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We need to be able to learn new behaviour, but also be capable of changing existing routines, when they start con- 

flicting with our long-term goals. Little is known about to what extent blank-slate learning of new and adjustment 

of existing behavioural routines rely on different neural and bodily mechanisms. In the current study, participants 

first acquired novel stimulus–response contingencies, which were subsequently randomly changed to create the 

need for flexible adjustments. We measured midfrontal theta oscillations via EEG as an indicator of neural con- 

flict processing, as well as heart rate as a proxy of autonomic activity. Participants’ trial-wise learning progress 

was estimated via computation modelling. Theta power and heart rate significantly differed between correct and 

incorrect trials. Differences between correct and incorrect trials in both neural and cardiac feedback processing 

were more pronounced for adjustments compared to blank-slate learning. This indicates that both midfrontal and 

cardiac processing are sensitive to changes in stimulus–response contingencies. Increases in individual learning 

rates predicted lower impact of performance feedback on midfrontal theta power, but higher impact on heart 

rate. This suggests that cardiac and midfrontal reactivity are partially reflective of different mechanisms related 

to feedback learning. Our results shed new light on the role of neural and autonomic mechanisms for learning 

and behavioural adjustments. 
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. Introduction 

Learning new behavioural patterns is necessary to efficiently deal

ith reoccurring challenges. However, an inflexible reliance on exist-

ng response patterns can be detrimental. When changing circumstances

ender a previously learned behaviour as no longer appropriate, we need

o be able to change it. Thus, both the acquisition of new, as well as the

djustment of existing stimulus–response associations are crucial skills

n our lives. However, it is still unclear if the initial acquisition and sub-

equent alteration of response patterns should be seen as the same or as

eparate cognitive processes. The current study investigates the differ-

nces between blank-slate learning of new and adjustment learning of

xisting stimulus–response associations with respect to their underlying

echanisms in the central and autonomic nervous system. 

Both the acquisition of novel and adjustments of existing stimulus–

esponse associations share important functional similarities. Both are

elated to reinforcement learning, meaning contexts in which we receive

ositive or negative feedback for our actions ( Niv, 2009 ; Schiffer et al.,

015 ). It has been shown that reinforcement learning can lead to both

he initial formation and subsequent alteration of stimulus–response–
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utcome (S–R–O) associations, which allow us to predict which ac-

ion is most likely to lead to the desired result in a given situation

 Luque et al., 2017 ; van de Vijver et al., 2011 ). However, there are

lso important differences between blank-slate learning and behavioural

djustments: While during blank-slate learning we have no prior pre-

ictions about the outcome of our actions, adjustment learning has

o overcome a mismatch between existing, but no longer valid S–R–O

ssociations and alternative action affordances. Therefore, adjustment

earning is assumed to be dependant on cognitive control mechanisms

or the top-down suppression of previously acquired S–R–O associa-

ions ( Cavanagh et al., 2013 ). The ability to update previously learned

timulus–response associations is likely to be an important step in be-

ng able to shift from a primarily habitual response mode towards goal-

irected actions in accordance with current action affordances ( de Wit

t al., 2018 ; Dolan and Dayan, 2013 ; Hardwick et al., 2019 ). Neural

scillations in the theta range (4–7 Hz) are assumed to play an impor-

ant role in learning processes ( Hanslmayr and Staudigl, 2014 ). Both the

ncoding and maintenance of to-be-remembered items can lead to in-

reases in theta power over the midfrontal cortex ( Herweg et al., 2020 ;

sieh and Ranganath, 2014 ). Theta activity in this area has been re-

ated to sources in the anterior cingulate cortex (ACC), but might also

e partly driven by generators in the hippocampus ( Bastiaansen and Ha-

oort, 2003 ; Botvinick et al., 2004 ; Cohen, 2014a ; Gyorgy, 2002 ). Dur-
ber 2020 
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ng learning of novel stimulus–response associations, midfrontal theta

ower has been found to be highest during initial stimulus presenta-

ions, and to gradually decrease after the correct S–R associations have

een established ( Clarke et al., 2018 ). This suggests, that midfrontal

heta power is related to the formation of new S–R patterns. 

Midfrontal theta oscillations have also been associated with cogni-

ive control ( Cavanagh and Frank, 2014 ). Stimuli which signal the need

o deviate from prepotent action impulses elicit increases in midfrontal

heta power ( Kaiser and Schütz-Bosbach, 2019 ; Kaiser et al., 2019 ;

igbur et al., 2011 ). Moreover, incorrect actions and negative feedback

an also lead to increases in theta power ( Cohen, 2011 ; Trujillo and

llen, 2007 ; Valadez and Simons, 2018 ). It has been suggested that

heta oscillations following errors facilitate necessary behavioural ad-

ustments for subsequent trials by increasing intercommunication be-

ween task-relevant brain areas ( van de Vijver et al., 2018 ; van Driel

t al., 2012 ). In support of this assumption, some studies have found

hat higher theta reactivity after errors partially predicts improved per-

ormance in subsequent trials ( Luft et al., 2013 ; van de Vijver et al.,

011 ). Since adjustment of existing response patterns involves both a)

he suppression of previously learned, but no longer appropriate ac-

ion tendencies, and b) the incorporation of feedback to alter previously

earned stimulus–response associations, midfrontal theta oscillations are

ikely to be an important part of engaging in flexible behavioural change

 Cavanagh et al., 2013 ). 

To summarise, midfrontal theta oscillations have been identified as

n important correlate of both blank-slate learning (where no prior S–

 associations exist), as well as behavioural adaption (where prior S–

 associations are in conflict with novel task affordances). This might

uggest that midfrontal theta oscillations are part of general mecha-

isms for both blank-slate and adjustment learning. However, to better

nderstand the functional role of neural oscillations in these cognitive

rocesses, it is crucial to directly compare blank-slate and adjustment

earning with respect to the potential modulation of midfrontal theta

ower. Therefore, the current study employed a reinforcement learning

asks consisting of two phases: In an initial blank-slate learning phase,

articipants acquired novel S–R–O associations. In a subsequent adjust-

ent phase, a random alteration of previous S–R contingencies led to

he need to change existing response patterns. We measured neural ac-

ivation both during stimulus and feedback presentation, to see in how

ar the need for S–R adjustments affected either the initial processing of

he target stimuli or the relevant performance feedback We used com-

utational modelling to estimate participants’ learning progress in each

hase and correlated individual learning curves with neural midfrontal

ctivation. This allowed us to test directly, if behavioural success in

lank-slate and adjustments learning is related to the same or different

atterns in oscillatory activity. 

