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Abstract

In this master’s thesis, we perform an analysis based on the language mod-
els BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT
(Sanh et al., 2020), ALBERT (Lan et al., 2019) and XLNET (Yang et al.,
2019) whose architectures are based on the Transformer encoder which re-
lies solely on an attention mechanism. We incorporate a measuring of the
fine-tuning and inference time in the Python module transformers which
was implemented by huggingface (Wolf et al., 2019). In the scope of this
master’s thesis, the models are fine-tuned on the General Language Under-
standing Evaluation tasks (Wang et al., 2019), a collection of nine sentence-
or sentence-pair language understanding tasks. To monitor our analyses, we
used the tool "Weights & Biases" (wandb) (Biewald, 2020) where a logging of
hyperparameters and output metrics is possible. The goal of this master’s
thesis is to develop a diverse benchmark setting and evaluate the respec-
tive fine-tuning as well as inference times across different hyperparameters,
language models and tasks. More precisely, a hyperparameter sweep with
the maximum sequence length and the batch size are regarded, taking on
the values {128, 256, 512} and {8, 16, 32}, respectively. We show that the
maximum sequence length, the task size as well as the model have an effect
on the fine-tuning time, whereas the batch size seems to be of secondary
importance. Moreover, the maximum sequence length, the batch size and
the choice of the model affect the inference time, whereas the task itself does
not show such results.
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1 Introduction

1 Introduction

With the introduction of Natual Language Processing (NLP) it became possible to
create a direct communication between humans and computers. New techniques
and methods for the processing of natural language in a computer-based manner
were implemented and different methods and results from the linguistics were
used and combined with Artificial Intelligence. This enables the usage of NLP
for many tasks, such as speech recognition, segmentation of words or sentences
or recognition of grammatical information (Luber, 2016). NLP’s necessity is
constantly growing with the increase of text production and improvement of
technology. It turns out to be a challenging matter due to the fact that the
natural language itself always changes and develops, is not well-defined and
cannot be described as unambiguous (Goldberg, 2017). There are many attempts
to solve these kinds of tasks with large and complicated architectures. A popular
method that was implemented in the past years are large pre-trained language
models which are subsequently fine-tuned. Five of these models are regarded in
the following scientific work. A challenging issue that goes along with the usage
of such models is high computational costs, specifically long training times. In
the following, we analyze the fine-tuning time as well as the inference time of
large pre-trained models.
In the second chapter (2) of this scientific work, some basic theory of document
representations, word embeddings and language models is introduced. The
subsequent chapter (3) illustrates the principle of Recurrent Neural Network
(RNN), whereupon Attention and the Transformer architecture are described
in more detail. Furthermore, we carry out an explanation of large pre-trained
language model (LM) that are regarded in the later analysis, namely, BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT (Sanh et al.,
2020), XLNET (Yang et al., 2019) and ALBERT (Lan et al., 2019). It follows a
description of the regarded datasets, being the General Language Understanding
Evaluation (GLUE) tasks (chapter 4), the experimental setup and implementation
(chapter 5) and the analysis of fine-tuning and inference time itself (chapter 6 and
7, respectively). The last chapter (8) includes a conclusion and an outlook.
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1 Introduction

Note that in the following master’s thesis mostly the following notation applies:
Scalar values are denoted as uncased letters, e.g. a, vectors as lowercase, bold
letters, e.g. a and matrices as uppercase letters, such as C. Furthermore, we denote
vector elements as lowercase letters with an index, for example ai represents the
i-th element of vector a. A similar notation holds for matrices, with cij denoting
the entry i, j in a matrix C. Transposing a matrix results in a notation of the
form CT.

