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Abstract

The area of machine learning and especially deep learning had its breakthrough in
the past years. Researchers in this area provided empirical evidence for the success
of those methodologies. For this reason, combining methods from this field with
Age-Period-Cohort models would be an interesting approach. Therefore, the goal
of this thesis is to analyze how those models could profit from using Bayesian Neu-
ral Networks. It presents two conceptual approaches for this purpose and conducts
computational experiments to obtain an impression of their the empirical perfor-
mance. Thereby, it investigates this from two points of view - the concepts should
be able to predict future incidences and explain the influence of a single variable on
the variable of interest. While the experimental section provides empirical evidence
that a Bayesian Neural Network has a superior predictive performance compared to
established APC models, an ensemble method combining both model types fails to
show the second subject of analysis, which is the explanation of the e↵ects. There-
fore, this thesis addresses also open challenges, which solutions would improve the
performances of those models.
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1 Introduction

Many researchers in social and behavioral sciences face the challenge of investigating
unobservable phenomenons, and thus, they are unable to measure those, which
makes an analysis often infeasible. Therefore, they utilize measurable variables as
surrogates to get an impression of the latent ones (Hobcraft, Menken, & Preston,
1985). The cohort analysis, which analyzes age, period, and cohort e↵ects, is a
commonly used example for such a method in various research fields (e.g., Lopez
et al., 2006; W. Mason & Wolfinger, 2001). While inferring from a surrogate to
the real e↵ect of a variable is generally not trivial, this method su↵ers in addition
to that also from the identification problem (O’Brien, 2011; Rodgers, 1982): Each
of those variables can be described as a linear combination of the remaining two
preventing the identifiability of the real e↵ects. However, the estimation of those
e↵ects is necessary for further inference purposes. Thus, many researchers developed
methods to cope with this problem (e.g., V. Schmid & Held, 2007; Yang & Land,
2006; Yang, Schulhofer-Wohl, Fu, & Land, 2008), however, there does not exist an
approach that solves it. A more recent stream in the literature combines established
models with methods from other research areas such as deep learning (Breeden &
Leonova, 2019).

1.1 Problem Statement and Research Questions

The goal of this thesis is to investigate the use of a Bayesian Deep Neural Network
(BDNN) could improve the estimation of Age-Period-Cohort (APC) e↵ects using
established APC models. Even though some of these models could profit from
incorporating a BDNN directly into their estimation processes, for instance, it could
substitute the principal component regression in the intrinsic estimator (Yang et
al., 2008), it would not enhance the estimation of the e↵ects because there is no
theoretical justification stating that a BDNN can solve the identification problem.
For this reason, this thesis limits itself in combing both approaches from an external
perspective only and treats them as black-boxes. Thus, the concepts in this thesis
are generally applicable to various contexts and not limited to a specific APC model
and its restrictions.

As many researchers proposed methods for solving the identification problem in APC
models, these proposals simultaneously created a discussion about the estimability
of the e↵ects. A central result of this discussion is that only the non-linear e↵ects
of the variables are estimable (Rodgers, 1982). Since neural networks are non-linear
models (Hastie, Tibshirani, & Friedman, 2009), they depict a potential alternative
to established APC models that mostly belong to the family of linear regression
models. Moreover, the Bayesian character of this model class allows to quantify the
uncertainty of its estimation leading to additional insights into the analysis. The
primary requirement for being an alternative approach is the ability to estimate the
real APC e↵ects correctly. It is also necessary to develop a method that extracts
those from the model in an interpretable manner for further inference purposes.
Moreover, the resulting model should utilize the estimated e↵ects to predict future
cases of the target variable. Taken together, this leads to the first research question
of this thesis:

6



Research Question 1: Is a BDNN an alternative for estimating APC
e↵ects, and can it predict the number of future incidences?

According to Hobcraft et al. (1985), the APC e↵ects serve as proxies for measuring
latent variables. Additionally, they conclude that the relationships between those
variables are usually insu�cient because the e↵ects fail to explain the complexity
of the underlying concepts. Therefore, there exist approaches in the literature that
split the three variables into subsets. For instance, Yang and Land (2006) devel-
oped a hierarchical model that uses census data on an individual level incorporating
additional variables to the analysis compared to an aggregated data set. Another
example is the approach of Breeden and Leonova (2019), who use the estimation
of a Bayesian APC model as the input for a neural network to compensate lack of
long-term data that prevents making meaningful forecasts. Their empirical analysis
showed that this approach successfully competes with established survival models.
Taken together, the research community is interested in incorporating more sur-
rogate variables into the APC analysis to extend the interpretation value of these
models. As there exists first empirical evidence for the successful integration of
a neural network in these methods, it would be interesting to investigate how a
BDNN performs in this setting, to also obtain a measurement for the uncertainty of
the resulting estimation. That leads to the following research questions:

Research Question 2: Can an ensemble method combining the esti-
mations of an established APC model and a BDNN assess sub-e↵ects
correctly?

To approach these research questions, this thesis uses a real-world data set describ-
ing the mortality of chronic obstructive pulmonary disease (COPD) in England and
Wales from 1942 to 1996 and simulated examples. While the COPD data serves
mainly for answering the first research question from a practical perspective, con-
trolling the simulation of data allows to investigate constellations thoroughly that
would not occur often in the real world. Each of these data sets builds the foundation
for an experiment: The COPD data allows the implementation and optimization of
a single BDNN to compare its estimated e↵ects with the ones of an APC model. Ad-
ditionally, it will predict the further development of COPD mortality on examples
that are not part of the training process. Since the e↵ects are known in advance in
the second data set, it enables the investigation of the correctness of their relevance
assessment.

1.2 Structure

This thesis is structured as follows. The next chapter will provide a brief overview
of the most important topics of the literature that influence the development of the
concepts in this thesis. The third chapter presents the derivation of the conceptual
approaches. Afterwards, it will justify the general design of the experiments and
their parametrization. Subsequently, it will describe the results of these experiments
and discuss them in the light of the research questions. The final chapter concludes
with the most crucial insights and gives intuitions for future research.
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2 Theoretical Background

This thesis develops methods estimating APC e↵ects on a given target variable us-
ing BDNNs. Additionally, those methods serve as predictive models that describe
the behavior of the target variable in future periods. The derivation of these meth-
ods combines theoretical concepts from multiple areas of literature. The research
activities addressing the development of the APC models compose the first field.
Its major contribution consists of insights on the identification problem and the
development of estimation methods. The second area is the literature of deep learn-
ing, which investigates the development, training, and utilization of BDNNs. This
section provides a brief overview of these topics.

2.1 Age-Period-Cohort Models

APC models are a class of methods with many applications, especially in social and
behavioral sciences. Their primary goal is to estimate age, period, and cohort e↵ects
on a variable of interest, whereas these e↵ects are indicators for other latent variables
(Hobcraft et al., 1985). The major challenge in the estimation of those e↵ects is the
identification problem, which prevents finding a unique solution by using a linear
modeling approach (K. O. Mason, Mason, Winsborough, & Poole, 1973; Rodgers,
1982). There are many examples for APC models that try to tackle this challenge
in many di↵erent ways. However, none of them solves the problem. This section
presents the classical APC model and its variations.