Learning and adjustment processes are not only reflected in neu-

al oscillations, but also influence processes related to the autonomic

ervous system. Recent studies suggest that a coupling of neural and

utonomic processes play a role in flexible behavioural adjustments

 Spruit et al., 2018 ; Ullsperger et al., 2014 ). Cardiovascular activity rep-

esents a central part of autonomic functioning. Importantly, it has been

hown that cardiac activity is sensitive to many cognitive parameters

hich also influence midfrontal theta oscillations. First, heart rate, like

idfrontal theta power, changes with increased need for cognitive con-

rol, with higher control affordances leading to heart beat deceleration

 Fiehler et al., 2004 ). Secondly, like midfrontal theta power, cardiac ac-

ivity is influenced by performance feedback, with negative compared

o positive feedback leading to a slower heart rate ( Crone et al., 2003 ;

ube et al., 2016 ; Wessel et al., 2011 ). Some studies found that pop-

lations with lower performance in reinforcement learning paradigms,

uch as people diagnosed with ADHD, showed lower cardiac reactivity

uring the presentation of task feedback ( Luman et al., 2007 , 2008 ).

verall, these results appear to suggest that changes in midfrontal theta

ower and changes in heart rate are indicative of the same underlying

ognitive processes. This potential link is supported by the finding that
he anterior cingulate cortex, which is believed to play a role in generat-

ng midfrontal theta power, shows strong connectivity with the anterior

nsula, which is known to be involved in the neural processing of cardiac

ignals ( Limongi et al., 2013 ; Medford and Critchley, 2010 ). It has been

uggested that the integration of cardiac and neural processing plays an

mportant role in processing affective information such as task-relevant

eedback ( Gentsch et al., 2019 ; Seth and Friston, 2016 ). However, since

eural oscillations and cardiac activity are commonly measured in sep-

rate studies, the potential overlap and differentiation between these

rocesses is still largely speculative. Therefore, we also measured heart

ate during performance feedback. This allowed us to evaluate in how

ar midfrontal oscillations and cardiac reactivity differ in their relation-

hip with participants’ performance during blank-slate and adjustment

earning. 

To summarise, the current study employed a reinforcement learn-

ng paradigm, in which first new stimulus–response associations had

o be learned (blank-slate learning). Subsequently, changes in previ-

usly learned stimulus–response contingencies created the need to over-

rite existing associations (adjustment learning). We estimated trial-

ise learning progress via computational modelling and recorded both

EG and heart rate during the task. This allowed us to investigate in how

ar task success in blank-slate learning and behavioural adjustments de-

ends on the same or different changes in neural midfrontal oscillations,

s well as cardiac activity. 

. Method 

.1. Participants 

Twenty-four participants (8 males) with a mean age of 25.29

SD = 4.46) took part in the study for either course credit or a finan-

ial reimbursement of 9 Euros per hour. 

.2. Measurement setup 

EEG was recorded with 65 active electrodes (BrainProducts ActiS-

ap) and one additional ground electrode, positioned according to the

nternational 10–20 system. The FCz electrode was used as an online

eference. ECG was recorded with two bipolar electrodes below the left

ectroral muscle and the left clavicle, as well as one ground electrode

elow the right clavicle. Both EEG and ECG were recorded with a Brain-

ision QuickAmp amplifier, employing a 500 Hz sampling rate and a

.016 Hz – 250 Hz bandpass filter. 

.3. Stimuli 

For each experimental block, one set of four squares with different

olours was randomly generated. For each colour, three numbers be-

ween 0 and 255 were randomly chosen as values for red, green, and

lue (RGB) colour intensities. Since every colour is defined by these

hree values, each unique colour can be conceptualised as a position in

hree-dimensional RGB space. Accordingly, the RGB-values were ran-

omly generated with the following constraints: Relative to all other

olours from the same set, the colour of each stimulus had to have a

inimum distance of 200 steps in RGB space. Additionally, the colour of

ach stimulus needed to have a minimum distance of 120 steps relative

o all stimulus colours from the directly preceding set. These constraints

nsured that no item was too similar in colour compared to the stimuli

rom the same or the preceding learning set. 

A white check mark and a white X were used as symbols for positive

nd negative feedback, respectively. Every stimulus in this experiment

ad the same size (visual angle: 1.2° x 1.2°) and was always presented in

he middle of the screen. All stimuli were shown on a grey background

n a 24-in. display with a distance of 90 cm from the participants. 
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Fig. 1. Schematic overview of the study design. 

Note. Overview of experimental design: a) Trial structure with presentation durations in brackets; b) example assignment of stimulus–response contingencies in one 

block for the two phases. Note that actual stimuli colours, initial assignments for blank-slate learning, and changes in assignments for the adjustment learning phase 

were randomly generated for each experimental block. 
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.4. Procedure 

Fig. 1 shows an overview of the experimental design. The procedure

onsisted of 14 blocks, each employing a new set of four distinct tar-

et stimuli. For every block, a 1:1-assignment between the four target

timuli and the four response keys (F1, F2, F11, and F12 on a reversed

eyboard) was randomly generated. No prior information about the cor-

ect stimulus–response assignments were provided to the participants.

articipants were instructed to press one of the four keys whenever a

timulus would appear and use the subsequent feedback to infer the

orrect stimulus–response associations in every block. Additionally, par-

icipants were informed that the stimulus–response assignments might

hange over the course of a block. 

Every block consisted of a blank-slate phase and an adjustment

hase. The blank-slate phase in each block consisted of 48 trials, made

p of 12 repetitions of all four stimuli in randomised order. Every trial

onsisted of an action period, a delay period, and a feedback period.

he action period started with the presentation of one target stimulus

or 200 ms, followed by a fixation cross for 800 ms. Beginning with

timulus onset, participants had 1000 ms to press one of four keys on

he keyboard. This was followed by a delay period of 1200 ms, where

nly the fixation cross was on the screen. The delay period helped to

nsure that action- and feedback-related neural activity did not over-

ap. After the delay period, participants received either positive or neg-

tive feedback for 200 ms, depending on if their key press matched the

timulus–response assignment for this block. In case participants had

ot responded within the initial 1000 ms action period, a clock sym-

ol was shown to encourage faster responses. The feedback symbol was

ollowed by a fixation cross for 800 ms. The intertrial interval varied

andomly between 1500 and 1700 ms. 

During the adjustment phase the same task procedure with the same

timuli as in the blank-slate phase was employed. Importantly, for two

ut of the four stimuli the stimulus–response assignments were ran-

omly switched (e.g., Stimulus 1 = Button 1; Stimulus 2 = Button 2

 > Stimulus 1 = Button 2; Stimulus 2 = Button 1). Participants received

o explicit information about which assignment would change in any

lock. Additionally, the transition between blank-slate and adjustment
hase was not marked by any kind of explicit notification. The adjust-

ent phase consisted of 10 repetitions of the four target stimuli in ran-

omised order, resulting in 40 trials per block. The adjustment phase

as slightly shorter than the blank-slate phase, since behavioural data

f a pilot study indicated that the majority of the adjustment process

ook place within this time frame. After each block participants received

eedback about the percentage of correct responses and their mean re-

ponse time. 