2
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2 From word representation to language model

Data preprocessing represents a crucial aspect in the field of Natural Language
Processing. The input data in NLP is represented by textual data in the form
of sequences that can exceed the length of a sentence, paragraphs or documents
(Goldberg, 2017). Since machine learning algorithms cannot process textual data,
the applicant has to use a feature extraction method and decide which one to use
in order to perform a conversion of text into a matrix of features (Kothari, 2020).
The methods which are described in the following section can be used to carry
out this conversion. First, context-free document representations including Bag
of words (BOW) and Term Frequency-Inverse Document Frequency (TF-IDF) are
described, followed by word embeddings, such as Word2Vec and GloVe. Lastly,
the principle of language modeling is introduced.

2.1 Document representations

One-hot encoding forms the basis of the document representations BOW and TF-
IDF which are described in the following subsections. Each word that is included
in a given text corpus is represented as a binary vector, i.e. a vector with the
values 0 and 1. Hereby, all values are 0 except for one value which takes on the
value 1. This value then represents the word that is encoded (Jeet, 2020).

2.1.1 Bag of words

One popular approach for feature extraction is named Bag of words. By using
BOW, text can be transformed into vectors of a fixed length by taking the word
count into account (Zhou, 2019). In the context of BOW, a text corpus, which
can be a sentence or a document, can be referred to as a bag of words. When
applying BOW, lists are generated in which the word order is not meaningful and
the grammar is being ignored (Rouse, 2018).

3



2 From word representation to language model 2.1 Document representations

Figure 1: Example of a BOW representation, (Ghelani, 2019a)

In this example (figure 1), the text corpus is created on the basis of each unique
word of the three sentences (documents). Generally speaking, the vector created
in the BOW process can comply with unique words or n-grams1 (also referred to as
tokens) of the text corpus. The vector shown in figure 1 displays the representation
of the second sentence. Hereby, each vector element incorporates the number
of occurrences in the second sentence, e.g. the word "see" occurs two times2.
Important to note is that in BOW, each word count is taken into account as a
feature by regarding the histogram of words that appear in the text (Goldberg,
2017). This can be challenging since it is not necessarily an indicator for the
importance of words. The word "the" and "and" for example show a high frequency
in English texts but do not contribute much to gain a better understanding of it .

2.1.2 Term Frequency-Inverse Document Frequency

Another approach for encoding words is the Term Frequency-Inverse Document
Frequency (TF-IDF) method. The main goal is the evaluation of the importance
of a word to a document D which is included in a larger corpus Vcorpus. Hereby,
the term frequency (TF) measures how often the word w appears in the considered
document (#D(w)). TF is then normalized with the document length to receive a

1an n-gram is a consecutive sequence of n elements from a text sample (Wikipedia, the free
encyclopedia, 2020e)

2It seems that in this example word stemming and lemmatization were performed before
constructing the vocabulary, which results in a reduced vocabulary (for example "bat" instead
of "bats"). For more details about both methods, see https://nlp.stanford.edu/IR-book/html/
htmledition/stemming-and-lemmatization-1.html

4
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2.2 Word Embeddings 2 From word representation to language model

comparable measure. The inverse document frequency (IDF), on the other hand,
quantifies how low the occurrence of the word is across documents. The IDF key
figure gets higher, the rarer the word occurs (Ghelani, 2019a). The TF-IDF score
can be quantified in the following manner:

#D(w)∑
w′∈D(w′) ∗ log |Vcorpus|

|D ∈ Vcorpus : w ∈ D| , (1)

whereas the first part of the equation refers to the term frequency (TF) and the
second part to the inverse document frequency (IDF) (Goldberg, 2017).

A drawback of both presented methods is the fact that neither word similarities
nor word meanings are encoded into the vectors (Ghelani, 2019a).

2.2 Word Embeddings

Another limitation of the two methodologies described above is that the vector
representation of documents increases with increasing vocabulary size. As a con-
sequence, we receive a vector that contains plenty of zeros (sparse vector) which
makes use of more computational and memory resources during the fitting. A
solution to this problem and the limitation of not being able to grasp word seman-
tics are Neural Word Embeddings. The outstanding aspect of this methodology is
the usage of a dense distributed representation for each word which requires much
fewer dimensions than the sparse representation. Furthermore, applying contex-
tual similarity results in more meaningful representations. These are vectors with
real values that were learned from text in which words with the same meaning
take on similar representations. Hence, word meanings can be captured (Ghelani,
2019a; Brownlee, 2017). The two most known word embeddings Word2Vec and
GloVe are described in the following.

