

THE ALFRED BENZON FOUNDATION
55 Østbanegade, DK-2100 Copenhagen Ø, Denmark

TRUSTEES OF THE FOUNDATION

VINCENT PETERSEN, Former Director of Kryolitselskabet Øresund, Chairman
JOHS. PETERSEN, Chairman of the Board of Nordisk Fjerfabrik A/S, Vice Chairman
JØRN HESS THAYSEN, Professor, Dr. med., University of Copenhagen
HELMER KOFOD, Professor, Dr. phil., Royal Danish School of Pharmacy
ALLAN PHILIP, Professor, Dr. jur., Barrister

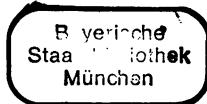
GENERAL EDITOR OF THE SYMPOSIA

JØRN HESS THAYSEN, Professor, Dr. med.

MOLECULAR MECHANISMS IN SECRETION

*Proceedings of the Alfred Benzon Symposium 25 held at the premises of
the Royal Danish Academy of Sciences and Letters.
Copenhagen 21–25 June 1987*

EDITED BY


NIELS A. THORN
MAREK TREIMAN
OLE H. PETERSEN

Published by
Munksgaard, Copenhagen

Distributed in Japan by
Nankodo, Tokyo

Copyright© 1988, Alfred Benzon Foundation, Copenhagen, Denmark
All rights reserved

Printed in Denmark by P. J. Schmidts Bogtrykkeri, Vojens
ISBN 87-16-06953-6
ISSN 0105-3639

Contents

LIST OF PARTICIPANTS

Introduction	13
I ION CHANNELS AND SECRETION	
Anion Transport Pathways in Frog Skin Epithelium by H. H. USSING	17
<i>Discussion</i>	28
Regulation of Insulin-Secreting Cells by Control of Potassium Ion Channels by O. H. PETERSEN & M. J. DUNNE	30
<i>Discussion</i>	42
Regulation of the Electrical Activity of an Identified Neurosecretory Cell by IRWIN B. LEVITAN, RICHARD H. KRAMER & EDWIN S. LEVITAN	46
<i>Discussion</i>	61
Calcium Channels, Calcium Stores and Norepinephrine Release in Sympathetic Neurons by R. W. TSIEN, A. P. FOX, L. D. HIRNING, D. LIPSCOMB, D. V. MADISON, E. W. MCCLESKEY, R. J. MILLER, M. POENIE, H. REUTER, S. A. THAYER & R. Y. TSIEN	66
<i>Discussion</i>	85
Ion Transport Pathways in Oxytic Cells by G. SACHS, S. J. HERSEY, D. LOO, S. UEDA, B. WALLMARK & S. MUALLEM	89
Inositol Polyphosphates and Calcium in the Control of K^+ Currents in Salivary and Lacrimal Acinar Cells by D. V. GALLACHER, A. P. MORRIS & O. H. PETERSEN	99
<i>Discussion</i>	111
<i>General Discussion</i>	115
Second Messenger Oscillations and Cellular Control by MICHAEL J. RIDGE	117
<i>Discussion</i>	120
Ca-Dependent Currents in Exocrine Glands by A. MARTY, I. LLANO & J. TANGUY	122
<i>Discussion</i>	130

Patch-Clamp Studies of the Electrolyte Secretory Mechanism of Rat Mandibular Gland Cells Stimulated with Acetylcholine or Isoproterenol by D. I. COOK, G. B. GARD, M. CHAMPION & J. A. YOUNG	133
<i>Discussion</i>	146
Is Receptor-Activated Chloride Transport in Parotid Acini Controlled by the Cytosolic, Free Calcium Concentration? by JØRGEN HEDEMARK POULSEN, STEEN DISSING & BIRGITTE NAUNTOFTE	152
<i>Discussion</i>	165
II RECEPTORS AND SECOND MESSENGER SYSTEMS IN CONTROL OF SECRETION	
Proton-Dependent Ca^{2+} Uptake into Inositol 1,4,5-Trisphosphate-Sensitive Endoplasmic Reticulum from Rat Salivary Glands by I. SCHULZ, F. THÉVENOD, T. P. KEMMER & H. P. STREB	171
<i>Discussion</i>	186
Intracellular Factors Controlling Exocytosis by D. E. KNIGHT	192
<i>Discussion</i>	207
Regulation of Prolactin Secretion and Synthesis by Peptide Hormones in Cultured Rat Pituitary Cells by KAARE M. GAUTVIK, TRINE BJØRØ, KJERSTI SLETHOLT, BJØRN CHR. ØSTBERG, OLAV SAND, PETTER TORJESEN, JAN GORDELADZE, JENS-GUSTAV IVERSEN & EIGIL HAUG	211
<i>Discussion</i>	228
Dopamine Receptors in the Posterior Pituitary Gland by MAREK TREIMAN, STANISLAW ZOLNIEROWICZ, KAREN ALLESØE & PETER H. ANDERSEN	230
<i>Discussion</i>	244
Intracellular Ca^{2+} , GTP and ATP as Effectors and Modulators of Exocytic Secretion from Rat Mast Cells by B. D. GOMPERTS, S. COCKCROFT, T. W. HOWELL & P. E. R. TATHAM	248
<i>Discussion</i>	259
The Influence of Intracellular Calcium Concentration on the Secretory Response of Mast Cells by ERWIN NEHER & REINHOLD PENNER	262
<i>Discussion</i>	271
<i>General Discussion</i>	274
GTP, Inositol 1,4,5-Trisphosphate, and Calcium Movements within Cells by DONALD L. GILL, SHEAU-HUEI CHUEH & JULIENNE M. MULLANEY	277
<i>Discussion</i>	295

Role of Intracellular Calcium and Protein Kinase C in Pancreatic Acinar Cell Secretion by JOHN A. WILLIAMS, CHIN K. SUNG, EDWARD L. STUENKEL & SETH R. HOOTMAN	297
<i>Discussion</i>	309
Roles of Mitochondria in Stimulus-Secretion Coupling in Pancreatic Acinar Cells by TOMIO KANNO	315
<i>Discussion</i>	324
The Role of Polyamines in Protein Phosphorylation and Insulin Secretion in Mouse Pancreatic Islets by CARL J. HEDESKOV, PETER THAMS, TARIQ MALIK & KIRSTEN CAPITO	327
<i>Discussion</i>	342
III NEW ASPECTS OF BIOGENESIS, STRUCTURE AND FUNCTION OF SECRETORY ORGANELLES	
Catecholamine-Storing Cells Secrete a Blended Mixture of Catecholamines, Neuropeptides and Chromogranins by HANS WINKLER, REINER FISCHER-COLBRIE, MARIA SCHOBER, SUZANNE RIEKER & ROSA WEILER	347
<i>Discussion</i>	360
Metabolism and Function of Ca^{2+} in Secretory Cells by MANFRED GRATZL	364
<i>Discussion</i>	377
Biosynthesis, Structure and Function of the Secretogranins/Chromogranins by WIELAND B. HUTTNER, ULRICH M. BENEDUM & PATRIZIA ROSA	380
<i>Discussion</i>	390
Microtubule-Based Mobility Proteins and Sorting of Vesicles in Neurons by RONALD D. VALE	397
<i>Discussion</i>	407
Protein Components and Neurotransmitter Uptake in Brain Synaptic Vesicles by REINHARD JAHN & PETER R. MAYCOX	411
<i>Discussion</i>	425
<i>General Discussion</i>	428
Small Synaptic Vesicles and Large Dense-Core Vesicles of Neurons are Related to Two Distinct Types of Vesicles of Endocrine Cells by FRANCESCA NAVONE, GIUSEPPE DI GIOIA, MICHELA MATTEOLI & PIETRO DE CAMILLI	433
<i>Discussion</i>	451

