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Metabolism and Function of Ca?* in
Secretory Cells

Manfred Gratzl

Interest in the metabolism of Ca?* by secretory cells has increased since the
proposal of a key role for Ca?* in the regulation of exocytosis. The Ca?* transport
systems and channels present in the plasma membrane have been explored in
particular detail because many secretory cells make use of extracellular Ca?*
during the stimulation period. In addition, intracellular systems such as mitochon-
dria or endoplasmic membranes may act either as a source of regulatory Ca?*
or as its sink. In any case the collaboration of all the aforementioned systems
assures the precise control of intracellular free Ca’>+ and consequently the timing
and extent of exocytosis.

The hormone-containing vesicles are the most abundant intracellular structures
within the secretory cells. They have also been found to participate in the Ca2*
metabolism of these cells. During the secretory event these vesicles temporarily
face the extracellular fluid. Thus, unlike the other subcellular structures involved
in cellular Ca?* metabolism, they can discharge accumulated Ca?t into the
extracellular space. The mechanisms as well as the components of vesicular Ca2*
transport systems have been analyzed in the past few years and will be described
first.

The investigation of the function of Ca?+ in exocytosis has been greatly facili-
tated by the development of permeabilized cell preparations. These systems fill
the gap between simple liposomes and biological membranes as models for
exocytotic membrane fusion and the complex situation seen in intact cells. Alpha-
toxin produced by Staphylococcus aureus is a valuable tool for cell permeabiliz-
ation because it forms a stable pore in the plasma membrane. This toxin does
not impair the exocytotic processes itself and allows definition of the specific

Abteilung Anatomie und Zellbiologie der Universitdt Ulm, Postfach 4066, D-7900 Ulm, Fed. Rep.
Germany.

MOLECULAR MECHANISMS IN SECRETION, Alfred Benzon Symposium 25, page 364-376.
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Figure 1. Ca?* uptake by secretory vesicles isolated from adrenal medulla. *Ca* uptake was observed
only in a medium containing potassium (@-@) and not in a medium containing sodium (O-0O). (From
Krieger-Brauer & Gratzl 1982, with permission).

intracellular requirements for exocytosis in different secretory cells. The role
played by regulatory and modulatory substances during exocytosis is the subject
of the second part of this communication.

ON THE MECHANISM AND THE COMPONENTS OF THE CALCIUM TRANSPORT SYSTEM
PRESENT IN SECRETORY VESICLES

The crucial observation in the analysis of the mechanism of Ca?* uptake by
chromaffin vesicles was its complete inhibition by extravesicular sodium (Fig. 1;
Krieger-Brauer & Gratzl 1981, 1982). These vesicles normally contain large
amounts of sodium (about 50 mM). Reduction of the sodium gradient by addition
of increasing amounts of sodium to the extravesicular medium gradually decreases
Ca?* uptake by these vesicles. The data were found to be consistent with a carrier
system exchanging 2 sodium ions against 1 calcium ion during one cycle (Krieger-
Brauer & Gratzl 1982). The ion carrier in the chromaffin vesicle membrane was
further analyzed using chromaffin vesicle ghosts (Phillips 1981, Krieger-Brauer &
Gratzl 1983). When these ghosts were loaded with sodium a rapid (Vaax=14.5
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Figure 2. Ton specificity of the Ca?* uptake across the chromaffin vesicle membrane. Vesicles loaded
with sodium (O) take up “Ca* from a medium containing 1.4 uM free Ca2*. Potassium. lithium or
choline can not replace sodium (From Krieger-Brauer & Gratzl 1983, with permission).

