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Abstract
We analyse the temporal and regional structure in mortality rates related to
COVID-19 infections, making use of the openly available data on registered cases
in Germany published by the Robert Koch Institute on a daily basis. Estimates
for the number of present-day infections that will, at a later date, prove to be
fatal are derived through a nowcasting model, which relates the day of death
of each deceased patient to the corresponding day of registration of the infec-
tion. Our district-level modelling approach for fatal infections disentangles spa-
tial variation into a global pattern for Germany, district-specific long-term effects
and short-term dynamics, while also taking the age and gender structure of the
regional population into account. This enables to highlight areas with unexpect-
edly high disease activity. The analysis of death counts contributes to a better
understanding of the spread of the disease while being, to some extent, less
dependent on testing strategy and capacity in comparison to infection counts.
The proposed approach and the presented results thus provide reliable insight
into the state and the dynamics of the pandemic during the early phases of the
infection wave in spring 2020 in Germany, when little was known about the dis-
ease and limited data were available.
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1 INTRODUCTION

In March 2020, COVID-19 became a global pandemic. From Wuhan, China, the virus spread across the whole world,
and with its diffusion more and more data became available to scientists for analytical purposes. In daily reports, the
WHO provides the number of registered infections as well as the daily death toll globally (https://www.who.int/). It is
inevitable for the number of registered infections to depend on the testing strategy in each country (see, e.g., Cohen &
Kupferschmidt, 2020). This has a direct influence on the number of undetected infections (see, e.g., Li et al., 2020), and
first empirical analyses aim to quantify how detected and undetected infections are related (see, e.g., Niehus, De Salazar,
Taylor, & Lipsitch, 2020). Though similar issues with respect to data quality hold for the reported number of fatalities
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(see, e.g., Baud et al., 2020), the number of deaths can overall be considered a more reliable source of information than
the number of registered infections. The results of the ‘Heinsberg study’ in Germany point in the same direction (Streeck
et al., 2020). A thorough analysis of death counts can in turn generate insights on changes in infections as proposed in
Flaxman et al. (2020) (see also Ferguson et al., 2020). In this paper, we pursue the idea of directly modelling registered
death counts related toCOVID-19 instead of registered infections. In otherwords,we restrict our analysis to fatal COVID-19
cases only, omitting recovered or symptom-free infections. We analyse data from Germany and break down the analyses
to a regional level. Such regional view is apparently immensely important, considering the local nature of some of the
outbreaks, for example in Italy (see, e.g. Grasselli, Pesenti, & Cecconi, 2020; Grasselli, Zangrillo, & Zanella, 2020), France
(see, e.g., Massonnaud, Roux, & Crépey, 2020) or Spain and can assist local health authorities in monitoring the disease
and planning infection control measures.
The analysis of fatalities has, however, an inevitable time delay and requires to take the course of the disease of COVID-

19 patients into account. In particular, in this paper we consider the timespan between the registration of the infection
through local health authorities and the report of its deadly outcome by the Robert Koch Institute (RKI). A first approach
onmodelling and analysing the time from illness and onset of symptoms to reporting and further to death is given in Jung
et al. (2020) (see also Linton et al., 2020). Understanding the delay between onset and registration of an infection and, for
severe cases, the time between registered infection and death, can be of vital importance. Knowledge on those timespans
allows us to obtain estimates for the number of infections that are expected to be fatal based on the number of infections
registered on the present day. The statistical technique to obtain such estimates is called nowcasting (see, e.g., Höhle &
an der Heiden, 2014) and traces back to Zeger, See, and Diggle (1989) or Lawless (1994). Nowcasting in COVID-19 data
analyses is not novel and is, for instance, used in Günther, Bender, Küchenhoff, Katz, and Höhle (2020) for nowcasting
daily infection counts in Germany, that is to adjust daily reported new infections to include infections which occurred
the same day but were not yet reported. Altmeijd, Rocklöv, and Wallin (2020) apply nowcasting techniques to Swedish
data and Bird and Nielsen (2020) provide nowcasting fatalities in English hospitals. We extend this approach to model the
duration between the registration date of an infection and its fatal outcome, accounting for additional covariates. To do
so, we combine a nowcasting model with a spatio-temporal regression model.
We analyse the number of fatal cases of COVID-19 infections in Germany using district-level data. The data are provided

by the RKI (www.rki.de), the German federal government agency and scientific institute responsible for health reporting,
disease control and prevention in humans. They report the cumulative number of deaths in different gender and age
groups for each of the 412 administrative districts in Germany, together with the date of registration of the infection. The
data are available in dynamic form through daily downloads of the updated cumulated numbers of deaths. Comparing two
consecutive daily downloads allows to construct a new dataset which contains both the date at which a COVID-19 disease
is registered and the date at which a fatality is reported to the RKI, with the latter usually being reported at a later time
point.We employ flexible statisticalmodels with smooth components (see, e.g.,Wood, 2017), assuming the district-specific
number of fatalities to be negatively binomial distributed, which permits to also account for possible overdispersion in
the data. The spatial structure in the death rate is incorporated in two ways: First, we assume a spatial correlation of
the number of deaths by including a long-range smooth spatial death intensity. This allows to map a general pattern of
the spread of the disease over Germany, which shows that regions of Germany are affected to different extents. On top
of this long-range effect, we include two types of unstructured region-specific effects. An overall region-specific effect
reflects the situation of a district as a whole, while a short-term effect mirrors region-specific variations of fatalities over
time and captures local outbreaks as happened in, for example Heinsberg (North-Rhine-Westphalia) or Tirschenreuth
(Bavaria). This effect can be seen as an unstructured time-space interaction. In addition to the spatial components, we
include an overall temporal effect to capture dynamic changes in the number of fatal infections for Germany. The latter
effect mirrors the overall flattening of the infectious situation in the considered time period, that is spring 2020. Besides
the spatio-temporal character, our modelling approach further adjusts for the district-specific age and gender structure.
Modelling infectious diseases is a well-developed field in statistics, and we refer to Held, Meyer, and Bracher (2017) for a

