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Metabolism and Function of Ca2+ in 
Secretory Cells 
Manfred Gratzl 

Interest in the metabolism of Ca2+ by secretory cells has increased since the 
proposal of a key role for Ca2+ in the regulation of exocytosis. The Ca2+ transport 
Systems and Channels present in the plasma membrane have been explored in 
particular detail because many secretory cells make use of extracellular Ca2+ 

during the Stimulation period. In addition, intracellular Systems such as mitochon-
dria or endoplasmic membranes may act either as a source of regulatory Ca2+ 

or as its sink. In any case the collaboration of all the aforementioned Systems 
assures the precise control of intracellular free Ca2+ and consequently the timing 
and extent of exocytosis. 

The hormone-containing vesicles are the most abundant intracellular structures 
within the secretory cells. They have also been found to participate in the Ca2+ 

metabolism of these cells. During the secretory event these vesicles temporarily 
face the extracellular fluid. Thus, unlike the other subcellular structures involved 
in cellular Ca2+ metabolism, they can discharge accumulated Ca2+ into the 
extracellular space. The mechanisms as well as the components of vesicular Ca2+ 

transport Systems have been analyzed in the past few years and will be described 
first. 

The investigation of the function of Ca2+ in exocytosis has been greatly facili-
tated by the development of permeabilized cell preparations. These Systems fill 
the gap between simple liposomes and biological membranes as models for 
exocytotic membrane fusion and the complex Situation seen in intact cells. Alpha-
toxin produced by Staphylococcus aureus is a valuable tool for cell permeabiliz-
ation because it forms a stable pore in the plasma membrane. This toxin does 
not impair the exocytotic processes itself and allows definition of the specific 

Abteilung Anatomie und Zellbiologie der Universität Ulm, Postfach 4066, D-7900 Ulm, Fed. Rep. 
Germany. 
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Figure 1. Ca2+ uptake by secretory vesicles isolated from adrenal medulla. 45Ca2+ uptake was observed 
only in a medium containing potassium ( • - • ) and not in a medium containing sodium ( O - O ) . (From 
Krieger-Brauer & Gratzl 1982, with permission). 

intracellular requirements for exocytosis in different secretory cells. The role 
played by regulatory and modulatory substances during exocytosis is the subject 
of the second part of this communication. 

ON THE MECHANISM A N D THE COMPONENTS OF THE CALCIUM TRANSPORT SYSTEM 
PRESENT IN SECRETORY VESICLES 
The crucial Observation in the analysis of the mechanism of Ca2+ uptake by 
chromaffin vesicles was its complete inhibition by extravesicular sodium (Fig. 1; 
Krieger-Brauer & Gratzl 1981, 1982). These vesicles normally contain large 
amounts of sodium (about 50 mM). Reduction of the sodium gradient by addition 
of increasing amounts of sodium to the extravesicular medium gradually decreases 
Ca2+ uptake by these vesicles. The data were found to be consistent with a carrier 
System exchanging 2 sodium ions against 1 calcium ion during one cycle (Krieger-
Brauer & Gratzl 1982). The ion carrier in the chromaffin vesicle membrane was 
further analyzed using chromaffin vesicle ghosts (Phillips 1981, Krieger-Brauer & 
Gratzl 1983). When these ghosts were loaded with sodium a rapid (Vmax=14.5 
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Figure 2. Ion specificity of the Ca2+ uptake across the chromaffin vesicle membrane. Vesicles loaded 
with sodium ( O ) take up 45Ca2+ from a medium containing 1.4 ptM free Ca2+ . Potassium. lithium or 
choline can not replace sodium (From Krieger-Brauer & Gratzl 1983, with permission). 

