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Learning the non-equilibrium dynamics of Brownian
movies
Federico S. Gnesotto1, Grzegorz Gradziuk1, Pierre Ronceray 2✉ & Chase P. Broedersz 1,3✉

Time-lapse microscopy imaging provides direct access to the dynamics of soft and living

systems. At mesoscopic scales, such microscopy experiments reveal intrinsic thermal and

non-equilibrium fluctuations. These fluctuations, together with measurement noise, pose a

challenge for the dynamical analysis of these Brownian movies. Traditionally, methods to

analyze such experimental data rely on tracking embedded or endogenous probes. However,

it is in general unclear, especially in complex many-body systems, which degrees of freedom

are the most informative about their non-equilibrium nature. Here, we introduce an alter-

native, tracking-free approach that overcomes these difficulties via an unsupervised analysis

of the Brownian movie. We develop a dimensional reduction scheme selecting a basis of

modes based on dissipation. Subsequently, we learn the non-equilibrium dynamics, thereby

estimating the entropy production rate and time-resolved force maps. After benchmarking

our method against a minimal model, we illustrate its broader applicability with an example

inspired by active biopolymer gels.
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Over the last two centuries, fundamental insights have been
gleaned about the physical properties of biological and
soft matter systems by using microscopes to image their

dynamics1,2. At the micrometer scale and below, however,
this dynamics is inherently stochastic, as ever-present thermally
driven Brownian fluctuations give rise to short-time displace-
ments3–6. This random motion makes such “Brownian movies”
appear jiggly and erratic; this randomness is further exacerbated
by measurement noise and limited resolution intrinsic to, e.g.,
fluorescence microscopy7. In light of all these sources of uncer-
tainty, how can one best make use of measured Brownian movies
of a systems dynamics, to learn the underlying physics of the
fluctuating and persistent forces?

In addition to thermal effects, active processes can strongly
impact the stochastic dynamics of a system8–12. Recently, there
has been a growing interest in quantifying and characterizing the
non-equilibrium nature of the stochastic dynamics in active soft
and living systems13–25. In cells, molecular-scale activity, powered
for instance by ATP hydrolysis, controls mesoscale non-
equilibrium processes in assemblies, such as cilia26,27, flagella28,
chromosomes29, protein droplets30, or cytoskeletal networks31–34.
The irreversible nature of such non-equilibrium processes can
lead to measurable dissipative currents in a phase space of
mesoscopic degrees of freedom9,17,18,35–38. Such dissipative cur-
rents can be quantified by the entropy production rate39, which is
a measure of the irreversibility of the dynamics40. New approa-
ches have been developed to measure this rate in real systems22,24,
shedding light onto the structure of dissipative processes19 and
their impact on the dynamics of living matter20. However, it
remains an outstanding challenge to accurately infer the entropy
production rate by analyzing Brownian movies of such systems.

Traditional approaches to measure microscopic forces and
analyze time-lapse microscopy data typically rely on tracking the
position or shape of well-defined probes, such as tracer beads,
fluorescent proteins and filaments, or simply on exploiting the
natural contrast of the intracellular medium to obtain such
tracks14–17,29,31,34,41–44. The tracer trajectories can be studied
through stochastic analysis techniques to extract an effective
model for their dynamics and infer quantities like the entropy
production rate19,20,22,24,45–48. There are, however, many cases in
which tracking is impractical49,50, due to limited resolution or
simply because there are no recognizable objects to use as tracers.
Another, more fundamental limitation of tracking is that one
then mostly learns about the dynamics of the tracked object—not
of the system as a whole. Indeed, the dissipative power in a system
might not couple directly to the tracked variables, and a priori, it
might not be clear which coordinates will be most informative
about such dissipation. This raises the question how one can

identify which degrees of freedom best encode the forces and
non-equilibrium dissipation in a given system.

Here we propose an alternative to tracking: learning the
dynamics and inferring the entropy production rate directly from
the unsupervised analysis of Brownian movies. We first decom-
pose the movie into generic principal modes of motion, and
predict which ones are the most likely to encode useful infor-
mation through a “Dissipative Component Analysis” (DCA). This
allows us to perform a dimensional reduction, leading to a
representation of the movie as a stochastic trajectory in this
component space. Finally, we employ a recently introduced
method, Stochastic Force Inference (SFI)24, to analyze such tra-
jectories. Our approach not only yields an estimate of the entropy
production rate of a Brownian movie, which is a controlled lower
bound to the system’s total entropy production rate, but also
important dynamical information such as a time-resolved force
map of the imaged system. Thus, our approach may provide an
alternative to methods that use microscopic force
sensors43,44,51,52. In this article, we first present the method in its
generality, then benchmark it on a simple two-beads model.
Finally, we demonstrate the potential of our approach on simu-
lated semi-realistic fluorescence microscopy movies of out-of-
equilibrium biopolymer networks.