nmol x min~' x mg protein-') uptake of Ca?* was observed. Since other ions such
as Li*, K+, or choline could not replace Na*, it was concluded that only a Na+*
gradient can serve as a driving force for Ca?* uptake (Fig. 2; Krieger-Brauver &
Gratzl 1983). A further activity, perhaps catalyzed by the same carrier, is a
Ca?+/Ca?+ exchange or Ca?+/Sr** exchange. This may be the reason for the
inhibition of Ca?* uptake by Sr** described by several groups (Kostron et al. 1977,
Phillips 1981, Krieger-Brauer & Gratzl 1981, 1982). The Ca?*/Ca?* exchange was
found to be completely abolished by extravesicular Mg?+ at normal intracellular
concentrations. This indicates that vesicular uptake of Ca?+, rather than Ca’t/
Ca?* exchange, is the physiologically relevant activity of this carrier system. Since
the Km for Ca?* uptake is about 0.3 uM, the vesicles can take up Ca?* from
media containing Ca?* in concentrations found in resting or stimulated secretory
cells. A Ca?+ transport system with almost identical properties has been described
for the secretory vesicles from the neurohypophysis (Saermark et al. 1983a, b).
This carrier exchanges 2 Na+ for 1 Ca?*, and takes up Ca?* half maximal from
media containing 0.7 uM free Ca?+.

Inversion of the Na* gradient across the secretory vesicle membrane results in
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Figure 3. Determination of matrix free Ca?+ in isolated secretory vesicles from bovine adrenal medulla.
Addition of the ionophor A23187 to isolated chromaffin vesicles suspended in media containing free
Ca?+ higher than 0.2 uM results in a immediate Ca?* uptake (a). The proton gradient across the
chromaffin vesicle membrane which acts as a driving force for ionophore-mediated Ca?* uptake can be
collapsed by NHCIl. Under these conditions Ca2* uptake ceases at approximately 4 uM (b), indicating
that free Ca?- is the same within the vesicles and in the surrounding medium (Reprinted with permission
from Biochemistry, Bulenda & Gratzl, 24, 7760-7765, Copyright 1985, American Chemical Society).

release of Ca?* from the vesicles. It is interesting to note that intact secretory
vesicles never completely release Ca’+, whereas secretory vesicle ghosts can release
total Ca?* (Krieger-Brauer & Gratzl 1982, 1983). One would expect that addition
of the Ca?* ionophor A23187 would result in the release of Ca?* from any
vesicular structure. However, while Ca?* efflux from vesicle ghosts does indeed
occur upon addition of A23187, intact chromaffin vesicles instead act to take up
large amounts of Ca?* (Fig. 3a; Krieger-Brauer & Gratzl 1982, 1983). The latter
observation is in accordance with the incomplete release of Ca?* from intact
chromaffin vesicles upon inversion of the Na+* gradient, suggesting that Ca?* may
be in a bound state within these vesicles. Finally, calculations on the energetics of
the Na+*/Ca?* exchange point to the possibility that only a small amount of Ca?+
present in the chromaffin vesicles is in the free state.

Binding of Ca>* within chromaffin vesicles has been proved during Ca?+ flux
experiments (Bulenda & Gratzl 1985). After balancing all gradients of ions which
may be transported by the ionophor A23187, Ca?* uptake should occur when
the free Ca?* concentration is higher outside the vesicles and release should occur
when the vesicle Ca?* concentration is higher than in the medium. At the Ca?*

EMF (mV)
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Figure 4. Ca’* binding to purified chromogranin A. Chromogranin A after sodiumdodecyl sulfate-
polyacrylamide gel electrophoresis was stained with a carbocyanine dye (“Stains-all”) which interacts
also with other Ca?*-binding proteins (lane A). Following blotting onto nitrocellulose and incubation
with #Ca?* the 74 kD band of chromogranin A was labelled (lane C). Lane B gives the protein
stain with amido black and lane D the molecular weight standards (Reprinted with permission from
Biochemistry, Reiffen & Gratzl, 25, 4402-4406, Copyright 1986, American Chemical Society).

concentration at which no net flux occurs, measurements with a Ca?*-specific
electrode indicate that the intravesicular free Ca?* equals the extravesicular free
Ca?t (Fig. 3b). In these and additional experiments it was found that most of
the Ca?* present within chromaffin vesicles is bound (usually 80 nmol/mg of
protein which amounts to about 40 mM Ca?*) leaving only 4 uM free Ca?* in
the secretory vesicle matrix (Bulenda & Gratzl 1985).