nmol x min - 1 x mg protein - !) uptake of Ca2+ was observed. Since other ions such 
as Li+ , K+ , or choline could not replace N a + , it was concluded that only a N a + 

gradient can serve as a driving force for Ca2+ uptake (Fig. 2; Krieger-Brauer & 
Gratzl 1983). A further activity, perhaps catalyzed by the same carrier, is a 
Ca2+/Ca2+ exchange or Ca2+/Sr2+ exchange. This may be the reason for the 
inhibition of Ca2+ uptake by Sr2+ described by several groups (Kostron et al. 1977, 
Phillips 1981, Krieger-Brauer & Gratzl 1981, 1982). The Ca2+/Ca2+ exchange was 
found to be completely abolished by extravesicular Mg2+ at normal intracellular 
concentrations. This indicates that vesicular uptake of Ca2+, rather than Ca2+/ 
Ca2+ exchange, is the physiologically relevant activity of this carrier System. Since 
the Km for Ca2+ uptake is about 0.3 JJM, the vesicles can take up Ca2+ from 
media containing Ca2+ in concentrations found in resting or stimulated secretory 
cells. A Ca2+ transport System with almost identical properties has been described 
for the secretory vesicles from the neurohypophysis (Saermark et al. 1983a, b). 
This carrier exchanges 2 N a + for 1 Ca2+, and takes up Ca2+ half maximal from 
media containing 0.7 fiM free Ca2+. 

Inversion of the N a + gradient across the secretory vesicle membrane results in 
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Figure 3. Determination of matrix free Ca2+ in isolated secretory vesicles from bovine adrenal medulla. 
Addition of the ionophor A23187 to isolated chromaffin vesicles suspended in media containing free 
Ca2* higher than 0.2 results in a immediate Ca2+ uptake (a). The proton gradient across the 
chromaffin vesicle membrane which acts as a driving force for ionophore-mediated Ca2+ uptake can be 
collapsed by NH4CI. Under these conditions Ca2+ uptake ceases at approximately 4 jiM (b), indicating 
that free Ca 2 - is the same within the vesicles and in the surrounding medium (Reprinted with permission 
from Biochemistry, Bulenda & Gratzl, 24, 7760-7765, Copyright 1985, American Chemical Society). 

release of Ca2+ from the vesicles. It is interesting to note that intact secretory 
vesicles never completely release Ca2+, whereas secretory vesicle ghosts can release 
total Ca2+ (Krieger-Brauer & Gratzl 1982, 1983). One would expect that addition 
of the Ca2+ ionophor A23187 would result in the release of Ca2+ from any 
vesicular structure. However, while Ca2+ efflux from vesicle ghosts does indeed 
occur upon addition of A23187, intact chromaffin vesicles instead act to take up 
large amounts of Ca2+ (Fig. 3a; Krieger-Brauer & Gratzl 1982, 1983). The latter 
Observation is in accordance with the incomplete release of Ca2+ from intact 
chromaffin vesicles upon Inversion of the N a + gradient, suggesting that Ca2+ may 
be in a bound State within these vesicles. Finally, calculations on the energetics of 
the Na+ /Ca2 + exchange point to the possibility that only a small amount of Ca2+ 

present in the chromaffin vesicles is in the free State. 
Binding of Ca2+ within chromaffin vesicles has been proved during Ca2+ flux 

experiments (Bulenda & Gratzl 1985). After balancing all gradients of ions which 
may be transported by the ionophor A23187, Ca2+ uptake should occur when 
the free Ca2+ concentration is higher outside the vesicles and release should occur 
when the vesicle Ca2+ concentration is higher than in the medium. At the Ca2+ 
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Figure 4. Ca2+ Dinding to purified chromogranin A. Chromogranin A after sodiumdodecyl sulfate-
polyacrylamide gel electrophoresis was stained with a carbocyanine dye ("Stains-all") which interacts 
also with other Ca2+-binding proteins (lane A). Following blotting onto nitrocellulose and incubation 
with 45Ca2+ the 74 kD band of chromogranin A was labelled (lane C). Lane B gives the protein 
stain with amido black and lane D the molecular weight Standards (Reprinted with permission from 
Biochemistry, Reiffen & Gratzl, 25, 4402-4406, Copyright 1986, American Chemical Society). 

concentration at which no net flux occurs, measurements with a Ca2+-specific 
electrode indicate that the intravesicular free Ca2+ equals the extravesicular free 
Ca2+ (Fig. 3b). In these and additional experiments it was found that most of 
the Ca2+ present within chromaffin vesicles is bound (usually 80 nmol/mg of 
protein which amounts to about 40 mM Ca2+) leaving only 4 juM free Ca2+ in 
the secretory vesicle matrix (Bulenda & Gratzl 1985). 