IV BIOGENESIS OF SIGNAL SUBSTANCES IN GRANULES, GENOMIC AND POST-GENOMIC CONTROL OF SECRETORY ACTIVITY

Post-Translational Protein Translocation by WILLIAM J. HANSEN & PETER WALTER	459
<i>Discussion</i>	474
Cell-Specific Alternative Processing of Proglucagon by JOEL F. HABENER, SVETLANA MOJSOV, DANIEL J. DRUCKER, JACQUES PHILIPPE & GORDON C. WEIR	476
<i>Discussion</i>	490
Tissue-Specific Processing of Procholecystokinin and Progastrin by JENS F. REHFELD, LINDA BARDRAM, PER CANTOR, LINDA HILSTED & NIELS MOGENSEN	493
<i>Discussion</i>	503
Pro-Opiomelanocortin Peptide Secretion from Anterior and Intermediate Lobe: Effect of Pre-Translational and Post-Translation Events by HUDA AKIL, ELIZABETH A. YOUNG & STANLEY J. WATSON	507
<i>Discussion</i>	521
Processing of Pro-Opiomelanocortin and Other Peptide Precursors by Unique, Secretory Vesicle Enzymes by Y. PENG LOH	525
<i>Discussion</i>	540
Characterizing Neuropeptide Signaling Pathways by DIETMAR RICHTER, STEVEN D. MORLEY, JÜRGEN SCHWARZ & WOLFGANG MEYERHOF	544
<i>Discussion</i>	552
Role of Ascorbic Acid, Metal Ions and Hormones in Regulation of Proces- sing Enzymes for Bioactive Peptides by N. A. THORN, C. K. JEPPESEN, F. S. NIELSEN, T. MATSUMOTO, A. ZHOU & O. FARVER	554
<i>Discussion</i>	568

V EFFECTOR PROTEINS IN SECRETION

Calcium-Dependent Membrane-Binding Proteins as Effectors of Secretion in Mammalian and Fungal Cells by CARL E. CREUTZ, DEBRA S. DRUST, WILLIAM H. MARTIN, NICHOLAS G. KAMBOURIS, SANDRA L. SNYDER & HELEN C. HAMMAN	575
<i>Discussion</i>	591

Annexins – A New Family of Ca^{2+} -Regulated Phospholipid-Binding Proteins by MICHAEL J. GEISOW, JOHN H. WALKER, CATHERINE BOUSTEAD & WILLIE TAYLOR	596
<i>Discussion</i>	609
Control of the Cytoskeleton during Secretion by ROBERT D. BURGOYNE, TIMOTHY R. CHEEK, ANTONY J. O'SULLIVAN & R. CLIVE RICHARDS	612
<i>Discussion</i>	628
Calmodulin and the Cytoskeleton in Secretion by J.-M. TRIFARÓ, S. FOURNIER & J.-P. DOUCET	632
<i>Discussion</i>	652
Calmodulin Regulates Cell Cycle Progression and Gene Expression by COLIN D. RASMUSSEN & ANTHONY R. MEANS	655
<i>Discussion</i>	663
Subject Index	666

List of Participants

HUDA AKIL

Department of Psychiatry
Mental Research Institute
University of Michigan
Ann Arbor, Michigan 48109-0010
U.S.A.

M. J. BERRIDGE

Department of Zoology
AFRC Unit of Insect Neurophysiology and
Pharmacology
Downing Street
Cambridge CB2 2EJ
U.K.

R. D. BURGOYNE

The Physiological Laboratory
University of Liverpool
P.O. Box 147
Liverpool L69 3BX
U.K.

C. E. CREUTZ

Department of Pharmacology
University of Virginia
Charlottesville, Virginia 22908
U.S.A.

D. V. GALLACHER

The Physiological Laboratory
The University of Liverpool
P.O. Box 147
Liverpool L69 3BX
U.K.

K. GAUTVIK

Institutt for medisinsk biokjemi
Universitetet Oslo
Postboks 1112
Blindern, Oslo 3
Norway

M. J. GEISOW

Delta Biotechnology Ltd.
Castle Court
Castle Boulevard
Nottingham NG7 1FD
U.K.

D. L. GILL

Department of Biological Chemistry
University of Maryland School of Medicine
660 West Redwood Street
Baltimore, Maryland 21201
U.S.A.

B. D. GOMPERTS

Department of Experimental Pathology
University College London
London WC1E 6JJ
U.K.

M. GRATZL

Abteilung klinische Morphologie der
Universität Ulm
Postfach 4066
D-7900 Ulm
F.R.G.

J. F. HABENER

Harvard Medical School
Laboratory of Molecular Endocrinology
Massachusetts General Hospital
Boston, Massachusetts 02114
U.S.A.

C. J. HEDESKOV

Institute of Biochemistry A
University of Copenhagen
The Panum Institute
Blegdamsvej 3c
DK-2200 Copenhagen N
Denmark

J. HESS THAYSEN
Department of Medicine P
Rigshospitalet
Blegdamsvej 9
DK-2100 Copenhagen Ø
Denmark

W. B. HUTTNER
EMBL
Postfach 102209
D-6900 Heidelberg
F.R.G.

R. JAHN
Abteilung Neurochemie
Max-Planck-Institut für Psychiatrie
Am Klopferspitz 18A
D-8033 Planegg-Martinsried
F.R.G.

T. KANNO
Faculty of Veterinary Medicine
Hokkaido University
Sapporo
060 Japan

D. KNIGHT
King's College London
Strand
London WC2R 2LS
U.K.

I. B. LEVITAN
Graduate Department of Biochemistry
Brandeis University
Waltham, Massachusetts 02254
U.S.A.

Y. PENG LOH
Laboratory of Neurochemistry and
Neuroimmunology
National Institute of Child Health & Human
Development
National Institutes of Health, Bld. 36
Bethesda – Maryland 20892
U.S.A.

A. MARTY
Laboratoire de Neurobiologie

École Normale Supérieure
46, rue d'Ulm
F-75005 Paris
France

A. R. MEANS
Department of Cell Biology
Baylor College of Medicine
Houston, Texas 77030
U.S.A.

F. NAVONE
Center of Cytopharmacology and Department
of Pharmacology
University of Milan
Via Vanvitelli 32
20129 Milan
Italy

E. NEHER
Max-Planck-Institut für biophysikalische
Chemie
Am Fassberg
Postfach 2841
D-3400 Göttingen
F.R.G.

O. H. PETERSEN
The Physiological Laboratory
The University of Liverpool
P.O. Box 147
Liverpool L69 3X
U.K.

J. HEDEMARK POULSEN
Department of General Physiology and
Biophysics
University of Copenhagen
The Panum Institute
Blegdamsvej 3c
DK-2200 Copenhagen N
Denmark

J. F. REHFELD
Department of Clinical Chemistry
Rigshospitalet
Blegdamsvej 9
DK-2100 Copenhagen Ø
Denmark

D. RICHTER
Institut für Zellbiochemie und klinische
Neurobiologie
Universität Hamburg
Martinistraße 52
D-2200 Hamburg 20
F.R.G.

G. SACHS
Center for Ulcer Research and Education
Veterans Administration Center
Building 115, Room 203
Los Angeles, California 90073
U.S.A.

I. SCHULZ
Max-Planck-Institut für Biophysik
Kennedyallee 20
D-6000 Frankfurt am Main 70
F.R.G.

N. A. THORN
Department of Medical Physiology C
University of Copenhagen
The Panum Institute
Blegdamsvej 3c
DK-2200 Copenhagen N
Denmark

M. TREIMAN
Department of Medical Physiology C
University of Copenhagen
The Panum Institute
Blegdamsvej 3c
DK-2200 Copenhagen N
Denmark

J.-M. TRIFARO
Department of Pharmacology
School of Medicine
University of Ottawa
451 Smyth
Ottawa, Ontario
Canada K1H 8M5

R. W. TSIEN
Department of Physiology
Yale University School of Medicine

B-106 SHM
Cedar Street 333
New Haven, Connecticut 06510-8026
U.S.A.

H. H. USSING
Department of Biological Chemistry A
The August Krogh Institute
Universitetsparken 13
DK-2100 Copenhagen Ø
Denmark

R. D. VALE
Department of Pharmacology
School of Medicine
University of California San Francisco
San Francisco, California 94143
U.S.A.

P. WALTER
Department of Biochemistry & Biophysics
University of California
School of Medicine
San Francisco, California 94143
U.S.A.

