10 plots the performance with data percentage used for the three sub-sets of data in
DBP15k. If we carefully examine all these plots, we can see that betweenness heuristic performance
is consistently better than other heuristics at the beginning (up until around 20% of data is used).
This better performance is not very significant, nevertheless, it is clear that betweenness performs
better than random with respect to data percentage used. Other heuristics do not seem to out-
perform random consistently. As similar to number of queries and performance, embedding-base
heuristic does not perform well with the percentage of data used. Figures clearly show that all
four embedding-based heuristics significantly and consistently perform worse than other heuristics
including random.

Moving to the WK3l data-sets, figures 5.11 and 5.12 plots the performance with training data
percentage for WK3l data-sets. For WK3l-english to German data (Figure 5.11), betweenness sig-
nificantly out-performs other heuristics. All other heuristics do not significantly out-perform the
random heuristics. For WK3l-english to French data (Figure 5.12), betweenness significantly out-
performs all heuristics except maximum shortest path distance heuristic for some measurement
types. Performance of betweenness and maximum shortest path distance is similar for measures
hits@1 and MRR, but for hits@10 and hit@50, betweenness is the clear best performer. Therefore,
it is clear that betweenness consistently performs best for WK3l data-sets.
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(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.8: Performance with Percentage of training data used DBP15K- French to English

(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.9: Performance with Percentage of training data used DBP15K- Japanese to English
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(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.10: Performance with Percentage of training data used DBP15K- Chinese to English

(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.11: Performance with Percentage of training data used WK3l- English to German
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(a) Performance measure- hits@1 (b) Performance measure- hits@10

(c) Performance measure- hits@50 (d) Performance measure- MRR

Figure 5.12: Performance with Percentage of training data used WK3l- English to French

When consider the performance with training data percentage used across both data-sets, be-
tweenness is the only heuristic that consistently performs better than random. Embedding-based
heuristics seems to perform very poorly in DBP15K data-sets, however, there seems to have some
improvement in performance for these in WK3l data-sets. This bad performance of embedding
based heuristic is quite an unexpected result, especially in the case of uncertainty sampling. Aim
of uncertainty sampling is to query the instance that contains the highest information, therefore we
expect that uncertainty sampling performs well in this setting. The reason for this bad performance
maybe because embedding simply does not capture the informativeness of alignment at the initial
fitting of the model (because training data is limited). We will dive more into this in the section 6.4.

5.3 Comparison of Performance with Number of Queries and
Percentage of Data Used

If we consider the performance with number of queries or percentage of data used, betweenness is
the best performing heuristic for both instances. Our main aim was to identify the best performing
heuristic with respect to the number of queries, however, comparing performance with respect to
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the percentage of data used gives unique insights to the performance of each AL heuristic. As
we discussed, to get good performance with number of queries, two factors are required; the high
success rate for querying aligned nodes and high information content in the queried aligned nodes.
This second aspect was clearly visible in WK3l English to German data-set. If we examine Figure
5.7(a), we can see that the query success of betweenness is not very high. There are multiple AL
heuristics that have a higher success rate than the betweenness, but it significantly out-perform all
these heuristics when performance is plotted with number of queries (Figure 5.5). The reason for
this can be derived from Figure 5.11. It clearly shows that the performance of betweenness with
respect to the percentage of data used significantly out-performing all other heuristics including
random heuristic which we used as the base for comparison. So the conclusion we can derive from
this is that even-though an AL heuristic does not have a higher success rate of finding aligned nodes,
if it finds aligned nodes that contain high information, still it can perform well. However, according
to results, we should focus more on implementing AL heuristics that have a higher success rate of
finding aligned nodes (better than that of random) as it seems that success rate has more impact
on performance than informativeness of queried align nodes.