.5. Behavioural analysis 

In order to inspect the temporal changes of error rates over each

lock, we summarised the binary performance of each trial (cor-

ect/incorrect) into time bins of eight trials each, meaning two rep-

titions of the same stimulus per bin. Additionally, based on individ-

al trial data, we estimated individual learning progress via a compu-

ational model for reinforcement learning ( Smith et al., 2004 ; s. also

larke et al., 2018 ). In a nutshell, this model estimates for each trial a

ontinuous value between 0 and 1 which expresses the likelihood to an-

wer correctly at that trial, based on previous performance of the partic-

pant in the same block. Thus, higher values indicate increased success

n the overall learning progress. For estimation of the learning curves,

he model uses state-space smoothing and an expectation maximisation

lgorithm to estimate the unobservable learning state and its variance

ased on observable response data. The probability of correct response

n a given trial is then the mode of the Gaussian probability density func-

ion fitted for that trial with the estimated learning state and variance

s parameters. Models were calculated with a sigma parameter of 0.05.

e calculated learning curves separately for the blank-slate and adjust-

ent phase of each block, since reinforcement learning models assume

elatively stable stimulus–response contingencies throughout the learn-

ng process. For the background probability of the blank-slate phase,

e chose 0.25, since without prior knowledge there is 25% chance to

hoose the correct response amongst the four possible buttons. For the

djustment phase, the background probability was set to half of the final

earning progress estimate from the preceding blank-slate phase, taking

nto account that half of the stimulus–response associations were ran-
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Fig. 2. Topographical plots of midfrontal theta power for each con- 

dition. 

Note. Topographical plots show baseline-corrected oscillatory power 

in the theta range (4–7 Hz) during feedback presentation (2.4–2.8 s). 

Stars indicate electrodes employed in the main analysis. 
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omly changed at the beginning of the adjustment phase. To account

or cases where the state-space smoothing procedure could not estimate

 sufficient fit with the data, we excluded all blocks for which the al-

orithm did not converge after 1000 iterations. This led to the average

xclusion of 2.62% (SD = 4.66) of all trials. 

.6. EEG analysis 

EEG data was filtered (high-pass: 1 Hz, low-pass: 40 Hz) and

e-referenced to the average of all electrodes. For one participant,

wo exceedingly noise electrodes were removed and subsequently re-

laced with spherical spline interpolations using the Fieldtrip function

t_channelrepair ( Oostenveld et al., 2011 ). Data was cut into trial epochs

anging from − 1500 ms to + 4500 ms relative to stimulus onset on each

rial. We used independent component analysis (ICA) as implemented

n Fieldtrip to identify and remove components caused by eye blink-

ng or other artefacts clearly unrelated to neural activity. This led to

he removal of 1–4 (mean = 1.79) components per participant. Subse-

uently, we removed all trials in which activity exceeded + − 100 μV to

ccount for noise artefacts, resulting in the average exclusion rate of

.75% (SD = 3.99). 

To improve spatial specificity of the data, we employed a Lapla-

ian filter via the Fieldtrip function ft_scalpcurrentdensity with the spline

ethod and a polynomial degree of 10. Subsequently, oscillatory ac-

ivity was calculated between 2 and 40 Hz in 1-Hz steps using com-

lex Morlet waveletes the number of cycles linearly increasing from

 to 8. For analysis of condition-wise activity, we averaged trials

eparately for each phase (blank-slate/adjustment) trials according to

articipants’ performance (correct/incorrect). Condition averages were

aseline-corrected via decibel conversion relative to the pre-trial mean

f all trials between − 400 to − 100 ms. 

Most previous studies concerning midfrontal theta oscillations re-

orted theta peaks around the FCz electrode (e.g., Cavanagh et al.,

012 ; Cohen and Donner, 2013 ; Kaiser and Schütz-Bosbach, 2019 ;

issers et al., 2018 ). Based on these findings, we averaged the electrodes

Cz/FC1/FC2 for the analysis of midfrontal oscillations. As can be seen

rom topographical plots, this area shows a peak in theta activity ( Fig. 2 ).

o aid comparison between oscillatory effects and event-related poten-

ials, we also present an analogous analysis of event-related potentials

or the same electrodes in the Supplemental Material. 

For identifying significant differences between conditions, we em-

loyed cluster-based permutation as implemented in the Fieldtrip func-

ion ft_freqstatistics ( Maris and Oostenveld, 2007 ). First, this function

alculated for each time-frequency point a t -value for the difference be-

ween target conditions. T-values with the same sign which surpassed

 predefined threshold of p < .025 were grouped together into posi-
ive or negative clusters. The absolute sum of each cluster’s individual

-values was defined as the cluster’s weight. The weight of each cluster

as employed as the sole criterion for determining that cluster’s signif-

cance. For this purpose, cluster-based permutation estimates the likeli-

ood of each cluster’s weight in the actual data in comparison to random

ermutations of the data set. More specifically, the assignment of each

articipant’s time-frequency data was randomly shuffled between the

onditions for 2000 iterations, and the cluster weights for the shuffled

ata were calculated analogous to the actual data. The maximum clus-

er weight of each iteration was retained. If the presence of a cluster in

he actual data presented systematic condition differences that were not

ue to chance, its (or a higher) weight should be less likely to occur dur-

ng randomised iterations. Accordingly, the p -value for each cluster is

efined as the proportion of random iterations that resulted in a higher

luster weight. For each significant cluster, we report the cluster weight,

 -value, and its start and end time. 

In order to test for the relationship between trial-specific learning

rogress and neural activation, we computed the correlations between

he oscillatory activity and the estimated learning progress score on

he same trial for each time-frequency point in every condition, sep-

rately for each participant. Both oscillatory activity and behavioural

ata was rank-transformed within each participant prior to the calcu-

ations of correlations. Rank transformation lowers the influence of po-

ential outliers on correlation estimates ( Cohen, 2014b ). This procedure

enerated for each participant and condition one separate electrode-

ime-frequency map of correlation coefficients. Using the previously

escribed cluster-based permutation approach, we tested the power-

earning correlation maps of all participants in each condition for clus-

ers, which on average significantly differed from 0, and therefore rep-

esented statistically significant correlations between oscillatory power

nd computationally estimated learning progress. For visualisation of

articipant-wise correlations maps, we averaged for each condition the

orrelation coefficients over all participants, resulting in one heatmap

f average correlation strength for each condition. 

.7. Heart beat analysis 

ECG data was processed with the same filter settings as EEG data.

dditionally, all trials marked as noisy during EEG exclusion were also

emoved from the ECG. For analysis of the heart rate after feedback,

e extracted the 2-second interval starting from feedback onset of each

rial. We also report the results for heart rate during the action- and de-

ay period prior to feedback as Supplemental Material. We used an im-

lementation of the Pan-Tompkins algorithm in the BioSigKit Toolbox

or detecting R-peaks for each trial and calculated the latency between

-peaks within the time window of interest ( Sedghamiz, 2018 ). Mean
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Fig. 3. Changes in average error rates over trials. 

