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Abstract

When it comes to extracting information from data by means of Bayes rule, it
should not matter if all available data are considered at once or if Bayesian updating
is performed subsequently with partitions of the data. This property is called up-
dating consistency. However, in the context of Bayes factors, a prominent Bayesian
tool that is used for comparing hypotheses, some researchers illustrated that updat-
ing consistency might not be given. Therefore, this technical report addresses the
updating consistency of Bayes factors and shows its existence. In that, it serves
as mathematical basis for the evaluation of the origin of putative updating incon-
sistencies. In addition, results about updating mixture priors are brought into the
terminology commonly employed in the context of Bayes factors, as these were used
in the elaboration about updating consistency. The depicted results imply that a
necessary condition for updating consistency is to consider and report not only the
Bayes factor value alone but also the posterior distributions as outcome of the ana-
lysis.

Keywords: Bayesian Statistics, Bayes Factor, Sequential Updating, Updating
Consistency, Mixture Prior, Spike-and-Slab Prior

1 Introduction

Within the context of Bayesian statistics, the knowledge about a phenomenon of interest
that is available prior to an investigation is typically formalized as a (subjective) prior
probability distribution. Once a respective investigation has been performed, the obtained
data are used to update this initial prior distribution via Bayes rule, yielding a posterior
distribution. This posterior is said to reflect all relevant knowledge which is available af-
ter the investigation (see Figure 1, top-left). In that, the posterior distribution might be
treated as prior distribution for a subsequent statistical analysis of a newly obtained data
set (based on the same investigational setup). Naturally, the final posterior distribution af-
ter sequentially updating twice (see Figure 1, top-right) should be identical to the posterior
distribution that is obtained by merging both data sets first and then updating the initial
prior distribution at once (see Figure 1, bottom). If so, the Bayesian updating procedure
is called “consistent” [cp. Rüger, 1998, p. 190].

However, the most prominent Bayesian method for hypothesis comparisons employed in
psychological research - the so called Bayes factor [see e.g. Kass and Raftery, 1995, Gönen
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Figure 1: Consistent Bayesian Updating.

et al., 2005, Rouder et al., 2009] - might be characterized by an inconsistent Bayesian
updating, as already indicated by Rouder and Morey [2011]. In contrast to specifying only
one prior distribution that reflects the available knowledge prior to the investigation, an
analysis with Bayes factors allows the specification of a prior distribution for each employed
hypothesis, which is said to reflect its content [see e.g. Vanpaemel, 2010, Vanpaemel and
Lee, 2012, Morey et al., 2016, Rouder et al., 2018a]. Although more than just a single
prior distribution is employed, together with a distribution on the hypotheses themselves
it is possible to merge all these hypothesis-based priors to an overall mixture distribu-
tion [see e.g. Rouder et al., 2018b]. By considering this mixture prior distribution, its
updating might be assessed w.r.t. consistency, such that the origin of putative updating
inconsistencies in the context of Bayes factors might be evaluated.

Accordingly, Bayes factors shall be outlined in Section 2 before considering the updating of
the corresponding mixture prior in Section 3. These considerations are used to show that
updating with Bayes factors is consistent (Section 4), but also that inconsistent updating
might occur easily (Section 4.3). Implications about the minimal requirement of what is
considered as outcome of an analysis with Bayes factors of a single data set are depicted
in Section 5.

This technical report intends to depict the mathematical background of updating consis-
tency in the context of Bayes factors in greater detail. Special emphasize will be given to
explain mathematical transformations step by step with numerous references to previous
definitions and equations. In addition, as all data, parameter, and hypotheses are ran-
dom quantities, which are related to each other, Bayes rule is always applied meticulously,
allowing clarity about which quantities are conditioned on.