general overview of the different models. We also refer to the powerful R package surveillance (Meyer, Held, & Höhle,
2017). Since our focus is on analysing district-specific dynamics, both structured and unstructured, as well as dynamic
behaviour of fatal infections, we prefer to make use of generalized additive regressions implemented in the mgcv package
in R, which also allows to decompose the spatial component in more depth.
The paper is organized as follows. In Section 2 we describe the data. Section 3 introduces our model, while Section 4

discusses the necessity of incorporating a nowcasting model. Section 5 shows the results of our analysis which are then
refined to subgroups of the data in Section 6. Section 7 concludes the paper by also discussing the limitations of our
modelling exercise.
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TABLE 1 Illustration of the data structure, showing downloads of the data from April 25 and April 26, 2020 as an example. To facilitate
reproducibility, the original column names used in the RKI datasets are given in brackets below our English notation

2 DATA

We make use of the COVID-19 dataset (Esri Deutschland GmbH, 2020) provided by the RKI on a daily basis for the 412
districts in Germany (which also include the 12 districts of Berlin separately). The data are collected by the RKI, but
originate from the district-based health authorities (Gesundheitsämter). Due to different population sizes in the districts,
and certainly also because of different local situations, some health authorities transmit the daily numbers to the RKI
with a delay. This happens in particular over the weekend, a fact that we need to take into account in our model. We have
daily downloads of the data sinceMarch 27, 2020.We here choose to focus on a phase of the COVID-19 pandemic in which
the death toll in Germany was high. The subsequent analysis was thus conducted with data up to May 14, 2020, and was
performed considering only deadly infections with registration dates from March 26, 2020 until May 13, 2020 (the day
before that of the analysis).
Table 1 illustrates an exemplary extract of the data that are available. For each of the 412 districts, the data contain

the cumulated number of laboratory-confirmed COVID-19 infections as well as the cumulated number of deaths related
to COVID-19 for each district of Germany, stratified by age group (15–34, 35–59, 60–79 or 80+), gender, and the date of
registration of the infection by the local public health authorities. The time stamp for a fatal outcome always refers to
the registration date of the infection and not to the individual’s date of death. Therefore, the numbers in the column
‘Fatal infections’ cannot exceed the numbers shown in the column ‘Infections’. Even though the time point of infection
obviously precedes that of death, registration of an infection can also occur after death, for example when a post-mortem
test is conducted, or when test results arrive after the patient has passed away. In the former case, the registration date
are set to the day of death by the local health authority. Also note that it is not indicated in the dataset whether a fatal
infection resulted from a post-mortem test, and that no information on whether the patient has died with or because of a
COVID-19 infection is included.
The cumulative numbers are reported on a daily basis by the RKI, which is mirrored in the column ‘Reporting date’ in

Table 1. The reporting date always corresponds to the query date and the download date of the data. In Table 1, we see that
the number of reported infections with registration date April 22, 2020, which relate to females in the age group 60–79
living in the city of Munich, increases by three from April 25, 2020 to the following day. In the same period, the number of
fatal infections increased by one. Thus, we can deduce that three registered infections in this sub-populationwere reported
with a delay of 4 days. The single newly reported fatal infection belongs to an individual of this sub-population for which
the time between registration by the local health authorities and reported death amounts to 4 days. In this paper, we are
especially interested in the latter quantity, which we model as a duration time. It is of importance to note that we can
derive such information only due to daily downloads of the dataset, which are not being provided retrospectively.
We refrain from providing general descriptive statistics on the spatio-temporal distribution of confirmed COVID-19

infections here, since these numbers are already visualized on the RKI dashboard (Robert Koch-Institut, 2020; see also
StaBLab, LMUMunich, 2020).However, the number of fatal infections is less often taken into account. Thus, in Figure 1we
show the empirical duration between the day of registration as COVID-19 infected by the local health authorities and the
day on which the death has been reported by the RKI (based on the data until May 14, 2020). Due to the aforementioned
reporting delay, the minimum duration is 1 day. Note that these plots show stapled bar charts, highlighting the counts
by gender. We see that considerably more fatal infections originate from the age group 80+. Regarding the age group
80− (aggregated age groups 15–39, 40–59 and 60–79), we see that males are much more affected than females, whereas
in the age group 80+ the counts are more balanced. Finally, in both age groups there are a small number of deaths,
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F IGURE 1 Stapled bar chart of the counts of fatal infections depending on days between registered infection and reported death. Only
data reported until May 14, 2020 is considered here (left panel: age group 80− (less than 80 years), right panel: age group 80+ (80 years or older)
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F IGURE 2 Kaplan–Meier estimators of the data shown in Figure 1 with 95% confidence intervals

which were reported 40 or more days after the registration of the COVID-19 infection. Kaplan–Meier estimators of the
duration between registered infection and reported death are shown in Figure 2 for age groups 80− and 80+ by gender.
Here we especially see that the median duration time of elderly patients is slightly shorter when compared to the younger
age groups.