2.2.1 Word2Vec

A popular alternative to BOW is an algorithm named Word2Vec that was devel-
oped by Tomás̆ Mikolov and colleagues (Mikolov et al., 2013b). The primary goal
is to learn a word embedding from a text corpus. Hereby, the context is determined

5
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by a so-called window of neighboring words, e.g. how many words to the left and
to the right side of the regarded word are included in the local usage context of
the specific word. The advantage of this method is that it enables learning larger
word embeddings with higher dimensions for larger text corpora which can include
billions of words. This can be attributed to the algorithm’s low space and time
complexity (Mikolov et al., 2013b; Brownlee, 2017). Furthermore, computations,
such as addition or subtraction, can result in meaningful word embeddings. A
well-known example is the analogy solving task wking − wman ≈ wqueen with w as
the word embedding (Goldberg, 2017). This indicates that by performing mathe-
matical calculations, a certain degree of language understanding can be attained
(Mikolov et al., 2013b). Word2Vec incorporates different optimization objectives,
e.g. the Negative-Sampling objective. In this variant of the algorithm, a training
of the network is performed with the goal to differentiate between word-context
pairs that can be described as "good" from the "bad" ones. This objective aims for
the estimation of P (D = 1|w, c) which can be interpreted as the probability that
the word-context pair is included in the set D of correct word-context pairs. A
high probability should be assigned to pairs that come from D and a low one for
pairs from D̄ (set of incorrect pairs). The probability function can be quantified
in the following manner with r(w, c) being the score assigned to the word-context
combination:

P (D = 1|w, c) = 1
1 + e−r(w,c)

. (2)

The objective of Word2Vec is the maximization of the following log-likelihood:

L(Θ;D, D̄) =
∑

(w,c)∈D
logP (D = 1|w, c) +

∑
(w,c)∈D̄

logP (D = 0|w, c). (3)

Positive representations D are created from a corpus, whereas negative represen-
tations D̄ are generated in the following way: "for each good pair (w, c) ∈ D,
sample k words w1:k and each of (wi, c) as a negative example to D̄" (Goldberg,
2017, p. 124). As a consequence, D̄ is k times larger than D with k being
an algorithm parameter. Negative words w are sampled with the smoothed
corpus-based frequency: #(w)0.75∑

w′ #(w′)0,75 (Goldberg, 2017, p. 124).

Word2Vec can be divided into two variants, namely Continuous Bag of Words
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(CBOW) and Skip-Gram, which are described in the following.

2.2.1.1 CBOW The word embeddings retrieved from the CBOW model are
generated by the prediction of the current word on the basis of its surrounding
words, i.e. its context (Brownlee, 2017).
The CBOW version of Word2Vec specifies the context vector c as c = ∑k

i=1 ci. The
word-context scoring function is r(w, c) = w ·c. Hence, the CBOW makes use of a
continuous distributed representation of the context (Mikolov et al., 2013a). This
results in

P (D = 1|w, c1:k) = 1

1 + exp(−
k∑
i=1

(w · ci))
. (4)

It should be noted that the CBOW version does not retain the information about
the order of the context’s elements whilst being able to use unbounded-length
contexts, i.e. contexts with variable length. On the other hand, when considering
bounded context length, keeping the order information is possible. This can be
done by adding the relative position to the context element (Mikolov et al., 2013a;
Goldberg, 2017).

