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Logarithmic encoding of ensemble 
time intervals
Yue Ren, Fredrik Allenmark, Hermann J. Müller & Zhuanghua Shi*

Although time perception is based on the internal representation of time, whether the subjective 
timeline is scaled linearly or logarithmically remains an open issue. Evidence from previous research 
is mixed: while the classical internal-clock model assumes a linear scale with scalar variability, there 
is evidence that logarithmic timing provides a better fit to behavioral data. A major challenge for 
investigating the nature of the internal scale is that the retrieval process required for time judgments 
may involve a remapping of the subjective time back to the objective scale, complicating any direct 
interpretation of behavioral findings. Here, we used a novel approach, requiring rapid intuitive 
‘ensemble’ averaging of a whole set of time intervals, to probe the subjective timeline. Specifically, 
observers’ task was to average a series of successively presented, auditory or visual, intervals in the 
time range 300–1300 ms. Importantly, the intervals were taken from three sets of durations, which 
were distributed such that the arithmetic mean (from the linear scale) and the geometric mean (from 
the logarithmic scale) were clearly distinguishable. Consistently across the three sets and the two 
presentation modalities, our results revealed subjective averaging to be close to the geometric mean, 
indicative of a logarithmic timeline underlying time perception.

What is the mental scale of time? Although this is one of the most fundamental issues in timing research that 
has long been posed, it remains only poorly understood. The classical internal-clock model implicitly assumes 
linear coding of time: a central pacemaker generates ticks and an accumulator collects the ticks in a process of 
linear  summation1,2. However, the neuronal plausibility of such a coding scheme has been called into doubt: large 
time intervals would require an accumulator with (near-)unlimited  capacity3, making it very costly to implement 
such a mechanism  neuronally4,5. Given this, alternative timing models have been proposed that use oscillatory 
patterns or neuronal trajectories to encode temporal  information6–9. For example, the striatal beat-frequency 
 model6,9,10 assumes that time intervals are encoded in the oscillatory firing patterns of cortical neurons, with the 
length of an interval being discernible, for time judgments, by the similarity of an oscillatory pattern with patterns 
stored in memory. Neuronal trajectory models, on the other hand, use intrinsic neuronal patterns as markers for 
timing. However, owing to the ‘arbitrary’ nature of neuronal patterns, encoded intervals cannot easily be used 
for simple arithmetic computations, such as the summation or subtraction of two intervals. Accordingly, these 
models have been criticized for lacking computational  accessibility11. Recently, a neural integration  model12–14 
adopted stochastic drift diffusion as the temporal integrator which, similar to the classic internal-clock model, 
starts the accumulation at the onset of an interval and increases until the integrator reaches a decision thresh-
old. To avoid the ‘unlimited-capacity’ problem encountered by the internal-clock model, the neural integration 
model assumes that the ramping activities reach a fixed decision barrier, though with different drift rates—in 
particular, a lower rate for longer intervals. However, this proposal encounters a conceptual problem: the length 
of the interval would need to be known at the start of the accumulation. Thus, while a variety of timing models 
have been proposed, there is no agreement on how time intervals are actually encoded.

There have been many attempts, using a variety of psychophysical approaches, to directly uncover the sub-
jective timeline that underlies time judgments. However, distinguishing between linear and logarithmic tim-
ing turned out to be constrained by the experimental paradigms  adopted15–21. In temporal bisection tasks, for 
instance, a given probe interval is compared to two, short and long, standard intervals, and observers have to 
judge whether the probe interval is closer to one or the other. The bisection point—that is, the point that is 
subjectively equally distant to the short and long time references—was often found to be close to the geometric 
 mean22,23. Such observations led to the earliest speculation that the subjective timeline might be logarithmic in 
nature: if time were coded linearly, the midpoint on the subjective scale should be equidistant from both (the 
short and long) references, yielding their arithmetic mean. By contrast, with logarithmic coding of time, the 
midpoint between both references (on the logarithmic scale) would be their geometric mean, as is frequently 
observed. However, Gibbon and colleagues offered an alternative explanation for why the bisection point may 
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turn out close to the geometric mean, namely: rather than being diagnostic of the internal coding of time, the 
midpoint relates to the comparison between the ratios of the elapsed time T with respect to the Short and Long 
reference durations, respectively; accordingly, the subjective midpoint is the time T for which the ratios Short/T 
and T/Long are equal, which also yields the geometric  mean24,25. Based on a meta-analysis of 148 experiments 
using the temporal bisection task across 18 independent studies, Kopec and Brody concluded that the bisection 
point is influenced by a number of factors, including the short-long spread (i.e., the Long/Short ratio), probe 
context, and even observers’ age. For instance, for short-long spreads less than 2, the bisection points were close 
to the geometric mean of the short and long standards, but they shifted toward the arithmetic mean when the 
spread increased. In addition, the bisection points can be biased by the probe context, such as the spacing of the 
probe durations  presented15,17,26. Thus, approaches relying on simple duration comparison have limited utility 
to uncover the internal timeline.