3 MORTALITYMODEL

Let 𝑌𝑡,𝑟,𝑐 denote the number of deaths due to COVID-19 with time point of registration 𝑡 = 0, … , 𝑇 in district/region 𝑟 and
cohort 𝑐, where the cohort 𝑐 is characterized by age group and gender of the deceased. Time index 𝑡 = 𝑇 corresponds to the
day of analysis, which is May 14, 2020, and 𝑡 = 0 corresponds to March 26, 2020. Not all fatalities with registered infection
at time point 𝑡 have been observed at time 𝑇, as some deaths will occur later. We therefore need a model for nowcasting,
which is discussed in the next section.
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For now,we assume all𝑌𝑡,𝑟,𝑐 to be known.A family of discrete distributionswhich is supported on the set of nonnegative
integers and also allows to account for possible overdispersion in the data is the negative binomial distribution. Therefore,
we model those numbers as according to

𝑌𝑡,𝑟,𝑐 ∼ NB(𝜆𝑡,𝑟,𝑐, 𝜙), (1)

where 𝔼(𝑌𝑡,𝑟,𝑐) = 𝜆𝑡,𝑟,𝑐 and the constant dispersion parameter 𝜙 relates to the variance by Var(𝑌𝑡,𝑟,𝑐) = 𝜆𝑡,𝑟,𝑐 + 𝜙𝜆2𝑡,𝑟,𝑐. We
model the mean 𝜆𝑡,𝑟,𝑐 of the response 𝑌𝑡,𝑟,𝑐 through a regression model and specify

𝜆𝑡,𝑟,𝑐 = exp{𝛽0 + age𝑐𝛽age + gender𝑐𝛽gender

+ age𝑐gender𝑐𝛽age, gender +weekday𝑡𝛽weekday

+ 𝑚1(𝑡) + 𝑚2(𝑠𝑟) + 𝑢𝑟0 + 𝟙{𝑡≥𝑇−14}𝑢𝑟1 + log(pop𝑟,𝑐)}, (2)

where the linear predictor is composed as follows:

∙ 𝛽0 is the intercept.
∙ 𝛽age and 𝛽gender are the age- and gender-related regression coefficients, and 𝛽age, gender is the coefficient that models the
interaction between age and gender.

∙ 𝛽weekday are regression coefficients, which relate to the weekday of the registration date as COVID-19 infected.
∙ 𝑚1(𝑡) is an overall smooth time trend, with no prior structure imposed on it.
∙ 𝑚2(𝑠𝑟) is a smooth spatial effect, where 𝑠𝑟 is the geographical centroid of district/region 𝑟.
∙ 𝑢𝑟0 and 𝑢𝑟1 are district-/region-specific random effects, which are independently and identically distributed (i.i.d.) and
follow a normal prior probability model. While 𝑢𝑟0 specifies an overall level of the death rate for district 𝑟 over the entire
observation time, 𝑢𝑟1 is a spatio-temporal effect that reveals region-specific dynamics by allowing the regional effects
to differ for the last 14 days.

∙ pop𝑟,𝑐 is the gender and age group-specific population size in district/region 𝑟 and serves as an offset in our model.

We here emphasize thatwe fit spatial effects of different types:Wemodel a smooth spatial effect, that is𝑚2(𝑠𝑟), which takes
the correlation between the fatal infections of neighbouring districts/regions into account and gives a global overview of
the spatial distribution of fatal infections. In addition to that we also have unstructured district-/region-specific effects
𝒖𝑟 = (𝑢𝑟0, 𝑢𝑟1)

⊤, which capture local behaviour related to single districts only. While 𝑢𝑟0 captures the corresponding long-
term effect, 𝑢𝑟1 captures the short-term effect of the last 14 days; see (2). This means that we alsomodel a dichotomous and
unstructured interaction of spacewith time. The district-specific effects𝒖𝑟 are considered as random,with prior structure

𝒖𝑟 ∼  (𝟎, 𝚺𝑢) i.i.d (3)

for 𝑟 = 1,… , 412. The prior variancematrix 𝚺𝑢 is estimated from the data. The predicted values �̂�𝑟 (i.e. the posteriormode)
exhibit districts that show unexpectedly high or low death tolls when adjusted for the global spatial structure and for age-
and gender-specific population sizes.
While model (2) is complex and highly structured, note that no autoregressive components are included in the lin-

ear predictor in (2). We will demonstrate in Section 6.4 below that auto-correlation is of negligible size, and that time
dependence is fully captured by𝑚1(𝑡) as well as the unstructured effects 𝑢𝑟1.
The mortality model defined through (1) and (2) belongs to the model class of generalized additive mixed model (see,

e.g., Wood, 2017). The smooth functions are estimated by penalized splines without restrictions on the number of degrees
of freedom, with a quadratic penalty that can be comprehended as a normal prior (see, e.g., Wand, 2003). The same type
of prior structure holds for the region-specific random effects 𝒖𝑟. In other words, smooth estimation and random effect
estimation can be accommodated in one fitting routine, which is implemented in the R package mgcv. This package has
been used to fit the model, so that no extra software implementation was necessary. This demonstrates the practicability
of the proposed method. Our analysis is completely reproducible, with code and data openly available and downloadable
from our GitHub repository.1