Within the chromaffin vesicles Ca2+ can be bound to ATP and/or chromogranin 
A. Chromogranin A specifically interacts with a carbocyanin dye ("stains all"), 
which binds also to other well known Ca2+ binding proteins, as well as with Ca2+ 

itself (Fig. 4; Reiffen & Gratzl 1986a, b). In media mimicking the intravesicular 
fluid (with respect to ionic strength, presence of Mg2 + , pH 6) the affmities of 



METABOLISM A N D FUNCTION OF Ca2+ 369 

Figure 5. Presence of chromogranin A in the adrenal medulla and the pancretic islet. Both the catecholam-
ine-containing vesicles of chromaffin cells (A) and the insulin-containing vesicles of the B cell of the 
pancreatic islet (B) exhibit chromogranin A immunoreactivity (protein A-gold technique). Scale bar 
indicates 1 pm. (Courtesy of M. Ehrhart, Abteilung Anatomie und Zellbiologie der Universität Ulm, 
GFR). 

ATP and chromogranin A for Ca2+ indeed are very similar. Thus it appears that 
small changes in the matrix composition (e.g. in the intravesicular pH due to the 
proton translocating ATPase) can determine whether Ca2+ is bound preferentially 
to ATP or to the matrix protein chromogranin A. 

Interestingly enough, chromogranin A also occurs in other endocrine cells as 
well as the chromaffin cells (see Fig. 5, c.f Cohn et al. 1982, O'Connor et al. 
1983). In the pancreatic islet cells chromogranin A has been detected not only 
within the same cells but also within the same vesicles as the established hormones 
(Ehrhart et al. 1986). The presence of chromogranin A and related proteins has 
been confirmed in immunoblots of pancreas extracts (Yoshie et al. 1987, Ehrhart 
et al. 1988). It is not clear whether chromogranin A fulfills the same Ca2+-
binding function in other endocrine cells. However, the Observation that Ca2+ and 
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Figure 6. Electron micrographs of negatively stained fragments of rabbit erythrocytes with incorporated 
Staphylococcus aureus alpha-toxin. The cylindrical hexameric structure of the toxin is seen in profiles 
along the bend edge a ghost membrane in frame A (arrows) and in axial projection in frame B. The 
inset of frame B depicts pure, isolated toxin hexamers. Scale bar indicates 100 nm. (Courtesy of J. 
Tranum-Jensen, Institute of Anatomy, Department C, University of Cophenhagen, Denmark). 

chromogranin A display a colocalization in the periphery of the secretory vesicles 
of the pancreatic islet cells is interesting in this context (c.f Ehrhart et al 1986, 
Ravazzola et al. 1976). 

Thus it appears that one of the physiological functions of chromogranin A is 
the formation of a Ca2+ complex within the secretory vesicles. In addition, 
chromogranin A, when secreted together with the hormones, may play a further 
role elsewhere in the body. 

CALCIUM A N D THE REGULATION OF EXOCYTOTIC M E M B R A N E FUSION 
The process of membrane fusion during exocytosis is difficult to analyze mainly 
because the interacting membrane surfaces are not accessible from the outside of 
the cell. Recently, several procedures have been reported which permeabilize the 
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Figure 7. Dopamine release from alpha-toxin permeabilized pheochromocytoma cells as a function of 
the free Ca2+ centration. The cells were first loaded with (3H)dopamine. Then they were permeabilized 
with alpha-toxin and incubated for 20 min at 37 °C in a medium containing the indicated amounts of 
free Ca2+ (From Ahnert-Hilger et al. 1985, with permission). 

plasma membrane of secretory cells while leaving the process of exocytosis 
intact. An ideal tool for cell permeabilization is the alpha-toxin produced by 
Staphylococcus aureus. This toxin is a water soluble protein of a molecular weight 
of about 32 KD. It inserts into the membrane and hexamerizes, forming a stable 
transmembrane pore (see Fig. 6; c.f. Bhakdi & Tranum-Jensen 1987). The size of 
the pore allows replacement of molecules up to a molecular mass of 1 KD. Thus 
most of the substances thought to have a regulatory role in exocytosis can be 
easily transferred into the cytoplasm. 