2.1.1 The classical APC model

The general idea of APC models is to investigate the time-dependent influences
of age, period, and cohort variables on a target variable. Thereby, none of these
three variables does have any e↵ect on the studied phenomena, but their underlying
concepts have one: While age is an indicator for results of social influences on the
physiology of an individual, period and cohort describe phenomena that influence
the variable of interest, independent of an association with an age group, in a specific
period or cohort (Hobcraft et al., 1985; Yang et al., 2008). It is important to note
that each of these three variables can be expressed as a linear combination of the
other two (K. O. Mason et al., 1973; Rodgers, 1982). For instance, it holds that
Age = Period�Cohort. This relationship depicts a challenge in the development of
an estimation model.

The classical APC model is the linear model shown in equation 1 (K. O. Mason
et al., 1973). It estimates the relationship between the dependent variable Y and
the APC variables. Thereby, ↵ is the intercept, the �i are the coe�cients of the
corresponding APC variables, and ✏ is a random error term. The regular way to ap-
proach this model would be to calculate the ordinary least square (OLS) estimator
(Fahrmeir, Kneib, Lang, & Marx, 2007). However, the linear dependence between
the independent variables leads to a singular data matrix without full rank, which
prevents the determination of a unique estimator using the OLS method (Rodgers,
1982; Yang et al., 2008). From a formal perspective, there exists a function describ-
ing the real-world in the form of the model in equation 1, and thus, it is impossible
to describe this Data Generating Function (DGF) without a unique estimator ap-

8



proximating it because researchers would need to select the right function out of an
infinitely large set.

Y = ↵ + �1A+ �2P + �3C + ✏ (1)

To overcome this identification problem, K. O. Mason et al. (1973) and Fienberg
and Mason (1979) conclude that it is necessary to resolve the linear dependence
between age, period, and cohort. Thus, they propose to either ignore one of the
variables or restrict the model in the sense that the e↵ects for belonging into one
or another age/ period/ cohort group are equal. While they note that the first idea
is not a meaningful approach in many disciplines, the model that results from the
second one would be in many contexts too simple. One reason for this is that it is
impossible to add interaction terms into the given model (Rodgers, 1982).

2.1.2 Advanced Methods

Many researchers followed the idea of the classical APC model and developed a
multitude of examples that extend it. For instance, Yang and Land (2006) developed
a hierarchical APCmodel to incorporate individual data into the estimation. Moving
from an aggregated view to an individual level leads to new opportunities for the
research community because it enables to include individual variables into the model.
As each of the observations of the individual variables can be made at a specific
period and each of them belongs to a specific cohort, they assume that the latter
variables are quasi-independent, and thus, they add for each period and cohort a
random e↵ect to the model (Bell & Jones, 2014), which leads to the general model
in equation 2. Agei(j1j2) is the age variable of individual i in period j1 and cohort j2.
The error term ✏ and the random e↵ects for period u1j1

and cohort u2j2
are normally

distributed with a zero mean.

Y = �0 + �1Agei(j1j2) + ✏

�0 = ↵ + u1j1
+ u2j2

✏ ⇠ N(0, �2
✏ ), u1j1

⇠ N(0, �2
u1
), u2j2

⇠ N(0, �2
u2
)

(2)

Besides adding additional variables and transforming the problem into an individual
dimension, other approaches focus on improving the estimation process to determine
the real DGF. For instance, the intrinsic estimator of Yang et al. (2008) separates
the design matrix into two subspaces that are orthogonal to each other. While the
authors argue that the first subspace is independent of the variable of interest, and
thus, not relevant for the estimation, the other one can be estimated using a principal
component regression. This approach removes the dependence between the design
matrix and the estimation of the regression coe�cients of the APC model. Although
the authors state that their estimator has desirable statistical properties, there exist
theoretical justifications that its application is not suitable in every situation (e.g.,
Luo, 2013; O’Brien, 2011), and thus, it is not a general solution for estimating APC
models.

The Bayesian Age-Period-Cohort Modeling and Prediction (BAMP) package in R
implements another method for estimating the parameters of an APC model using

9



a Bayesian approach (V. Schmid & Held, 2007). The authors use a binomial logit
model as shown in equation 3: They assume that the variable of interest, which
counts the number of incidence cases, follows a binomial distribution. The first
parameter of this distribution, which is the population size of age group i at period
j, equals the logit of the incidence probability pij. Moreover, they formulate it as
the sum of an intercept µ and the respective e↵ects of the age ✓i, period �j, and
cohort  k variables.

yij ⇠ B(nij, pij)

nij = log(
pij

1� pij
)

= µ+ ✓i + �j +  k

(3)

Since this method is a Bayesian method, it is necessary to specify a prior distribution
for each of these parameters. In accordance with V. Schmid and Held (2007) and
Berzuini and Clayton (1994), a random walk prior is a reasonable choice for this
purpose. However, it depends on the final applications to determine the order of
these prior distributions. The first order for the age parameter implies a constant
trend and is defined as follows, whereas �1 is a precision parameter that is assumed
to be Gamma distributed (this definition also holds for the other two variables):

p(✓1) / const.

✓i | ✓i�1, ✓i�2 ⇠ N(✓i�1,
�1), for i = 2, · · · , I

(4)

The second-order random walk prior distribution describes a linear trend for the
age parameter which follows the definition (which is also valid for the remaining
variables):

p(✓1) = p(✓2) / const.

✓i | ✓i�1, ✓i�2 ⇠ N(2✓i�1 � ✓j�2,�1), for i = 3, · · · , I
(5)

According to Rodgers (1982), only the non-linear components are estimable in the
class of APC models. Consequently, only e↵ects with non-linear priors are iden-
tifiable assuming non-linear likelihoods, and thus, the e↵ects with a second-order
random walk prior are generally not estimable. Taking all groups of a variable to-
gether leads to their joint distribution, whereas R is the precision matrix of the
respective prior distribution.