Results
Principle of the method. We begin by describing a tracking-free
method to infer the dynamical equations of a system from raw
image sequences. This approach allows us to determine a bound
on the dissipation of a system, as well as the force field in
image space.

Our starting point is the assumption that the physical system
we observe (Fig. 1a)—such as a cytoskeletal network or a
fluctuating membrane—can be described by a configurational
state vector x(t) at time t, undergoing steady-state Brownian
dynamics in an unspecified d-dimensional phase space:

dx
dt

¼ ΦðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
ξðtÞ; ð1Þ

where Φ(x) is the drift field, D(x) is the diffusion tensor field,
and throughout this article ξ(t) is a Gaussian white noise vector
(〈ξ(t)〉= 0 and 〈ξi(t)ξj(s)〉= δijδ(t− s)). Note that when diffusion
is state dependent,

ffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞp

ξðtÞ is a multiplicative noise term: we
employ the Itô convention for the drift, i.e.,Φ(x)= F(x)+∇ ⋅ D(x),
where F(x) is the product of the mobility matrix and the physical
force in the absence of Brownian noise53,54.

Our goal is to learn as much as possible about the process
described by Eq. (1) from an experimental observation.
In particular, we aim to measure if, and how far, the system is
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Fig. 1 Schematic illustration of our approach to learn non-equilibrium dynamics from a Brownian movie. a Sketch of a network of biopolymers (black)
with embedded fluorescent filaments and beads (green). b Image-frames of the fluorescent components in panel a at three successive timepoints. c The
time trajectories of the projection coefficients c1(t), c2(t), ⋯ : the coefficients and respective trajectories discarded by the dimensional reduction are faded.
Sketch of the inferred velocity vðcÞ (d) and of the force field FðcÞ (e) in the space {c1, c2}.
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out-of-equilibrium by determining the irreversible nature of its
dynamics. This irreversibility is quantified by the system’s
entropy production rate39

_Stotal ¼ vðxÞD�1ðxÞvðxÞ� �
; ð2Þ

where �h i denotes a steady-state average, throughout this article
we set Boltzmann’s constant kB= 1, and v(x) is the mean phase-
space velocity field quantifying the presence of irreversible
currents. Specifically, using the steady-state Fokker–Planck
equation one can write vðxÞ ¼ FðxÞ � DðxÞ∇logPðxÞ, where
P(x) is the steady-state probability density function, and flux
balance imposes that ∇ ⋅ (Pv)= 0.

The input of our method consists of a discrete time-series of
microscopy images of the physical system fIðt0Þ; ¼ ;IðtNÞg—a
“Brownian movie” (Fig. 1b). Each image IðtÞ is an imperfect
representation of the state x(t) of the physical system as a bitmap,
i.e., a L ×W array of real-valued pixel intensities (we neglect the
discretization effect induced by the finite number of pixel
intensities here). Specifically, we model the imaging apparatus
as a noisy nonlinear map IðtÞ ¼ �IðxðtÞÞ þN ðtÞ, where N is a
temporally uncorrelated random array representing measurement
noise (such as the fluctuations in registered fluorescence
intensities), and �IðxÞ is the “ideal image” returned on average
by the microscope when the system’s state is x. We assume that
the map x 7! �IðxÞ is time-independent (i.e., that the microscope
settings are fixed and stable).