H. WINKLER
Pharmakologisches Institut
Universität Innsbruck
Peter Mayer Strasse 1
A-6020 Innsbruck
Austria

J. A. WILLIAMS
Department of Physiology
University of California San Francisco
San Francisco, California 94143
U.S.A.

J. A. YOUNG
Department of Physiology
University of Sydney
Anderson Stuart Building (F13)
N.S.W. 2006
Australia

Metabolism and Function of Ca^{2+} in Secretory Cells

Manfred Gratzl

Interest in the metabolism of Ca^{2+} by secretory cells has increased since the proposal of a key role for Ca^{2+} in the regulation of exocytosis. The Ca^{2+} transport systems and channels present in the plasma membrane have been explored in particular detail because many secretory cells make use of extracellular Ca^{2+} during the stimulation period. In addition, intracellular systems such as mitochondria or endoplasmic membranes may act either as a source of regulatory Ca^{2+} or as its sink. In any case the collaboration of all the aforementioned systems assures the precise control of intracellular free Ca^{2+} and consequently the timing and extent of exocytosis.

The hormone-containing vesicles are the most abundant intracellular structures within the secretory cells. They have also been found to participate in the Ca^{2+} metabolism of these cells. During the secretory event these vesicles temporarily face the extracellular fluid. Thus, unlike the other subcellular structures involved in cellular Ca^{2+} metabolism, they can discharge accumulated Ca^{2+} into the extracellular space. The mechanisms as well as the components of vesicular Ca^{2+} transport systems have been analyzed in the past few years and will be described first.

The investigation of the function of Ca^{2+} in exocytosis has been greatly facilitated by the development of permeabilized cell preparations. These systems fill the gap between simple liposomes and biological membranes as models for exocytotic membrane fusion and the complex situation seen in intact cells. Alpha-toxin produced by *Staphylococcus aureus* is a valuable tool for cell permeabilization because it forms a stable pore in the plasma membrane. This toxin does not impair the exocytotic processes itself and allows definition of the specific

Abteilung Anatomie und Zellbiologie der Universität Ulm, Postfach 4066, D-7900 Ulm, Fed. Rep. Germany.

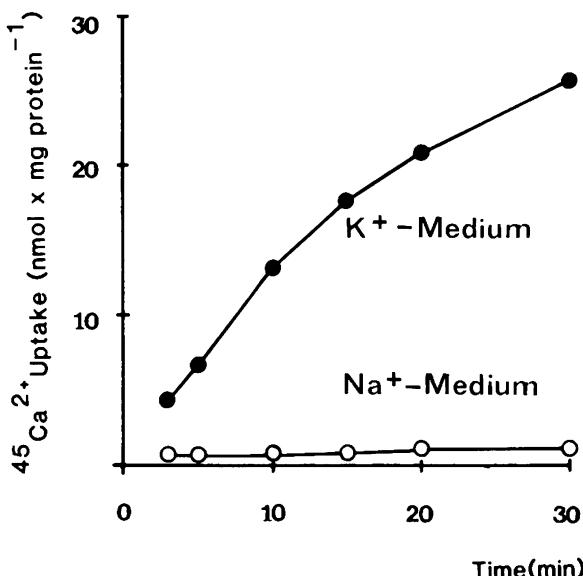


Figure 1. Ca^{2+} uptake by secretory vesicles isolated from adrenal medulla. $^{45}\text{Ca}^{2+}$ uptake was observed only in a medium containing potassium (●—●) and not in a medium containing sodium (○—○). (From Krieger-Brauer & Gratzl 1982, with permission).

intracellular requirements for exocytosis in different secretory cells. The role played by regulatory and modulatory substances during exocytosis is the subject of the second part of this communication.

ON THE MECHANISM AND THE COMPONENTS OF THE CALCIUM TRANSPORT SYSTEM PRESENT IN SECRETORY VESICLES

The crucial observation in the analysis of the mechanism of Ca^{2+} uptake by chromaffin vesicles was its complete inhibition by extravesicular sodium (Fig. 1; Krieger-Brauer & Gratzl 1981, 1982). These vesicles normally contain large amounts of sodium (about 50 mM). Reduction of the sodium gradient by addition of increasing amounts of sodium to the extravesicular medium gradually decreases Ca^{2+} uptake by these vesicles. The data were found to be consistent with a carrier system exchanging 2 sodium ions against 1 calcium ion during one cycle (Krieger-Brauer & Gratzl 1982). The ion carrier in the chromaffin vesicle membrane was further analyzed using chromaffin vesicle ghosts (Phillips 1981, Krieger-Brauer & Gratzl 1983). When these ghosts were loaded with sodium a rapid ($V_{\text{max}} = 14.5$

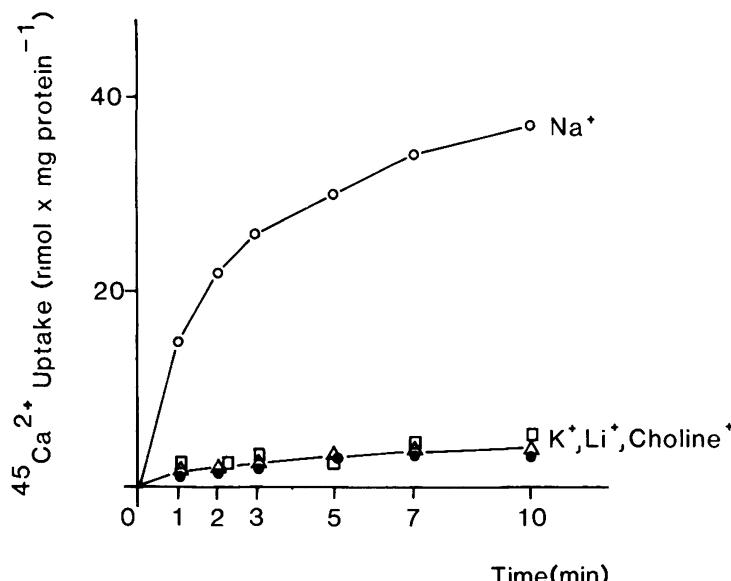


Figure 2. Ion specificity of the Ca^{2+} uptake across the chromaffin vesicle membrane. Vesicles loaded with sodium (○) take up $^{45}\text{Ca}^{2+}$ from a medium containing $1.4 \mu\text{M}$ free Ca^{2+} . Potassium, lithium or choline can not replace sodium (From Krieger-Brauer & Gratzl 1983, with permission).

$\text{nmol} \times \text{min}^{-1} \times \text{mg protein}^{-1}$) uptake of Ca^{2+} was observed. Since other ions such as Li^+ , K^+ , or choline could not replace Na^+ , it was concluded that only a Na^+ gradient can serve as a driving force for Ca^{2+} uptake (Fig. 2; Krieger-Brauer & Gratzl 1983). A further activity, perhaps catalyzed by the same carrier, is a $\text{Ca}^{2+}/\text{Ca}^{2+}$ exchange or $\text{Ca}^{2+}/\text{Sr}^{2+}$ exchange. This may be the reason for the inhibition of Ca^{2+} uptake by Sr^{2+} described by several groups (Kostron *et al.* 1977, Phillips 1981, Krieger-Brauer & Gratzl 1981, 1982). The $\text{Ca}^{2+}/\text{Ca}^{2+}$ exchange was found to be completely abolished by extravesicular Mg^{2+} at normal intracellular concentrations. This indicates that vesicular uptake of Ca^{2+} , rather than $\text{Ca}^{2+}/\text{Ca}^{2+}$ exchange, is the physiologically relevant activity of this carrier system. Since the K_m for Ca^{2+} uptake is about $0.3 \mu\text{M}$, the vesicles can take up Ca^{2+} from media containing Ca^{2+} in concentrations found in resting or stimulated secretory cells. A Ca^{2+} transport system with almost identical properties has been described for the secretory vesicles from the neurohypophysis (Saermark *et al.* 1983a, b). This carrier exchanges 2 Na^+ for 1 Ca^{2+} , and takes up Ca^{2+} half maximal from media containing $0.7 \mu\text{M}$ free Ca^{2+} .