1 https://github.com/MarcSchneble/Nowcasting-Fatal-COVID-19-Infections

https://github.com/MarcSchneble/Nowcasting-Fatal-COVID-19-Infections
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4 NOWCASTINGMODEL

4.1 Model description

The above model cannot be fitted directly to the available data, since we need to take the course of the disease on the
individual level into account. This means that the final number of fatal outcomes for infections registered on date 𝑡 < 𝑇

is not known at the time point of analysis 𝑡 = 𝑇, since not all patients with a fatal outcome of the disease have died yet.
This requires the implementation of nowcasting. Due to the sparsity of the data, we perform the nowcast on a national
level, that is we cumulate the numbers over district/region 𝑟. For reasons of notation, we temporarily drop the gender and
age-related subscript 𝑔, and we simply notate the cumulated number of deaths with registered infections at day 𝑡 with 𝑌𝑡.
Let 𝑁𝑡,𝑑 denote the number of deaths reported on day 𝑡 + 𝑑 for infections registered on day 𝑡. Assuming that the true

date of death is at 𝑡 + 𝑑, or at least close to it, we ignore any time delays between time of death and its notification to the
health authorities. We call 𝑑 the duration in days between the registration date as a COVID-19 patient and the reported
day of death, where 𝑑 = 1,… , 𝑑max . Here, 𝑑max is a fixed reasonable maximum duration, which we set to 40 days (see, e.g.,
Wilson, Kvalsvig, Barnard, & Baker, 2020). This is also motivated by the means of Figure 1. The minimum duration is one
day, since the RKI daily reports the new numbers, which they have received from the public health departments the day
before. In nowcasting, we are interested in the cumulated number of deaths for infections registered on day 𝑡, which we
define as

𝑌𝑡 =

𝑑max∑
𝑑=1

𝑁𝑡,𝑑.

Therefore, the total number of deaths with a registered infection at 𝑡 becomes available only after 𝑑max days. In other
words, only after 𝑑max days we know exactly how many deaths occurred due to an infection which was registered on day
𝑡. We define the partial cumulated sum of deaths as

𝐶𝑡,𝑑 =

𝑑∑
𝑙=1

𝑁𝑡,𝑙

so that by definition 𝐶𝑡,𝑑max
= 𝑌𝑡.

On day 𝑡 = 𝑇, when the nowcasting is performed, we are faced with the following data constellation, where NA stands
for not (yet) available:

d
t 1 2 ⋯ 𝒅𝐦𝐚𝐱 Reported deaths
0 𝑁0,1 𝑁0,2 ⋯ 𝑁0,𝑑max

𝑌0

1 𝑁1,1 𝑁1,2 ⋯ 𝑁1,𝑑max
𝑌1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑇 − 𝑑max 𝑁𝑇−𝑑max ,1
𝑁𝑇−𝑑max ,2

⋯ 𝑁𝑇−𝑑max ,𝑑max
𝑌𝑇−𝑑max

𝑇 − 𝑑max + 1 𝑁𝑇−𝑑max+1,1
𝑁𝑇−𝑑max+1,2

⋯ NA 𝐶𝑇−𝑑max−1,𝑑max−1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑇 − 2 𝑁𝑇−2,1 𝑁𝑇−2,2 NA NA 𝐶𝑇−2,2

𝑇 − 1 𝑁𝑇−1,1 NA NA NA 𝐶𝑇−1,1

We may consider the timespan between registered infection and (reported) death as a discrete duration time taking
values 𝑑 = 1,… , 𝑑max . Let 𝐷 be the random duration time, which by construction is a multinomial random variable. In
principle, for each death we can consider the pairs (𝐷𝑖, 𝑡𝑖) as i.i.d. and we aim to find a suitable regression model for 𝐷𝑖

given 𝑡𝑖 , including potential additional covariates 𝑥𝑡,𝑑. We make use of the sequential multinomial model (see Agresti,
2010) and define

𝜋(𝑑; 𝑡, 𝑥𝑡,𝑑) = 𝑃(𝐷 = 𝑑|𝐷 ≤ 𝑑; 𝑡, 𝑥𝑡,𝑑).
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Let 𝐹𝑡(𝑑) denote the corresponding cumulated distribution function of 𝐷 which relates to probabilities 𝜋() through

𝐹𝑡(𝑑) = P𝑡(𝐷 ≤ 𝑑) = P(𝐷 ≤ 𝑑|𝐷 ≤ 𝑑 + 1) ⋅ 𝑃(𝐷 ≤ 𝑑 + 1)

= (1 − 𝜋(𝑑 + 1; ⋅)) ⋅ (1 − 𝜋(𝑑 + 2; ⋅)) ⋅ … ⋅ (1 − 𝜋(𝑑max; ⋅))

=

𝑑max∏
𝑘=𝑑+1

(1 − 𝜋(𝑘; ⋅))

(4)

for 𝑑 = 1,… , 𝑑max − 1 and 𝐹𝑡(𝑑max) = 1.
We generalize notation again by including the subscript 𝑔, which in the nowcasting model only distinguishes between

the two age groups 80− and 80+. The available data on cumulated death counts now allow us to estimate the condi-
tional probabilities 𝜋(𝑑; ) for 𝑑 = 2,… , 𝑑max . In fact, the sequential multinomial model allows to look at binary data such
that