Importantly, if no information is lost by the imaging process,
the ideal image �IðtÞ undergoes a Brownian dynamics equation
determined by the nonlinear transformation of Eq. (1) through
the map x 7! �IðxÞ, as prescribed by Itô’s lemma55. In general,
however, there is information loss and this map is not invertible:
due to finite optical resolution or because some elements are
simply not visible, the imaging may not capture the full high-
dimensional state of the system. For this reason, the dynamics in
image space are not uniquely specified by the ideal image value �I ;
they also depend on “hidden” degrees of freedom xh not captured
by the image. In this case, a Markovian dynamical equation for �I
alone does not exist, but by including the dynamics of xh, we can
write

d
dt

ð�I ; xhÞ ¼ φð�I ; xhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð�I ; xhÞ

q
ξðtÞ: ð3Þ

Here ð�I ; xhÞ is a column vector composed of pixel intensities
�I and hidden degrees of freedom xh, φð�I ; xhÞ and Dð�I ; xhÞ
are the drift field and diffusion tensor, respectively, in the
combined space of pixel intensities and hidden variables. Our
Brownian movie analysis allows us to infer the mean image drift
φð�IÞ :¼ φI ð�I ; xhÞj�I

� �
and mean image diffusion tensor

Dð�IÞ :¼ DI ð�I ; xhÞj�I
� �

, averaged over the degrees of freedom
xh lost in the imaging process. From drift and diffusion fields we
can directly obtain the mean image-force field
F ð�IÞ ¼ φð�IÞ � ∇ �Dð�IÞ. Similar to force and diffusion fields,
the phase-space velocity field v(x) in the d-dimensional physical
phase space, transforms into a velocity field Vð�IÞ in the L ×W-
dimensional image space—again, averaged over unobserved
degrees of freedom. The corresponding currents result in an
apparent entropy production rate associated to the image
dynamics,

_Sapparent ¼ Vð�IÞD�1ð�IÞVð�IÞ� �
: ð4Þ

Importantly, _Sapparent ≤ _Stotal: the apparent entropy production rate
is a lower bound to the total one. Indeed, all transformations
involved in the analysis process—imaging through the nonlinear
map x 7! �IðxÞ, masking the hidden degrees of freedom, and

averaging over their value—have nonincreasing effects on the
entropy production rate (see Supplementary Note 8). The
measure of _Sapparent thus provides direct insight into the
dissipative processes in the physical system.

The goal of our method is to reconstruct the mean image-space
dynamics ðF ð�IÞ;Dð�IÞÞ, and in particular the corresponding
entropy production rate (Eq. (4)). However, doing so in the high-
dimensional image space is unpractical and would require
unrealistic amounts of data. We therefore need to reduce the
dimensionality of our system to a tractable number of relevant
degrees of freedom.

Because each image represents a physical state of the system,
we expect that the ideal images �IðtÞ all share similar structural
features. Consequently, the Brownian movie occupies only a
smaller subspace in the space of all configurations of pixel
intensities. To restrict ourselves to the manifold of images
representing the physical states and to reduce the noise, we first
perform a standard dimensionality reduction procedure: for
simplicity, we employ Principal Component Analysis (PCA). As
we shall see later, this standard procedure can be reinforced with
an analysis that provides an additional basis transformation to
select the most dissipative components. The idea behind this
approach is to find an appropriate basis, in which pairs of
components can be hierarchically ordered according to how
much they are expected to contribute to the total entropy
production rate. It then becomes possible to truncate the basis
and reduce the dimensionality of the problem, while retaining
maximum information about the system’s irreversible dynamics.

We truncate the basis of components according to two criteria:
(1) Noise floor—due to the finite amount of data and the
measurement noise present in the Brownian movie, some modes
are indistinguishable from the measurement noise. We only keep
modes that rise above this noise floor. (2) Time resolution of the
dynamics—we only consider the components whose statistical
properties are consistent with Brownian dynamics, i.e., such that
the short-time diffusive behavior can be resolved through the
noise. In low-dimensional systems, these criteria can be extended
with an additional restriction based on estimating the dimension-
ality of the set of images in the Brownian movie.

Our task is now reduced to inferring the mean dynamics in
component space,

ΦðcÞ :¼ Φcðc; xhÞjch i ; DðcÞ :¼ Dcðc; xhÞjch i ð5Þ
where c(t)= (c1(t), c2(t), … , cn(t)) are the components obtained
after a linear transformation of the images (see Fig. 1c), Dc is the
restriction of the diffusion tensor to the c-space, and the hidden
degrees of freedom xh now also include those present in the image,
but left out after the components’ truncation. This procedure has
reduced the system’s dynamics to that of a smaller number of
components, making it possible to learn Φ(c) and D(c).