Inversion of the Na^+ gradient across the secretory vesicle membrane results in

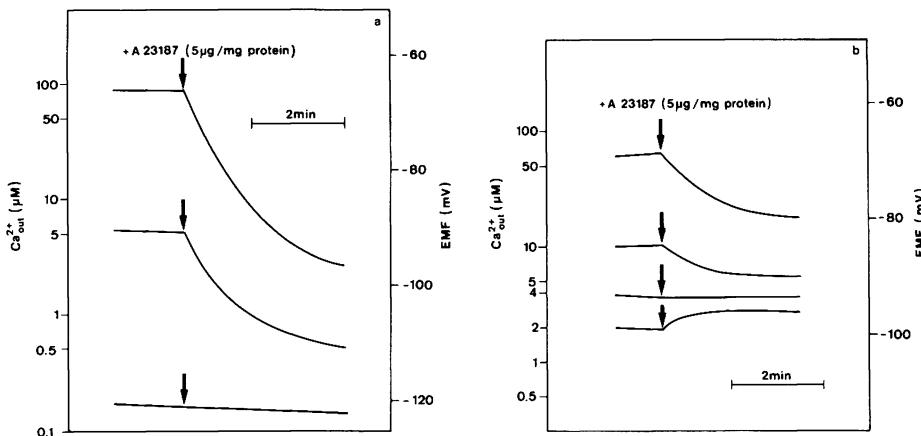


Figure 3. Determination of matrix free Ca^{2+} in isolated secretory vesicles from bovine adrenal medulla. Addition of the ionophor A23187 to isolated chromaffin vesicles suspended in media containing free Ca^{2+} higher than $0.2 \mu\text{M}$ results in a immediate Ca^{2+} uptake (a). The proton gradient across the chromaffin vesicle membrane which acts as a driving force for ionophore-mediated Ca^{2+} uptake can be collapsed by NH_4Cl . Under these conditions Ca^{2+} uptake ceases at approximately $4 \mu\text{M}$ (b), indicating that free Ca^{2+} is the same within the vesicles and in the surrounding medium (Reprinted with permission from Biochemistry, Bulenda & Gratzl, 24, 7760-7765, Copyright 1985, American Chemical Society).

release of Ca^{2+} from the vesicles. It is interesting to note that intact secretory vesicles never completely release Ca^{2+} , whereas secretory vesicle ghosts can release total Ca^{2+} (Krieger-Brauer & Gratzl 1982, 1983). One would expect that addition of the Ca^{2+} ionophor A23187 would result in the release of Ca^{2+} from any vesicular structure. However, while Ca^{2+} efflux from vesicle ghosts does indeed occur upon addition of A23187, intact chromaffin vesicles instead act to take up large amounts of Ca^{2+} (Fig. 3a; Krieger-Brauer & Gratzl 1982, 1983). The latter observation is in accordance with the incomplete release of Ca^{2+} from intact chromaffin vesicles upon inversion of the Na^+ gradient, suggesting that Ca^{2+} may be in a bound state within these vesicles. Finally, calculations on the energetics of the $\text{Na}^+/\text{Ca}^{2+}$ exchange point to the possibility that only a small amount of Ca^{2+} present in the chromaffin vesicles is in the free state.

Binding of Ca^{2+} within chromaffin vesicles has been proved during Ca^{2+} flux experiments (Bulenda & Gratzl 1985). After balancing all gradients of ions which may be transported by the ionophor A23187, Ca^{2+} uptake should occur when the free Ca^{2+} concentration is higher outside the vesicles and release should occur when the vesicle Ca^{2+} concentration is higher than in the medium. At the Ca^{2+}

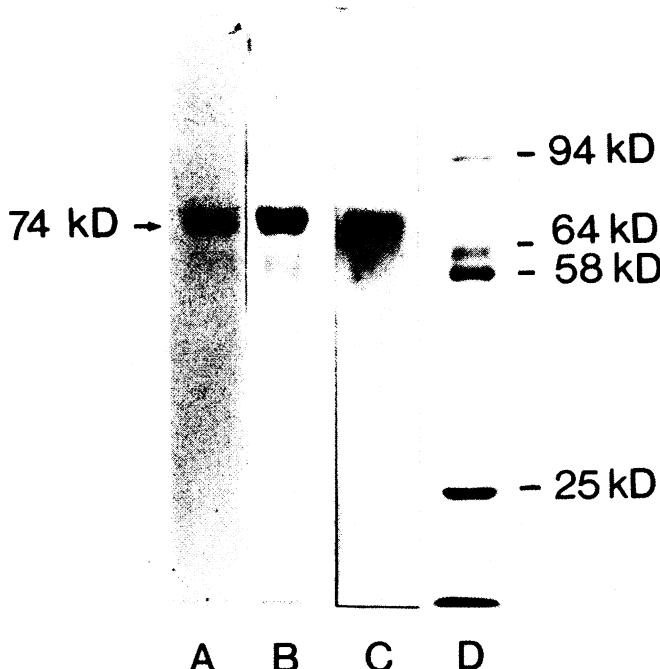


Figure 4. Ca^{2+} binding to purified chromogranin A. Chromogranin A after sodiumdodecyl sulfate-polyacrylamide gel electrophoresis was stained with a carbocyanine dye ("Stains-all") which interacts also with other Ca^{2+} -binding proteins (lane A). Following blotting onto nitrocellulose and incubation with $^{45}\text{Ca}^{2+}$ the 74 kD band of chromogranin A was labelled (lane C). Lane B gives the protein stain with amido black and lane D the molecular weight standards (Reprinted with permission from Biochemistry, Reiffen & Gratzl, 25, 4402-4406, Copyright 1986, American Chemical Society).

concentration at which no net flux occurs, measurements with a Ca^{2+} -specific electrode indicate that the intravesicular free Ca^{2+} equals the extravesicular free Ca^{2+} (Fig. 3b). In these and additional experiments it was found that most of the Ca^{2+} present within chromaffin vesicles is bound (usually 80 nmol/mg of protein which amounts to about 40 mM Ca^{2+}) leaving only 4 μM free Ca^{2+} in the secretory vesicle matrix (Bulenda & Gratzl 1985).

Within the chromaffin vesicles Ca^{2+} can be bound to ATP and/or chromogranin A. Chromogranin A specifically interacts with a carbocyanin dye ("stains all"), which binds also to other well known Ca^{2+} binding proteins, as well as with Ca^{2+} itself (Fig. 4; Reiffen & Gratzl 1986a, b). In media mimicking the intravesicular fluid (with respect to ionic strength, presence of Mg^{2+} , pH 6) the affinities of

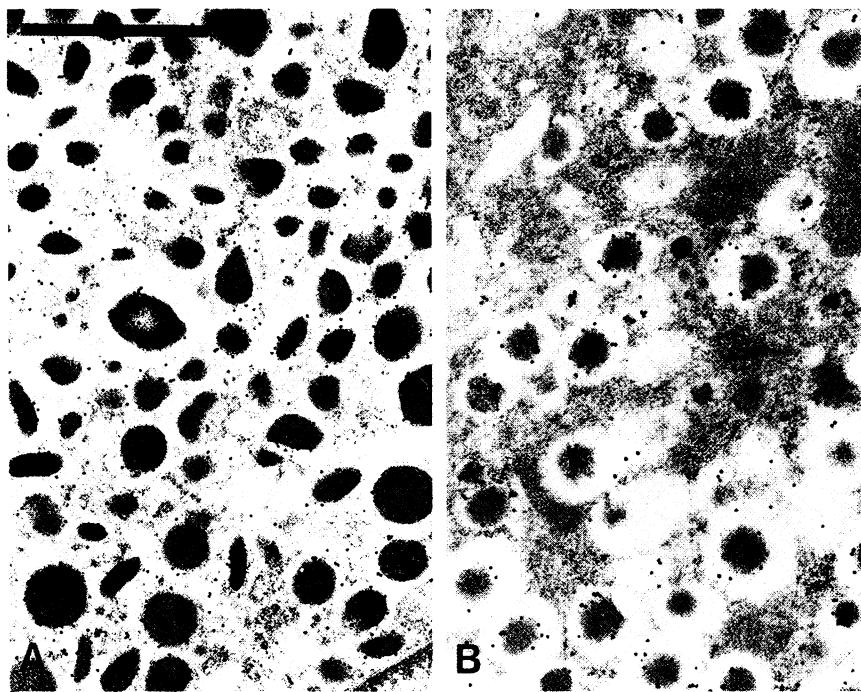


Figure 5. Presence of chromogranin A in the adrenal medulla and the pancreatic islet. Both the catecholamine-containing vesicles of chromaffin cells (A) and the insulin-containing vesicles of the B cell of the pancreatic islet (B) exhibit chromogranin A immunoreactivity (protein A-gold technique). Scale bar indicates 1 μm . (Courtesy of M. Ehrhart, Abteilung Anatomie und Zellbiologie der Universität Ulm, GFR).