𝑁𝑡,𝑑,𝑐 ∼ (quasi-)Binomial
(
𝐶𝑡,𝑑,𝑐, 𝜋(𝑑; 𝑡, 𝑐, 𝑥𝑡,𝑑)

)
(5)

with

logit(𝜋(𝑑; 𝑡, 𝑐, 𝑥𝑡,𝑑)) = 𝑠1(𝑡) + 𝑠2(𝑑) + 𝑠3(𝑑) ⋅ 𝟙age{80+} + 𝑥𝑡,𝑑𝛾, (6)

where

∙ 𝑠1(𝑡) is an overall smooth time trend over calendar days.
∙ 𝑠2(𝑑) is a smooth duration effect, capturing the course of the disease.
∙ 𝑠3(𝑑) is a varying smooth duration effect, capturing interaction between the dynamics of the disease and age, particularly
for the age group 80+. Note that with effect 𝑠3(𝑑) we take into account that for infections with a fatal outcome, the
individual course of the disease for elderly patients might differ compared to younger patients.

∙ 𝑥𝑡,𝑑 are covariates which may be time and duration specific.

By utilizing a quasi-likelihood model (Fahrmeir, Kneib, Lang, & Marx, 2007) as in (5), we account for possible overdis-
persion in the data, which results in adjusted standard errors of the parameter estimates, while, however, the estimates
themselves are the same when compared to the fit of a binomial model.
Assuming that𝐷, the duration between a registered fatal infection and its reported death, is independent of the number

of fatal COVID-19 infections, we obtain the relationship

𝔼(𝐶𝑡,𝑑,𝑐) = 𝐹𝑡,𝑐(𝑑) ⋅ 𝔼(𝑌𝑡,𝑐). (7)

Note further that if we model 𝑌𝑡,𝑐 with a negative binomial model as presented in the previous section, we have no final
observation𝑌𝑡,𝑐 for time points 𝑡 > 𝑇 − 𝑑max . Instead, we have observed𝐶𝑡,𝑇−𝑡,𝑐, which relates to themean of𝑌𝑡,𝑐 through
(7) by 𝐶𝑡,𝑇−𝑡,𝑐 = 𝐹𝑡,𝑐(𝑇 − 𝑡) ⋅ 𝔼(𝑌𝑡,𝑐). Including therefore log 𝐹𝑡,𝑐(𝑇 − 𝑡) as additional offset in model (2) allows to fit the
model as before, but with the nowcasted number of fatal infections included. That means, instead of 𝜆𝑡,𝑟,𝑐 as in (2), the
expected number of fatal infections are now parameterized by 𝜆⋆𝑡,𝑟,𝑐 = 𝜆𝑡,𝑟,𝑐 exp(log 𝐹𝑡,𝑐(𝑇 − 𝑡)), where the latter multi-
plicative term is included as additional offset in the model.

4.2 Results for nowcasting

We fit the nowcasting model (5) with parameterization (6). We include a weekday effect for the registration date of the
infectionwith reference category ‘Monday’. The estimates of the fixed linear effects are shown in Table 2. The fitted smooth
effects are shown in Figure 3. The top panel shows the effect over calendar time, which is very weak and confirms that
the individual course of the disease hardly varies over time. This is supported by the fact that the German healthcare
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TABLE 2 Estimated fixed linear effects (standard errors in brackets) in the nowcasting model (6). Parameters and their standard errors
are given on the log scale. The relative risk is given together with 95% confidence intervals. The reference for the weekdays is Monday

exp(Effect) 95% Confidence interval
Effect (SE) Relative risk of relative risk

Intercept −3.12 (0.045) 0.04 [0.04, 0.05]
Tuesday 0.06 (0.060) 1.06 [0.94, 1.19]
Wednesday 0.11 (0.059) 1.12 [0.99, 1.25]
Thursday 0.20 (0.058) 1.23 [1.09, 1.38]
Friday 0.26 (0.059) 1.30 [1.16, 1.45]
Saturday 0.27 (0.063) 1.31 [1.16, 1.48]
Sunday 0.20 (0.068) 1.22 [1.07, 1.40]

system remained stable over the considered period, and hence survival did not depend on the date on which the infection
was notified.
The bottom panel of Figure 3 shows the course of the disease as a smooth effect over the time between registration of

the infection and death. We see that the probabilities 𝜋(𝑑; ⋅) decrease in 𝑑, where this effect is the strongest in the first
days after registration. Thus, most of the COVID-19 patients with fatal infections are expected to die not long after their
registration date. We also see no overall significant difference in the duration effect between the age groups 80− and 80+,
since the fitted curves 𝑠2(𝑑) and 𝑠2(𝑑) + 𝑠3(𝑑) hardly differ. To some extent, this was already visible from Figure 1. This
shows that, given that a registered case endswith a fatal outcome, the individual’s course of the disease does not depend on
the age group. The effect of 𝑑 becomes easier to interpret by visualizing the resulting distribution function 𝐹𝑡,𝑐(𝑑), where
here 𝑔 refers to the age group 80+. This is shown in Figure 4 for two different values of 𝑡, that is April 13 and May 13. The
plot also shows how the course of the disease hardly varies over calendar time: In fact, the small differences between the
two distribution functions is dominated by the weekday effect, since the red curve is related to a Monday while the blue
one is from a Wednesday.