⇥ = (✓1, · · · , ✓I)

p(⇥) / �rg(R)/2exp(��
2
⇥
0
R⇥)

(6)

The use of random walks as prior distributions has the advantage that they enable
a projection of the e↵ects. For this purpose, practitioners calculate the e↵ect for
the next point in time using equation 7 and plug the result then into the binomial
distribution in equation 3 to obtain an estimation of the number of incidences in
the next period.
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✓I+1 ⇠ N(✓I ,
�1) for random walk 1,

✓I+1 ⇠ N(2✓I � ✓I�1,�1) for random walk 2
(7)

Overall, the definition of these prior distributions allows to define the posteriori dis-
tribution using Bayes theorem with the data likelihood f(y | µ, ✓,�, ) =

QM
m f(ym |

µ, ✓,�, ) that is shown in equation 8. Afterwards, it is possible to calculate the full
conditional of each parameter vector to obtain an estimation for the corresponding
e↵ect. However, these are generally no standard distributions, and thus, the soft-
ware samples from the posteriori using a Metropolis-Hastings algorithm (V. Schmid
& Held, 2007). Besides the estimation of the e↵ects, BAMP provides an option for
adding a term for global-heterogeneity by adding another variable to the regression
model in equation 3. This parameter is assumed to be normally distributed with a
zero mean and a precision parameter that follows a Gamma distribution.

p(µ, ✓,�, | y) / f(y | µ, ✓,�, )p(f(y | µ, ✓,�, )) (8)

Although it is possible to estimate the e↵ects of the age, period, and cohort groups,
their interpretation is not trivial because this method does not solve the identifica-
tion problem. Nonetheless, there exist many examples that utilize this method in
various fields, such as cancer research (Lopez et al., 2006), other general medical
fields (Kypridemos et al., 2016), and social sciences (Odagiri, Uchida, & Nakano,
2011). Moreover, BAMP builds the basis for ensemble methods, like in the work of
Breeden and Leonova (2019). They create an economic forecast model by estimat-
ing age, period, and cohort e↵ects but face the challenge that the available data has
incompatible time scales. An explanation is that organizations have better possi-
bilities to store internal information than external ones leading to this discrepancy.
Breeden and Leonova (2019) approach this problem in two steps: In the first one,
they calculate a Bayesian APC model using BAMP and use these estimates as an
input for training a Deep Neural Network (DNN). Thereby, the input nodes of those
e↵ects that are supported by long-term data are directly connected to the output
node by a fixed weight matrix that consists of ones. In the other case, the e↵ects are
split into sub-variables, which describe the overall e↵ect. This step bridges the gap
between the di↵erence in the time scales of the data because the DNN extrapolates
the small time frame into a larger one. Overall, it enables a financial forecasting
model, which their empirical analysis has shown.

2.2 Deep Learning

A substantial part of this thesis is the development of BDNNs. This section provides
an overview of the foundations of this class of models. Thereby, it presents the
general idea of training and using a DNN. Subsequently, it summarizes the state
of the art in research about BDNNs and how they relate to DNNs. Afterwards, it
introduces the idea of Bayesian optimization methods that support the finding of
suitable hyperparameters. Finally, the section discusses the interpretability of those
models and the consequences for practitioners.
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2.2.1 Formulating Deep Neural Networks

In the past years, the area of machine learning, and especially the field of deep
learning, had its breakthrough in the literature. The methods that belong to this
area find a successful application in various domains, such as image recognition (e.g.,
Russakovsky et al., 2015) and natural language processing (e.g., Conneau, Schwenk,
Barrault, & Lecun, 2017). According to Hastie et al. (2009) and Ripley (1996), the
foundation of deep learning is the DNN: This model is a subclass of neural networks,
which are again a class of non-linear statistical models. Their general idea is to feed
an input vector through a network structure that consists of an input layer, multiple
hidden layers, where each of them comprises several hidden units, and an output
layer. In a fully connected DNN, all hidden units of a layer are connected to all
hidden units of the subsequent layer. Figure 1 provides an example of the structure
of these models. Each hidden unit takes the output vector of the previous layer
as an input to a linear function f(z) = W T z + b, where W is a weight matrix
and b a bias vector. Both parameters are randomly chosen while initializing the
model. After calculating this a�ne transformation of the input, the hidden units
insert the result into a non-linear activation function. There exist a multitude of
these function in literature, such as the Rectified Linear Unit (ReLU) function that
is defined as g(x) = max(0, x). The choice for such a function depends on the
individual application.

Input Layer Hidden Layers Output Layer

Figure 1: Sstructure of a two layer neural network.

A DNN requires a training procedure to adjust the model parameters to the given
data, such that it can predict an output for a given input. One of the most ba-
sic learning algorithms for this purpose is the stochastic gradient-descent algorithm
(Hastie et al., 2009; Ripley, 1996). It consists of four steps: First, the algorithm
performs a forward-feed through the network, i.e., it inserts the input vector through
the input-layer into the first hidden layer, and then the resulting output vector it-
eratively through the remaining hidden layers until the model yields a final output
from the output layer. Afterwards, it calculates the loss using an arbitrary loss func-
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tion L to obtain a measurement of the prediction error of the model at the current
iteration. The choice of this function depends on the application. For instance,
the root-mean-squared error would be a suitable choice in regression contexts. The
third step is the backpropagation step, which goal is to determine the gradients of all
model parameters with respect to the loss using the chain rule. In the final step, the
algorithm updates the model parameters by subtracting the product of a learning
rate ↵ that determines to which extend the algorithm converges to an optimum and
the gradient of the model parameter. It follows for each weight matrix W and bias
vector b: W  W � ↵ �L

�W and b  b � ↵ �L
�b . The algorithm repeats those steps for

all available input vectors multiple times until it is perceived as optimal. The actual
number is called the number of epochs.

The sole application of the stochastic gradient-descent algorithm could lead to a
reasonable prediction performance of the training data but fails to generalize with
unobserved data that is not part of the training procedure. There exist several
approaches to counteract this overfitting problem. One example is the use of regu-
larization techniques. Their idea is to include a penalty term in the update functions
(Hastie et al., 2009; Ripley, 1996) - it penalizes “large weights that do not contribute
a correspondingly large reduction in the error” (Witten & Frank, 2002) leading to
a reduction of their importance regarding the prediction, which in turn reduces the
degree of overfitting that results from the corresponding hidden units. Another
example is the dropout method - it chooses a set of hidden units that the train-
ing algorithm ignores in each iteration with a predefined probability (Srivastava,
Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Thereby, it reduces the in-
fluences of single hidden units on the final model, which in turn reduces the degree
of overfitting.

There are many examples of other learning algorithms in the literature that promise
even better empirical performances. One of these variations introduces the idea
of mini-batches: Instead of inserting a single input vector to the network in each
iteration, it is possible to increase the sample size and calculate then the mean of
the losses of those samples. Following Masters and Luschi (2018), the size of these
batches should not be too large to ensure that the training algorithm converges
fast and robust to the optimum. Another example is Adam (Kingma & Ba, 2014):
Its central assumption is that the loss function is stochastic. Hence, it aims at
finding the minimum of the expected loss function. To achieve this, the algorithm
determines the first two moments m̂ and ⌫̂ of the gradient of the loss and uses
those for the update of the parameters: W  W � ↵ m̂p

⌫̂+✏
, where ✏ is the step

size and depicts a hyperparameter of the method that users have to tailor to their
specific problem. This algorithm has the advantage of adjusting the learning rate
dynamically, such that it prevents getting stuck at a local rather than the global
minimum.