The timeline issue became more complicated when it was discovered that time judgments are greatly impacted 
by temporal context. One prime example is the central-tendency  effect27,28: instead of being veridical, observed 
time judgments are often assimilated towards the center of the sampled durations (i.e., short durations are 
over- and long durations under-estimated). This makes a direct interpretation of the timeline difficult, if not 
impossible. On a Bayesian interpretation of the central-tendency effect, the perceived duration is a weighted 
average of the sensory measure and prior knowledge of the sampled durations, where their respective weights 
are commensurate to their  reliability29,30. There is one point within the range of time estimation where time 
judgments are accurate: the point close to the mean of the sampled durations (i.e., prior), which is referred to 
as ‘indifference point’27. Varying the ranges of the sampled durations, Jones and  McAuley31 examined whether 
the indifference point would be closer to the geometric or the arithmetic mean of the test intervals. The results 
turned out rather mixed. It should be noted, though, that the mean of the prior is dynamically updated across 
trials by integrating previous sampled intervals into the prior—which is why it may not provide the best anchor 
for probing the internal timeline.

Probing the internal timeline becomes even more challenging if we consider that the observer’s response to 
a time interval may not directly reflect the internal representation, but rather a decoded outcome. For example, 
an external interval might be encoded and stored (in memory) in a compressed, logarithmic format internally. 
When that interval is retrieved, it may first have to be decoded (i.e., transformed from logarithmic to linear 
space) in working memory before any further comparison can be made. The involvement of decoding processes 
would complicate drawing direct inferences from empirical data. However, it may be possible to escape such 
complications by examining basic ‘intuitions’ of interval timing, which may bypass complex decoding processes. 
One fundamental perceptual intuition we use all the time is ‘ensemble perception’. Ensemble perception refers 
to the notion that our sensory systems can rapidly extract statistical (summary) properties from a set of similar 
items, such as their sum or mean magnitude. For example, Dehaene et al.32 used an individual number-space 
mapping task to compare Mundurucu, an Amazonian indigenous culture with a reduced number lexicon, to US 
American educated participants. They found that the Mundurucu group, across all ages, mapped symbolic and 
nonsymbolic numbers onto a logarithmic scale, whereas educated western adults used linear mapping of numbers 
onto space—favoring the idea that the initial intuition of number is  logarithmic32. Moreover, kindergarten and 
pre-school children also exhibit a non-linear representation of numbers close to logarithmic compression (e.g., 
they place the number 10 near the midpoint of the 1–100 scale)33. This nonlinearity then becomes less prominent 
as the years of schooling  increase34–36. That is, the sophisticated mapping knowledge associated with the develop-
ment of ‘mathematical competency’ comes to supersede the basic intuitive logarithmic mapping, bringing about 
a transition from logarithmic to linear numerical  estimation37. However, rather than being unlearnt, the innate, 
logarithmic scaling of number may in fact remain available (which can be shown under certain experimental 
conditions) and compete with the semantic knowledge of numeric value acquired during school education.

Our perceptual intuition works very fast. For example, we quickly form an idea about the average size of apples 
from just taking a glimpse at the apple tree. In a seminal study by  Ariel38, participants, when asked to identify 
whether a presented object belonged to a group of similar items, tended to automatically respond with the mean 
size. Intuitive averaging has been demonstrated for various features in the visual  domain39, from primary ensem-
bles such as object  size40,41 and  color42, to high-level ensembles such as facial expression and  lifelikeness43–46. 
Rather than being confined to the (inherently ‘parallel’) visual domain, ensemble perception has also been 
demonstrated for sequentially presented items, such as auditory frequency, tone loudness, and  weight47–50. In 
a cross-modal temporal integration study, Chen et al.51 showed that the average interval of a train of auditory 
intervals can quickly capture a subsequently presented visual interval, influencing visual motion perception.

In brief, our perceptual systems can automatically extract overall statistical properties using very basic intui-
tions to cope with sensory information overload and the limited capacity of working memory. Thus, given that 
ensemble perception operates at a fast and low-level stage of processing (possibly bypassing many high-level 
cognitive decoding processes), using ensemble perception as a tool to test time perception may provide us with 
new insights into the internal representation of time intervals.

On this background, we designed an interval duration-averaging task in which observers were asked to 
compare the average duration of a set of intervals to a standard interval. We hypothesized that if the underlying 
interval representation is linear, the intuitive average should reflect the arithmetic mean (AM) of the sample 
intervals. Conversely, if intervals are logarithmically encoded internally and intuitive averaging operates on that 
level (i.e., without remapping individual intervals from logarithmic to linear scale), we would expect the readout 
of the intuitive average at the intervals’ geometric mean (GM). This is based on the fact that the exponential 
transform of the average of the log-encoded intervals is the geometric mean. Note, though, that the subjective 
averaged duration may be subject to general bias and sequence (e.g., time-order  error52,53) effects, as has often 
been observed in studies of time  estimation54. For this reason, we considered it wiser to compare response pat-
terns across multiple sets of intervals to the patterns predicted, respectively, from the AM and the GM, rather than 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18174  | https://doi.org/10.1038/s41598-020-75191-6

www.nature.com/scientificreports/

comparing the subjective averaged duration directly to either the AM or the GM of the intervals. Accordingly, we 
carefully chose three sets of intervals, for which one set would yield a different average to the other sets according 
to each individual account (see Fig. 1). Each set contained five intervals—Set 1: 300, 550, 800, 1050, 1300 ms; 
Set 2: 600, 700, 800, 900, 1000 ms; and Set 3: 500, 610, 730, 840, 950 ms. Accordingly, Sets 1 and 2 have the same 
arithmetic mean (800 ms), which is larger than the arithmetic mean of Set 3 (727 ms). And Sets 1 and 3 have the 
same geometric mean (710 ms), which is shorter than the geometric mean of Set 2 (787 ms). The rationale was 
that, given the assumptions of linear and logarithmic representations make distinct predictions for the three sets, 
we may be able to infer the internal representation by observing the behavioral outcome based on the predictions.