ATP and chromogranin A for Ca^{2+} indeed are very similar. Thus it appears that small changes in the matrix composition (e.g. in the intravesicular pH due to the proton translocating ATPase) can determine whether Ca^{2+} is bound preferentially to ATP or to the matrix protein chromogranin A.

Interestingly enough, chromogranin A also occurs in other endocrine cells as well as the chromaffin cells (see Fig. 5, c.f. Cohn *et al.* 1982, O'Connor *et al.* 1983). In the pancreatic islet cells chromogranin A has been detected not only within the same cells but also within the same vesicles as the established hormones (Ehrhart *et al.* 1986). The presence of chromogranin A and related proteins has been confirmed in immunoblots of pancreas extracts (Yoshie *et al.* 1987, Ehrhart *et al.* 1988). It is not clear whether chromogranin A fulfills the same Ca^{2+} -binding function in other endocrine cells. However, the observation that Ca^{2+} and

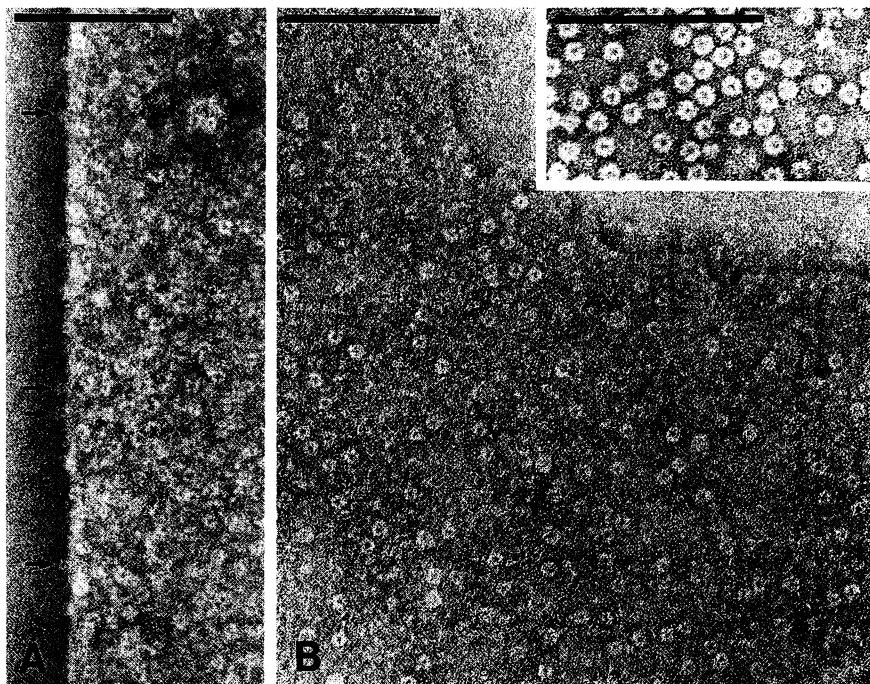


Figure 6. Electron micrographs of negatively stained fragments of rabbit erythrocytes with incorporated *Staphylococcus aureus* alpha-toxin. The cylindrical hexameric structure of the toxin is seen in profiles along the bend edge a ghost membrane in frame A (arrows) and in axial projection in frame B. The inset of frame B depicts pure, isolated toxin hexamers. Scale bar indicates 100 nm. (Courtesy of J. Tranum-Jensen, Institute of Anatomy, Department C, University of Copenhagen, Denmark).

chromogranin A display a colocalization in the periphery of the secretory vesicles of the pancreatic islet cells is interesting in this context (c.f. Ehrhart *et al.* 1986, Ravazzola *et al.* 1976).

Thus it appears that one of the physiological functions of chromogranin A is the formation of a Ca^{2+} complex within the secretory vesicles. In addition, chromogranin A, when secreted together with the hormones, may play a further role elsewhere in the body.

CALCIUM AND THE REGULATION OF EXOCYTOTIC MEMBRANE FUSION

The process of membrane fusion during exocytosis is difficult to analyze mainly because the interacting membrane surfaces are not accessible from the outside of the cell. Recently, several procedures have been reported which permeabilize the

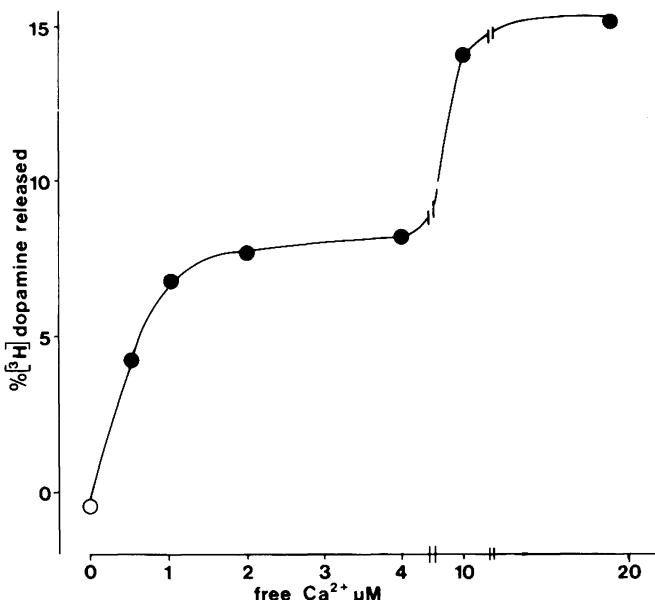


Figure 7. Dopamine release from alpha-toxin permeabilized pheochromocytoma cells as a function of the free Ca^{2+} centration. The cells were first loaded with (^3H)dopamine. Then they were permeabilized with alpha-toxin and incubated for 20 min at 37°C in a medium containing the indicated amounts of free Ca^{2+} (From Ahnert-Hilger *et al.* 1985, with permission).

plasma membrane of secretory cells while leaving the process of exocytosis intact. An ideal tool for cell permeabilization is the alpha-toxin produced by *Staphylococcus aureus*. This toxin is a water soluble protein of a molecular weight of about 32 KD. It inserts into the membrane and hexamerizes, forming a stable transmembrane pore (see Fig. 6; c.f. Bhakdi & Tranum-Jensen 1987). The size of the pore allows replacement of molecules up to a molecular mass of 1 KD. Thus most of the substances thought to have a regulatory role in exocytosis can be easily transferred into the cytoplasm.