To this end, we employ a recently introduced method,
Stochastic Force Inference24 (SFI), for the inverse Brownian
dynamics problem. Briefly, this procedure is based on a least-
squares approximation of the diffusion and drift fields using a
basis of known functions (such as polynomials). This method is
data-efficient, not limited to low-dimensional signals or equili-
brium systems, robust against measurement noise, and provides
estimates of the inference error, making it well suited for our
purpose. In practice, we use SFI in two ways: (1) we infer the
velocity field v(c) (Fig. 1d) and the diffusion field D(c), which we
use to measure the entropy production rate. (2) We infer the drift
field Φ(c), compute the image-force F(c)=Φ(c)−∇ ⋅ D(c)
(Fig. 1e), and thus reconstruct the dynamics of the components.
To render this deterministic dynamics more intelligible, we can
transform F(c) back into image space by inverting the I 7! c
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linear transformation: this results in a pixel force map, which
indicates at each time step which pixel intensities tend to increase
or decrease. This provides, we argue, a way to gain insight into
the dynamics of Brownian systems and disentangle deterministic
forces from Brownian motion without tracking.

Our analysis framework can thus be schematically summarized
as: imaging → component analysis → model inference (Fig. 1).
This procedure allows the inference of entropy production rate
and reconstruction of the dynamical equations from image
sequences of a Brownian system.

A minimal example: two-beads Brownian movies. Next, we test
the performance of our procedure on a simple non-equilibrium
model: two coupled beads moving in one dimension. The beads are
coupled by Hookean springs with stiffness k and experience Stokes
drag with friction coefficient γ, due to the surrounding fluid (Fig. 2a).
In this two-bead model, the time-evolution of the bead displacements

x(t)= (x1(t), x2(t)) obeys the overdamped Langevin Eq. (1), with
F(x)= Kx and Kij= (1− 3δij)kγ−1. The system is driven out of
thermodynamic equilibrium by imposing different temperatures on
the two beads: Dij= δijkBTiγ−1(9,22,56–58). First, we obtain position
trajectories for the two beads by discretizing their stochastic dynamics
using an Euler integration scheme (see Supplementary Note 1). Then,
we use these position trajectories to construct a noisy Brownian
movie (Fig. 2b) (cf. Supplementary Note 2 and Supplementary
Movie 1). Note that by construction, the steady-state dynamics of the
two-beads system in image space is governed by a nonlinear Lan-
gevin equation with multiplicative noise.

We seek to reduce the dimensionality of the data and to filter
out measurement noise by finding relevant components. To this
end, we employ Principal Component Analysis (PCA)59 and
determine the basis of n principal components pc1, pc2, … , pcn
to expand each image around the time-averaged image hIi:
IðtÞ ¼ hIi þPn

i¼1 ciðtÞpci. The dynamics of the projection
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Fig. 2 Benchmarking the Brownian movie learning approach with a simple toy model. a Schematic of the two-bead model. The temperature of the hot bead
Th= 1 is fixed and the temperature of the cold bead Tc≤ 1 is varied. b 40 × 20 Frames of the noisy (10% noise) Brownian movie for the two-bead model at
successive timepoints. c The first four principal components (in arbitrary units) with time traces of respective projection coefficients. The color map displays
negative values in black and positive values in red. d Snapshot I rec of the reconstructed movie, reconstructed with the first four principal components, and
snapshot I of the original movie (right), together with associated kymographs. Pixel intensity ranges from 0 (black) to 1 (bright green). We compare pixel
intensities along the superimposed horizontal dashed line. Force field (e) and mean phase-space velocity (f) in the space of the first two principal components
{c1, c2}. Arrows are scaled for visualization purposes. Inset e: trace of diffusion tensor TrðDÞ with the same axis scaling. g Inferred entropy production rate b_S for
varying temperature ratio TcT

�1
h and number of included principal components. Inset: b_S as a function of trajectory length for a fixed TcT

�1
h ¼ 0:5. The error bars

represent an estimate of the root-mean-square deviation between the true apparent entropy production rate and the inferred value (see Methods). h Scatter
plot of the elements of the exact image-force field F ex vs. the inferred image-force field bF for different pixels and timepoints (data have been binned for
visualization purposes). Results are obtained using the first four principal components. i Comparison of inferred bF and exact bF ex image-space force fields,
together with associated kymographs.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18796-9

4 NATURE COMMUNICATIONS |         (2020) 11:5378 | https://doi.org/10.1038/s41467-020-18796-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


coefficients are on average governed by the drift field Φ(c) and
diffusion tensor D(c) (see Eq. (5)).