Subjective durations are known to differ between visual and auditory  signals5,55,56, as our auditory system has 
higher temporal precision than the visual system. Often, sounds are judged longer than  lights55,57, where the dif-
ference is particularly marked when visual and auditory durations are presented intermixed in the same testing 
 session58. It has been suggested that time processing may be distributed in different  modalities59, and the internal 
pacemaker ‘ticks’ faster for the auditory than the visual  modality55. Accordingly, the processing strategies may 
potentially differ between the two modalities. Thus, in order to establish whether the internal representation of 
time is modality-independent, we tested both modalities using the same set of intervals in separate experiments.

Methods
Ethics statement. The methods and experimental protocols were approved by the Ethics Board of the 
Faculty of Pedagogics and Psychology at LMU Munich, Germany, and are in accordance with the Declaration 
of Helsinki 2008.

Participants. A total of 32 participants from the LMU Psychology community took part in the study, 1 of 
whom were excluded from further analyses due to lower-than-chance-level performance (i.e., temporal esti-
mates exceeded 150% of the given duration). 16 participants were included in Experiment 1 (8 females, mean 
age of 22.2), and 15 participants were included in Experiment 2 (8 females, mean age of 26.4). Prior to the experi-
ment, participants gave written informed consent and were paid for their participation of 8 Euros per hour. All 
reported a normal (or corrected-to-normal) vision, normal hearing, and no somatosensory disorders.

Stimuli. The experiments were conducted in a sound-isolated cabin, with dim incandescent background 
lighting. Participants sat approximately 60  cm from a display screen, a 21-inch CRT monitor (refresh rate 
100 Hz; screen resolution 800 × 600 pixels). In Experiment 1, auditory stimuli (i.e., intervals) were delivered 
via two loudspeakers positioned just below the monitor, with a left-to-right separation of 40 cm. Brief auditory 
beeps (10 ms, 60 dB; frequency of 2500 or 3000 Hz, respectively) were presented to mark the beginning and end 
of the auditory intervals. In Experiment 2, the intervals were demarcated visually, namely, by presenting brief 
(10-ms) flashes of a gray disk (5° of visual angle in diameter, 21.4 cd/m2 ) in center of the display monitor against 
black screen background (1.6 cd/m2).

As for the length of the (five) successively presented intervals on a given trial, there were three sets: Set 1: 
300, 550, 800, 1050, 1300 ms; Set 2: 600, 700, 800, 900, 1000 ms; and Set 3: 500, 610, 730, 840, 950 ms. These 
sets were constructed such that Sets 1 and 2 had the same arithmetic mean (800 ms), which is larger than the 
arithmetic mean of Set 3 (727 ms). And Sets 1 and 3 have the same geometric mean (710 ms), which is shorter 
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Figure 1.  Illustration of three sets of intervals used in the study. (a) Three sets of intervals each of five intervals 
(Set 1: 300, 550, 800, 1050, 1300 ms; Set 2: 600, 700, 800, 900, 1000 ms; Set 3: 500, 610, 730, 840, 950 ms). The 
presentation order of the five intervals was randomized within each trial. (b) Predictions of ensemble averaging 
based on two hypothesized coding schemes: Linear Coding and, respectively, Logarithmic Coding. Sets 1 and 2 
have the same arithmetic mean of 800 ms, which is larger than the arithmetic mean of the group 3 (727 ms). Sets 
1 and 3 have the same geometric mean of 710 ms, which is smaller than the geometric mean of set 1 (787 ms).
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than the geometric mean of Set 2 (787 ms). Of note, the order of the five intervals (of the presented set) was 
randomized on each trial.

Procedure. Two separate experiments were conducted, testing auditory (Experiment 1) and visual stimuli 
(Experiment 2), respectively. Each trial consisted of two presentation phases: successive presentation of five 
intervals, followed by the presentation of a single comparison interval. Participants’ task was to indicate, via a 
keypress response, whether the comparison interval was shorter or longer than the average of the five successive 
intervals. The response could be given without stress on speed.

In Experiment 1 (auditory intervals), trials started with a fixation cross presented for 500 ms, followed by a 
succession of five intervals demarcated by six 10-ms auditory beeps. Along with the onset of the auditory stimuli, 
a ‘1’ was presented on display monitor, telling participants that this was the first phase of the comparison task. 
The series of intervals was followed by a blank gap (randomly ranging between 800 and 1200 ms), with a fixation 
sign ‘+’ on the screen (indicating the transition to the comparison phase 2). After the gap, a single comparison 
duration demarcated by two brief beeps (10 ms) was presented, together with a ‘2’, indicating phase two of the 
comparison. Following another random blank gap (of 800–1200 ms), a question mark (‘?’) appeared in the center 
of the screen, prompting participants to report whether the average interval of the first five (successive) intervals 
was longer or shorter than the second, comparison interval (Fig. 2a). Participants issued their response via the 
left or right arrow keys (on the keyboard in front of them) using their two index fingers, corresponding to either 
‘shorter’ or ‘longer’ judgments. To make the two parts 1 and 2 of the interval presentation clearly distinguishable, 
two different frequencies (2500 and 3000 Hz) were randomly assigned to the first and, respectively, the second 
set of auditory interval markers.