Within the chromaffin vesicles Ca?* can be bound to ATP and/or chromogranin
A. Chromogranin A specifically interacts with a carbocyanin dye (“stains all”),
which binds also to other well known Ca?* binding proteins, as well as with Ca?*
itself (Fig. 4; Reiffen & Gratzl 1986a, b). In media mimicking the intravesicular
fluid (with respect to ionic strength, presence of Mg?*, pH 6) the affinities of
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Figure 5. Presence of chromogranin A in the adrenal medulla and the pancretic islet. Both the catecholam-
ine-containing vesicles of chromaffin cells (A) and the insulin-containing vesicles of the B cell of the
pancreatic islet (B) exhibit chromogranin A immunoreactivity (protein A-gold technique). Scale bar
indicates 1 um. (Courtesy of M. Ehrhart, Abteilung Anatomie und Zellbiologie der Universitdt Ulm,
GFR).

ATP and chromogranin A for Ca?* indeed are very similar. Thus it appears that
small changes in the matrix composition (e.g. in the intravesicular pH due to the
proton translocating ATPase) can determine whether Ca?+ is bound preferentially
to ATP or to the matrix protein chromogranin A.

Interestingly enough, chromogranin A also occurs in other endocrine cells as
well as the chromaffin cells (see Fig. 5, c.f. Cohn ez al. 1982, O’Connor et al.
1983). In the pancreatic islet cells chromogranin A has been detected not only
within the same cells but also within the same vesicles as the established hormones
(Ehrhart et al. 1986). The presence of chromogranin A and related proteins has
been confirmed in immunoblots of pancreas extracts (Yoshie et al. 1987, Ehrhart
et al. 1988). It is not clear whether chromogranin A fulfills the same Ca?*-
binding function in other endocrine cells. However, the observation that Ca?* and
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Figure 6. Electron micrographs of negatively stained fragments of rabbit erythrocytes with incorporated
Staphylococcus aureus alpha-toxin. The cylindrical hexameric structure of the toxin is seen in profiles
along the bend edge a ghost membrane in frame A (arrows) and in axial projection in frame B. The
inset of frame B depicts pure, isolated toxin hexamers. Scale bar indicates 100 nm. (Courtesy of J.
Tranum-Jensen, Institute of Anatomy, Department C, University of Cophenhagen, Denmark).

chromogranin A display a colocalization in the periphery of the secretory vesicles
of the pancreatic islet cells is interesting in this context (c.f. Ehrhart ez al. 1986,
Ravazzola et al. 1976).

Thus it appears that one of the physiological functions of chromogranin A is
the formation of a Ca?* complex within the secretory vesicles. In addition,
chromogranin A, when secreted together with the hormones, may play a further
role elsewhere in the body.

CALCIUM AND THE REGULATION OF EXOCYTOTIC MEMBRANE FUSION

The process of membrane fusion during exocytosis is difficult to analyze mainly
because the interacting membrane surfaces are not accessible from the outside of
the cell. Recently, several procedures have been reported which permeabilize the
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Figure 7. Dopamine release from alpha-toxin permeabilized pheochromocytoma cells as a function of
the free Ca?*+ centration. The cells were first loaded with (*H)dopamine. Then they were permeabilized
with alpha-toxin and incubated for 20 min at 37°C in a medium containing the indicated amounts of
free Ca?* (From Ahnert-Hilger er al. 1985, with permission).

plasma membrane of secretory cells while leaving the process of exocytosis
intact. An ideal tool for cell permeabilization is the alpha-toxin produced by
Staphylococcus aureus. This toxin is a water soluble protein of a molecular weight
of about 32 KD. It inserts into the membrane and hexamerizes, forming a stable
transmembrane pore (see Fig. 6; c.f. Bhakdi & Tranum-Jensen 1987). The size of
the pore allows replacement of molecules up to a molecular mass of 1 KD. Thus
most of the substances thought to have a regulatory role in exocytosis can be
easily transferred into the cytoplasm.