2 Bayes Factors

Assume the observed data x = (x1, . . . , xn) are modeled as realizations of independent and

identically distributed (iid) random quantities Xi
iid∼ PXi|θ with parametric density f(xi|θ)
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for all i = 1, . . . , n and a parameter value θ ∈ Θ, such that X ∼ PX|θ with density

f(x|θ) =
n∏

i=1

f(xi|θ) . (1)

Statistical hypotheses
H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 (2)

contrast two subsets Θ0 and Θ1 of the parameter space Θ. Frequently, the null hypothesis
is sharp and consists of only a single parameter value θ0, i.e. Θ0 = {θ0}.
In the Bayesian setting, there is a prior distribution (P ◦θ , see below) on the parameter θ. In
the context of Bayes factors, however, a prior distribution is typically provided separately
for each hypothesis: The prior distribution P

(1)
θ with density

π1(θ) := π(θ|H1) (3)

is restricted to the (parameter subset specified within the) alternative hypothesis H1, and

the prior distribution P
(0)
θ with density

π0(θ) := π(θ|H0) (4)

is restricted to the (parameter subset specified within the) null hypothesis H0. If the

null hypothesis is sharp, the corresponding prior distribution P
(0)
θ is degenerate with all

probability mass on θ0 .

In addition to P
(1)
θ and P

(0)
θ , a prior distribution on the hypotheses themselves needs to be

specified by
ρ := p(H0) and p(H1) = 1− p(H0) = 1− ρ , (5)

yielding the so called prior odds p(H1)/p(H0).

The density of PX|θ is assumed to be related to the hypotheses H1 and H0 only via the
parameter value θ, i.e.

f(x|H1, θ) = f(x|H0, θ) = f(x|θ) . (6)

The marginal density of the data x might be calculated w.r.t. each hypothesis

f(x|H1)
marg.

=

∫
f(x|H1, θ) · π(θ|H1) dθ

eq.
(6)
(3)
=

∫
f(x|θ) · π1(θ) dθ (7)

f(x|H0)
marg.

=

∫
f(x|H0, θ) · π(θ|H0) dθ

eq.
(6)
(4)
=

∫
f(x|θ) · π0(θ) dθ (8)

and the Bayes factor based on data x w.r.t. the hypotheses H0 and H1 is defined as the
ratio of these marginal densities

BFx
10 :=

f(x|H1)

f(x|H0)

eq.
(7)
(8)
=

∫
f(x|θ) · π1(θ) dθ∫
f(x|θ) · π0(θ) dθ

, (9)
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with a said interpretation of the data x being BFx
10 times as much evidence for H1 than

for H0 [see e.g. Morey et al., 2016]. In that regard, consider the discussion in Section 5.
Analogously, its inverse

BFx
01 :=

1

BFx
10

(10)

should quantify the evidence within the data favoring H0 over H1.

The prior odds can be updated by the Bayes factor to the posterior odds

p(H1|x)

p(H0|x)

Bayes
rule=

f(x|H1)·p(H1)
f(x)

f(x|H0)·p(H0)
f(x)

eq.
(9)
= BFx

10 ·
p(H1)

p(H0)
. (11)

In that, the posterior probability of H0 denoted by

ρ|x := p(H0|x) (12)

can be calculated as

p(H1|x)

p(H0|x)
= BFx

10 ·
p(H1)

p(H0)

eq.
(5)
(12)⇔ 1− ρ|x

ρ|x
= BFx

10 ·
1− ρ
ρ

⇔ 1− ρ|x = BFx
10 ·

1− ρ
ρ
· ρ|x ⇔ 1 = BFx

10 ·
1− ρ
ρ
· ρ|x + ρ|x

⇔ 1 = ρ|x

[
BFx

10

1− ρ
ρ

+ 1

]
⇔ ρ|x =

1

BFx
10

1−ρ
ρ

+ 1

⇔ ρ|x =
ρ

BFx
10(1− ρ) + ρ

. (13)

3 Updating of Mixture Priors

Instead of treating the priors under both hypotheses separately, they might be merged to
a single mixture prior distribution

P ◦θ := ρ · P (0)
θ + (1− ρ) · P (1)

θ , (14)

which has the density
π◦(θ) = ρ · π0(θ) + (1− ρ) · π1(θ) . (15)

With P
(0)
θ being degenerate this mixture prior is also referred to as spike-and-slab prior

[see e.g. Rouder et al., 2018b], consisting of a spike-part P
(0)
θ and a slab-part P

(1)
θ .