Note. Coloured lines show error rates of individual participants av- 

eraged over all blocks. Black line shows average error rates of all 

participants, with error bars showing standard error. 
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v  
atencies between peaks for each trial were converted to beats per min-

tes. To account for outliers in the R-peak identification we excluded

ll trials from further analysis, where the heart rate deviated more than

 standard deviations from the participant’s mean. Trial-wise heart rate

stimates were averaged for each condition. Additionally, heart rate-

alues of individual trials were retained for assessing the trial-specific

elation between cardiac activity and learning progress. 

Average heart beat activity between conditions was compared

ith a repeated measures ANOVA with the factors PHASE (blank-

late/adjustment) and PERFORMANCE (correct/incorrect). Subsequent

 -test were Bonferroni-corrected. We report 𝜂2 
𝑝 

and Cohen’s d as effect

izes. We also report Bayes Factors (BF), which estimate the ratio of

vidence for the alternative hypothesis (meaning here a difference be-

ween conditions) relative to evidence for the null hypothesis. While

ayes factors are not bound to a specific cutoff value, it has been sug-

ested that BF > 3 could indicate positive evidence for the alternative

ypothesis, while BF < 0.33 could be seen as positive evidence for the

ull hypothesis ( Jarosz and Wiley, 2014 ; Van de Schoot et al., 2014 ).

or the calculation of all tests we used the R packages ez, rstatix , and

ayesFactor . 
In order to evaluate the relation between learning progress and heart

ate on individual trials, we employed hierarchical linear regression.

ompared to traditional non-hierarchical regression, this method has

he advantage that it allows to model the trial-wise relation between

elevant variables, while still taking into account differences between

articipants ( Hayes, 2006 ; Richter, 2006 ). For this analysis, heart rate

ata was mean-centred by subtracting each participant’s average heart

ate from the value of each trial ( Hofmann and Gavin, 1998 ). Accord-

ngly, the resulting values express the change on each trial due to the

urrent trial’s feedback. Subsequently, for each condition separately,

e estimated a regression model with each trial’s heart rate as a de-

endant variable, and the current learning rate on this trial as a fixed-

ffect predictor. Each model included the intercept and learning rate as

dditional random error terms nested in participants as a cluster vari-

ble. This allowed for differences between participants in intercept and

lope of the estimated regression line and therefore for differences in

articipant-specific relationships between learning progress and heart

ate ( Gelman and Hill, 2006 ). We estimated the regressions models

n R via the package lme4 , using the R formula heart beat ~ learning
rogress + (learning progress|participant) . Since inspection of model resid-

als via scatter plots indicated deviations from the normality distribu-

ion, we calculated bootstrapped confidence intervals for the fixed factor

earning rate using the bootMer function with 1000 simulations. Since

his procedure relies on resampling values from the original data set,
ootstrapped confidence intervals are less reliant on the assumption of

ormality than non-bootstrapped estimates ( Field and Wilcox, 2017 ).

onfidence intervals for the factor learning rate which do not con-

ain 0 indicate a significant relationship between learning progress and

eart rate. Moreover, we calculated p-values for the regression coeffi-

ient of learning progress by performing bootstrapped model compari-

on as implemented in the function PBmodcomp of the R package pbkrtest
 Halekoh and Højsgaard, 2014 ). We compared the full model as stated

bove with a baseline model using exactly the same parameters, but

ithout learning progress as a fixed factor (in R notation: heart beat ~
 + (learning progress|participant) ). A significant result of this test means

hat the inclusion of learning progress as a predictor significantly im-

roves the model, and therefore indicates a general relation between

earning rate and heart rate. 

. Results 

.1. Error rates 

Fig. 3 shows changes in error rate averaged over all blocks. To eval-

ate participants’ task performance, we compared error rates between

he beginning and end of the blank-slate and adjustment phase, de-

ned as the first and last time bin in each phase (cf. Table 1 ). There

as a significant decrease in errors from the beginning to the end of

he blank-slate phase, t (23) = 26.43, p < .001, d = 5.40, BF > 10 6 .

his shows that participants on average successfully learned the initial

timulus–response associations. Errors increased significantly from the

nd of the blank-slate phase to the beginning of the adjustment phase,

 (23) = − 18.05, p < .001, d = 3.68, BF ⟩ 10 6 . From the beginning to

he end of the adjustment phase, errors again significantly decreased,

 (23) = 12.66, p < .001, d = 2.58, BF ⟩ 10 6 . This indicates that the

hanges in stimulus–response associations interfered with performance,

ut that participants were able to change their response patterns dur-

ng the adjustment phase. Notably, error rates at the end of the adjust-

ent phase were still higher than at the end of the blank-slate phase,

 (23) = 4.48, p < .001, d = 0.92, BF = 169.16. This also remained true,

hen we controlled for the slighter longer duration of the blank-slate

hase by comparing the average error rates between the fifth time bin of

he adjustment phase (trial 81–88) with the fifth time bin of the blank-

late phase (trial 33–40), t (23) = 4.22, p < .001, d = 0.86, BF = 94.43.

hus, the alterations in stimulus–response contingencies during the ad-

ustment phase had a prolonged negative effect on performance. 

Fig. 4 shows averages of the trial-wise learning progress as estimated

ia computational approximation from the error rates (also cf. Table 1 ).
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Table 1 

Error rates, learning progress, and respomse times. 

Error rates 

(%) 

Learning progress 

(probability, 0–1) 

Response times 

(ms) 

Phase Start End Start End Start End 

Blank-Slate 

Learning 

50.41 

(8.27) 

11.24 

(7.45) 

0.29 

(0.02) 

0.93 

(0.06) 

582.3 

(36.3) 

610.2 

(53.4) 

Adjustment 

Learning 

45.42 

(8.10) 

16.85 

(10.79) 

0.49 

(0.04) 

0.85 

(0.10) 

640.7 

(46.7) 

640.9 

(61.5) 

Note. Table shows condition-wise average values with standard deviations in brackets. 

Fig. 4. Averages of estimated learning rates. 

Note. Coloured lines show averages of estimated learning rates over all blocks for individual participants. Black line shows the average learning rate of all participants, 

with error bars indicating standard errors. 

Fig. 5. Changes in response times over trials. 

Note. Coloured lines show response times of individual participants 

averaged over all blocks. Black line shows average response times of 

all participants, with error bars showing standard error. 
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earning progress significantly increased from the beginning to the end

f blank-slate phase, t(23) = 53.77, p < .001, d = 10.98, BF > 10 6 , and

ecreased at the beginning of the adjustment phase compared to the end

f the blank-slate phase, t (23) = − 64.00, p < .001, d = 13.06, BF ⟩ 10 6 .

earning progress again increased towards the end compared to the end

f the adjustment phase, t (23) = 22.43, p < .001, d = 4.58, BF > 10 6 .

verall, the estimates of learning progress mirror the changes in error

ates during the blank-slate and adjustment phase. 