In the simulated data of the two-bead model, the first four
principal components satisfy criteria (1) and (2) introduced above
(Fig. 2c). Interestingly, pc1 and pc2 resemble the in-phase and
out-of-phase motion of the two beads, respectively, and should
suffice to reproduce the dynamics of (x1(t), x2(t)). The
components pc3 and pc4 appear to mostly represent the isolated
fluctuations of the hot and cold beads and mainly account for the
nonlinear details of the image representation. Together, the first
four components allow for an adequate reconstruction of the
original images (Fig. 2d, Supplementary Fig. 1).

From the recorded trajectories in pc1 × pc2 space we can
already infer key features of the system’s dynamics using SFI.
Specifically, we infer the force and diffusion fields (Fig. 2e). In the
phase space spanned by the first two principal components, we
identify a stable fixed point at (0, 0) (Fig. 2e). As may be expected
in this case, the pc1-direction (in-phase motion) is less stiff than
the pc2 direction (out-of-phase motion).

The temperature difference between the two beads results in
phase-space circulation, as revealed by the inferred mean velocity
field (Fig. 2f). To quantitatively assess the irreversibility associated
with the presence of such phase-space currents, we estimate the

entropy production rate of the system b_S, which converges for long
enough measurement time (Fig. 2g-inset). Strikingly, already with
two principal components we find good agreement between the
inferred and the exact entropy production rate, capturing from
78 ± 25% at TcT

�1
h ¼ 0:5) to 88 ± 7% of the entropy production

rate at TcT
�1
h ¼ 0:2 (Fig. 2g). Furthermore, the difference

between the exact and inferred entropy production rate is
consistent with the typical inference error predicted by SFI. As
expected, the estimate of the entropy production rate increases
with the number of included components. Note that including
more modes than the dimension of the physical phase space (in
this case 2) can lead to an overestimate of _S (Fig. 2g). In such low-
dimensional systems, one can further restrict the number of
included components based on estimating the dimensionality of
the set of images in the Brownian movie.

We can also use the information contained in the first four
principal components to quantitatively infer forces in image-
space via the relation bF ðIðtÞÞ ¼ P4

i¼1
bFiðcðtÞÞpci. Note that

while two modes were sufficient to infer b_S, more modes are
needed to reconstruct the full images and image-force fields as a
linear combination of modes. When inferring forces we always
subtract from the drift the spurious force ∇ ⋅ D(c) arising in
overdamped Itô stochastic differential equations with multi-
plicative noise53,54. For comparison purposes, the exact image-
force field is obtained directly from the simulated data as:bF exðtÞ ¼ f�I ½xðtÞ þ FðxðtÞÞΔt� � �I ½xðtÞ�gΔt�1. Remarkably, we
find good qualitative agreement between inferred and exact
image-force fields for specific realizations of the system, as shown
in the kymographs in Fig. 2i (see also Supplementary Movies 2
and 3). Moreover, we find a strong correlation (Pearson
correlation coefficient ρ= 0.93) between inferred and exact image
forces. To further quantify the performance of force inference, we
compute the relative squared error on the inferred image-force

field σ2bF ¼ P
t k bF ðtÞ � bF exðtÞk2

P
t k bF ðtÞk2

� ��1
, which in

this case is modest, σ2bF ¼ 0:14 (Fig. 2h).

Thus, with sufficient information, we can use our approach to
accurately predict at any instant of time the physical force fields
in image space from the Brownian movie, even if the system is
out of equilibrium. Moreover, the results for this simple two-bead
system demonstrate the validity of our approach: we reliably infer

the non-equilibrium dynamics of this system. Arguably, direct
tracking of the two beads is, in this case, a more straightforward
approach. However, this changes when considering more general
soft assemblies comprised of many degrees of freedom.

Dissipative component analysis. To expand the scope of our
approach, we next consider a more complex scenario inspired by
cytoskeletal assemblies: a network of elastic filaments (Fig. 3a).
The filaments are modeled as Hookean springs represented as
bonds connecting neighboring nodes of a triangular network. We
randomly remove bonds to introduce spatial disorder in the
system. The state of the network as a whole, represented by the
set {xi} of two-dimensional displacement of each node i, under-
goes Langevin dynamics (Eq. (1)). In this case, the force acting on

node i is FiðxÞ ¼ �P
j�i

kij
γ ðk xi;jðtÞ k �‘0Þx̂i;j, where kij= k if the

bond is present, kij= 0 if it is not, xi,j= xi− xj, x̂i;j is the corre-
sponding unit vector, and the sum runs over the nearest-neighbor
nodes j of node i. Rigid boundary conditions are imposed to avoid
rotations and diffusion of the system as a whole. Finally, we drive
the system out of equilibrium by randomly setting a fraction of
the network nodes at an elevated temperature, as illustrated in
Fig. 3a.