2.2.2 Bayesian Deep Neural Networks

The described training procedures in the section above result in models that yield a
point estimation for each input. While this is su�cient in many applications, others
require information about the uncertainty of the resulting estimations. Thus, the
major goal of a BDNN is to obtain a Bayesian estimation of a probability distri-
bution for each output label. Thus, the smaller the variance of this posteriori, the
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smaller is the uncertainty of the estimation. There are several proposals to achieve
this goal in literature. However, they generally have the same foundation: The train-
ing algorithm assumes that the model parameters are sampled from a probability
distribution. Thus, it is possible to assign each of them a prior distribution. Sub-
sequently, the algorithm can calculate the data-likelihood using initial data samples
and combine the priors and the likelihood through Bayes theorem to the posteriori
(MacKay, 1992; Neal, 1996).

The conceptual ideas in this thesis do not have special requirements for the learn-
ing algorithm of the used BDNNs, and thus, the choice of a training algorithm is
generally irrelevant. Since the experimental part requires to implement one, it sum-
marizes the VOGN optimizer (M. E. Khan et al., 2018) in the following and utilizes
it for the implementation later on: The central issue in applying Bayes theorem to
the given problem is the calculation of the normalization constant. Additionally, the
likelihood and the prior distributions are usually nonconjugate. Consequently, the
optimizer approximates the posteriori using a distribution such that the normaliz-
ing constant is computable. The normal distribution is a suitable candidate for this
purpose (c.f. Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015). Based on these
assumptions, M. E. Khan et al. (2018) derive update rules for the parameters of the
prior distributions.

The natural-gradient variational inference method (M. Khan & Lin, 2017) builds the
foundation for the VOGN optimizer. The idea of this method is to use a variational
objective function

L(µ, �2) =
NX

i=1

Eq[log p(Di | ✓)] + Eq[log
p(✓)

q(✓)
]

for the calculation of the weight updates. P (Di | ✓) is the data likelihood, p(✓)
the prior of the model parameters, and q(✓) the approximation of the posteriori.
Overall, it results in the following update rule under the consideration of a Gaussian
approximation, where ✓ are the model parameters and µ and �2 the parameters of
the prior distributions:

µt+1  µt + �t�
2
t+1 � [r̂µL],

��2t+1  ��1t � 2�t[r̂�2Lt].
(9)

M. E. Khan et al. (2018) translate this update rule into the context of a BDNN.
Thereby they define the objective of the training as minimizing the negative log-
likelihood�log p(Di | ✓) such that the objective function is f(✓) = 1

N

PN
i=1�log p(Di |

✓). The use of mini-batches requires to determine the mean of the sum of the gradi-
ents of this objective, such that ĝ(✓) = 1

M

P
i2M r✓fi(✓), where M is the number of

examples in the mini batch M. Taken together, this leads to the following update
rule:

µt+1  µt � �t(ĝ(✓t) + �̃µt)/(st+1 + �̃),

st+1  (1� �t)st + �tdiag[r̂2
✓✓f(✓t)].

(10)
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This update rule could lead to negative variances in the update, and thus, the
authors propose to use the Generalized Gauss-Newton approximation for the Hessian
matrix r2

✓✓f(✓t). It follows that ĥ(✓t) = 1
M

P
i2M[r✓jfi(✓)]

2 ⇡ r2
✓j✓j

f(✓t). This
results in the final version of the update rules:

µt+1  µt � �t(ĝ(✓t) + �̃µt)/(st+1 + �̃),

st+1  (1� �t)st + �tĥ(✓t).
(11)

Since the network stores the parameters of the distributions of the weights and biases
rather than the values themselves, it is necessary to perform multiple forward-feeds
through the network to approximate the parameters of the posteriori distribution.
It is also important to note, that the update rules of the VOGN optimizer could
potentially be extended using regularization techniques to further improve the pre-
dictive power of the network. However, this is not necessary for this thesis, and
thus, will not be further explained.

2.2.3 Optimizing and Using Deep Learning

DNNs, as well as BDNNs, require the definition of hyperparameters to tailor them
for specific applications. There exist empirical evidence that the choice of these
parameters has a crucial impact on the success of the model. For instance, e.g.,
Pinto, Doukhan, DiCarlo, and Cox (2009) conclude this fact while comparing many
biological vision models. However, they also summarize that the process of choosing
those parameters is not trivial due to the potentially high search space. Although
many authors still use a manual approach for defining the set of hyperparameters,
literature developed methods to automate this process (Bardenet, Brendel, Kégl, &
Sebag, 2013). It is possible to distinguish between two types of those algorithms.
While the first type systematically tests the search space, such as grid search and
random search algorithms (Bergstra & Bengio, 2012), the second type utilizes a
probability distribution to predict meaningful candidates in the search space (Snoek,
Larochelle, & Adams, 2012).

A famous example of the latter type is the family of Bayesian Optimization (BO)
algorithms. Generally speaking, their goal is to determine the global minimum of an
unknown, stochastic function that is not trivial to evaluate (Močkus, 1975). Follow-
ing the description of Brochu, Cora, and De Freitas (2010), these algorithms utilize
a surrogate model for the estimation of the objective function, which is easier to
evaluate. This surrogate is a Bayesian model because it combines a prior distribu-
tion with the data likelihood to obtain this estimation. Many authors follow the
proposal of Močkus (1975) to use a Gaussian process as the prior distribution for the
surrogate model because the resulting posteriori is again a Gaussian process that is
defined by its mean-function and covariance function (Močkus, 1975). Subsequently,
sampling the surrogate k(x) multiple times enables to approximate the location µx

and scale parameter �2
x of a Gaussian such that k(x) ⇠ N (µy, �2

x). It is necessary to
provide initial samples for creating this model, i.e., the method conducts a random
search for a fixed number of steps to obtain these samples.

After generating the initial surrogate model, the algorithm uses its predictions to
query an acquisition function to iteratively retrieve points in the search space that
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should be evaluated next (Brochu et al., 2010). The goal of this phase is to optimize
the surrogate model, and thus, the points should reduce the uncertainty at each
point x in the search space, and simultaneously, explore new points to improve
the overall prediction performance of the model. This is called the exploration-
exploitation tradeo↵. Among the variety of examples for acquisition functions, the
expected improvement criterion is a reasonable candidate to approach this tradeo↵
(Brochu et al., 2010; Močkus, 1975; Snoek et al., 2012). Its idea is to estimate the
expected value of the improvement function I(x) = max{0, k(x)�k(x?)+⇣}, where
x? is the best objective value observed so far and ⇣ � 0 a minimal improvement
parameter that ensures reasonable runtimes of the algorithm by prohibiting only
marginal steps. Taken together, the definition of the criterion, where D is the data,
is

EI(x) = E(I(x)) =
Z 1

�1
|| k(x)� k(x?) + ⇣ || P (k(x) | D)dk. (12)

Since the calculation of an integral is not trivial from a computational perspective,
there exists a closed form for this criterion (Brochu et al., 2010; Snoek et al., 2012):

EI(X) =

⇢
(µ(x)� f(x?))�(Z) + �(x)�(Z) if �(x) > 0
0 if �(x)  0

(13)

Thereby, Z = µ(x)�k(x?)
�(x) , and �(Z) is the cumulative distribution function, and �(Z)

the probability density function. The algorithm extracts the next promising point
by maximizing this criterion. Subsequently, it evaluates the point using the original
objective function and adjusts the surrogate model. The algorithm repeats those
steps for a fixed number of iterations until the set of hyperparameter is perceived
as optimal.