Pheochromocytoma and insulinoma cell lines from rat and bovine adrenal medullary chromaffin cells in primary culture have been successfully permeabilized with alpha-toxin (Ahnert-Hilger *et al.* 1985a, b, Ahnert-Hilger & Gratzl 1987, Bader *et al.* 1986, Lind *et al.* 1987). An absolute requirement for the release of secretory product observed in alpha-toxin permeabilized cell preparations is the presence of μM concentrations of free Ca^{2+} . With rat pheochromocytoma cells (PC12) the Ca^{2+} activation curve was biphasic (see Fig. 7, Ahnert-Hilger *et*

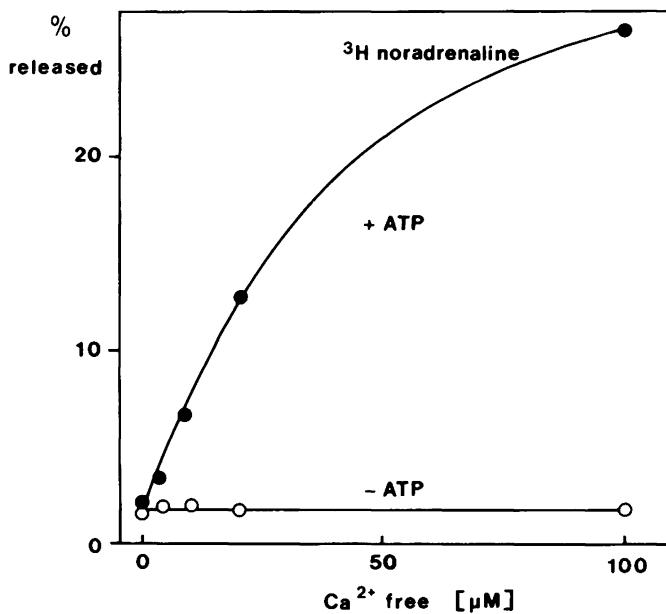


Figure 8. ATP requirement of Ca²⁺-induced noradrenaline release from alpha-toxin permeabilized chromaffin cells in primary culture. The cells were first permeabilized with alpha-toxin and then incubated with a medium containing the indicated amounts of free Ca²⁺ plus or minus 5 mM ATP and 1 mM free Mg²⁺ (From Bader *et al.* 1986, with permission).

al. 1985a, b, Ahnert-Hilger & Gratzl 1987). A first increase of dopamine release plateaued at 1–4 μM free Ca²⁺, followed by a second rise responding to higher Ca²⁺ concentrations. Thus the release of secretory product occurred with the same concentrations of Ca²⁺ observed in stimulated secretory cells.

Adrenal medullary chromaffin cells were found to require ATP in addition to Ca²⁺ in order to release catecholamines (Fig. 8; Bader *et al.* 1986). ATP could not be replaced by any of the other nucleotides tested (Fig. 9; Bader *et al.* 1986). The precise role of ATP in these cells is not known, but it may function as an energy source for translocation of secretory vesicles towards the plasma membrane. This translocation is not necessary within the pheochromocytoma cells due to the subplasmalemmal location of their secretory vesicles (see Bader *et al.* 1986).

In the permeabilized pheochromocytoma cells the Ca²⁺-induced release of dopamine, while insensitive to ATP, can be potentiated by the presence of Mg²⁺ (Fig. 10; Ahnert-Hilger & Gratzl 1987). This suggests that, besides the specific effect of Ca²⁺ ions during the interaction of the secretory vesicles with the plasma

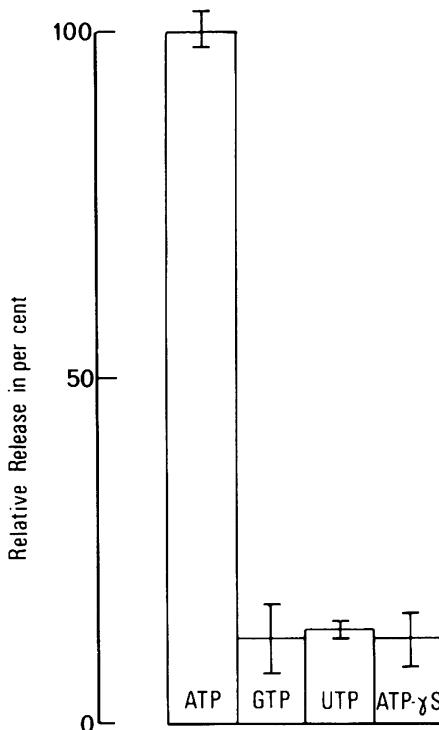


Figure 9. Nucleotide specificity of Ca^{2+} -induced catecholamine release from alpha-toxin permeabilized chromaffin cells in primary culture. From the nucleotides tested only ATP was effective in supporting Ca^{2+} -induced release of secretory product (From Bader *et al.* 1986, with permission).

membrane, several further modulatory processes not necessarily linked to the process of exocytotic membrane fusion may be important. This is in accordance with the finding that secretory vesicle fusion as a model for exocytosis is solely dependent on Ca^{2+} and requires no additional substances (Dahl & Gratzl 1976, Ekerdt *et al.* 1981, Gratzl & Dahl 1976, 1978, Gratzl *et al.* 1977).

Ca^{2+} -induced release of catecholamines from alpha-toxin permeabilized pheochromocytoma cells can be modulated via the protein kinase C as well as GTP-binding proteins (Ahnert-Hilger *et al.* 1987). The phorbol ester TPA and the diacylglycerol OAG, which both activate purified protein kinase C, cause an enhancement of secretion from permeabilized pheochromocytoma cells. GTP-gamma-S on the other hand inhibits Ca^{2+} -induced release from the same cells. Since the latter effect is abolished by pretreatment of the cells with pertussis toxin

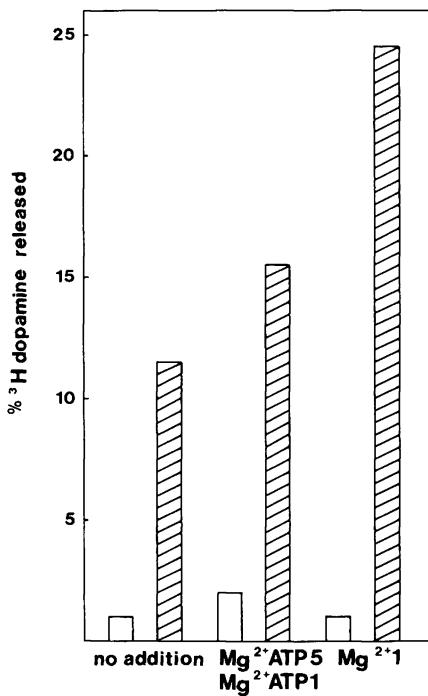


Figure 10. Effect of Mg^{2+} on Ca^{2+} -induced dopamine release from alpha-toxin permeabilized pheochromocytoma cells. (^3H)dopamine release induced by 10 μM free Ca^{2+} is observed when 5 mM ATP is present in addition to 1 mM free Mg^{2+} . However, 1 mM free Mg^{2+} alone is more potent (From Ahnert-Hilger & Gratzl 1987, with permission).

G-proteins, probably of the type G_i or G_o participate in the regulation of exocytosis.

Further investigation of the release of secretory product in permeabilized cell preparations certainly will yield further information on the process of exocytotic membrane fusion and the preceding modulatory processes.

ACKNOWLEDGMENTS

The work of the author referred to in this article was supported by the Deutsche Forschungsgemeinschaft (Gr 681) and the Forschungsschwerpunkt No. 24 of the State of Baden Württemberg. The author thanks Mrs C. Craver for her helpful advice on how to word this manuscript and Mrs. B. Mader for typing it.

REFERENCES

Ahnert-Hilger, G., Bhakdi, S. & Gratzl, M. (1985a) Alpha-toxin permeabilized cells – A new approach to investigate stimulus-secretion coupling. *Neurosci. Lett.* 58, 107–110.

Ahnert-Hilger, G., Bhakdi, S. & Gratzl, M. (1985b) Minimal requirements for exocytosis – a study using PC 12 cells permeabilized with staphylococcal alpha-toxin. *J. Biol. Chem.* 260, 12730–12734.

Ahnert-Hilger, G., Bräutigam, M. & Gratzl, M. (1987) Calcium-stimulated catecholamine release from alpha-toxin permeabilized PC12 cells: Biochemical evidence for exocytosis and its modulation by protein kinase C and G-proteins. *Biochemistry* 26, 7842–7848.

Ahnert-Hilger, G. & Gratzl, M. (1987) Further characterization of dopamine release by permeabilized PC12 cells. *J. Neurochem.* 49, 764–770.

Bader, M. F., Thiersé, D., Aunis, D., Ahnert-Hilger, G. & Gratzl, M. (1986) Characterization of hormone and protein release from alpha-toxin permeabilized chromaffin cells in primary culture. *J. Biol. Chem.* 261, 5777–5783.