Experiment 2 (visual intervals) was essentially the same as Experiment 1, except that the intervals were 
delivered via the visual modality and were demarcated by brief (10-ms) flashes of gray disks in the screen center 
(see Fig. 2b). Also, the visual cue signals used to indicate the two interval presentation phases (‘1’, ‘2’) in the ‘audi-
tory’ Experiment 1 were omitted, to ensure participants’ undivided attention to the judgment-relevant intervals.

In order to obtain, in an efficient manner, reliable estimates of both the point of subjective equality (PSE) 
and the just noticeable difference (JND) of the psychometric function of the interval comparison, we employed 
the updated maximum-likelihood (UML) adaptive procedure from the UML toolbox for  Matlab60. This toolbox 
permits multiple parameters of the psychometric function, including the threshold, slope, and lapse rate (i.e., 
the probability of an incorrect response, which is independent of stimulus interval) to be estimated simultane-
ously. We chose the logistic function as the basic psychometric function and set the initial comparison interval 
to 500 ms. The UML adaptive procedure then used the method of maximum-likelihood estimation to deter-
mine the next comparison interval based on the participant’s responses to minimize the expected variance (i.e., 
uncertainty) in the parameter space of the psychometric function. In addition, after each response, the UML 
updated the posterior distributions of the psychometric parameters (see Fig. 3b for an example), from which 
the PSE and JND can be estimated (for the detailed procedure, see Shen et al.60). To mitigate habituation and 
expectation effects, we presented the sequences of comparison intervals for the three different sets randomly 
intermixed across trials, concurrently tracking the three separate adaptive procedures.

Prior to the testing session, participants were given verbal instructions and then familiarized with the task 
in a practice block of 30 trials (10 comparison trials for each set). Of note, upon receiving the instruction, most 

Figure 2.  Schematic illustration of a trial in Experiments 1 and 2. (a) In Experiment 1, an auditory sequence of 
five intervals demarcated by six short (10-ms) auditory beeps of a particular frequency (either 2500 or 3000 Hz) 
was first presented together with a visual cue ‘1’. After a short gap with visual cue ‘+’, the second, comparison 
interval was demarcated by two beeps of a different frequency (either 3000 or 2500 Hz). A question mark 
prompts participants to respond if the mean interval of the first was longer or shorter than the second. (b) The 
temporal structure was essentially the same in Experiment 2 as in Experiment 1, except that the intervals were 
marked by a brief flash of a grey disk in the monitor center. Given that the task required a visual comparison, the 
two interval presentation phases were separated by a fixation cross.
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participants spontaneously voiced concern about the difficulty of the judgment they were asked to make. How-
ever, after performing just a few trials of the training block, they all expressed confidence that the task was easily 
doable after all, and they all went on to complete the experiment successfully. In the formal testing session, each 
of the three sets was tested 80 times, yielding a total of 240 trials per experiment. The whole experiment took 
some 60 min to complete.

Statistical analysis. All statistical tests were conducted using repeated-measures ANOVAs—with addi-
tional Bayes-Factor analyses (using using JASP software) to comply with the more stringent criteria required for 
acceptance of the null  hypothesis61,62. All Bayes factors reported for ANOVA main effects are “inclusion” Bayes 
factors calculated across matched models. Inclusion Bayes factors compare models with a particular predictor 
to models that exclude that predictor, providing a measure of the extent to which the data support inclusion of a 
factor in the model. The Holm–Bonferroni method and Bayes factor have been applied for the post-hoc analysis.

Results
Figure 3 depicts the UML estimation for one typical participant: the threshold ( α ) and the slope ( β ) parameters 
of the logistic function p = 1/

(

1+ e−(x−α)·β
)

 . By visual inspection, the thresholds reached stable levels within 
80 trials of dynamic updating (Fig. 3a), and the posterior distributions (Fig. 3b) indicate the two parameters 
were converged in all three sets.

Figure 4 depicts the mean thresholds (PSEs), averaged across participants, for the three sets of intervals, sepa-
rately for the auditory Experiment 1 and the visual Experiment 2. In both experiments, the estimated averages 
from the three sets showed a similar pattern, with the mean of Set 2 being larger than the means of both Set 1 and 
Set 3. Repeated-measures ANOVAs, conducted separately for both experiments, revealed the Set (main) effect to 
be significant both for Experiment 1, F(2, 30) = 10.1, p < 0.001, η2g = 0.064,BFincl = 58.64 , and for Experiment 
2, F(2, 28) = 8.97 , p < 0.001, η2g = 0.013 , BFincl = 30.34 . Post-hoc Bonferroni-corrected comparisons confirmed 

Figure 3.  (a) Trial-wise update of the threshold estimate ( α ) for the three different interval sets in Experiment 
1, for one typical participant. (b) The posterior parameter distributions of the threshold ( α ) and slope ( β ) based 
on the logistic function p = 1/

(

1+ e−(x−α)·β
)