4.3 Nowcasted number of fatal infections

On the day of analysis, we do not observe the total counts of deaths for recently registered infections. This means that
there are an unknown number of currently infected people which will die at a future point in time. We therefore nowcast
those numbers, that is we predict the prospective deaths which can be attributed to all registration dates up to today. This
is done on a national level, and the resulting nowcast of fatal infections for Germany is shown in Figure 5. For example, on
May 14, 2020 there are 25 deaths reported where the infection was registered on May 5 (red bullets on May 5). We expect
this number to increase to about 50 when all deaths due to COVID-19 for this registration date will have been reported
(green triangles on May 5). Naturally, the closer a date is to the present, the larger the uncertainty in the nowcast will be.
This is shown by the shaded bands. Details on how the statistical uncertainty has been quantified are provided below. In
Section 5, we incorporate the nowcasting results into the mortality model as discussed before, but the nowcast results are
interesting in their own right. The curve confirms that the number of fatal infections is decreasing since the beginning of
April. Note that the curve also mirrors the ‘weekend effect’ in registration, as less infections are reported on Sundays.
Since we are now more than 𝑑max = 40 days after the day of analysis (May 14, 2020), we can assess the predictive

accuracy of our nowcast. Therefore, we also show in Figure 5 the counts of fatal infections, which we observe 40 days
after the respective registration date. We see that our nowcast performs in general very well. However, there are a handful
of registration dates for which the nowcasted values were clearly outside of the prediction intervals. Most remarkably,
the cumulative number of fatal infections for registered infections on April 8, 2020 has dropped after May 14, 2020. This
happens in the rare case in which the database has been modified retrospectively by the local health authorities.

4.4 Uncertainty quantification in nowcasting

In Figure 5, we have shown the nowcasting results alongwith uncertainty intervals shaded in grey. Thesewere constructed
using a bootstrap approach as follows. Given the fitted model, we simulate 𝑛 = 10, 000 times from the asymptotic joint
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normal distribution of the estimated model parameters which results through (4). This leads to a set of bootstrapped
distribution functions  = {𝐹

(𝑖)
𝑡 (𝑇 − 𝑡), 𝑖 = 1, … , 𝑛; 𝑡 = 𝑇 − 𝑑max + 1,… , 𝑇 − 1}. This set is used to compute the simulated

nowcasts𝑌(𝑖)
𝑡 = 𝐶𝑡,𝑇−𝑡∕𝐹

(𝑖)
𝑡 (𝑇 − 𝑡) applying (7), where𝐶𝑡,𝑇−𝑡 is the observed partial cumulated sum of deaths at time point

𝑇 − 𝑡 with registration date 𝑡. The point-wise lower and upper bounds of the 95% prediction intervals for the nowcast for
𝑌𝑡 are then given by the 2.5 and the 97.5 quantiles of the set {𝑌

(𝑖)
𝑡 , 𝑖 = 1, … , 𝑛}, respectively.
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5 RESULTS OF THEMORTALITYMODEL

We first discuss the estimates of the fixed linear effects included in model (2), which are shown in Table 3. We see that
both age and gender play a major role when estimating the numbers of fatal infections. Elderly people exhibit a much
higher death rate from COVID-19, which is, for males (females) in the age group 80+, around 80 times (148 ≈ exp(4.39 +

0.61) times) higher than in the reference age group 35–59. This already hints at a remarkable difference between genders,
where the expected death rate for females in the reference age group is around 60% (≈ 1 − exp(−0.94)) lower than the
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TABLE 3 Estimated fixed linear effects (standard errors in brackets) in the mortality model (2). Parameters and their standard errors are
given on the log scale. The relative risk is given together with 95% confidence intervals. The reference category for age is the age group 35–59.
The reference for the weekdays is Monday

exp(Effect)
Relative risk

95% Confidence interval
of  relative riskEffect (S.E.)

corresponding death rate for males. When considering the total gender-related numbers of fatal infections in the age
group 80+ (see Figure 1), the difference between the genders is seemingly very small. However, by respecting the district-
, gender- and age-specific population sizes in our model we see that the death rate of females in the age group 80+ is
still around 28% (≈ 1 − exp(−0.94 + 0.61)) lower when compared to the male population in this age group. Furthermore,
we see that significantly less deaths are attributed to infections registered on Sundays compared to weekdays, due to the
existing reporting delay during weekends.
Ourmodel includes a global smooth time trend representing changes in the death rate sinceMarch 26. This is visualized

in Figure 6. The plotted death rate is scaled to give the expected number of deaths per 100,000 people in an average district
for the reference group, that is males in the age group 35–59. Overall, we see a peak in the death rate on April 3 and a
downwards slope until the end of April. However, our nowcast reveals that the rate remains constant since beginning of
May. Note that such developments cannot be seen by simply displaying the raw death counts of these days. The nowcasting
step inevitably carries statistical uncertainty, which is taken into account in Figure 6 by including best and worst case
scenarios. The latter are based on bootstrapped confidence intervals, where details are provided in Section 6.3 later in
the paper.
Our aim is to investigate spatial variation and regional dynamics. To do so, we combine a global geographic trend for

Germany with unstructured region-specific effects, where the latter uncovers local behaviour. In Figure 7, we combine
these different components and map the fitted nowcasted death counts related to COVID-19 for the different districts
of Germany, cumulated over the last 14 days before the day of analysis, that is May 14, 2020. While in most districts of
Germany, the death rate is relatively low, some hotspots can be identified. Among those, Traunstein and Rosenheim (in
the south-east part of Bavaria) are the most evident, but Greiz and Sonneberg (east and south part of Thuringia) stand
out as well, to mention a few. A deeper investigation of the spatial structure is provided in Section 6, where we show the
global geographic trend and provide maps that allow to detect new hotspot areas, after correcting for the overall spatial
distribution of the infection.