2.2.1.2 Skip-Gram In contrast to the CBOW model, a prediction of the con-
text on the basis of a current word is performed in order to learn the word embed-
dings of the Skip-Gram model (Mikolov et al., 2013a; Brownlee, 2017).
Within Skip-Gram the assumption is made that the elements ci which are part
of a context c1:k are independent from each other. Therefore, a word-context pair
(w, c1:k) within D can be seen as k different contexts (w, c1), . . . , (w, ck). The
definition of r(w, c) is very similar to the one in CBOW with the difference that
each context is defined as a single embedding vector which takes on the following
form:

P (D = 1|w, ci) = 1
1 + exp(−w · ci)

P (D = 1|w, c1:k) =
k∏
i=1

P (D = 1|w, ci) =
k∏
i=1

1
1 + exp(−w · ci)

(5)
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logP (D = 1|w, c1:k) =
k∑
i=1

log 1
1 + exp(−w · ci)

.

Even though a strong independence assumption is made within Skip-Gram, it is a
popular word embedding and effective in practice (Mikolov et al., 2013b; Goldberg,
2017, p. 125).

2.2.2 GloVe

The second word embedding methodology which was designed by Pennington
et al. (2014) is named the Global Vectors for Word Representation (GloVe)
and represents an extended version of the Word2Vec methodology. Matrix
factorization techniques were used to design "classical vector space model
representations of words" (Brownlee, 2017). They are proficient at the usage
of global text statistics but do not perform that well at capturing the word
meaning in comparison to learned methodologies like Word2Vec. With GloVe
both worlds - the one of matrix factorization techniques and the one of Word2Vec
- can be combined. The principle of GloVe is that an explicit word-context or
a word co-occurence matrix is designed. It is based on global statistics, namely
statistics across the entire corpus. One receives a learning model that may
perform better than other models on several tasks, such as word similarity re-
garding the quality of word embeddings (Brownlee, 2017; Pennington et al., 2014).

To summarize, the Word2Vec model can be viewed as a predictive model, whereby
GloVe represents a count-based model. Both models result in similar performances
on downstream tasks (Ghelani, 2019a).

2.3 Language modeling

For the pre-trained word embeddings described in sections 2.1 and 2.2, the
assumption that the meaning of a word remains stable across sentences is made,
which presents a large limitation of these methods. Furthermore, document
representations (section 2.1) perform an inclusion of their learnings only in the
first layer of the model, which are referred to as embeddings. Hence, a training
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of the remaining network needs to be performed when regarding a new task.
Even though word embeddings (section 2.2) have the ability of grasping semantic
word meanings, they cannot capture higher level characteristics such as long-term
dependencies or negation. This can be attributed to the fact that the learning of
word embeddings does not rely on sequential context, but on word concurrency
(Ghelani, 2019b).
Before language modeling was performed in order to solve NLP problems, word
embeddings were pre-trained on a large corpus, including unlabeled text data,
with Word2Vec for example. Then, the first layer of a neural network was
initialized, whereby the rest of the network was trained on data of a specific
task. In the recent years, a new approach for supervised tasks was taken. Those
models which are currently the state-of-the-art perform a pre-training based on
language modeling with a subsequent fine-tuning based on labeled task data
(Ghelani, 2019b). A detailed exploration of several such model follows in chapter 3

Language modeling can be understood as an unsupervised task with the ability
to grasp many language characteristics, such as sentiment of long-term dependen-
cies which are helpful for performing analyses on downstream tasks. The goal of
language modeling is the estimation of the joint probability p(x) of a sequence of
tokens x = (x1, . . . , xT ). Often, an auto-regressive factorization of the following
form is performed:

p(x) =
∏
t

p(xt|x<t) (6)

Hence, the joint probability can be simplified to modeling conditional probabilities
(Dai et al., 2019). Generally speaking, there are two types of language models,
namely statistical language models and neural language model. Statistical lan-
guage models include for example n-gram models (Jurafsky et al., 2008). The aim
of such models is the prediction of the next token given the prior (n - 1) tokens. It
relies on the Markov assumption, i.e. the probability of a token depends only on
the previous tokens (Kapadia, 2019). Neural language models (Bengio et al., 2003),
on the other hand, apply different types of neural network to model language while
simultaneously learning distributed representation for words to represent similarity
between words (Dai et al., 2019; Rizvi, 2019).
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3 Language models based on Transformer

In the following chapter, we describe methods that were used before Transformer,
followed by a elaboration of the Transformer architecture. Subsequently, we illus-
trate five large pre-trained language models which rely on this architecture, namely
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT (Sanh et al.,
2020), XLNet (Yang et al., 2019) and ALBERT (Lan et al., 2019).