 , separately for the three sets (240 trials in total) for the same 
participant.
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Figure 4.  Violin plot of the distribution of individual subjective mean intervals (gray dots) of three tested 
sets, with the grand mean PSE (and associated standard error) overlaid on the respective set, separately for 
Experiment 1 (a) and Experiment 2 (b). *denotes p < 0.05, **p < 0.01, and ***p < 0.001.
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the Set effect to be mainly due to the mean being highest with Set 2. In more detail, for the auditory experiment 
(Fig. 4a), the mean of Set 2 was larger than the means of Set 1 [ t(15) = 3.14, p = 0.013,BF10 = 7.63 ] and Set 3 
[ t(15) = 5.12, p < 0.001, BF10 = 234 ], with no significant difference between the latter ( t(15) = 1.26 , p = 0.23, 
BF10 = 0.5 ). The result pattern was similar for the visual experiment (Fig. 4b), with Set 2 generating a larger 
mean than both Set 1 ( t(14) = 3.13, p = 0.015,BF10 = 7.1 ) and Set 3 ( t(14) = 4.04 , p < 0.01, BF10 = 32.49 ), with 
no difference between the latter ( t(14) = 1.15, p = 0.80, BF10 = 0.46 ). This pattern of PSEs (Set 2 > Set 1 = Set 
3) is consistent with one of our predictions, namely, that the main averaging process for rendering perceptual 
summary statistics is based on the geometric mean, in both the visual and the auditory modality.

To obtain a better picture of individual response patterns and assess whether they are more in line with one 
or the other predicted pattern illustrated in Fig. 1b, we calculated the PSE differences between Sets 1 and 2 and 
between Sets 1 and 3 as two indicators. Figure 5 depicts the difference between Sets 1 and 2 over the difference 
between Sets 1 and 3, for each participant. The ideal differences between the respective arithmetic means and the 
respective geometric means are located on the orthogonal axes (triangle points). By visual inspection, individuals 
(gray dots) differ considerably: while many are closer to the geometric than to the arithmetic mean, some show 
the opposite pattern. We used the line of reflection between the ‘arithmetic’ and ‘geometric’ points to separate 
participants into two groups: geometric- and arithmetic-oriented groups. Eleven (out of 16) participants exhibited 
a pattern oriented towards the geometric mean in Experiment 1, and nine (out of 15) in Experiment 2. Thus, 
geometric-oriented individuals outnumbered arithmetic-oriented individuals (7:3 ratio). Consistent with the 
above PSE analysis, the grand mean differences (dark dots in Fig. 5) and their associated standards errors are 
located within the geometric-oriented region.

Of note, however, while the mean patterns across three sets are in line with the prediction of geometric inter-
val averaging (see the pattern illustrated in Fig. 1b) for both experiments, the absolute PSEs were shorter in the 
visual than in the auditory conditions. Further tests confirmed that, in the ‘auditory’ Experiment 1, the mean 
PSEs did not differ significantly from their correspondent physical geometric means (one-sample Bayesian t-test 
pooled across the three sets), t(47) = 1.70, p = 0.097,BF10 = 0.587 , but they were significant smaller than the 
physical arithmetic means, t(47) = 3.87, p < 0.001,BF10 = 76.5 . In the ‘visual’ Experiment 2, the mean PSEs for 
all three interval sets were significantly smaller than both the physical geometric mean [ t(44) = 4.74, p < 0.001 , 
BF10 = 924.1 ] and the arithmetic mean [ t(44) = 6.23, p < 0.001 , BF10 > 1000 ]. Additionally, the estimated 
mean durations were overall shorter for the visual (Experiment 2) versus the auditory intervals (Experiment 
1), t(91) = 2.97, p < 0.01,BF10 = 9.64 . This modality effect is consistent with previous reports that auditory 
intervals are often perceived as longer than physically equivalent visual  intervals55,63.

Another key parameter providing an indicator of an observer’s temporal sensitivity (resolution) is given by 
the just noticeable difference (JND), defined as the interval difference between the 50%- and 75%-thresholds 
estimated from the psychometric function. Figure 6 depicts the JNDs obtained in Experiments 1 and 2, separately 
for the three sets of intervals. Repeated-measures ANOVAs, with Set as the main factor, failed to reveal any dif-
ferences among the three sets, for either experiment [Experiment 1: F(2, 30) = 1.05, p = 0.36,BFincl = 0.325 ; 
Experiment 2:F(2, 28) = 0.166, p = 0.85,BFincl = 0.156 ]. Comparison across Experiments 1 and 2, 
however, revealed the JNDs to be significantly smaller for auditory than for visual interval averaging, 
t(91) = 2.95, p < 0.01,BF10 = 9.08 . That is, temporal resolution was higher for the auditory than for the visual 
modality, consistent with the  literature64.

Figure 5.  Difference in PSEs between Sets 1 and 2 plotted against the difference between Sets 1 and 3 for 
all individuals (gray dots) in Experiments 1 (a) and 2 (b). The dark triangles represent the ideal locations of 
arithmetic averaging (Arith.M) and geometric averaging (Geo.M). The black dots, with the standard-error bars, 
depict the mean differences across all participants. The dashed lines represent the line of reflection between the 
‘geometric’ and ‘arithmetic’ ideal locations.
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Thus, taken together, evaluation of both the mean and sensitivity of the participants’ interval estimates dem-
onstrated not only that ensemble coding in the temporal domain is accurate and consistent, but also that the 
geometric mean is used as the predominant averaging scheme for performing the task.