6 MORE RESULTS ANDMODEL EVALUATION

6.1 Spatial effects

It is of general interest to disentangle the two spatial components that we introduced in Section 3. We visualize the fitted
global geographic trend 𝑚2(⋅) for Germany in Figure 8. The plot confirms that, up to mid May 2020, the northern parts
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of the country are less affected by the disease in comparison to the southern states. The two plots in Figure 9 map the
region-specific effects, that is the predicted long-term level of a district 𝑢𝑟0 (left-hand side) and the predicted short-term
dynamics 𝑢𝑟1 (right-hand side). Both plots uncover quite some region-specific variability. In particular, the short-term
dynamics 𝑢𝑟1 (right plot) pinpoint districts with unexpectedly high nowcasted death rates in the last two weeks, after
correcting for the global geographic trend and the long-term effect of the district. Some of the noticeable districts have
already been highlighted in Section 3 above, but we can here detect further districts which are less evident in Figure 6: For
instance, Steinfurt (in the north-west of North Rhine-Westphalia), Olpe (southern North Rhine-Westphalia) and Gotha
(center of Thuringia) all show a relatively high rate of fatal infections.

6.2 Age group-specific analyses

A large portion of the registered fatal infections related to COVID-19 stems from people in the age group 80+. Locally, high
numbers are often caused by an outbreak in a retirement home. Such outbreaks apparently have a different effect on the
spread of the disease, and the risk of an epidemic infection caused by outbreaks in this age group is limited. Thus, the death
rate among elderly people could vary differently across districts when compared to regional peaks in the death rate of the
rest of the population. In order to respect this, we decompose the district-specific effects𝒖𝑟 in (2) into𝒖80−𝑟 = (𝑢80−𝑟0 , 𝑢80−𝑟1 )⊤

for the age group 80− and 𝒖80+𝑟 = (𝑢80+𝑟0 , 𝑢80+𝑟1 )⊤ for the age group 80+, where the age group 80− consists of the aggregated
age groups 15–34, 35–59 and 60–79. We put the same prior assumption on the random effects as we did in (3), but now the
variance matrix that needs to be estimated from the data has dimension 4 × 4.
The fitted age group-specific random effects are shown in Figure 10, where the 𝒖80−𝑟 are shown in the top panel and

the 𝒖80+𝑟 in the bottom panel. Most evidently, the variation of the random effects is much higher in the age group 80+
when compared to the younger age groups, as more districts occur which are coloured dark blue or dark red, respectively.
When comparing the district-specific short-term dynamics of the last 14 days (𝑢𝑟1) in Figure 10 to those in Figure 9, we
recognize that in most of the districts which recently experienced very high death intensities (with respect to the whole
period of analysis), these stem from the age group 80+. As mentioned before, this can often be explained by outbreaks in
retirement homes.
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F IGURE 7 Nowcasted fatal COVID-19
infections per 100,000 inhabitants in each
district in the timespan from Thursday, April
30 until Wednesday, May 13, 2020

6.3 Additional uncertainty in the mortality through the nowcast

When fitting the mortality model (1), we included the fitted nowcast model as offset parameter. This apparently neglects
the estimation variability in the nowcasting model, which we explored via bootstrap as explained in Section 4.4 and visu-
alized in Figure 5. In order to also incorporate this uncertainty in the fit of the mortality model, we refitted the model
using (a) the upper end and (b) the lower end of the prediction intervals shown in Figure 5. It appears that there is little
(and hardly any visible) effect on the spatial components, which is therefore not shown here. But the time trend shown
in Figure 6 does change, which is visualized by including the two fitted functions corresponding to the 2.5% and 97.5%
quantile of the offset function. We can see that the estimated uncertainty of the nowcast model mostly affects the last 10
days, with a strong potential increase in the death rate mirroring a possible worst case scenario.

6.4 Auto-correlation of residuals in the mortality model

In the mortality model (2), we did not include an epidemic component accounting for possible temporal auto-correlation,
as it is often done in endemic-epidemicmodels (see, e.g., Meyer et al., 2017). To check for possibly omitted auto-correlation
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F IGURE 8 Smooth spatial effect of the
death rate in Germany

in ourmodel, we explore the temporal correlation of the Pearson residuals in themortalitymodel (2). To do so, we compute
the auto-correlation function (ACF) for all lags 𝑘 = 0,… , 𝑇 − 1. The corresponding ACF plot is shown in Figure 11. Appar-
ently, the results do not show any pattern of auto-correlation and support the suitability of our model. We emphasize,
however, that infection dynamics are included in the model through the time trend 𝑚1(𝑡). Moreover, even if we ignore
possibly existing auto-correlation, this time trend𝑚1(𝑡) is still estimated unbiasedwith penalized spline smoothing, which
is robust against misspecification of the auto-correlation structure (Krivobokova & Kauermann, 2007).
We also think that the epidemic component is generally less impactful when modelling fatal infections in comparison

to modelling the number of registered infections. The time between person-to-person transmission of the virus and a fatal
outcome of a COVID-19 infection is much larger than the time until the registration of the infection, as shown in Figure 1,
and hence any auto-correlation is rather indistinct for fatal cases.