Input Layer Hidden Layers Output Layer

Figure 2: Example for calculating the relevance score of the red neuron using the
LRP method. The red line divided by the sum of the blue lines at each node in
the subsequent layer builds the degree to which the red node is relevant for the
prediction of the blue node. The sum of those relevances is the relevance score of
the red node.
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Besides the optimization and usage of the predictive power of DNNs and BDNNs, a
recent stream in the literature focuses on the interpretability of those models. The
goal of this research field is to develop methods that explain the relationship between
the inputs and the resulting predictions in the sense of explaining how a model
makes a prediction, and thus, open the black box models. This step is necessary
for various reasons. For instance, regulatory changes might require practitioners to
provide users with an explanation of how a decision was made, or without an insight
into the decision-making process, patients would not trust their physicians (Samek,
Wiegand, & Müller, 2017). Whilst a classical sensitivity analysis that changes the
value of a single input node ceteris paribus provides a first insight into explaining
the relationship, it is insu�cient in many contexts because it does not explain the
actual function value but its variation. For this reason, there exist plenty of methods
that try to explain it directly (Lundberg & Lee, 2017). Nonetheless, these measures
are not directly comparable to the e↵ect estimation of a linear regression model due
to the non-linear character of a DNN.

One of these methods is the Layer-wise relevance backpropagation (LRP) (Bach
et al., 2015): After training a DNN, the method calculates for each prediction
separately for each input node a relevance score that describes to which degree
the input was responsible for predicting the corresponding output. It achieves this
by iteratively assigning these scores to all hidden units in each layer. Figure 2
demonstrates the calculation of this score for a single neuron - the score equals
the sum of contributions the node has on the relevance scores of the nodes of the
consecutive layer. Formally follows that the score of neuron i at layer l is

R(l)
i =

X

j

R(l+1)
i j . (14)

The contribution of this neuron to another neuron j in layer l + 1 equals the share
of the a�ne transformation of the neuron of interest to the sum of the a�ne trans-
formations of all neuron on layer l that are inserted into j multiplied by the score
of j:

R(l+1)
i j =

(
xijwijP
i xijwij+✏ ·R

(l+1)
j , for

P
i xijwij � 0

xijwijP
i xijwij�✏ ·R

(l+1)
j , for

P
i xijwij < 0

(15)

The stabilizer ✏ � 0 ensures that there is no division by zero. The algorithm
determines these scores for each layer starting at the output node until it assigns
each input a score. It is noteworthy that these scores are only valid for a single
prediction and that there does not exist an approach that aggregates them for an
overall interpretation of the model. Thus, the interpretability of these models is still
limited compared to other model classes such as linear regression.
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3 Conceptual Approach

The goal of this thesis is to investigate how BDNNs could improve the predictive
performance of APC models. Two requirements define the successful development of
approaches that fulfill this goal. The first one is that the resulting models should be
able to predict the development of the variable of interest into future periods. The
second one requires the model to express the e↵ect or the importance of an input
variable on the output variable. This thesis develops two conceptual approaches
to achieve this goal considering the two requirements. This chapter presents both
approaches from a theoretical perspective. However, it extends the LRP method to
ensure applicability in BDNNs, prior to this.

3.1 Bayesian LRP

While the LRP method aims at interpreting samples of DNNs, it does not apply to
BDNNs without extending it. The reason is that the estimation of a BDNN is a pos-
teriori distribution rather than a point estimation, and thus, feeding the same input
through the network multiple times leads to di↵erent results. Consequently, apply-
ing the LRP method to this sampling process would also yield di↵erent relevance
scores for the input nodes, which would bias further implication tasks. Therefore, it
is necessary to extend this method. Additionally, the research community investi-
gating APC models is not interested in the explanation of a single sample, but the
overall e↵ects of the input parameters on the target variable. As the method does
also not fulfill this criterion, an extension requires also aggregating the sample view
into a larger frame. This section proposes the Bayesian LRP (BLRP) method that
incorporates these requirements.

The first challenge is to find robust relevance scores for the same inputs considering
the posteriori distribution of the outputs. The general idea of BLRP is to sample
from the posteriori multiple times until the distribution converges to a specific loca-
tion and scale parameter. Thereby, it is necessary to store all outputs of all hidden
units as well as all model parameters at each sampling step, which restricts the num-
ber of the sample size in terms of the available memory. Subsequently, the algorithm
determines the relevance scores for each sample individually using the LRP method.
Finally, it calculates the mean and standard deviation of the resulting relevance
scores for each input node. While the mean is an estimation for the relevances of
the inputs, the standard deviations provide a measurement of the uncertainty of this
estimation. Consequently, the proposed method extends the LRP method from a
Bayesian perspective.

The second challenge is to aggregate the results from the sampling process into a
view that allows inferring about the general relevance of an input variable on the
target variable. As mentioned before, it is not possible to derive linear e↵ects like
in a linear regression model of the independent variables on the dependent one be-
cause of the non-linear nature of BDNNs and the definition of the relevance scores
that result from the LRP and BLRP methods. Nevertheless, the latter method
equips researchers with the opportunity to obtain an impression on the relevance
of an independent variable by investigating the distribution of its relevance scores
per expression of this variable. On the one hand, these distributions give them
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an intuition about the relevances of a single expression and the accompanying un-
certainty. On the other hand, it allows comparing those distributions between the
single expressions to gain insights about the development of a variable.

3.2 BAPCNN

The first approach is the naive one - it utilizes a BDNN as an alternative to estab-
lished APC models and is called the Bayesian APC Neural Network (BAPCNN). In
contrast to methods like BAMP that use the data on the Lexis diagram (V. Schmid
& Held, 2007), it requires the data to comprise a set of quadruples in the form of
(A,P, C, L), where A is the age index and P , C the respective index for period and
cohort. Each of these variables could potentially be replaced with another set of
variables that describe the e↵ect in detail. For instance, the age variable could be
replaced by the characteristics of an individual, such as its smoking and sleeping
habits, and its actual age. Additionally, L describes the target variable for the three
indexes. Besides the transformation of the data, a BDNN requires the definition of
a training algorithm. As mentioned before, this thesis proposes to use the VOGN
optimizer, whereas there is no theoretical restriction on using a di↵erent algorithm
for this purpose. Following the derivation of this optimizer (M. E. Khan et al.,
2018), the BAPCNN assumes that the network parameters are samples from a nor-
mal distribution leading to a Gaussian posteriori distribution. Moreover, it uses the
average negative log-likelihood as its loss functions, where µ is the mean and ⌧ is
the precision parameter of a Gaussian distribution:

L = �1

2
log(2 · ⇡) + log(⌧)� ⌧ · (y � µ)2.