Model simulations. Although our results favor the geometric averaging scheme, one might argue that par-
ticipants adopt alternative schemes to simple, equally weighted, arithmetic or geometric averaging. For instance, 
the weight of an interval in the averaging process might be influenced by the length or/and the position of that 
interval in the sequence. For example, a long interval might engage more attention than a short interval, and 
weights are assigned to intervals according to their lengths. Alternatively, short intervals might be assigned 
higher weights. This would be in line with an animal  study65, in which pigeons received reinforcement after 
varying delay intervals. The pigeons assigned greater weight to short delays, as reflected by an inverse relation-
ship between delay and efficacy of reinforcement. In case each interval is weighted precisely relative to its inverse 
(reciprocal), the result would be harmonic averaging, that is: the reciprocal of the arithmetic mean of the recip-
rocals of the presented ensemble intervals (i.e., Mh =

(

∑n
i=1

1
xi

)−1

 ). A daily example of the harmonic mean is 
that when one drives from A to B at a speed of 90 km/h and returns with 45 km/h, the average speed is the har-
monic mean of 60 km/h, not the arithmetic or the geometric mean.

To further examine how closely the perceived ensemble means, reflected by the PSEs, match what would be 
expected if participants had been performing different types of averaging (arithmetic, geometric, weighted, and 
harmonic), as well as to explore the effect of an underestimation bias that we observed for the visual modality, 
we compared and contrasted four model simulations. All four models assume that each interval was corrupted 
by noise, where the noise scales with interval length according to the scalar  property1.

In more detail, the arithmetic-, weighted-, and harmonic-mean models all assume that each perceived interval 
is corrupted by normally distributed noise which follows the scalar property:

where Ti is the perceived duration of interval i, µi is its physical duration, and wf  is the Weber scaling. In contrast, 
the geometric-averaging model assumes that the internal representation of each interval is encoded on a logarith-
mic timeline, and all intervals are equally affected by the noise, which implicitly incorporates the scalar property:

where σt is the standard deviation of the noise.
Given that the perceived duration is subject to various types of contextual modulation (such as the central-

tendency  bias28–30) and modality  differences55, individual perceived intervals might be biased. To simplify the 
simulation, we assume a general bias in ensemble averaging, which follows the normal distribution:

Accordingly, the arithmetic ( MA ) and harmonic ( MH ) average of the five intervals in our experiments are 
given by:

Ti ∼ N
(

µi ,µiwf

)

,

log(Ti) ∼ N
(

log(µi), σt
)

,

B ∼ N(µb, σ).
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Figure 6.  Violin plot of the distribution of individual JNDs (gray dots) of three tested sets, with the mean JND 
(and associated standard error) overlaid on the respective set, separately for Experiment 1 (a) and Experiment 2 
(b).
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In the weighted-mean model, the intervals are weighted by their relative duration within the set, and the 
weighted intervals are subject to normally distributed noise and averaged, with a general bias added to the 
average:

where the weight wi = µi/
∑5

1 µi.
The geometric-mean model assumes that the presented intervals are first averaged on a logarithmic scale, and 

corrupted independently by noise and the general bias, while the ensemble average is then back-transformed 
into the linear scale for ‘responding’:

It should be noted that the comparison intervals could also be corrupted by noise. In addition, trial-to-trial 
variation of the comparison intervals may introduce the central-tendency  bias28–30. However, the central-tendency 
bias does not shift the mean PSE, which is the measure we focused on here. Thus, for the sake of simplicity, we 
omit the variation of the comparison intervals in the simulation. Evaluation of each of the above models was 
based on 100,000 rounds of simulation for each interval set (per model). For the arithmetic, geometric, and 
weighted means, the noise parameters ( wf  and σ ) make no difference to the average prediction, given that, over 
a large number of simulations, the influence of noise on the linear interval averaging would be zero (i.e., the 
mean of the noise distribution). Therefore, the predictions for these models are based on a noise-free model 
version (i.e., the noise parameters were set to zero), with the bias parameter ( µb ) chosen to minimize the sum of 
square distances between the model predictions and the average PSE’s from each experiment. For the harmonic 
mean, owing to the non-linear transformation, the noise does make a difference to the average prediction and 
the best parameters, which minimize the sum of squared errors (i.e. the sum of squared differences between the 
model predictions and the observed PSE’s), was determined by grid search, i.e. by evaluating the model for all 
combinations of parameters on a grid covering the range of the most plausible values for each parameter and 
finding the combination that minimized the error on that grid.

Among the four models, the model using the geometric mean provides the closest fit to the (pattern of the) 
average PSEs observed in both experiments (see Fig. 7). By visual inspection, across the three interval sets, the 
pattern of the average PSEs is the closest to that predicted by the geometric mean, which makes the same predic-
tions for Sets 1 and 3. Note, though, that the PSE observed for Set 1 slightly differs from that for Set 3, by being 
shifted somewhat in the direction of the prediction based on the arithmetic mean (i.e., shifted towards the PSE 
for Set 2). The harmonic-mean model predicts that the PSE to be smaller for Set 1 as compared to Set 3, which 
was, however, not the case in either experiment. On the weighted-mean model, the PSE was expected to be the 
largest for Set 1, which differs even more from the observed PSE.

Furthermore, as is also clear by visual inspection, there was a greater bias in the direction of shorter dura-
tions in the visual compared to the auditory experiment (witness the lower PSEs in Fig. 7b compared to Fig. 7a), 
which was reflected in a difference in the bias parameter ( µb ). The value of the bias parameter associated with 
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Figure 7.  Predicted and observed PSE’s for Experiment 1 (a) and Experiment 2 (b). The filled circles show 
the observed PSE’s (i.e. the grand mean PSE’s, which are also shown in Fig. 4, and the error bars represent the 
associated standard errors); the lines represent the predictions of the four models described in the text.
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the best fit of the geometric mean model was − 0.04 for Experiment 1 (auditory) and − 0.20 for Experiment 2 
(visual), which correspond to a shortening by 4% in the auditory and by 18% in the visual experiment. For the 
arithmetic and weighted-mean models, both bias parameters reflect a larger degree of shortening compared to 
the geometric-mean model, while the bias parameters of the harmonic-mean model were somewhat smaller 
compared to the bias parameters of the geometric mean model.