Pheochromocytoma and insulinoma cell lines from rat and bovine adrenal 
medullary chromaffin cells in primary culture have been successfully permeabil­
ized with alpha-toxin (Ahnert-Hilger et al. 1985a, b, Ahnert-Hilger & Gratzl 
1987, Bader et al. 1986, Lind et al. 1987). An absolute requirement for the release 
of secretory product observed in alpha-toxin permeabilized cell preparations is 
the presence of /iM concentrations of free Ca2+. With rat pheochromocytoma 
cells (PC12) the Ca2+ activation curve was biphasic (see Fig. 7, Ahnert-Hilger et 
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Figure 8. ATP requirement of Ca2+-induced noradrenaline release from alpha-toxin permeabilized chro-
maffin cells in primary culture. The cells were first permeabilized with alpha-toxin and then incubated 
with a medium containing the indicated amounts of free Ca2+ plus or minus 5 mM ATP and 1 mM free 
Mg2+ (From Bader et al. 1986, with permission). 

al. 1985a, b, Ahnert-Hilger & Gratzl 1987). A first increase of dopamine release 
plateaued at 1-4 //M free Ca2+, followed by a second rise responding to higher 
Ca2+ concentrations. Thus the release of secretory product occurred with the 
same concentrations of Ca2+ observed in stimulated secretory cells. 

Adrenal medullary chromaffin cells were found to require ATP in addition to 
Ca2+ in order to release catecholamines (Fig. 8; Bader et al. 1986). ATP could not 
be replaced by any of the other nucleotides tested (Fig. 9; Bader et al. 1986). The 
precise role of ATP in these cells is not known, but it may function as an energy 
source for translocation of secretory vesicles towards the plasma membrane. This 
translocation is not necessary within the pheochromocytoma cells due to the sub-
plasmalemmal location of their secretory vesicles (see Bader et al 1986). 

In the permeabilized pheochromocytoma cells the Ca2+-induced release of 
dopamine, while insensitive to ATP, can be potentiated by the presence of Mg2+ 

(Fig. 10; Ahnert-Hilger & Gratzl 1987). This suggests that, besides the specific 
effect of Ca2+ ions during the interaction of the secretory vesicles with the plasma 
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Figure 9. Nucleotide specificity of Ca2+-induced catecholamine release from alpha-toxin permeabilized 
chromaffin cells in primary culture. From the nucleotides tested only ATP was effective in supporting 
Ca2+-induced release of secretory product (From Bader et al. 1986, with permission). 

membrane, several further modulatory processes not necessarily linked to the 
process of exocytotic membrane fusion may be important. This is in accordance 
with the flnding that secretory vesicle fusion as a model for exocytosis is solely 
dependent on Ca2+ and requires no additional substances (Dahl & Gratzl 1976, 
Ekerdt et al 1981, Gratzl & Dahl 1976, 1978, Gratzl et al 1977). 

Ca2+-induced release of catecholamines from alpha-toxin permeabilized pheo­
chromocytoma cells can be modulated via the protein kinase C as well as GTP-
binding proteins (Ahnert-Hilger et al 1987). The phorbol ester TPA and the 
diacylglycerol OAG, which both activate purified protein kinase C, cause an 
enhancement of secretion from permeabilized pheochromocytoma cells. GTP-
gamma-S on the other hand inhibits Ca2+-induced release from the same cells. 
Since the latter effect is abolished by pretreatment of the cells with pertussis toxin 
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Figure 10. Effect of Mg2 + on Ca2+-indcued dopamine release from alpha-toxin permeabilized pheochro­
mocytoma cells. (3H)dopamine release induced by 10 ßM free Ca2+ is observed when 5 mM ATP is 
present in addition to 1 mM free Mg2 + . However, 1 mM free Mg2 + alone is more potent (From Ahnert-
Hilger & Gratzl 1987, with permission). 

G-proteins, probably of the type Gi or Go participate in the regulation of 
exocytosis. 

Further investigation of the release of secretory product in permeabilized cell 
preparations certainly will yield further information on the process of exocytotic 
membrane fusion and the preceeding modulatory processes. 
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