To study an experimentally relevant scenario, we generate a
Brownian movie of a random filamentous network (Supplemen-
tary Note 2), which is only partially imaged (black frame in
Fig. 3a) with measurement noise and at a limited optical
resolution (Supplementary Note 6, 7). To simulate limited optical
resolution, we blur the image-frames of the movie with a
Gaussian filter (Fig. 3b and Supplementary Movie 4). In this
spatially extended system, generated from an underlying
dynamics with 800 degrees of freedom, it is not obvious based
on the recorded Brownian movie (80 × 80 pixels) how to select
and analyze the relevant degrees of freedom.

We start our movie-based analysis by employing PCA to
reduce the dimensionality of the image data (Fig. 3c). For this set
of simulation data, our truncation criteria indicate that the
maximum number of retainable components is roughly 200
(Supplementary Note 5 and Supplementary Fig. 3). Although we
greatly reduced dimensionality of the image data using this
truncation, it is still intractable to infer dynamics in a 200-
dimensional space due to limited statistics. However, even a
subset of these modes may suffice to glean useful information
about the system’s non-equilibrium dynamics. Therefore, as a
first attempt, we infer the dynamics in increasingly larger PC-
space via SFI. This allows us to infer the retained percentage of

entropy production rate b_S= _Sex in the observed region (See
Supplementary Note 2) as a function of the number of principal
components considered (Fig. 3e). In contrast to the two-beads
case, we observe that in this more realistic scenario we recover
less than 4% of the entropy production rate of the observed
system with the first 30 PCs. Indeed, PCA is designed to find
modes that capture the most variance in the image data, and large
variance does not necessarily imply large dissipation. Thus, in this
case, PCA fails at selecting components that capture a substantial
fraction of the entropy production rate.

Our goal is to infer the system’s non-equilibrium dynamics.
We thus propose an alternative way of reducing data dimension-
ality that spotlights the time-irreversible contributions to the
dynamics, which we term Dissipative Component Analysis
(DCA). DCA represents a principled approach to determine the
most dissipative pairs of modes for a linear system with state-
independent noise (see Supplementary Note 3). For such a linear
system, there exists a set of component pairs for which the
entropy production rate can be expressed as a sum of
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independent positive-definite contributions, which can be ranked
by magnitude. After a suitable truncation, this basis ensures that
the components with the largest entropy production rate are
selected. While the approach is only rigorous for a linear system
with state-independent noise, we demonstrate below that this
method also performs well for more general scenarios.

DCA relies on the measurement of an intuitive trajectory-based
non-equilibrium quantity: the area enclosing rate (AER) matrix _A
associated to a general set of coordinates y. The elements of the
AER matrix, in Itô convention, are defined by24,38,60–62

_Aij ¼
1
2
hyj _yi � yi _yji; ð6Þ

where yi denotes the i-th coordinate centered around its mean
value and 〈⋅〉 a time average. This non-equilibrium measure
quantifies the average area enclosed by the trajectory in phase
space per unit time. Importantly, the AER is tightly linked to the

entropy production rate. Specifically, for a linear system _S ¼
Trð _AC�1 _A

T
D�1Þ where the covariance matrix Cij= 〈yiyj〉. DCA

identifies a basis of vector pairs {(dc1, dc2); (dc3, dc4); …} that

simultaneously transforms C to the identity and diagonalizes _A _A
T

(see Supplementary Note 3). By doing so, DCA naturally
separates the entropy production rate into independent con-
tributions that can be readily ordered by magnitude, i.e., _S ¼
_Sdc1;dc2 þ _Sdc3;dc4 þ � � � with _Sdc1;dc2>

_Sdc3;dc4> � � � . Truncating the
basis of dissipative components using the aforementioned criteria,
allows us to identify a limited number of components that are
assured to maximally contribute to the dissipation of the system.
This is analogous to PCA, where the diagonalization of the
covariance matrix C allows one to select the components which
capture most of the variance.