Pheochromocytoma and insulinoma cell lines from rat and bovine adrenal
medullary chromaffin cells in primary culture have been successfully permeabil-
ized with alpha-toxin (Ahnert-Hilger et al. 1985a, b, Ahnert-Hilger & Gratzl
1987, Bader et al. 1986, Lind et al. 1987). An absolute requirement for the release
of secretory product observed in alpha-toxin permeabilized cell preparations is
the presence of uM concentrations of free Ca?*. With rat pheochromocytoma
cells (PC12) the Ca?* activation curve was biphasic (see Fig. 7, Ahnert-Hilger et
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Figure 8. ATP requirement of Ca?*-induced noradrenaline release from alpha-toxin permeabilized chro-
maffin cells in primary culture. The cells were first permeabilized with alpha-toxin and then incubated
with a medium containing the indicated amounts of free Ca?* plus or minus 5 mM ATP and 1 mM free
Mg?*+ (From Bader et al. 1986, with permission).

al. 1985a, b, Ahnert-Hilger & Gratzl 1987). A first increase of dopamine release
plateaued at 1-4 uM free Ca**, followed by a second rise responding to higher
Ca?* concentrations. Thus the release of secretory product occurred with the
same concentrations of Ca?* observed in stimulated secretory cells.

Adrenal medullary chromaffin cells were found to require ATP in addition to
Ca?* in order to release catecholamines (Fig. 8; Bader et al. 1986). ATP could not
be replaced by any of the other nucleotides tested (Fig. 9; Bader et al. 1986). The
precise role of ATP in these cells is not known, but it may function as an energy
source for translocation of secretory vesicles towards the plasma membrane. This
translocation is not necessary within the pheochromocytoma cells due to the sub-
plasmalemmal location of their secretory vesicles (see Bader et al. 1986).

In the permeabilized pheochromocytoma cells the Ca**-induced release of
dopamine, while insensitive to ATP, can be potentiated by the presence of Mg+
(Fig. 10; Ahnert-Hilger & Gratzl 1987). This suggests that, besides the specific
effect of Ca?* ions during the interaction of the secretory vesicles with the plasma
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Figure 9. Nucleotide specificity of Ca2*-induced catecholamine release from alpha-toxin permeabilized

chromaffin cells in primary culture. From the nucleotides tested only ATP was effective in supporting
Ca?--induced release of secretory product (From Bader et al. 1986, with permission).

membrane, several further modulatory processes not necessarily linked to the
process of exocytotic membrane fusion may be important. This is in accordance
with the finding that secretory vesicle fusion as a model for exocytosis is solely
dependent on Ca?* and requires no additional substances (Dahl & Gratzl 1976,
Ekerdt et al. 1981, Gratzl & Dahl 1976, 1978, Gratzl et al. 1977).

Ca?*-induced release of catecholamines from alpha-toxin permeabilized pheo-
chromocytoma cells can be modulated via the protein kinase C as well as GTP-
binding proteins (Ahnert-Hilger et al. 1987). The phorbol ester TPA and the
diacylglycerol OAG, which both activate purified protein kinase C, cause an
enhancement of secretion from permeabilized pheochromocytoma cells. GTP-
gamma-S on the other hand inhibits Ca?*-induced release from the same cells.
Since the latter effect is abolished by pretreatment of the cells with pertussis toxin
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Figure 10. Effect of Mg?* on Ca?*-indcued dopamine release from alpha-toxin permeabilized pheochro-
mocytoma cells. *H)dopamine release induced by 10 uM free Ca?+* is observed when 5 mM ATP is
present in addition to 1| mM free Mg?+. However, 1 mM free Mg?+ alone is more potent (From Ahnert-
Hilger & Gratzl 1987, with permission).

G-proteins, probably of the type Gi or Go participate in the regulation of
exocytosis.

Further investigation of the release of secretory product in permeabilized cell
preparations certainly will yield further information on the process of exocytotic
membrane fusion and the preceeding modulatory processes.
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