Bhakdi, S. & Tranum-Jensen, J. (1987) Damage to mammalian cells by proteins that form transmembrane pores. *Rev. Physiol. Biochem. Pharmacol.* 107, 147–223.

Bulenda, D. & Gratzl, M. (1985) Matrix free Calcium in isolated chromaffin vesicles. *Biochemistry* 24, 7760–7765.

Cohn, D. V., Zangerle, R., Fischer-Colbrie, R., Chu, L. L. H., Elting, J. J., Hamilton, J. W. & Winkler, H. (1982) Similarity of secretory protein I from parathyroid gland to chromogranin A from adrenal medulla. *Proc. Natl. Acad. Sci. USA* 79, 6056–6059.

Dahl, G. & Gratzl, M. (1976) Calcium-induced fusion of isolated secretory vesicles from the islet of Langerhans. *Cytobiologie* 12, 344–355.

Ehrhart, M., Grube, D., Bader, M. F., Aunis, D. & Gratzl, M. (1986) Chromogranin A in the pancreatic islet: Cellular and subcellular distribution. *J. Histochem. Cytochem.* 34, 1673–1682.

Ehrhart, M., Jörns, A., Grube, D. & Gratzl, M. (1988) Cellular distribution and amount of chromogranin A in the bovine endocrine pancreas. *J. Histochem. Cytochem.* (in press).

Ekerdt, R., Dahl, G. & Gratzl, M. (1981) Membrane fusion of secretory vesicles and liposomes: two different types of fusion. *Biochim. Biophys. Acta* 646, 10–22.

Gratzl, M. & Dahl, G. (1976) Calcium-induced fusion of Golgi derived secretory vesicles isolated from rat liver. *FEBS Letters* 62, 142–145.

Gratzl, M. & Dahl, G. (1978) Fusion of secretory vesicles isolated from rat liver. *J. Membrane Biology* 40, 343.

Gratzl, M., Dahl, G., Russell, J. T. & Thorn, N. A. (1977) Fusion of neurohypophyseal membranes in vitro. *Biochim. Biophys. Acta* 470, 45–57.

Kostron, H., Winkler, H., Geissler, D. & König, P. (1977) Uptake of calcium by chromaffin granules in vitro. *J. Neurochem.* 28, 487–493.

Krieger-Brauer, H. & Gratzl, M. (1981) Influx of Ca^{2+} into isolated secretory vesicles from adrenal medulla. Influence of external K^+ and Na^+ . *FEBS Letters* 133, 244–246.

Krieger-Brauer, H. & Gratzl, M. (1982) Uptake of Ca^{2+} by isolated secretory vesicles from adrenal medulla. *Biochim. Biophys. Acta* 691, 61–70.

Krieger-Brauer, H. & Gratzl, M. (1983) Effects of monovalent and divalent cations on Ca^{2+} fluxes across chromaffin secretory membrane vesicles. *J. Neurochem.* 41, 1269–1276.

Lind, I., Ahnert-Hilger, G., Fuchs, G. & Gratzl, M. (1987) Purification of alpha-toxin from staphylococcus aureus and application to cell permeabilization. *Anal. Biochem.* 164, 84–89.

O'Connor, D. T., Burton, D. & Deftos, L. J. (1983) Chromogranin A: Immunohistology reveals its universal occurrence in normal polypeptide hormone producing endocrine glands. *Life Sci.* 33, 1657–1663.

Phillips, J. H. (1981) Transport of Ca^{2+} and Na^+ across the chromaffin-granule membrane. *Biochem. J.* 200, 99–107.

Ravazzola, M., Malaisse-Lagae, F., Amherdt, M., Perrelet, A., Malaisse, W. J. & Orci, L. (1976) Patterns of calcium localization in pancreatic endocrine cells. *J. Cell Sci.* 27, 107–117.

Reiffen, F. U. & Gratzl, M. (1986a) Ca^{2+} binding to chromaffin vesicle matrix proteins: Effect of pH, Mg^{2+} , and ionic strength. *Biochemistry* 25, 4402–4406.

Reiffen, F. U. & Gratzl, M. (1986b) Chromogranins, widespread in endocrine and nervous tissue, bind Ca^{2+} . *FEBS Letters* 195, 327–330.

Saermark, T., Krieger-Brauer, H., Thorn, N. A. & Gratzl, M. (1983a) Ca^{2+} uptake to purified secretory vesicles from bovine neurohypophyses. *Biochim. Biophys. Acta* 727, 239–245.

Saermark, T., Thorn, N. A. & Gratzl, M. (1983b) Calcium/sodium exchange in purified secretory vesicles from bovine neurohypophyses. *Cell Calcium* 4, 151–170.

Yoshie, S., Hagn, C., Ehrhart, M., Fischer-Colbrie, R., Grube, D., Winkler, H. & Gratzl, M. (1987) Immunological characterization of chromogranins A and B and secretogranin II in the bovine pancreatic islet. *Histochemistry* 87, 99–106.

Subject Index

A

Acetylation, 508, 515, 525, 533
 ACh, 100, 103, 104, 122, 123, 138, 148, 297, 315
 Acid-secreting cell, 89
 ACTH, 476, 507
 Actin, 619, 634
 α -actinin, 636
 Adenylate cyclase, 219, 233
 Adrenaline, 158
 Adrenomedulla, 347
 Aequorin, 193, 614
 Agonist-controlled oscillator, 119
 Alpha-adrenergic receptors, 153
 Alpha-latrotoxin, 443
 Alpha-toxin, 364, 371
 Amidation, 525, 533
 Aminopeptidase, 526, 532
 Anion channels, 19, 24, 134
 Anion channels, potential-gated, 19, 25
 Anion exchange, 92
 Anion transport, 17
 Annexins, 596
 Anterior pituitary, 211, 507
 Ascorbic acid, 554, 557
 Aspartyl protease, 529
 ATP, 120, 196, 197, 250, 264, 271, 319, 348, 368, 459, 582
 ATP permeabilized cells, 172

B

B-cells, 30, 32, 36, 120
 BK channel, 122
 Brattleboro rat, 474
 Bursting neuron, 46
 Butulinum toxins, 203, 208

C

Ca^{2+} binding, 368, 414
 Ca^{2+} -channels, DHP-resistant, 66
 Ca^{2+} -channels, "hot spots", 71
 Ca^{2+} channels, 80
 Ca^{2+} -channels, L, 38, 44, 67, 68, 78, 86
 Ca^{2+} -channels, N, 67, 68, 77, 78
 Ca^{2+} -channels, pharmacology, 72
 Ca^{2+} -channels, sympathetic neurons, 66
 Ca^{2+} -channels, voltage gated, 30, 39, 67, 74, 218, 262
 Ca^{2+} -currents, voltage activated, 262
 $\text{Ca}^{2+}/\text{H}^+$ exchange, 190
 $(\text{Ca}^{2+} + \text{Mg}^{2+})$ -ATPase, 172
 Ca^{2+} release, 277, 279
 Ca^{2+} stores, 78, 80, 85, 86, 99, 128, 153
 Ca^{2+} transients, 266
 Ca^{2+} uptake, 171, 172, 176, 284, 365
 Caffeine, 79, 87, 130, 131
 Calciosome, 186
 Calcium stores, 66, 245, 282
 Calcium transient, 269
 Caldesmon, 625
 Calelectrin, 577, 597
 Calmodulin and cell transformation, 657
 Calmodulin and gene expression, 655
 Calmodulin antibodies, intracellular injection, 577, 632, 645
 Calmodulin, 637
 Calpactin, 576
 Calsequestrin, 295
 cAMP , 47, 49, 53, 57, 112, 130, 141, 144, 150, 160, 219, 233, 238, 246, 337, 482, 531, 546, 615, 628
 Carboxypeptidase B, 532
 Carboxypeptidase, 526
 Casein kinase, 338
 Catalytic subunit, injection, 64
 Catecholamines, 347
 Cathepsin-B, 529
 CCK, 493
 CCK processing, cell-specific, 500
 cGMP , 53, 160, 546, 615
 CGRP, 439
 Channels, potassium, 30
 CH cells, 211
 Cholecystokinin, 297, 315
 Cholera toxin, 44, 142, 204, 208
 Cholinergic receptor, 99, 101, 153
 Chromaffin cell, 612
 Chromaffin granule, 347, 419, 579
 Chromaffin, 262
 Chromobindins, 576
 Chromogranins, 347, 348, 368, 380, 439
 Chromomembrins, 576
 Cimetidine, 90
 Circadian rhythm and peptide processing, 522
 Clathrin, 416
 Cl conductance, 134
 Cl⁻ channels, 105, 124, 153, 156
 Cl⁻ conductance, 94, 97
 Constitutive pathway, 387
 CRF, 510, 514
 Cyclic GMP, 47, 57
 Cytochrome, 316, 319, 528, 556