This approach has several advantages and disadvantages. The literature provides
empirical evidence for the strong predictive performance of DNNs and BDNNs.
Consequently, this approach should successfully predict cases of the target variable
in future periods. However, it is necessary to show this using empirical experiments.
One disadvantage is the number of hyperparameters of this method because their
choice adds additional complexity to the method. Although a manual search would
be possible, it is not satisfactory in many situations. Consequently, it makes sense to
use an automated approach like the BO algorithm for identifying those. This step is
essential because a poor choice of hyperparameters diminishes the predictive power
of the model. Another challenge is the amount of available data. Previous empirical
studies have shown that DNNs and BDNNs require large amounts of data to provide
a reasonable prediction for unobserved data samples. Hence, overfitting the training
data enables a better interpretation of the relevance scores that result from the
BLRP method, but fails to generalize the resulting prediction into future periods.
That depicts a tradeo↵ of the two subgoals of this thesis. Therefore, researchers
could fit two models for this purpose, which is unnecessary in established APC
models.

3.3 APC-Ensemble

The second approach adapts the idea of the hierarchical model of Breeden and
Leonova (2019). While they intended to extrapolate a lack of data onto a larger
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time horizon, the goal of this method is to use the estimation of an established
APC model to get an insight on the relevance of e↵ects that describe one of the
three independent variables. Hence, this approach focuses not on the prediction of
future incidences of the target variable but seeks to find an explanation for which
components are relevant for building an e↵ect. To achieve this, the algorithm firstly
uses an established APC model and estimates it. Thereby, the choice of this method
is generally irrelevant for further processing, but it is essential that the method can
provide an e↵ect estimation for each independent variable individually. Based on
the resulting estimation, it is possible to extract the information of the dependent
variable that only depends on one of the three variables by subtracting the e↵ects of
the remaining variables. This information builds the label for training a BDNN. The
set of inputs for this model consists of variables that describe the overall e↵ect, and
thus, they depend on the domain of future applications. Optimizing and training
this BDNN enables to retrieve the relevance of these inputs using the BLRP method.

This method splits an estimated e↵ect into multiple sub-e↵ects using a BDNN under
the assumption of the correctness of the estimation of the APC model. Consequently,
it cannot guarantee a reasonable description of the relevance of these sub-e↵ects be-
cause none of the established APC models solves the identification problem such
that there is no guarantee that it finds the e↵ects describing the real DGF. Nev-
ertheless, a domain expert could use the description of those sub-e↵ects to judge
the quality of the estimation of the APC model. Conversely, assuming an expert
supports the estimation of an APC model, this hierarchical approach would provide
researchers with even more information about potential influences that compose an
aggregated e↵ect.
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4 Research Design

Each of the two conceptual approaches has a specific strength regarding the research
questions. While the BAPCNN method promises a reasonable predictive power, the
strength of the hierarchical approach lays in the interpretability of its estimation.
Consequently, this thesis uses two types of experiments to investigate the empirical
behavior of those methods. While the first type uses a real-world data set to gain an
insight on the prediction performance of the BAPCNN method, the second one uses
simulated data to observe how the hierarchical approach recognizes the relevance of
the sub-e↵ects that compose an overall e↵ect. This section describes both types and
their parametrization in detail.

4.1 COPD Experiment

The first experiment uses a dataset that describes the mortality of Chronic obstruc-
tive pulmonary disease (COPD) in England and Wales in the time between 1942
and 1996 for 15 age groups from 15 to 89, whereas each of these groups contains five
years. It also contains the population data for those periods and the corresponding
age groups. Moreover, it di↵erentiates between the male and female population.
This experiment aims at evaluating the predictions of the BAPCNN approach using
this dataset. Thereby, it uses the first 45 periods for training an APC model and
a BAPCNN for each gender group. Subsequently, it uses each model to predict
the remaining ten periods and compares those predictions with the real number of
incidences.

Lopez et al. (2006) use a similar dataset for predicting the mortality of COPD with a
Bayesian APC model using BAMP. Consequently, it depicts a suitable candidate for
representing the class of established APC models in this experiment. A similar data
basis allows transferring the parametrization of the models in the paper into the
present context. Table 1 summarizes those parameters: Lopez et al. (2006) assume
a second order random walk as the prior distribution for all variables. Moreover,
they specify that the precision parameter of those priors follows a Gamma distribu-
tion defined by the parameters a and b. Besides this, the authors include another
parameter that measures the overdispersion in the model, which follows a Gaussian
distribution with a precision parameter following a Gamma distribution. Finally,
the estimation of the method uses 102000 Markov Chain Monte Carlo (MCMC)
iterations, whereas 2000 of them describe the burn-in phase. Following the authors,
the experiment in this thesis also implements the models using BAMP.

Besides the definition and estimation of the APC models, it is necessary to create
and train a BAPCNN using the VOGN optimizer. That requires the transformation
of the data, as described in section 3.2. Additionally, it also requires the definition
of a set of hyperparameters for the training process. Since the choice of those is
not trivial, this thesis uses the mlrMBO framework (Bischl et al., 2017) to run a
BO algorithm leading to a reasonable set of hyperparameters. Table 2 summarizes
the results of this procedure for both models. The prior precision and precision init
parameters characterize the precision parameter of the prior distributions. Due to
the Gaussian approximation in the VOGN optimizer, the calculation of the negative
log-likelihood also requires the specification of a precision parameter, which is the
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Parameter Value

Prior distribution for Age Random Walk 2
Prior distribution for Period Random Walk 2
Prior distribution for Cohort Random Walk 2
Number of MCMC iterations 100000
Burn in 2000
Gamma distribution of independent variables a = 1, b = 0.0005
Gamma distribution of overdispersion parameter a = 1, b = 0.05

Table 1: Overview on the used hyperparameters for training the Bayesian APC
models in the COPD experiments.

noise precision parameter in the table. This thesis extends the torch package (Falbel
& Luraschi, 2020) for implementing the VOGN optimizer.

Parameter Value (female) Value (male)

Prior precision 0.0074 0.0796
Precision init 47.75 30.694
Noise precision 0.01 0.01
Hidden units (84, 109, 109) (28, 70, 101)
Epochs 20 20
Batch size 16 16
Learning rate 0.01 0.01
Beta 0.999 0.999

Table 2: Overview on the used hyperparameters for training the BAPCNN models in
the COPD experiments di↵erentiated according to the underlying gender of interest.