5.4 Performance and Data-sets
When consider the performance of AL heuristics across data-sets, there is an effect on the perfor-
mance from the data-sets. For all subsets of DBP15K, the performance of all AL heuristics was
consistent. AL heuristics betweenness, degree and page rank all performed better than random
for all three subsets of DBP15K. However, for WK3l subsets, this was different. For WK3l subset
English-German, the only betweenness performs significantly better than random. For WK3l subset
English-French, however, have better than the random performance by betweenness, degree, page
rank and maximum shortest path distance. The reason for this different performance may be due
to the characteristics of the data-sets. If we consider the DBP15k, it is constructed such that align
nodes are popular, that is, those nodes have at least 4 relationship triples. In a KG, relationship
triple act as an edge, therefore betweenness and degree score of these aligned nodes should be high
as these measures highly depend on the number of edges connected to the node. This should be
the reason for exceptionally high success rate of finding aligned nodes in betweenness and degree in
DBP15K data-sets. In the WK3l English-German data-set, German KG is much sparser than the
English. When consider the English-French data-set, French KG is sparser than English KG, but
not much as that of German KG in English-German data-set (table 4.4). We can attribute these
different sparsity levels for the different performance derived for two subsets of WK3l.
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Chapter 6

General Discussion and Conclusions

This chapter gives a basic overview of the study, implementation steps and justification for those
steps and a summary of the study findings. Furthermore, we will discuss problems encountered in
implementing some AL methods and give some future implementation suggestions in the research
area ’Active learning for Entity Alignment’. Finally, we give some principal conclusions derived from
the study.

6.1 Overview of the Study
The main objective of the study is to evaluate the performance of Active Learning Methods to
the task of entity alignment. For this purpose, we applied number of AL heuristics on the Entity
Alignment task. Altogether, we implemented ten AL heuristics and evaluate their performance using
five data-sets (derived from two main data-sets). We also implemented a random heuristic to use as a
basis to evaluate the performance. Data-sets used are cross-lingual where each data-set contains data
on two KGs. To align KGs, we use the KG alignment model GCNAlign. The implementation process
of the experiments is described in Chapter 4 and the analysis of the data from the experiments is
given in Chapter 5. If we dive into the motivation behind the study, the premise is that training
data for KG alignment models are hard to come by in most practical situations, hence to overcome
this situation AL is used.

When aligning two KGs by an alignment model, training data required would be aligned entity
pairs (set of same entities in both KGs) or alignment triples of each KG depending on the alignment
model. In real-world KG alignment problems, this data is hard to find. Therefore in a practical
situation, research may have to choose some entities from one KG and check for similar entities in
other KG to create the training data. So, rather than just randomly choosing some entities to create
the training data, the researcher can use AL to identify the entities which will be most suitable to
the alignment model. This will enable the researcher to fit the model with little training data, but
get the maximum performance from the model within the budget for creating the training data. In
this context, our objective was to identify the best AL heuristics so that, researches can effectively
use AL methods in their problems. To study this, our approach was to evaluate the performance of
each AL heuristic with the number of queries. Also, we studied the performance of each heuristic
with percentage of the data used, which enable us to identify the ability of each AL heuristics to
query the instance with the most information.
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6.2 Discussion of Implementation Steps
Chapter 4 gave a detailed description of the implementation steps. Here we will mostly focus on
the AL implementations used in the study. For choosing an instance from AL heuristic, the first
step is to rank all the available nodes in both KGs. We can consider this as the pool-based setting
in AL implementation. To rank nodes, we will pool the nodes in both KGs into one pool. Then
assign a score based on the AL method. In every AL heuristic considered in the study, a higher
score indicated lower ranking, which means higher priority when querying. This score for ranking
was calculated for nodes in each KG separately. For example, when calculating the centrality scores
of a node, we only consider the KG that node is part-of. Since in each data-set, the number of
entities of both KGs is similar we did not adjust AL scores derived for nodes of each KG according
to KG size. Another factor we had to consider is the changing of AL scores according to the step size
(defined in section 4.3.3). In centrality-based AL heuristics we will calculate the centrality of each
node, and order(or rank) the nodes before querying. We do not change this order throughout our
implementation process. But for all embedding based AL heuristics, this ordering will be changed
after each step size. This is because, after each step-size, we refit the GCNAlign model by adding
new alignment data to the training set. Therefore we will have a new embedding after each step size.
This change of ordering is applicable for the maximum shortest path distance (MSPD) heuristic also.
MSPD ordering changes after every step size because the source list (which consists of all aligned
nodes up-to-the last step size considered) given to calculate the shortest path distances changes after
each step size. Therefore, the implementation of AL heuristic was done in batches. That is, once we
identify the number of queries according to step size (number of queries is the difference between
last and current step size), we will order all the available nodes according to AL heuristic and select
the nodes from the rank one to number of queries. Then all these nodes are provided to oracle and
oracle will label all these nodes one by one.