.2. Response times 

Fig. 5 shows average response times. Response times significantly

ncreased from the beginning to the end of the blank-slate phase,

 (23) = − 3.75, p < .001, d = 0.77, BF = 33.96. This is likely to reflect

he fact that at the beginning of this phase participants could just se-

ect responses at random, since they had no prior information about
he correct stimulus–response mappings. Conversely, later in the phase,

esponse selection was more likely to involve memory retrieval con-

erning the appropriate response. From the end of the blank-slate phase

o the beginning of the adjustment phase, response times significantly

ncreased, t (23) = − 3.31, p < .00, d = 0.68, BF = 13.27. This could indi-

ate increased response caution due to the changes in previously learned

timulus–response mappings. There was no difference in response times

etween the start and the end of the adjustment phase, t (23) = − 0.02,

 = .99, d = 0.003, BF = 0.21. 

.3. Midfrontal oscillations 

Fig. 6 shows average midfrontal oscillatory activity, separately for

orrect and incorrect trials in both phases, with clusters of signifi-

ant differences highlighted. For blank-slate learning, incorrect com-

ared to correct trials showed a cluster of significantly lower activ-
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Fig. 6. Midfrontal oscillatory power for correct and incorrect trials during blank-slate and adjustment learning. 

Note. Heat maps shows baseline-corrected oscillatory power for midfrontal electrodes (FCz, FC1, FC2). Stimulus presentation starts at 0 s. Vertical dashed line indicates 

onset of trial feedback. Difference maps show contrasts between conditions. Contours indicate areas of significant differences between conditions as determined via 

cluster-based permutation ( p < .05, two-sided). 
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ty with a negative peak from approximately 7 up to 20 Hz during

he action period and delay period, maximum duration: 0 s–2.44 s,

 weight = − 33,719.73, p < .001, as well as during feedback presentation,

.52 s–3.20 s, t weight = − 8222, p = .008. This indicates a decrease in

lpha power (commonly defined as activity between 8 – 14 Hz), as well

s beta power (commonly defined between 15 and 30 Hz). Additionally,

ncorrect compared to correct trials during blank-slate learning showed

ignificantly higher power in the delta-theta range during the feedback

eriod, 2.35 s–3.2 s, t weight = 3918.77, p = .026. 

For adjustment learning, a similar pattern emerged, with signifi-

antly lower alpha activity for incorrect compared to correct trials dur-

ng both action and delay period, 0 s–2.42 s, t weight = − 29,572.90,

 < .001, as well as during the feedback period, 2.65 s–3.2 s,

 weight = − 6489.81, p = .007. Incorrect compared to correct tri-

ls during adjustment learning were marked by significant higher

elta-theta activity both during the action period, 0.52 s – 1.24 s,

 weight = 2416.62, p = .04, as well as during the feedback period, 2.27 s–

.2 s, t weight = 6027.85, p = 0.006. 

Permutation analysis also revealed differences in oscillatory activ-

ty between blank-slate learning and adjustment learning. For correct

rials, the adjustment phase compared to the blank-slate phase showed

 cluster of significantly higher oscillatory activity, which was mostly

onfined to the alpha/beta range in the delay period and the feedback

resentation, 1.01 s–3.04 s, t weight = 14,401.69, p = .001. For incor-

ect trials, adjustment learning also showed a cluster of significantly

igher oscillatory power, 0.52 s–3.2 s, t weight = 27,904.46, p < .001. As

or correct trials, this cluster included higher alpha/beta power for ad-

ustment learning compared to blank-slate learning. Additionally, this
ositive cluster entailed periods of higher activity in the delta/theta

ange (2–8 Hz) during both the action period (approximately from 0.5

o 1.5 s) and the feedback period (from 2.5 to 3 s). This indicates

tronger midfrontal oscillatory activity for negative trials during the

djustment phase compared to blank-slate learning, which occurred in

he delta/theta as well as in the alpha range. To conclude, both dur-

ng blank-slate and adjustment learning, incorrect compared to correct

rials were marked by stronger midfrontal theta responses during feed-

ack. Additionally, during adjustment learning, incorrect compared to

orrect trials also showed significantly higher theta responses during

he action phase. Incorrect compared to correct trials in both phases

ere also marked by a prolonged pattern of lower alpha/beta activity

hroughout most of the trial duration. Adjustment learning compared to

lank-slate learning led to increased midfrontal oscillatory power over

 broad frequency range. Particularly for incorrect trials, the increase

or adjustment compared to blank-slate learning also included higher

ctivity in the theta range. 

.4. Brain-behaviour correlations 

Fig. 7 shows the averages of trial-wise correlations between mid-

rontal oscillatory power and learning progress, as estimated via state-

pace modelling. Permutation analysis revealed several clusters of sig-

ificant correlations. For correct trials during blank-slate learning, we

ound a positive correlation between learning progress and oscillatory

ower throughout the whole trial, which was mostly confined to the al-

ha/beta range, 0 s–3.2 s, t weight = 48,829.44, p < .001. For incorrect

rials during blank-slate learning, there was a positive correlation be-
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Fig. 7. Average Correlations between trial-wise learning progress and time-frequency points at midfrontal electrodes. 

Note. Heat maps show within-subject correlations between trial-wise learning rate and oscillatory power for midfrontal electrodes (FCz, FC1, FC2), averaged over all 

participants. Contours indicate areas of significant correlations as determined via cluster-based permutation ( p < .05, two-sided). Stimulus presentation starts at 0 s. 

Vertical dashed line indicates onset of trial feedback. 
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ween learning progress and oscillatory power during action and delay

eriod, 0 s–2.34 s, t weight = 29,305.26, p < .001, as well as during the

eedback period, 2.42 s–3.2 s, t weight = 5318.19, p = .011. Notably, the

ositive cluster during the action period for incorrect trials spanned a

ide frequency range which included the alpha-range, as well as the

elta/theta range. This indicates a positive correlation between learn-

ng progress and midfrontal power in both the alpha and delta-theta

requencies during action execution for incorrect trials. Thus, for blank-

late learning, increases in learning progress, indicating higher familiar-

ty with the current learning set, led to higher oscillatory power over a

elatively broad frequency range. While for correct trials this mostly en-

ailed increases in the alpha/beta range, incorrect trials showed a wider

ncrease reaching into the theta range during the action period. 

For correct trials during adjustment learning, there were three

losely adjacent positive clusters in the alpha /beta range, indicating sig-

ificant positive correlations between learning progress and alpha/beta

ower in the action period, 0 s–0.35 s, t weight = 2080.62, p = .037, the

elay period, 0.35 s–2.5 s, t weight = 32,570.32, p < .001, as well as the

eedback phase, 2.51 s–3.2 s, t weight = 8793.44, p = .007. Additionally,

e found a negative cluster in the delta/theta range during the feedback

eriod, 2.32 s – 2.92 s, t weight = − 2066.58, p = .038. This indicates that

ith increased learning progress, positive feedback had less impact on

idfrontal theta power during adjustment learning. 