After training both model types, the experiment uses the models to predict the next
ten periods. Afterwards, it compares those predictions with each other considering
the underlying gender in the data and with the real-world incidences. This compar-
ison requires the definition of a metric that quantifies the predictive performance of
the models. The mean absolute error

MAE(Z) :=
1

| Z |

|Z|X

i=1

| zi � z?i |

and the root mean squared error

RMSE(Z) :=

vuut 1

| Z |

|Z|X

i=1

(zi � z?i )
2

are suitable metrics for this purpose. Z = [z1, z2, · · · , zZ ]T and Z? = [z?1 , z
?
2 , · · · , z?Z ]T

are the input vector and the respective vector of real values. The smaller those
metrics, the better is the predictive performance of the models.
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4.2 Simulation

While the use of a real-world data set provides valuable insights on the empirical
behavior of the prediction performance of the models, it does not allow to evalu-
ate the estimation of the underlying e↵ects that characterize the DGF because it
is impossible to estimate them using the available tools due to the identification
problem. For this reason, the second experiment conducts a simulation study that
enables to control the definition of the DGF. Consequently, it is possible to validate
that a model assesses the relevance of a variable correctly. This setting builds the
basis for investigating the empirical behavior of the hierarchical approach.

Simulate APC effects Derive sub-effectsEstimate Bayesian APC
model

Train BDNNEvaluate BDNN finished?
Yes

No

Figure 3: Summary of the simulation process.

Figure 3 shows the simulation process: The first step is to manually define the e↵ects
of age, period, and cohort. It uses the example of the data simulation function of
the BAMP packages shown in figure 8 (V. J. Schmid, 2020). The next step is then
to fit a Bayesian APC model to this data using the BAMP package. Subsequently,
the core of the simulation starts. It splits the estimated cohort e↵ect of the APC
model randomly into three sub-e↵ects such that the sum of those e↵ects equals the
overall cohort e↵ect. These sub-e↵ects build the input vector for a BDNN. The
estimated cohort e↵ect depicts the labels for those inputs during the training phase.
After training the BDNN, the next step is to calculate the relevance scores for each
input variable using the BLRP method. The simulation repeats this core 100 times
to ensure statistical validity.

As the result of this BLRP method is an overview of the distribution of the relevance
score per variable expression and the real values are only a single point, it is not
trivial to find a distance measure to quantify the success of the estimation. Hence, an
alternative is to plot the resulting distributions against the real values to investigate
the empirical behavior of this method for each simulation run separately. It is
infeasible to include all of these plots in the thesis itself, and thus, they will be
made available in the electronic appendix together with the source code of both
experiments.

The APC model, as well as the BDNNs, demand the definition of a set of hyperpa-
rameters. For the priors in the APC model, the simulation uses second-order random
walk priors and the default number of iterations in the BAMP package, which are
55000 MCMC iterations with 5000 steps as the burn-in phase. The apcSimulate
function of the BAMP package is used to generate the simulation data based on the
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described e↵ects in figure 8 in the appendix. This step assumes a constant popu-
lation of one million residents. First manual experiments with the BDNN showed
that there exist a set of hyperparameters that is suitable for all BDNNs independent
from the simulation iteration. Table 3 summarizes this set.

Parameter Value

Prior precision 11.55
Precision init 10.87
Noise precision 4.66
Hidden units (28, 94, 85)
Epochs 10
Batch size 53
Learning rate 0.079
Beta 0.941

Table 3: Overview on the used hyperparameters for training the BDNNs in the
simulation study.
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5 Results

This section presents the results of the COPD experiment and the simulation study
separately. Nevertheless, they both follow the same structure. First, they validate
the successful training of the used models by presenting several diagnostic plots.
This includes the check of the Bayesian APC models to converge using the check-
Convergence function in the BAMP package (V. J. Schmid, 2020). Moreover, it
consists of observing the development of the loss function of the BAPCNN model
and plotting the prediction of the training data against the real labels. Afterwards,
the sections describe the empirical behavior of the proposed models considering the
goal of each experiment type.

5.1 Predictive Performance

The goal of conducting the COPD experiment was to investigate how the BAPCNN
method competes against established APC models in predicting future incidence
cases. The APC models for the female and the male dataset did not converge given
their parametrization. Varying the number of MCMC iterations and the remaining
hyperparameters did not lead to an improvement of this state. Consequently, the
comparison of the methods is only partly possible. Figure 4 shows that the loss of
both BAPCNN models converge to zero during the training phase, which indicates
that this phase was completed successfully. The comparisons of the training labels
and the prediction of those values after completing the training phase, which is
shown in figure 6, support this statement because both plots imply that the models
produce reasonable predictions on the training data.
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Figure 4: The value of the loss functions converges to zero with an increasing number
of epochs for both BAPCNN models.

Figure 6 shows the predictions for the last ten periods of both model types and
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di↵erentiated according to the underlying gender of the models. While the black
line demonstrates the real values for these periods, the orange and blue ones show the
respective predictions of the BAPCNN and Bayesian APC model. It indicates that
both model types can generally predict the number of incidences in future periods.
However, it also shows that the predictions of the BAPCNN models are substantially
closer to the real values than the prediction of the APC model independent of the
underlying gender. The evaluation metrics in table 4 support this: They show that
the predictions of both models are worse for the male dataset than the female one.
Additionally, the MAE and the RMSE are both substantially lower for the BAPCNN
model than for the APC models implying a better predictive performance of those
models. Taken together, the BAPCNN method is a competitive alternative in the
task of predicting future cases.
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Figure 5: The plot shows the predictions of the BAPCNN models compared to the
real values for the female and male model.

Model MAE RMSE

APC (female) 7915.519 7923.949
BAPCNN (female) 2255.025 2622.789
APC (male) 14089.21 14119.75
BAPCNN (male) 2603.235 2269.76

Table 4: Summary of the evaluation metrics that result from the COPD experiment
di↵erentiated according to the used model type.
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5.2 Relevance of Sub-E↵ects

The second experiment aimed at investigating if the ensemble method predicts the
relevance of sub e↵ects correctly. To achieve this, the APC model and the BDNN
must converge in their training phases. While the checkConvergence function of
the BAMP package indicates that the APC model converges, the BDNN did not,
given the previously identified parameterization. Although the application of the
BO algorithm described earlier yielded a promising set of hyperparameters, the
experiments showed that it only improved the prediction marginally. Another reason
for this could be that there are too few training samples in the process, leading to the
poor adjustment of the network parameters. One option to overcome this problem
is to augment additional data and add it to the training set. A simple approach is
to copy the input vectors and add a random standard Gaussian noise to it using the
original labels, which also makes the prediction more robust against perturbations
in the data (An, 1996). However, quintupling the number of samples also did not
lead to su�cient results. Hence, the following assessments of the simulation are not
directly applicable to other contexts.