Theorem 1 (Updating of Mixture Priors). Updating the prior mixture distribution P ◦θ
using data x leads to the posterior distribution P ◦θ|x with density

π◦(θ|x) = ρ|x · π0(θ|x) + (1− ρ|x) · π1(θ|x) , (16)

where π0(θ|x) as well as π1(θ|x) are posterior densities of θ, which arise from updating the
prior densities π0(θ) as well as π1(θ) separately, i.e.

π0(θ|x) := π(θ|H0,x)
Bayes
rule=

f(x|H0, θ) · π(θ|H0)

f(x|H0)

eq.
(6)
(4)
(8)
=

f(x|θ) · π0(θ)∫
f(x|θ) · π0(θ) dθ

, (17)
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π1(θ|x) := π(θ|H1,x)
Bayes
rule=

f(x|H1, θ) · π(θ|H1)

f(x|H1)

eq.
(6)
(3)
(7)
=

f(x|θ) · π1(θ)∫
f(x|θ) · π1(θ) dθ

. (18)

Proof. Before calculating the density

π◦(θ|x)
Bayes
rule=

f(x|θ) · π◦(θ)
f(x)

(19)

of the posterior distribution P ◦θ|x with

f(x)
marg.

=

∫
f(x|θ) · π◦(θ) dθ , (20)

consider the following first:

f(x)

eq.
(20)
=

∫
f(x|θ) · π◦(θ) dθ

eq.
(15)
=

∫
f(x|θ) [ρ · π0(θ) + (1− ρ) · π1(θ)] dθ

=

∫
[ρ · f(x|θ) · π0(θ)] + [(1− ρ) · f(x|θ) · π1(θ)] dθ

= ρ

∫
f(x|θ) · π0(θ) dθ + (1− ρ)

∫
f(x|θ) · π1(θ) dθ (21)

This can be transformed in two different ways:

f(x)

eq.
(21)
= ρ

∫
f(x|θ) · π0(θ) dθ + (1− ρ)

∫
f(x|θ) · π1(θ) dθ

⇔ f(x)− ρ
∫
f(x|θ) · π0(θ) dθ = (1− ρ)

∫
f(x|θ) · π1(θ) dθ

⇔ f(x)∫
f(x|θ) · π0(θ) dθ

− ρ = (1− ρ)

∫
f(x|θ) · π1(θ) dθ∫
f(x|θ) · π0(θ) dθ

eq.
(9)⇔ f(x)∫

f(x|θ) · π0(θ) dθ
− ρ = (1− ρ)BFx

10

⇔ f(x) = [(1− ρ)BFx
10 + ρ]

∫
f(x|θ) · π0(θ) dθ (22)

or

f(x)

eq.
(21)
= ρ

∫
f(x|θ) · π0(θ) dθ + (1− ρ)

∫
f(x|θ) · π1(θ) dθ

⇔ f(x)− (1− ρ)

∫
f(x|θ) · π1(θ) dθ = ρ

∫
f(x|θ) · π0(θ) dθ
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⇔ f(x)∫
f(x|θ) · π1(θ) dθ

− (1− ρ) = ρ

∫
f(x|θ) · π0(θ) dθ∫
f(x|θ) · π1(θ) dθ

eq.
(9)
(10)⇔ f(x)∫

f(x|θ) · π1(θ) dθ
− (1− ρ) = ρBFx

01

⇔ f(x) = [ρBFx
01 + (1− ρ)]

∫
f(x|θ) · π1(θ) dθ . (23)

In addition, consider

1− ρ|x
eq.

(13)
= 1− ρ

(1− ρ)BFx
10 + ρ

=
(1− ρ)BFx

10 + ρ− ρ
(1− ρ)BFx

10 + ρ
=

(1− ρ)BFx
10

(1− ρ)BFx
10 + ρ

=
BFx

10(1− ρ)

BFx
10

[
(1− ρ) + 1

BFx
10
ρ
] =

(1− ρ)

(1− ρ) + 1
BFx

10
ρ

eq.
(10)
=

(1− ρ)

(1− ρ) +BFx
01ρ

=
(1− ρ)

ρBFx
01 + (1− ρ)

. (24)