To test the performance of DCA, we revisit the network
simulations. We first perform PCA to reduce noise and
dimensionality. Subsequently, we perform DCA with the first
200 principal component coefficients as input. The dissipative
components exhibit a different spatial structure than the principal
components, as they aim to maximize different quantities
(Fig. 3d). Strikingly, DCA allows us to recover a larger portion
of the entropy production rate of the observed region (almost
10% with 30 components), performing consistently better than
the PCA-based approach, as shown in Fig. 3e. Finally, we note
that the performance of our approach improves substantially in
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Fig. 3 Learning the non-equilibrium dynamics of Brownian movies of simulated filamentous networks. a The 20 × 20 filamentous network generated in
the Brownian dynamics simulation with 20% random bond removal and heterogeneous temperatures: node temperatures are randomly set to Thot with
probability 0.2, or else to Tcold= 0.2 Thot. The black frame indicates the observed region of the system, which is analyzed with our movie-based method.
b Three time frames of the Brownian movie of the observed region of the system (80 × 80 pixels, Thot= 0.25). c, d Trajectory of the projection coefficient ci
in arbitrary units together with associated image-component for PCA (c) and DCA (d) for the observed region defined in panel a. Scale bar applies to all
image-components. e The recovered entropy production rate b_S= _Sex for the observed region as a function of the number of components included in the
analysis. For the high and low temperature cases Thot= 0.25 and Thot= 0.05, respectively. See Supplementary Note 5 and Supplementary Fig. 2 for
additional data at equilibrium and convergence of the estimates with total time. f The recovered entropy production rate b_S= _Sex as a function of the blurring
parameter σ for 30 retained PCs and DCs. We show a corresponding blurred frame above every x-axis tick. The error bars in panels e, f represent an
estimate of the root-mean-square deviation between the true apparent entropy production rate and the inferred value (see Methods). g, h Comparison of
the exact image-forceF ex to the inferred one bF at a selected instant of time for the region of interest in the white frame in panel b for the high (g) and low
(h) temperature cases. The underlying network structure is drawn in gray as a guide to the eye.
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systems with smaller fluctuations in which the image-space
dynamics is closer to linear (Fig. 3e and Supplementary Movie 8).

In non-equilibrium systems our DCA-based method infers
non-zero entropy production rates, even with poor optical
resolution (Fig. 3f, Supplementary Note 6, and Supplementary
Fig. 4) and with strong measurement noise (Supplementary
Note 7 and Supplementary Fig. 5). At the same time we measure
no dissipation in equilibrium systems. Thus, this example
illustrates the potential applicability of our approach to real
experiments on biological assemblies.

Our inference approach reveals additional information about
the dynamics in the system, such as force field estimates. These
force fields provide insight into the spatial structure of the
instantaneous deterministic forces in the system at a given
configuration. In image space, these forces describe the dynamics
of the pixel: positive and negative image forces represent a
deterministic force acting to, respectively, raise and lower pixel
values, which reflect the forces acting on the position and shape of
the objects being imaged. To investigate to what extent our
movie-based learning approach reconstructs the elastic forces
exerted by the network’s filaments, we exploit the short range of
the interactions in the system to facilitate extracting information
about local forces from local dynamics in image space. We
consider a small region of interest (white frame in Fig. 3b,
Supplementary Movie 5) and compare the inferred force field in
image space to the exact one. For this purpose, we employ PCA in
our dimensional reduction scheme, which can be used both in
and out of equilibrium. Inferring image-force fields with high
accuracy for this complex example is challenging (Pearson
correlation coefficient between exact and inferred images force
ρ= 0.37 for the high temperature case and ρ= 0.56 for the low
temperature case). Nonetheless, despite the network disorder,
large fluctuations, many hidden degrees of freedom, limited
optical resolution, and measurement noise, we find that the
inferred force field in image space can capture the basic features
of the exact force field, as shown in Fig. 3g, h (Supplementary
Movies 6–11). Finally, we emphasize that our approach is
scalable: force inference on a small spatial region of interest can
be applied to arbitrarily large systems, as long as the interactions
are local.

Discussion
We considered the dynamics of movies of time-lapse micro-
scopy data. Under the assumptions outlined in the first section
of the Results, these movies undergo Brownian dynamics in
image space: the image-field obeys an overdamped Langevin
equation of the form of Eq. (3). Rather than tracking selected
degrees of freedom, we propose to analyze the Brownian movie
as a whole.