As mentioned before, due to the non-linear nature of a BDNN it is impossible to ex-
tract the influences of an input variable on the target variable directly. Nevertheless,
the BLRP method provides an opportunity to quantify this relationship. Figure 7
shows an example of the result for one sub-variable of a single simulation run. It
represents the remaining runs because all of them provide very similar implications
(compare the electronic appendix for all simulation results). The plot indicates that
the median values of the relevance scores approximate the real sub-e↵ects, which
the red line indicates. Nevertheless, the plot also shows that the distributions of
the scores are partly very broad, i.e., their variance is very high compared to the
real e↵ects, which makes the prediction not robust enough for practical implemen-
tations. Conversely, there are many examples for distributions with a low variance
that approximate the real e↵ects quite well. The convergence problem could be
an explanation for these mixed accuracies. Either it leads to completely random
predictions of the model, or the training process optimizes the model parameters
only for a subset of inputs explaining the poor assessment of some inputs. All in all,
the ensemble method requires further optimization in the training procedure, but
generally assesses the relevance of inputs reasonably.
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Figure 6: Overview of the prediction for all models compared to the real-world values
and di↵erentiated according to the underlying gender of the models. The black line
shows the real values, and the orange/ blue one shows the respective predictions of
the BAPCNN and Bayesian APC model.
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Figure 7: The figure shows an example for the assessment of cohort sub-e↵ects using
the ensemble method. While the red line indicates the simulated e↵ect, the boxes
show the distribution of relevance scores resulting from the application of the BLRP
method.
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6 Discussion and Conclusion

This section uses the results of the previous section and discusses them under con-
sideration of the research questions. Thereby it identifies theoretical and practical
limitations that restrict the generalizability of the implications that result from this
discussion. Afterwards, the section concludes by summarizing the most important
results of this thesis. Finally, it utilizes these findings to propose topics and open
challenges for future research, which development would enhance the performance
of the models in this thesis.

6.1 Discussion

The COPD experiment and the simulation study showed the empirical performance
of the two conceptual approaches. The discussion of the approaches in the light
of the two research questions requires the justification of the limitations that a↵ect
the generalizability of the following implications. There are mainly two sources for
limitations in this thesis - the research design and the implementation challenges.
The use of a single real-world data set is not representative for all real-world sce-
narios, and thus, BAPCNN models could fail to find a su�cient prediction in other
contexts, or established APC models could outperform those. Moreover, a simula-
tion allows to analyze specific data constellations, but it is unable to portray the
complexity of the real-world. Thus, its validation would require analyzing the same
constellations with real datasets, which is impossible, because there does not exist
a method that generally identifies the true APC e↵ects. Finally, the failing con-
vergence of the models to their optimum also prevents the generalizability of the
results because estimation errors could lead to the results at hand. Consequently,
they would bias deriving further implications. The following answers the research
questions considering these limitations.

The first research question asks whether a BDNN could be an alternative for the
estimation of APC e↵ects and if such a model could predict future incidences of the
target variable. The previous section provides empirical evidence that the BAPCNN
achieves su�cient prediction performance compared to the Bayesian APC model.
However, the success of this method strongly depends on the identification of a
set of hyperparameters because they lead to a better result of the training pro-
cess. Although established APC models also require the definition of a suitable
parametrization, the number of parameters is quite large for this class of models,
which increases the complexity of finding such a set. The simulation study revealed
another problem that could influence the predictive power of this approach - in do-
mains where practitioners are unable to generate enough samples for the training
phase, the model might fail to generalize such that its predictions are not su�cient.
Although data augmentation methods such as the addition of a Gaussian noise could
improve this situation, future research should investigate how the BAPCNN could
be improved in these settings. Nonetheless, this approach depicts generally an al-
ternative to established APC models considering only the ability to predict future
incidences.

Besides this ability, a wholesome alternative would also be able to describe the single
influences of the APC variables on the corresponding variable of interest. As this is
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generally infeasible due to the identification problem, the second research question
investigates if a BDNN can assess the influence of sub-e↵ects on the overall e↵ect
correctly, given an estimation of this e↵ect using an APC model in a hierarchical
approach. Manual experiments in the COPD experiment setting showed that the
BAPCNN is unable to assess those influences to a su�cient extent. The simulation
study supports this view. Due to the failed convergence of the training phase, it was
infeasible to evaluate those e↵ects using the BLRP method. Overall, this thesis could
not provide empirical evidence for the second research question. Yet, this does not
prove that using BDNNs in the estimation of APC e↵ects is not a valuable approach
in general. It is the task of future research to apply the presented concepts to other
data sets in various domains to obtain further impressions on this research question.
Under the assumption that especially the ensemble method yields su�cient results
in other contexts, it would also be interesting to analyze under which conditions a
BDNN is able the assess the sub-e↵ects correctly.

6.2 Conclusion

The goal of this thesis was to develop possibilities on how APC models could profit
from BDNNs and analyze how those concepts would perform in a practical setting.
To approach this, this thesis formulated two research questions that describe the
primary tasks of APC models - those models should predict future incidences and
assess the influences of variables correctly. Overall, it presented two conceptual
approaches; each aims at fulfilling one of those goals. It conducted two types of
experiments to determine how well these concepts achieve their goals. The first
experiment uses a real-world data set to train a BAPCNN and predict the mortality
of COPD for the next ten periods. The other one conducts a simulation study and
utilizes a hierarchical approach to get an impression on the model’s ability to assess
sub-e↵ects.

While the results in the experimental section provide empirical evidence for the
prediction ability, it could not show that those models can also evaluate the influ-
ences of a sub-set of variables correctly. It would be interesting to see whether more
complex formulations of the BDNN, such as a convolutional BDNN, or the appli-
cation of other training algorithms would lead to di↵erent results. Those concepts
could improve the estimation of the real APC e↵ects and simultaneously enhance
the predictive performance into future periods. Moreover, it could build the basis
for another simulation study that investigates the assessment of the influences. This
leads to another interesting idea for future researchers.

The evaluation of the influences using the BLRP method is not as expressive as
describing the e↵ects of the independent variables in a linear regression model. The
primary challenge in these methods is that they evaluate only a single prediction
rather than the influence of the variable. While this is a valuable property in some
domains, it is insu�cient in the area of cohort analysis. Thus, it is important that
researchers in the field of interpretable machine learning continue their work to de-
velop such a method in the future. Besides the lack of evaluation methods, the
experimental section revealed a need for methods that automate the development
of BDNNs. On the one hand, researchers, who did not have any contact with the
area of deep learning will probably be deterred from the identification of the hy-
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perparameters. Additionally, many social sciences lack data for a cohort analysis
over longer periods, and thus, the number of training samples is very low. Conse-
quently, it would be beneficial to develop methods in the future that would support
those researchers in their tasks by automating these processes. However, this re-
quires the development of improved methods. Independent from the proposals for
future research, this thesis showed that BDNNs are generally an valuable addition
for improving APC models.
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A Simulated E↵ects
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Figure 8: The figure shows the definition of example e↵ects that are used in the
simulation study. These e↵ects are derived from the manual of the BAMP package
(V. J. Schmid, 2020).
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