Now, the posterior density π◦(θ|x) can be calculated as

π◦(θ|x)
Bayes
rule=

f(x|θ) · π◦(θ)
f(x)

eq.
(15)
=

f(x|θ) [ρ · π0(θ) + (1− ρ) · π1(θ)]

f(x)

= ρ
f(x|θ) · π0(θ)

f(x)
+ (1− ρ)

f(x|θ) · π1(θ)

f(x)

eq.
(22)
(23)
=

ρ

(1− ρ)BFx
10 + ρ

· f(x|θ) · π0(θ)∫
f(x|θ) · π0(θ) dθ

+
1− ρ

ρBFx
01 + (1− ρ)

· f(x|θ) · π1(θ)∫
f(x|θ) · π1(θ) dθ

eq.
(17)
(18)
=

ρ

(1− ρ)BFx
10 + ρ

π0(θ|x) +
1− ρ

ρBFx
01 + (1− ρ)

π1(θ|x)

eq.
(13)
(24)
= ρ|x · π0(θ|x) + (1− ρ|x) · π1(θ|x) ,

Certainly, this is not a new result as e.g. Mitchell and Beauchamp [1988] already employed
spike-and-slab priors (which are a special case of mixture priors) and e.g. Rouder et al.
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[2018b] depicted the priors in the context of Bayes factors by an overall spike-and-slab prior.
However, these considerations explicitly utilize a notation typically employed in analyses
with Bayes factors and are needed for further elaboration on the updating consistency of
Bayes factors.

4 Updating Consistency

4.1 Framework

In order to assess Bayes factors w.r.t. updating consistency two different data sets are
necessary. Accordingly, in addition to x and X as in Section 2, consider a second data
set y = (y1, . . . , ym) being independent of the previous one and modeled analogously, i.e.

Yj
iid∼ PYj |θ with the same parametric density f(yj|θ) for all j = 1, . . . ,m. Therefore,

Y ∼ PY |θ with density

f(y|θ) =
m∏

j=1

f(yj|θ) . (25)

Analogue to equation (6), the density of PY |θ is also assumed to be related to the hypotheses
H1 and H0 only via the parameter value θ, i.e.

f(y|H1, θ) = f(y|H0, θ) = f(y|θ) . (26)

Define Z := (X, Y ) and z := (x,y). As

f(z|θ)
X,Y
ind.= f(y|θ) · f(x|θ) , (27)

the density of z is related to the hypotheses only via the parameter value θ as well:

f(z|H1, θ) = f(z|H0, θ) = f(z|θ) . (28)

Analogue to the marginal densities of x (equations (7) and (8)), those of y and z are
calculated as

f(y|H1)
marg.

=

∫
f(y|H1, θ) · π(θ|H1) dθ

eq.
(26)
(3)
=

∫
f(y|θ) · π1(θ) dθ (29)

f(y|H0)
marg.

=

∫
f(y|H0, θ) · π(θ|H0) dθ

eq.
(26)
(4)
=

∫
f(y|θ) · π0(θ) dθ (30)

f(z|H1)
marg.

=

∫
f(z|H1, θ) · π(θ|H1) dθ

eq.
(28)
(3)
=

∫
f(z|θ) · π1(θ) dθ (31)

f(z|H0)
marg.

=

∫
f(z|H0, θ) · π(θ|H0) dθ

eq.
(28)
(4)
=

∫
f(z|θ) · π0(θ) dθ . (32)
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and the marginal densities of y w.r.t. to the posterior distributions of θ given the first data
set x are

f(y|H1,x)
marg.

=

∫
f(y|H1, θ,x) · π(θ|H1,x) dθ

X,Y
ind.=

∫
f(y|H1, θ) · π(θ|H1,x) dθ

eq.
(26)
(18)
=

∫
f(y|θ) · π1(θ|x) dθ (33)

f(y|H0,x)
marg.