When implementing AL heuristics, we had to decide on ways to implement certain steps. In
the first uncertainty sampling implementation, to calculate the entropy score of a node we use the
maximum of it’s similarity with nodes from other KG. By taking maximum instead of mean or
median, we make sure that the entropy score is calculated based on the node’s most likely alignment
node in other KG. This is because, higher the similarity between two nodes, higher the probability
that these nodes are aligned. In the second uncertainty sampling implementation, rather than taking
only the maximum similarity, we took the top ten similarities. This would give more representation
of entropy distribution rather than depending on only one value like the last implementation. The
reason to use the top ten rather than other number of similarities is that we tried some other numbers
as well. But the results indicate a same or worse performance. However, we only tried a couple of
values such as 50 and 100 and we did not comprehensively study the effect of the number. However,
considering the results of the study, it is reasonable to assume that this number would not have a
significant impact on results from uncertainty sampling implementation.

In the implementation of Cluster-based active learning, it was very hard to determine the number
of clusters to run K-means. For our implementation, we used the square root of the number of
available nodes in each KG as the number of clusters (recall that we run K-means separately on two
KGs). The use of this number of clusters was inspired by the paper [27]. The authors of the paper
set maximum number of clusters as the square root of the number of instances in their algorithm to
find optimal number of clusters. Hence we use that number as it is the upper bound of the optimal
number of clusters. We did not try to apply the algorithm in the paper as we want to keep our
method simple and the application would be very hard in our setting.

39



6.3 Summary of Study Findings
The main finding of our study is that betweenness heuristic is the only AL heuristic to consistently
and significantly out-perform random heuristic. Further, AL heuristics degree and page rank did
out-perform random for most of the data-sets considered in the study. All the other AL heuristics
considered did not consistently and significantly outperform random. Furthermore, we identified
that the two main factors that AL heuristic performance depends on; the ability of the AL heuristic
to find aligned nodes and the ability to find aligned nodes that contain more information about
alignment between two KGs. To identify the AL heuristics ability to find aligned node with high
information, we plotted the performance of heuristics with the percentage of data used. For this
situation also, betweenness is the only heuristic that consistently out-perform random. In addition,
we concluded that among these two factors heuristic performance depends on, the factor we must
most focus should be the ability to find aligned nodes.