Cytoskeleton, 612, 617, 632, 656

D

Dephosphorylation, 198
 DHP agonists, 68, 71
 DHP antagonists, 77
 DHP-resistant, NE release, 76
 DHP-sensitive catecholamine release, 78
 Diazoxide, 42
 Differential regulation in biosynthesis, 428
 Dopamine β -hydroxylase, 348
 Dopamine receptors, 230, 515
 Dynein, 404

E

Elongation arrest, 460, 464
 Endonexin, 577
 Endopeptidase, 526
 Endorphins, 507
 Exocrine pancreas, 122
 Exocytosis, 192, 248
 Exopeptidase, 535

F

F-actin, 602
 Fodrin, 636
 Forskolin, 142, 216, 217, 238, 246
 Fura-2 measurement, 77, 78, 115, 155, 157, 166, 193, 263, 299, 613

G

GABA, 421
 Gastrin, 493
 GAWK peptide, 383, 385
 G-cells, 496, 500
 Gelsolin, 636
 GH cells, 217
 GLPs, 477
 Glucagon, 476
 Glucagon processing, cell-specific, 476
 Glutamate uptake, 420
 Glycosylation, 381, 414, 465
 G-protein, 141, 149, 202, 219, 249, 250, 268, 295, 373, 546, 630
 GTP, 33, 138, 195, 219, 221, 234, 249, 259, 262, 264, 265, 277, 279, 289, 373, 459, 469

H

H^+ , K^+ -ATPase, 89, 94
 H^+ pump, 180

I

Inositol polyphosphates, 99, 105, 107, 216
 Insulinoma cells, 482

Insulin secretion, 30, 327
 Ins (1,3,4,5) P₄, 106, 107, 292
 Ins (1,4,5) P₃, 106, 107, 147, 171,
 249, 277, 282, 289, 300, 321, 546
 Intermediate pituitary, 507, 515
 Intervening peptide, 479
 Intracellular stores, 131
 IP₃-sensitive Ca²⁺ pool, 173
 Isoproterenol, 133, 141, 234

K
 Kinesin, 397
 K⁺ conductance, 94, 96

L
 Lacrimal cells, 99
 Lacrimal glands, 122
 Lipocortin, 577, 598, 609
 LPH, 507

M
 Mast cells, 248, 262
 Melanocortin, 507
 Membrane-binding proteins, 575
 Membrane capacitance, 262, 264
 Metal ions in secretory vesicles,
 556
 Metalloendoproteases, 616
 Metalloprotease, 529
 Microtubules, 397, 633
 Modulation, of electrical activity,
 47
 Motor proteins, 403
 MSH, 476, 508

N
 Na⁺/H⁺ exchange, 92, 96, 108
 Na⁺ K⁺ pump, 99, 108
 Na⁺ K⁺ 2Cl⁻-cotransporter, 99,
 108
 Neurofilaments, 633
 Neurohypophysis, 234, 366, 432,
 555
 Neuropeptide precursors, 350
 Neuropeptides, 347, 544
 Neurophysin, 546
 Neurosecretory cell, 46
 Neurosecretosomes, 245
 Neurotransmitter uptake, 411, 417

O
 Omeprazole, 90, 91
 Organelle transport, 397
 Oscillations of ACh-induced cur-
 rents, 124, 126
 Ouabain, 317
 Oxytic cells, 89
 Oxytocin, 545
 Oxytocin receptors, 547

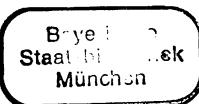
P
 Packaging of precursors, 380, 383,
 387
 PAM (amidating enzyme), 554
 Pancreastatin, 353, 383, 385, 394
 Pancreatic acinar cell, 297, 315
 Pancreatic islets, 327
 Parotid acini, 152
 Pars intermedia, 247, 555, 562
 Patch clamp, 31, 81, 100, 122, 134,
 262, 265
 PCE, 535
 Permeabilized cells, 193, 249, 263,
 278, 364, 613, 624
 Pertussis toxin, 44, 204, 223
 pH, in secretory vesicles, 384, 419
 pH, intracellular, 92, 114, 615
 Phospholipase C, 126, 142, 203,
 218, 577, 592
 Phosphoprotein phosphatase, 56
 Phosphoproteins, 221, 235, 305,
 327
 Phosphorylation, 197, 259, 435
 Phospholipids and protein interac-
 tion, 601
 Polyamines, 327, 329
 POMC converting activity, 529
 Posterior pituitary, 230, 429
 Potassium channel, Ca²⁺-acti-
 vated, 38, 99, 128
 Potassium channels, ATP-sensi-
 tive, 32, 34
 Potassium channels, Ca²⁺-de-
 pendent, 217
 Potassium channels, 23, 30, 95,
 133, 153, 156
 Potassium channel, voltage-gated,
 99
 Potassium current, Ca²⁺-acti-
 vated, 49, 57, 101, 106
 Precursor processing, 476
 Prepro- α -factor, 462
 Processing enzymes, 525
 Processing of precursors, 380
 Procholecystokinin, 493
 Progastrin, 493
 Prolactin, 211
 Pro- α melanocortin, 507
 Proopiomelanocortin, 525
 Protein III, 236, 439
 Protein kinase, Ca²⁺/calmodulin-
 dependent, 119, 209, 221, 328,
 338
 Protein kinase, cAMP-dependent,
 56, 328, 338
 Protein kinase C, 36, 39, 43, 126,
 198, 218, 249, 256, 297, 301,
 328, 373, 577

Protein phosphorylation, 577,
 603, 609
 Protein translocation, 459
 Protein transport, 397
 Proton gradient, 417
 Proton pump, 178, 198
 Putrescine, 329
 Pyridine nucleotides, 43
 p38 protein, 415
 p65 protein, 415, 425, 439

Q
 Quin 2 measurements, 101, 104,
 193, 298, 319, 613

R
 Rat mandibular gland, 133
 Regulated pathway, 381, 451
 RGD sequence, 383, 393
 RNA splicing, 476

S
 Salivary cells, 99
 Salivary glands, 122
 Second messenger oscillations,
 117
 Second messengers, interaction,
 51, 95
 Secretion mutants, 584
 Secretogranins, 347, 380, 439
 Serine protease, 529
 Serotonin, 48, 49
 Serotonin (5-HT), 231
 Shark rectal gland, 133
 Signal recognition particle, 459,
 474
 Sodium/potassium pump, 17
 Somatostatin, 215
 Sorting of proteins, 386
 Spermidine, 329
 Spermine, 329
 SRP receptor, 460
 Stimulus-secretion coupling and
 mitochondria, 315
 Stimulus-secretion coupling, 30,
 39, 121, 249, 645
 Streptolysin-O, 250
 Sulphation, 381, 393, 493
 Synapsin I, 236, 416, 434, 451
 Synaptophysin, 415, 425, 453
 Synexin, 575, 596
 Synhibin, 577
 S6 protein, 310, 431


T
 TEA, 38, 97, 136, 138
 Thiol protease, 529
 Transglutaminase, 327

TRH, 211
Tyrosine kinase, 602

V
Vasopressin, 230, 429, 545
Vasopressin receptors, 547

Vesicles, coated, 414
Vesicles, large, 347, 411, 433
Vesicles, organization of matrix, 384
Vesicles, secretory, 365

Vesicles, small, 238, 347, 411, 433, 451
Vimentin, 633
VIP, 211
VIP; secretin GH-RH, 477
Yeast secretory pathway, 463