=

∫
f(y|H0, θ,x) · π(θ|H0,x) dθ

X,Y
ind.=

∫
f(y|H0, θ) · π(θ|H0,x) dθ

eq.
(26)
(17)
=

∫
f(y|θ) · π0(θ|x) dθ . (34)

The corresponding Bayes factor values are

BF y
10 :=

f(y|H1)

f(y|H0)

eq.
(29)
(30)
=

∫
f(y|θ) · π1(θ) dθ∫
f(y|θ) · π0(θ) dθ

(35)

BF z
10 :=

f(z|H1)

f(z|H0)

eq.
(31)
(32)
=

∫
f(z|θ) · π1(θ) dθ∫
f(z|θ) · π0(θ) dθ

(36)

BF
y|x
10 :=

f(y|H1,x)

f(y|H0,x)

eq.
(33)
(34)
=

∫
f(y|θ) · π1(θ|x) dθ∫
f(y|θ) · π0(θ|x) dθ

. (37)

4.2 Consistent Updating

Theorem 2 (Subsequent Updating with Bayes Factors). Based on the framework above,
updating the prior odds p(H1)/p(H0) using both x and y subsequently yields the posterior
odds

p(H1|y,x)

p(H0|y,x)
= BF

y|x
10 ·BFx

10 ·
p(H1)

p(H0)
. (38)

Proof.

p(H1|y,x)

p(H0|y,x)

Bayes
rule=

f(y|H1,x)

f(y|H0,x)

p(H1|x)

p(H0|x)

Bayes
rule=

f(y|H1,x)

f(y|H0,x)

f(x|H1)

f(x|H0)

p(H1)

p(H0)
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eq.
(37)
(9)
= BF

y|x
10 ·BFx

10 ·
p(H1)

p(H0)
.

Theorem 3 (Consistent Updating with Bayes Factors). Based on the framework above,
updating the prior odds p(H1)/p(H0) with the corresponding Bayes factor values is consis-
tent, i.e.

p(H1|z)

p(H0|z)
=
p(H1|y,x)

p(H0|y,x)
. (39)

Proof. At first, consider

BFx
10 = BFx

10

ρ+ (1− ρ)BFx
10

ρ+ (1− ρ)BFx
10

=
BFx

10 [ρ+ (1− ρ)BFx
10]

BFx
10

[
ρ

BFx
10

+ (1− ρ)
] =

ρ+ (1− ρ)BFx
10

ρ
BFx

10
+ (1− ρ)

eq.
(10)
=

(1− ρ)BFx
10 + ρ

ρBFx
01 + (1− ρ)

. (40)

Now, the Bayes factor value BF z
10 might be decomposed:

BF z
10

eq.
(36)
=

∫
f(z|θ) · π1(θ) dθ∫
f(z|θ) · π0(θ) dθ

X,Y
ind.=

∫
f(y|θ) · f(x|θ) · π1(θ) dθ∫
f(y|θ) · f(x|θ) · π0(θ) dθ

=

1
f(x)

∫
f(y|θ) · f(x|θ) · π1(θ) dθ

1
f(x)

∫
f(y|θ) · f(x|θ) · π0(θ) dθ

eq.
(22)
(23)
=

1

[ρBFx
01+(1−ρ)]

∫
f(x|θ)·π1(θ) dθ

∫
f(y|θ) · f(x|θ) · π1(θ) dθ

1

[(1−ρ)BFx
10+ρ]

∫
f(x|θ)·π0(θ) dθ

∫
f(y|θ) · f(x|θ) · π0(θ) dθ

=
(1− ρ)BFx

10 + ρ

ρBFx
01 + (1− ρ)

·
∫
f(y|θ) · f(x|θ)·π1(θ)∫

f(x|θ)·π1(θ) dθ
dθ

∫
f(y|θ) · f(x|θ)·π0(θ)∫

f(x|θ)·π0(θ) dθ
dθ

eq.
(17)
(18)
=

(1− ρ)BFx
10 + ρ

ρBFx
01 + (1− ρ)

·
∫
f(y|θ) · π1(θ|x) dθ∫
f(y|θ) · π0(θ|x) dθ

eq.
(37)
=

(1− ρ)BFx
10 + ρ

ρBFx
01 + (1− ρ)

·BF y|x
10

eq.
(40)
= BFx

10 ·BF y|x
10 . (41)
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Therefore:

p(H1|z)

p(H0|z)

Bayes
rule=

f(z|H1)

f(z|H0)
· p(H1)

p(H0)

eq.
(36)
= BF z

10 ·
p(H1)

p(H0)

eq.
(41)
= BF

y|x
10 ·BFx

10 ·
p(H1)

p(H0)

eq.
(38)
=

p(H1|y,x)

p(H0|y,x)
.