6.4 Discussion of the Results
As pointed out in Chapter 5, our analysis gave some surprising or unexpected results. For both
uncertainty sampling implementations, which specially focused on information content, section 5.3
shows that it do not prioritize the alignment pairs that have the most information. In fact, all
the AL heuristics that were based on embeddings do not perform well with respect to both the
number of queries and the percentage of data used. The reason for this may be, to learn reasonable
representation for embeddings, a decent amount of training data is required. We expected that
all the embedding based AL heuristics to not-perform very well at initial step sizes. However, we
expected that the performance will pick up quickly once a reasonable amount of training data is
given to the model. But this is not the case as in most situations considered, performance of all
embedding based AL heuristics took a large number of queries or large data percentage to pick up
and perform on-par with other AL heuristics. A possible reason for this may be the characteristics of
data-sets. As shown in Chapter 5, we saw that embedding based AL heuristics performs much better
for WK3l data sets than DBP15K data sets. Another reason for this may be the alignment model
we used. We did not test this theory as we only did the experiments with only the GCNAlign model.
Hence this reason is open as a possible explanation for this performance. Finally, when moving to
the best performing heuristic betweenness, it is a centrality measure that can be considered as a
measure of the bridgeness of a node. That is, it measures how often a node is a bridge (connection)
between other nodes. If we consider the entity alignment task, the main aim is to connect(bridge)
two (or more) small KGs into one large KG. For this, we use common entities between two small
KGs. The large KG will consist of all nodes and the relation of two small KGs. Since these common
entities are working as bridges between nodes in two KGs, these common entities should have high
betweenness values in the large KG. Then we can argue, nodes that have high betweenness values in
small KGs are more likely to be common entities. Therefore, we can see this as a good explanation
for the high performance of betweenness in entity alignment task.

6.5 Limitations
In the study, we implemented ten AL heuristics. However, we only used two areas of AL query
strategies out of the four main areas of query strategies discussed in Chapter 2. We did not implement
AL heuristic based on reducing of hypothesis space and minimizing of expected error and variance.
Under the reduction of hypothesis space, the most used method is query by committee (QBC). To
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implement QBC in our setting, we may need to implement multiple alignment models and have to
define a method to calculate vote entropy as defined in equation 2.4. Therefore implementing some
version of QBC can be complex and expensive because of the use of multiple alignment models.
To implement the expected error/variance reduction AL, we require the probability distribution of
oracles’ labeling and models’ probability distribution of making an error. These requirements are
simply not available in our setting. Another limitation in our setup is that if a selected node does not
have an alignment in other KG, we do not use it in the model. This is a major difference from usual
AL implementations where instances are given a possible label by the oracle and all the instances
that are labeled are used in the model fitting.

6.6 Future Implementations
All the AL heuristics implemented are basics implementations of the AL strategies in literature. We
can suggest some improved AL heuristics for the current implementations.

• For Cluster-based AL, instead of K-means clustering, we can use hierarchical clustering for
AL heuristic as given in this paper [29]. This method first cluster the data with hierarchical
clustering. Then, rather than selecting an instance, the algorithm selects a cluster (randomly
or proportional to cluster size) and randomly selects an instance within the cluster. Once
that instance is labeled, the clustering structure is re-structured according to the label of the
instance. This algorithm can be used to avoid the problems in cluster-based AL which was
discussed in Chapter 2.

• Use combination of AL heuristics to define a new AL heuristic as mentioned in the paper [26].
In the paper, the AL strategy which consists of uncertainty sampling, centrality, and density
is implemented on graph data.

• Implement a AL heuristic based on QBC as given in the paper [30]. Paper discusses ways to
obtain ensembles of Deep Learning models for AL.

Furthermore, in our implementation of the model, we do not use the nodes that do not have an
alignment. However, we can use these nodes to modify the connectivity matrix (defined in section
3.2.4), which represent edges of KGs after each step size. That is, we can use the exclusive nodes
(nodes that do not have an alignment) to modify the edges of the KGs so that the information
contained in those nodes would be used in the model.

6.7 Conclusions
By considering all findings of the study, following principal conclusions can be made.

1. Betweenness consistently and significantly out-perform all other heuristics considered in the
study.

2. Degree and Page Rank heuristics also performs well (better than random), but not consistently.

3. Centrality-based AL heuristics performed better than embedding (or model) based AL heuris-
tics.

4. Query success rate (rate of finding matching nodes) is one of the most important factor for
the performance of heuristic.
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5. Information content in the queried aligned nodes is also an important factor in the performance
of heuristic. But not as much as query success.
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