Discussion
The aim of the present study was to reveal the internal encoding of subjective time by examining intuitive ensem-
ble averaging in the time domain. The underlying idea was that ensemble summary statistics are computed at a 
low level of temporal processing, bypassing high-level cognitive decoding strategies. Accordingly, ensemble aver-
aging of time intervals may directly reflect the fundamental internal representation of time. Thus, if the internal 
representation of the timeline is logarithmic, basic averaging should be close to the geometric mean (see Footnote 
1); alternatively, if time intervals are encoded linearly, ensemble averaging should be close to the arithmetic mean. 
We tested these predictions by comparing and contrasting ensemble averaging for three sets of time intervals 
characterized by differential patterns of the geometric and arithmetic means (see Fig. 1b). Critically, the pattern 
of ensemble averages we observed most closely matched that of the geometric mean (rather than those of the 
arithmetic, weighted, or, respectively, harmonic means), and this was the case with both auditory (Experiment 
1) and visual intervals (Experiment 2) (see results of modeling simulation in Fig. 7). Although some 30% of the 
participants appeared to prefer arithmetic averaging, the majority showed a pattern consistent with geometric 
averaging. These findings thus lend support to our central hypothesis: regardless of the sensory modality, intuitive 
ensemble averaging of time intervals (at least in the 300- to 1300-ms range) is based on logarithmically coded 
time, that is: the subjective timeline is logarithmically scaled.

Unlike ensemble averaging of visual properties (such as telling the mean size or mean facial expression of 
simultaneously presented objects), there is a pragmatic issue of how we can average (across time) in the tempo-
ral domain—in Wearden and Jones’s16 words: ‘can people do this at all?’ (p. 1295). Wearden and  Jones16 asked 
participants to average three consecutively presented durations and compare their mean to that of the subse-
quently comparison duration. They found that participants were indeed able to extract the (arithmetic) mean; 
moreover, the estimated means remained indifferent to variations in the spacing of the sample durations. In 
the current study, by adopting the averaging task for multiple temporal intervals (> 3), we resolved the problem 
encountered by the temporal bisection task, namely: it cannot be ruled out that finding of the bisection point 
to be nearest the geometric mean is the outcome of a ratio  comparison24,25, rather than reflecting the internal 
timeline (see “Introduction”).

Specifically, we hypothesized that temporal ensemble perception may be indicative of a fast and intuitive 
process likely involving two stages: transformation, either linearly or nonlinearly, of the sample durations onto a 
subjective  scale66–68 and storage in short-term (or working) memory (STM); followed by estimation of the average 
of the multiple intervals on the subjective scale and then remapping from the subjective to the objective scale. 
One might assume that the most efficient form of encoding would be linear, avoiding the need for nonlinear 
transformation. But this is at variance with our finding that, across the three sets of intervals, the averaging judg-
ments followed the pattern predicted by logarithmic encoding (for both visual and auditory intervals). The use of 
logarithmic encoding may be owing to the limited capacity of STM: uncompressed intervals require more space 
(‘bits’) to store, as compared to logarithmically compressed intervals. The brain appears to have chosen the latter 
for efficient STM storage in the first stage. However, nonlinear, logarithmic encoding in stage 1 could give rise 
to a computational cost for the averaging process in stage 2: averaging intervals on the objective, external scale 
would require the individual encoded intervals to be first transformed back from the subjective to the objective 
scale, which, due to being computationally expensive, would reduce processing speed. By contrast, arithmetic 
averaging on the subjective scale would be computationally efficient, as it requires only one step of remapping—of 
the subjective averaged interval onto the objective scale. Intuitive ensemble processing of time appears to have 
opted for the latter, ensuring computational efficiency. Thus, given the subjective scale is logarithmic, intuitive 
averaging would yield the geometric mean.

It could, of course, be argued that participants may adopt alternative weighting schemes to simple (equally 
weighted) arithmetic or geometric averaging. For example, the weight of an interval in the averaging process 
might be influenced by the length of that interval or/and the position of that interval within the sequence. Thus, 
for example, a long interval might engage more attention than a short interval, and weights are assigned to the 
intervals according to their lengths. Alternatively, greater weight might be assigned to shorter intervals, consistent 
with animal studies. For instance,  Killen65, in a study with pigeons, found that trials with short-delay reinforce-
ment (with food tokens) had higher impact than trials with long-delay reinforcement, biasing the animals to 
respond earlier than the arithmetic and geometric mean interval, but close to the harmonic mean. We simulated 
such alternative averaging strategies—finding that the prediction of geometric averaging was still superior to 
those of arithmetic, weighted, and, respectively, harmonic averaging: none of the three alternative averaging 
schemes could explain the patterns we observed in Experiments 1 and 2 better than the geometric averaging. 
Thus, we are confident that intuitive ensemble averaging is best predicted by the geometric mean. Of course, it 
would be possible to think of various other, complex weighting schemes that we did not explore in our modeling. 
However, based on Occam’s razor, our observed data patterns favor the simple geometric averaging account.