Our approach is based on constructing a reduced set of rele-
vant degrees of freedom to reduce dimensionality, by combining
PCA with a new method that we term Dissipative Component
Analysis (DCA). In the limit of a linear system with state-
independent noise, DCA provides a principled way of con-
structing and ranking independent dissipative modes. The order
at which we truncate is an important trade-off parameter of this
method: on the one hand we wish to significantly reduce the
dimensionality of the data, on the other hand we need to include
enough components to retain the information necessary to infer
the system’s dynamics. After the dimensional reduction, we infer
the stochastic dynamics of the system, revealing the force field,
phase-space currents, and the entropy production rate in this
basis. This information can then be mapped back to image-space
to provide estimators for the stochastic dynamics of the Brownian

movie. We illustrated our approach on simulated data of a
minimal two-beads model and on complex filamentous networks
in both equilibrium and non-equilibrium settings, and showed
that it is robust in the presence of measurement noise and with
limited optical resolution. Beyond providing controlled lower
bounds of the entropy production rates directly from the Brow-
nian movie, our approach yields estimates of the force fields in
image space for an instantaneous snapshot of the system and we
demonstrated that this approach can be scaled up to large sys-
tems. Thus, we provide in principle an alternative to microscopic
force and stress sensing methods43,44,51,52.

We focused here on a class of soft matter systems termed
“active viscoelastic solids”9,63. Such systems include active
biological materials, such as cytoskeletal assemblies31,33,34,64,
membranes16,65,66, chromosomes29, protein droplets30, as well
as active turbulent solids67, and colloidal systems10. Although
these structures are constantly fluctuating both due to energy-
consuming processes (e.g., rapid contractions generated by
molecular motors) and thermal motion, they do not exhibit
macroscopic flow. Useful insights into the properties of such
systems have been obtained via different noninvasive techni-
ques. Typically, these techniques employ time traces of tracked
objects to extract information about the active processes gov-
erning the non-equilibrium behavior16–20,58,65. Often, however,
it is not a priori obvious, which physical degrees of freedom
should be tracked, how tracking can be performed in fragile
environments, and to what extent the dynamical information
about the system of interest is encoded in the measured tra-
jectories49. While tracking-free approaches have been proposed
to obtain rheological information of a system under equilibrium
conditions50, our approach offers an alternative to tracking that
can provide information on dissipative modes and the instan-
taneous force fields of a fluctuating non-equilibrium system.

In summary, we presented a viable alternative to traditional
analysis techniques of high-resolution video-microscopy of soft
living assemblies. Indeed, we envision experimental scenarios
where our approach may serve as a guide, providing insights by
disentangling the deterministic and stochastic components of the
dynamics, and by helping to identify the source of thermal and
active forces as well as the dissipation in the system. Overall, our
movie-based approach constitutes an adaptable tool that paves
the road for a systematic, noninvasive and tracking-free analysis
of time-lapse data of soft and living systems.

Methods
Parameters for Fig. 2: We use k= 2, γ= 1, kB= 1. Panels c–f, h, i have been
obtained with TcT

�1
h ¼ 0:5 and for a trajectory of length ttot= 105Δt, Δt= 0.01.

Panel g with ttot= 5 × 104Δt. We employed a first order polynomial basis for the
inference of forces and diffusion fields using SFI. The noise-corrected estimator was
used to infer the diffusion fields24.

Parameters for Fig. 3: All results have been obtained with a trajectory of 106 time
steps, Δt= 0.005 and 80 × 80 pixels frames for the observed region of the full
network. We employed a first order polynomial basis for the inference of forces and
diffusion fields using Stochastic Force Inference, and noise-corrected diffusion
estimates. The high temperature case is shown in panel g using 50 PCs and the low
temperature case is shown in panel h using 20 PCs.

The error bars on the entropy production rates in Figs. 2, 3 are obtained as a self-

consistent estimate of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð _Sapparent� _̂SÞ2i

p
, where 〈⋅〉 represents the average over the

realizations of the noise. For details see ref. 24.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding authors on reasonable request.

Code availability
The Python code generating the data and implementing the analysis presented in the
manuscript is available at https://github.com/ronceray/NonequilibriumBrownianMovies.
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