7 DISCUSSION

The paper presents a general approach for monitoring the dynamic behaviour of COVID-19 infections on a small-area
level purely based on the analysis of the number of observed death counts. This in turn means that the results are less
dependent on testing strategies, which may vary by region and over time.
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F IGURE 9 Region-specific long-term level (left-hand side) and short-term dynamics of the 14 days prior to May 14, 2020 (right-hand side)
of fatal COVID-19 infections

In addition, patients with fatal infections typically require intensive medical care and are therefore relevant in the
planning of clinical capacities of the local health system.An analysis of fatal infections is especially interesting in situations
in which reliable information on hospitalization is not available, as in the considered timespan of the COVID-19 pandemic
in Germany.
The described nowcasting approach enables us to estimate the number of deaths following a registered infection even

if the fatal outcome has not occurred yet, providing an up-to-date picture of the situation. The results of the nowcasting
model confirm that the individual course of the disease for fatal infections did not change over calendar time nor did it
differ by gender. More in particular, it uncovers that in Germany, during the considered timespan, elderly patients had, in
the case of fatal infections, about the same course of the disease as younger patients.
Our analysis of the nowcasted number of fatal infections on a regional level allows to draw conclusions on the current

dynamics of the disease on the spatial dimension. By separately estimating, for each district, a long-range effect whichmir-
rors the overall situation as well as a short-term dynamic effect, we can timely identify districts with unexpectedly high
nowcasted death rates. An additional interaction for elderly people allows us to distinguish between outbreaks which
might be attributed to activity in retirement homes and those due to unexpected activities in the general population.
Mapping the general pattern of the spread of the disease in Germany confirms that different regions are affected to differ-
ent extents, with southern and western regions being generally more affected than northern states. In addition, a global
smooth time trend captures the changes in death rate, showing the peak at the beginning of April and a constant decrease
since then. Thanks to the implemented nowcasting, the time trend can be estimated up to the date of analysis. This spa-
tially differentiated picture would not be achievable through a simple monitoring of district-specific observed deaths.
Anatural next stepwould nowbe to consider the nowcasted fatal infections in relation to the number of newly registered

infections, which is, in contrast, highly dependent on both testing strategy and capacity.We consider this as possible future
research, but the proposedmodel allows to explore data in this direction. Thismight ultimately help us in shedding light on
the relationship between registered and undetected infections as well as on the effectiveness of different testing strategies.
There are several limitations to this study, whichwewant to address as well. First and utmost, even though death counts

are, with respect to cases counts, less dependent on testing strategies, they are not completely independent from them. This
applies in particular to the handling of post-mortem tests. We therefore do not claim that our analysis of death counts is
completely unaffected by testing strategies. Second, a fundamental assumption in themodel is the independence between
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F IGURE 10 Region-specific long-term level (left-hand column) and short-term dynamics of the 14 days prior to May 14, 2020 (right-hand
column) of fatal COVID-19 infections for the age groups under 80 (80−, upper row) and above 80 (80+, bottom row)

the course of the disease (on the population level) and the number of infections. Overall, if the local health systems have
sufficient capacity and triage can be avoided, this assumption seems plausible, but it is difficult or even impossible to
prove the assumption formally. However, the results of the nowcasting model empirically show a rather stable course
of the disease, supporting our assumption. Furthermore, the registration of a COVID-19 case is related to the district of
residence, while the infection does not necessarily occur in the district where the infected person resides. However, due
to a lack of data we cannot explore this point further. Also, in the considered timespan, the mobility in the population has
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been rather low due to governmental restrictions. Even though the model focuses on regional aspects of the pandemic,
the nowcasting itself is carried out on a national level, due to sparse data. Given that our results show that the course of
the disease from registration to death in Germany did not notably depend on age or gender, we do not expect it to depend
on place of residence either.
A general limitation results through the availability of information. Our analyses are based on available data of all

registered COVID-19 infections in Germany together with the information on fatalities, which is published daily by the
RKI. While these data allow for an analysis of the occurrence of the disease in Germany, it lacks further detailed patient-
specific information, for example on clinical aspects or on the differentiation between death with or because of COVID-19.
This issue is shared with many other public disease registers. Note also that the methods we are proposing in this paper
are not necessarily restricted to the use case of German COVID-19 data. For the purpose of applying our methodology to
other countries, the data need to be in the same format as illustrated in Table 1, that is death counts need to be available
in an aggregated form stratified by age (group), gender and district. For an appropriate interpretation of the results, it is
critical that the reference date of every infection with a fatal outcome (here: registration date) corresponds to a time point
at the early stages of the course of the disease. This could also be the date of infection with COVID-19, if known. The
second date, which is needed for our nowcasting approach, is the reporting day of each fatal infection. While in Germany,
this information can be deduced by considering the COVID-19 database daily over a longer period, the health authorities
in other countries might supply historical reporting dates in a consecutively updated database.
Finally, the proposed approach demonstrates that valuable insight into the state and the dynamic of the disease can

be obtained by disentangling spatial variation into a global pattern, district-specific long-term effects and current short-
term dynamics in a spatio-temporal model. A particular virtue of the presented modelling approach over other proposals
is that it also adjusts for the age and gender structure of the local population. This can provide relevant support for the
monitoring of this new disease and can assist local health authorities in the planning of infection control measures as well
as healthcare system capacities, in a further step towards the understanding and control of the COVID-19 pandemic.
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