Logarithmic representation of stimulus intensity, such as of loudness or weight, has been proposed by Fechner 
over one and a half centuries  ago69, based on the fact that the JND is proportionate to stimulus intensity (Weber’s 
law). It has been shown that, for the same amount of information (quantized levels), the logarithmic scale pro-
vides the minimal expected relative error that optimizes communication efficiency, given that neural storage of 
sensory or magnitude information is capacity-limited70. Accordingly, logarithmic timing would provide a good 
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solution for coping with limited STM capacity to represent longer intervals. However, as argued by  Gallistel71, 
logarithmic encoding makes valid computations problematic: “Unless recourse is had to look-up tables, there is 
no way to implement addition and subtraction, because the addition and subtraction of logarithmic magnitudes 
corresponds to the multiplication and division of the quantities they refer to” (p. 8). We propose that the ensuing 
computational complexity pushed intuitive ensemble averaging onto the internal, subjective scale—rather than 
the external, objective scale, which would have required multiple nonlinear transformations. Thus, our results 
join the increasing body of studies suggesting that, like other  magnitudes72,73, time is represented internally on 
a logarithmic scale and intuitive averaging processes are likely bypassing higher-level cognitive computations. 
Higher-level computations based on the external, objective scale can be acquired through educational train-
ing, and this is linked to mathematical  competency37,72,74. Such high-level computations are likely to become 
involved (at least to some extent) in magnitude estimation, which would explain why investigations of interval 
averaging have produced rather mixed  results15,16,31. Even in the present study, the patterns exhibited by some 
of the participants could not be explained by purely geometric encoding, which may well be attributable to the 
involvement of such higher processes. Interestingly, a recent study reported that, under dual-task conditions 
with an attention-demanding secondary task taxing visual working memory, the mapping of number onto space 
changed from linear to  logarithmic75. This provides convergent support for our proposal of an intuitive averaging 
process that operates with a minimum of cognitive resources.

Another interesting finding of the present study concerns the overall underestimation of the (objective) 
mean interval duration, which was evident for all three sets of intervals and for both modalities (though it was 
more marked with visual intervals). This general underestimation is consistent with the subjective ‘shortening 
effect’: a source of bias reducing individual durations in  memory76,77. The underestimation was less pronounced 
in the auditory (than the visual) modality, consistent with the classic ‘modality effect’ of auditory events being 
judged as longer than visual events. The dominant account of this is that temporal information is processed 
with higher resolution in the auditory than in the visual  domain30,55,58,78. Given the underestimation bias, our 
analysis approach was to focus on the global pattern of observed ensemble averages across multiple interval sets, 
rather than examining whether the estimated average for each individual set was closer to the arithmetic or the 
geometric mean. We did obtain a consistent pattern across all three sets and for both modalities, underpinned 
by strong statistical power. We therefore take participants’ performance to genuinely reflect an intuitive process 
of temporal ensemble averaging, where the average lies close to the geometric mean.

Another noteworthy finding was that the JNDs were larger in the visual than in the auditory modality (Fig. 6), 
indicative of higher uncertainty, or more random guessing, in ensemble averaging in the visual domain. As 
random guessing would corrupt the effect we aimed to  observe79–81, this factor would have obscured the under-
lying pattern more in the visual than in the auditory modality. To check for such a potential impact of random 
responses on temporal averaging, we fitted additional psychometric functions to the original response data 
from our visual experiment. These fits used the logistic psychometric function with and without a lapse-rate 
parameter, as well as a mixed model—of both temporal responses, modeled by a gamma distribution, and non-
temporal responses, modelled by an exponential distribution—proposed by Laude et al.81, and finally a model 
with the non-temporal component from the model of Laude et al. combined with the logistic psychometric 
function. We found that the model of Laude et al. did not improve the quality of the fit sufficiently to justify the 
extra parameters, as evaluated using the Akaike Information Criterion (AIC), and adding a lapse rate improved 
the AIC only slightly (average AIC: logistic with no lapse rate: 99.1, gamma with non-temporal responses: 102, 
logistic with non-temporal responses: 99.3, and logistic with lapse rate: 97.9). Importantly, the overall pattern 
of the PSEs remained the same when the PSEs were estimated from a psychometric function with a lapse rate 
parameter (set 1: 591 ms; set 2: 629 ms; set 3: 578 ms): the PSE remained significantly larger for Set 2 compared 
to Set 1 (t(14) = 2.56, p = 0.02) and for Set 2 compared to Set 3 (t(14) = 2.84, p = 0.01), without a significant dif-
ference between Sets 1 and 3 (t(14) = 0.76, p = 0.46). Thus, the pattern we observed is rather robust (it does not 
appear to have been affected substantially by random guessing), favoring geometric averaging not only in the 
auditory but also in the visual modality.

In summary, the present study provides behavioral evidence supporting a logarithmic representation of 
subjective time, and that intuitive ensemble averaging is based on the geometric mean. Even though the valid-
ity of behavioral studies is being increasingly acknowledged, achieving a full understanding of human timing 
requires a concerted research effort from both the psychophysical and neural perspectives. Accordingly, future 
investigations (perhaps informed by our work) would be required to reveal the—likely logarithmic—neural 
representation of the inner timeline.

Data availability
The data and codes for all experiments are available at: https ://githu b.com/msens elab/Ensem ble.OpenC odes.
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