For incorrect trials during adjustment learning, we found three ad-

acent positive clusters in the alpha/beta range, indicating positive cor-

elations between learning progress and alpha/beta power during the

ction period, 0 s–1.21 s, t weight = 8824.38, p < .001, the delay period,

.3 s–2.26 s, t weight = 6269.17, p < .001, and the feedback phase, 2.54 s–
.2 s, t weight = 5924.08, p < .001. Notably, the positive cluster during the

ction period extended into the delta/theta range, suggesting a positive

orrelation between learning progress and both the midfrontal alpha as

ell as delta/theta response during response selection. As for correct tri-

ls, there was a significant negative cluster in the theta range during the

eedback period, 2.37 s–3.16 s, t weight = − 1529.33, p = .04, indicating

hat increased learning progress during adjustment learning was associ-

ted with decreasing midfrontal delta/theta reactivity towards negative

eedback. 

To conclude, we found that midfrontal oscillatory reactivity cor-

elated with participants’ trial-specific learning progress. During both

lank-slate learning and adjustment learning, higher learning progress

as related to higher alpha/beta power. Additionally, during both

hases higher learning progress lead to an increased midfrontal theta

esponse during the initial presentation of incorrect items. Only dur-

ng adjustment learning, the impact of both positive and negative feed-

ack on midfrontal theta power significantly diminished with increasing

earning progress. 

.5. Heart rate 

Cardiac activity during feedback processing was analysed by com-

aring the condition-wise averages in heart rate of each participant

cf. Fig. 8 ). A PHASE (blank-slate/adjustment) x PERFORMANCE (cor-

ect/incorrect) ANOVA showed no significant main effect of PHASE, F <
, p = .31, BF = 0.25, a main effect of PERFORMANCE, F (1,23) = 97.03,

 < .001, 𝜂2 
𝑝 
= 0.81, BF > 10 6 , and a significant PHASE x PERFORMANCE

nteraction, F (1,23) = 21.64, p < .001, 𝜂2 
𝑝 
= 0.48, BF = 4.67. For blank-
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Fig. 8. Heart rate after feedback for correct and incorrect 

trials during blank-slate and adjustment learning. 

Note. Grey lines show changes in heart rates of individual 

participants. 

Table 2 

Parameter estimates of the multilevel model for the relationship between learning progress and heart rate during 

the feedback period. 

Blank-Slate: 

correct 

Blank-Slate: 

incorrect 

Adjustment: 

correct 

Adjustment: 

incorrect 

Fixed Effects 

Intercept b = − 1.46, 

CI = [ − 2.96, 0.05], 

t = − 1.96, p = .06 

b = − 0.11, 

CI = [ − 1.04, 0.86], 

t = − 0.22, p = .83 

b = − 1.19, 

CI = [ − 2.36, − 0.06], 

t = − 2.04, p = .05 

b = − 1.45, 

CI = [ − 2.87, − 0.02], 

t = − 1.94, p = .06 

Learning 

Progress 

b = 1.84, 

CI = [0.04, 3.54], 

t = 2.06, p = .05 

b = − 2.37, 

CI = [ − 3.69, − 1.06], 

t = − 3.52, p = .002 

b = 2.65, 

CI = [1.03, 4.23], 

t = 3.33, p = .004 

b = − 1.45, 

CI = [ − 2.96, 2.05], 

t = − 0.34, p = .75 

Random Effects 

Intercept Var = 11.01, 

SD = 3.31 

Var = 3.29, 

SD = 1.81 

Var = 5.06, 

SD = 2.25 

Var = 9.87, 

SD = 3.14 

Learning 

Progress 

Var = 16.21, 

SD = 4.03 

Var = 4.76, 

SD = 2.18 

Var = 10.32, 

SD = 3.21 

Var = 30.49, 

SD = 5.52 

Residual Var = 33.39, 

SD = 5.78 

Var = 39.79, 

SD = 6.31 

Var = 33.88, 

SD = 5.82 

Var = 31.11, 

SD = 5.58 

Note. Table shows parameter estimates of hierarchical regression with trial-wise learning progress as predictor 

and heart rate as outcome variable for each experimental condition. 
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late learning, incorrect trials (mean = 71.27, SD = 7.67) compared to

orrect trials (mean = 71.61, SD = 7.81) showed a significantly lower

eart rate, t (23) = − 6.95, p < .001, d = 1.42, BF = 38,493.95. During ad-

ustment learning, heart rate was also significantly lower for incorrect

rials, (mean = 70.99, SD = 7.78), and correct trials, (mean = 72.02,

D = 7.75), t (23) = − 10.87, p < .001, d = 2.22, BF > 10 6 . The heart

ate for incorrect trials did not differ between blank-slate and adjust-

ent learning, t (23) = 1.15, p = .26, d = 0.23, BF = 0.39. However, the

eart rate after feedback for correct trials was significantly higher dur-

ng adjustment learning compared to blank-slate learning, t (23) = 3.65,

 = .01, d = 0.75, BF = 27.46. Overall, performance feedback for both

lank-slate and adjustment learning had an impact on cardiac activity,

ith feedback for correct compared to incorrect trials leading to a higher

eart rate. Impact on heart rate was stronger during correct trials in the

djustment learning phase compared to correct trials in the blank-slate

earning phase. 

.6. Heart rate-behaviour correlations 

We estimated the relationships between learning progress and heart

ate by using hierarchical regression based on the trial-wise data of each

articipant. Thus, the results indicate how changes in learning progress

re related to changes in heart rate on individual trials (cf. Fig. 9 and
able 2 ). For blank-slate learning, we found that for incorrect trials

igher learning progress was a significant negative predictor of heart

ate, b = − 2.37, ci = [ − 3.69, − 1.06], p = .002. Conversely, for correct

rials during blank-slate learning, learning progress was a marginally

ignificant positive predictor of heart rate, b = 1.84, ci = [0.04, 3.54],

 = .05. For adjustment learning, we found no significant relation be-

ween learning progress and heart rate for incorrect trials, b = − 0.44,

i = [ − 2.96, 2.05], p = .75. For correct trials during adjustment learn-

ng, learning progress was a significant positive predictor of heart rate,

 = 2.65, ci = [1.03, 4.23], p = .004. To summarise, increased learn-

ng rate tended to predict a higher heart rate in response to positive

eedback, but a lower heart rate in response to negative feedback. This

elationship was not present during incorrect trials in the adjustment

hase. Overall, this indicates that with increasing learning progress the

ifference in cardiac reactivity between positive and negative feedback

ncreased, leading to stronger heart rate acceleration during correct tri-

ls and stronger heart rate deceleration during incorrect trials. 