4.3 Inconsistent Updating

Remark that in order to update consistently with Bayes factors, the Bayes factor value
BF

y|x
10 of the second data set y need to be based on the posterior distributions π1(θ|x) and

π0(θ|x) that incorporate the information of the previous data set x.

However, using BF y
10 instead of BF

y|x
10 is erroneous and yields odds

p(H1|y,x(!))

p(H0|y,x(!))
:= BF y

10 ·BFx
10 ·

p(H1)

p(H0)
, (42)

which are in general different to the posterior odds obtained by updating consistently, i.e.

p(H1|y,x(!))

p(H0|y,x(!))

in
gen.

6= p(H1|y,x)

p(H0|y,x)
. (43)

This is due to ignoring the information about θ within the first data set x while calculating
the Bayes factor value based on the second data set y, and the superscript (!) indicates
this loss of information.

Bayes factor updating inconsistencies might occur e.g. in the following scenario: Two
different research teams are interested in the same research question and utilize the same
hypotheses and employ the same prior distributions on the parameter of interest. Both
teams conduct a scientific investigation with identical design and calculate a Bayes factor
value independently of each other. As each value is said to describe the change in belief
within the hypotheses, it is tempting (e.g. in a meta-analysis of both investigations) to
utilize both Bayes factor values to calculate the final belief (posterior odds) within the
initially stated hypotheses. This, however, is exactly the error displayed in equation (42).

5 Outcome of Analyses with Bayes Factors

In order to avoid updating inconsistencies, both the Bayes factor value BFx
10 and the

posterior distributions π1(θ|x) as well as π0(θ|x) are required to perform the analysis
(with Bayes factors) of the second data set y once the first data set x is available.

Accordingly, considering solely the Bayes factor value BFx
10 as the outcome of the first

analysis (of data x) is not sufficient. Also the updated posterior distributions π1(θ|x) and
π0(θ|x) need to be considered and reported. This appears to be obvious in the face of the
posterior mixture distribution described in theorem 1, which cannot be described by the
Bayes factor value BFx

10 alone. This is summarized in the following theorem.
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Theorem 4 (Outcome of Analyses with Bayes Factors). A necessary condition for updating
consistency in Bayes factors is to consider and report both the Bayes factor value BFx

10 and
the posterior distributions π1(θ|x) as well as π0(θ|x) as outcomes of the analysis (of the
data set x).

These considerations about updating inconsistency in Bayes factors might also be relevant
e.g. in the following case: It is argued that, in the context of Bayes factors, the shape of
the prior distributions (π1(θ) and π0(θ)) reflects the content of the hypotheses [see e.g.
Vanpaemel, 2010, Vanpaemel and Lee, 2012, Morey et al., 2016, Rouder et al., 2018a], but
by incorporating the information of the data x into these distributions by means of Bayes
rule, these distributions change to π1(θ|x) and π0(θ|x), which might then reflect different
contents. Although erroneous, it is tempting to treat the Bayes factor value BFx

10 as
quantification of the evidence within the data x w.r.t. to the hypotheses that are described
by the initial prior distributions π1(θ) and π0(θ), as these hypotheses were formulated to
answer the research question of interest. By doing so, the change within the distributions
of θ is discarded and inconsistent updating might occur.

6 Summary

With theorem 1 results about updating mixture distributions are brought into the notation
typically involved in the context of Bayes factors. Theorem 2 describes the final posterior
odds after considering two separate data sets subsequently and theorem 3 argues that this
updating procedure is consistent. As elaborated in Section 4.3, updating inconsistencies
occur by discarding information and an exemplary situation was provided, in which this
might happen unintentionally. Theorem 4 provides a minimum requirement on what to
consider and report as outcome of a statistical analysis with Bayes factors, and a context
in which this might oppose other recommendations about Bayes factors was illustrated in
Section 5. However, a thorough discussion of the occurrence and consequences of updat-
ing inconsistencies in applied Bayes factors was not intended within this technical report
and is still pending. Yet, this report enables this discussion by providing the necessary
mathematical foundations.
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