. Discussion 

The current study compared blank-slate learning of novel stimulus–

esponse associations with behavioural adjustments where previously

earned associations had to be overwritten. For both the learning of
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Fig. 9. Linear relationships between learning progress and changes in heart rate. 

Note. Coloured lines show participant-specific regression models extracted from the overall hierarchical regression estimation. Black lines show the overall population 

model. Confidence intervals and p -values are estimated via bootstrapping. 
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ovel associations and behavioural adjustments, incorrect compared to

orrect trials lead to increased midfrontal theta power during perfor-

ance feedback, as well as decreased alpha/beta power during both

timulus and feedback presentation. Additionally, in both types of learn-

ng, feedback for incorrect compared to correct trials lead to signifi-

ant heart rate deceleration. Importantly, particularly during feedback

resentations, adjustment learning compared to blank-slate learning

howed higher midfrontal theta reactivity for incorrect trials, as well as

 higher heart rate for correct trials. Thus, during the adjustment of pre-

iously learned stimulus–response associations, the differences in neural

nd cardiac reactivity between positive and negative feedback was more

ronounced. Additionally, we found that higher learning progress pre-

icted lower midfrontal theta reactivity during adjustment learning. In

ontrasts, higher learning progress was related to increased differences

n heart rate reactivity between positive and negative feedback. This

uggests a partial differentiation in the functional relevance of cardiac

nd midfrontal oscillatory activity during novel association learning and

ehavioural adjustments. 

It is noteworthy that significant differences in oscillatory activity be-

ween incorrect and correct trials emerged early during the course of a

rial and before participants received feedback about their performance.

or adjustment learning, the mere presentation of incorrect items led to

 broadband increase in oscillatory power, which included increases in

oth the alpha/beta range, as well as midfrontal theta power. Incorrect

esponses during adjustment learning are most likely to occur for stim-
li for which participants have not yet successfully overwritten their old

esponse patterns. Thus, the initial spike in theta power for incorrect

tems indicates an early identification or ‘tagging’ of more challenging

timuli. The significant increase in theta power during stimulus presen-

ations in the adjustment phase is consistent with the theory that mid-

rontal theta oscillations partly reflect a neural conflict detection signal

 Cavanagh et al., 2012 ; Kaiser et al., 2019 ; Nigbur et al., 2011 ). 

In many traditional cognitive control paradigms, such as flanker or

troop tasks, conflicts are induced by the simultaneous presentation of

wo stimulus features which are associated with incompatible responses

 Cohen, 2014a ; Ridderinkhof et al., 2011 ). In contrast, the stimuli in our

ask were not inherently associated with any specific response pattern.

nstead, the conflict during adjustment learning was induced via partic-

pants’ own learning history. In accordance with this interpretation, we

ound that increased learning progress, as estimated via computational

odelling, predicted stronger midfrontal oscillatory power during stim-

lus presentations for items on incorrect trials. This suggests that with

ncreased learning progress participants became better in quickly iden-

ifying the items for which correct stimulus–response associations were

ot yet formed. This finding supports the theory that the regulation

f neural resources for cognitive control is modulated via associative

earning mechanisms, such that participants can learn over time to as-

ociate specific stimulus or context features with an enhanced need for

op-down control ( Braem et al., 2020 ; Egner, 2014 ; Verguts and Note-

aert, 2009 ). 
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In accordance with previous studies of error processing, we found

ncreased midfrontal theta power during feedback presentations for in-

orrect compared to correct trials ( Valadez and Simons, 2018 ; van de

ijver et al., 2018 ; van Driel et al., 2012 ). Importantly, our findings

how that midfrontal theta reactivity, as well as midfrontal alpha acti-

ation, for negative feedback was stronger during adjustment learning

han during blank-slate learning. Since the overall number, as well as

he relative complexity of to-be-remembered stimulus–response associ-

tions did not differ between the two types of learning in our task, this

ould indicate an increase in the demand for processing resources during

earning adjustments. Previous studies have shown that midfrontal os-

illations are sensitive to expectation violations ( Cavanagh et al., 2012 ;

ajihosseini and Holroyd, 2013 ; Harper et al., 2017 ). During the learn-

ng of novel stimulus–response associations, participants do not yet have

trong expectations about the feedback they might receive for their re-

ponses. Conversely, adjustment learning is triggered by a mismatch

etween expected outcomes and actual feedback. Thus, higher oscil-

atory reactivity towards feedback for adjustment compared to blank-

late learning could reflect increased prediction error. In line with this

nterpretation, we found that during adjustment learning theta reac-

ivity towards feedback significantly decreased with increasing learn-

ng progress. This might reflect the updating of expectations about the

eedback during behavioural adjustments. While the changes in stimu-

us response contingencies first led to heightened prediction error, par-

icipants changed their internal stimulus–response associations over the

ourse of adjustment process, which resulted in lower midfrontal impact

f received feedback. Overall, our findings indicate that differences in

eural processing of blank-slate learning and behavioural adjustments

re driven by the increased expectation violations during the adjust-

ent process. Successful behavioural adjustments are characterised by

he updating of internal S–R contingency models to minimise ensuing

rediction error. 

Similarly to midfrontal neural activity, and in line with research sug-

esting a crucial role of autonomic responses in error processing cardiac

esponses were influenced by the type of feedback ( Ullsperger et al.,

010 ). Feedback for incorrect compared to correct trials led to a lower

eart rate. This finding is consistent with previous studies suggesting

tronger heart beat deceleration after the presentation of negative in-

ormation ( Crone et al., 2003 ; Kube et al., 2016 ). As for midfrontal os-

illations, differences in heart rate between negative and positive feed-

ack were stronger during adjustment learning than during blank-slate

earning. However, midfrontal power and cardiac activity markedly

iffered in their relation to participants’ individual learning rates. In-

reases in learning progress were associated with a decrease of mid-

rontal reactivity, meaning that the differences between neural reactiv-

ty for positive and negative feedback became less pronounced. Con-

ersely, increased learning progress led to higher heart rate after pos-

tive feedback and lower heart rate after negative feedback, meaning

hat the differences in cardiac reactivity between positive and negative

eedback became more pronounced. Thus, neural and cardiac measures

howed opposite patterns of reactivity over the course of the learning

rocess. 

The increases in cardiac reactivity over the learning period could in-

icate increases in affective relevance of performance feedback. Heart

ate reactivity towards affective stimuli has been shown to depend on

ubjective emotional intensity ( Bradley et al., 2001 ; Lang et al., 1993 ;

oli et al., 2007 ). At the beginning of both blank-slate and adjust-

ent learning, participants have low control over the feedback they re-

eive, since they cannot know in advance the currently correct stimulus–

esponse contingencies. Instead, during the initial trials of each phase

articipants have to rely more strongly on trial-and-error learning, and

ence positive and negative feedback is mostly due to chance. Accord-

ngly, initial feedback is less reflective of participants’ personal ability

o perform successfully at the task. In contrast, feedback during the ad-

anced period of each learning phase more strongly depends on partic-

pants’ individual ability to learn from previous trials. Thus, feedback
hich occurs later in the process, is more likely to be interpreted by

articipants as reflective of their own performance, and therefore more

elf-relevant. Overall, the increase in impact on performance feedback

n cardiac reactivity with higher learning progress could indicate that

eedback towards the end of the learning process has more affective

alue for participants. 

Our finding that learning progress partly predicts the impact of per-

ormance feedback on cardiac activity, contributes to a better under-

tanding of the role of autonomic reactivity in self-regulation. It has

een suggested that the integration of cortical activity with information

or the autonomous nervous system plays an important role in feedback

rocessing, for example for the regulation of awareness for our own

ctions and conscious perception of errors ( Tallon-Baudry et al., 2018 ;

llsperger et al., 2014 ; Wessel et al., 2011 ). However, to fully under-

tand in how far autonomic activity is mainly reflective of neural learn-

ng processes, or rather might play a role in shaping self-regulation via

ottom-up feedback, further research is needed concerning the interplay

etween autonomic and central processing during action adjustments

 Marshall et al., 2018 ; Seth et al., 2012 ). 

While the main focus of our study were midfrontal theta oscillations,

ur results showed modulations in broad range of frequencies beyond

he theta range. Most prominent were effects of blank-slate learning

nd behavioural adjustments on oscillations in the alpha/beta range.

n line with previous studies, negative compared to positive feedback

ed to lower alpha/beta power during stimulus presentation, delay pe-

iod and feedback ( Clarke et al., 2018 ; Khader et al., 2010 ). It has been

uggested that heightened alpha power shields cortical regions against

xternal interference, which might be particularly beneficial during the

etention of task-relevant information ( Bonnefond and Jensen, 2012 ;

layton et al., 2017 ; Klimesch, 2012 ). In contrast, lower alpha power is

ndicative of increased attention towards external stimuli ( Kaiser and

chütz-Bosbach, 2019 ; Van Diepen et al., 2019 ). Error trials, which

re more likely to consists of items for which no sufficiently reliable

timulus–response association has been formed yet, increase the need

o attend towards external information in order to learn the correct re-

ponses ( van Driel et al., 2012 ; Wessel, 2017 ). Thus, the differences in

lpha activity between correct and incorrect trials in the current study

ould indicate differences between internal and external information

rocessing ( Hanslmayr et al., 2011 ). 

While we investigated the modulation of oscillatory power during

eedback learning, we also observed task-related differences in event-

elated potentials (ERPs) with a similar spatiotemporal distribution as

idfrontal theta oscillations (see Supplemental Material). This is in line

ith previous studies which related the processing of errors and be-

avioural conflicts to ERPs, such as the P300 and feedback-related neg-

tivity ( Huster et al., 2013 ; Wessel et al., 2011 ). The relation between

onflict-related ERPs and oscillatory effects is as yet unclear. While some

uthors suggest that changes in midfrontal theta power can be seen as

 by-product of spikes in event-related activity ( Wang and Ding, 2011 ),

thers suggest that ERPs might arise due to sudden changes in neural

scillations ( Barry, 2009 ; Harper et al., 2014 , Truijillo and Allen, 2007 ).

vent-related and oscillatory effects during conflict and feedback pro-

essing are likely to at least partially stem from overlapping neural gen-

rators such as the anterior cingulate cortex ( Cavanagh and Frank, 2014 ;

uster et al., 2013 ). Further research is needed to determine in how far

RP and oscillatory correlates of behavioural conflicts can be dissoci-

ted with respect to their underlying functions and related behavioural

utcomes. 

When considering the results of the current study, it is important

o note some limitations in our design. First, by changing stimulus–

esponse contingencies in the adjustment phase, we aimed at identifying

eural and cardiac processes related to flexible behavioural changes.

owever, it would be wrong to assume that errors during adjustment

earning were solely driven by the changes in stimulus–response asso-

iations. The adjustment phase most likely also included errors which

re not specific to adjustment learning, such as the forgetting of pre-
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iously learned, but still valid stimulus–response mappings, as well as

ttentional slips in the latter part of the learning phase. Thus, while

he remapping of stimulus–response contingencies was clearly related

o modulations of neural and cardiac reactivity, these effects should not

e seen as a pure measure of internal readjustment processes. Therefore,

t remains an important challenge for future studies to more clearly dis-

inguish between neural processes related to flexible adjustments and

ther cognitive mechanisms involved in feedback learning. 

As is common in learning feedback paradigms, learning progress was

ighly time-dependant, with a higher number of learning trials lead-

ng to an increased success rate. As a result, our data cannot unam-

iguously distinguish between the effects of learning progress and time-

ependant effects not directly related to learning, such as habituation

ue to repeated stimulus presentations (but see Supplemental Material

or a comparison of early and late learning trials). Future studies could

robe this distinction by including a control condition where partici-

ants repeatedly respond to stimuli without obtaining feedback which

llows learning stable stimulus–response associations. 

Another limitation of our study is the focus on within-subject differ-

nces between correct and incorrect responses. This leaves open in how

ar cardiac and midfrontal neural oscillations can be linked to interindi-

idual variability in learning success. While we detected mostly strong

ffects of our experimental manipulation within subjects, the sample size

n this study would most likely not allow for reliable between-subject

omparisons between more and less successful participants. To substan-

iate the link between individual learning progress and either cardiac

r midfrontal reactivity, it would be important in future studies to com-

are participants who differ in their learning performance with larger

ample sizes. 

To summarise, our study shows that both the blank-slate learning

f new associations, as well as the readjustment of existing informa-

ion are characterised by significant changes in midfrontal oscillations

nd cardiac activity. Neural and cardiac reactivity differed between cor-

ect and incorrect trials. Particularly during learning feedback, differ-

nces between correct and incorrect trials in midfrontal theta power and

eart rate were more pronounced for adjustment compared to blank-

late learning. This could highlight the role of predictive processing for

earning processes, and the need to overcome cognitive conflicts based

n a mismatch between previously learned and currently relevant in-

ormation during behavioural adjustments. Moreover, we found that in-

reased learning progress leads to lower impact of performance feedback

n midfrontal theta power, but higher impact on cardiac reactivity. The-

ries of reinforcement learning often assume that feedback can be either

lassified by its information value (i.e., its predictability), or its affec-

ive value (i.e., its emotional impact; Hajihosseini and Holroyd 2013 ;

avanagh and Frank 2014 ). Overall, our results suggest that while mid-

rontal theta oscillations might be more sensitive towards expectation

iolations, cardiac reactivity is more likely to be influenced by the af-

ective value and self-relevance of performance feedback. 
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