3.1 Before Transformer

The present section elucidates methods that were used before Transformers for
solving NLP tasks. These include RNNs and the attention mechanism which relies
on encoder-decoder RNNs.

3.1.1 Recurrent Neural Networks

Processing NLP tasks such as sequence transduction3 requires some sort of mem-
ory since there are many cases in which words in one sentence are relating to words
from prior sentences. To solve this kind of tasks, RNNs (Elman, 1990; Rumelhart
et al., 1986) have been used because of their properties. The special characteris-
tic about an RNN is that it memorizes the previous inputs, which enables them
to affect the ensuing predictions. This especially comes handy in NLP tasks, for
example for predicting the next word in a sentence (Thomas, 2019).
Goldberg (2017) describes RNNs as functions, taking ordered sequences of T vec-
tors x = (x1, . . . , xT ) with xt ∈ Rdin as inputs. Passing the input through an RNN
results in the output y ∈ Rdout , which represents a single vector (Goldberg, 2017,
p 164). Usually, an RNN is applied, so that

ht = f(ht−1, xt) (7)

applies with ht ∈ Rf(dout) representing a hidden state at time t and f being a non-
linear function (Bahdanau et al., 2014; Goldberg, 2017, p. 164). The definition of
RNN is a recursive one and holds for sequences of arbitrary length. The function f

3"Many machine learning tasks can be expressed as the transformation-or transduction-of
input sequences into output sequences" (Graves, 2012)
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stays the same across the sequence positions and a parameter sharing is performed
across all time stamps since the same parameters are applied in every step. By
applying RNNs, we do not need to rely on the Markov assumption that was used
for modeling sequences with n-gram models. This is possible since the usage of
RNNs enables a conditioning on (x1, . . . , xT ). Note that RNNs also achieve high
perplexity values4 in comparison to n-gram models (Goldberg, 2017, p. 165).
In some NLP tasks, such as machine translation, not only regarding the past
words xt−1, but also having a look at the following words (xt+1, . . . , xT ) may
be of use for predicting xt. The introduction of bidirectional RNN (biRNN)
(Schuster et al., 1997) enables viewing past as well as future words of the
sequence. Hereby, a biRNN contains two separate hidden states, namely the
forward state hft and the backward state hbt . Both are generated by a two RNNs,
which are based on (x1, . . . , xt) and (xt, . . . , x1), respectively. The output yt then
forms a concatenation of the two RNNs at every position (Goldberg, 2017, p. 169).

Note that if the regarded context and the distance between the required in-
formation and the point where one wants to use it is large, RNNs become
ineffective., i.e. it suffers from short-term memory. This can be attributed to
the fact that the information is passed at each step and that the probability of
losing information increases with the increasing chain length. While in theory
this long-term dependencies could be learned, RNNs seem to not learn them
in practice. Furthermore, RNNs do not distinguish between important and
unimportant information (Giacaglia, 2019).

An approach to solve this issue is the usage of Long Short-Term Memory (LSTM)
(Hochreiter et al., 1997) or Gated Recurrent Unit (GRU) (Cho et al., 2014a), each
representing a special type of RNN. With information passing through so-called
gates, a selective memorization or oblivion of important or less important
information can be performed. Nonetheless, the drawbacks of RNNs also apply to
LSTMs and GRUs, i.e. the performance of LSTMs and GRUs suffers if sentences
are too long, since the probability of keeping the context of a word exhibits
an exponential decline with the distance of the context from the word that is

4perplexity quantifies how well a probability model or distribution is predicting a sample
(Wikipedia, the free encyclopedia, 2020f)
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regarded (Phi, 2019; Giacaglia, 2019). Moreover, a parallelization of the process is
hardly possible for RNNs, LSTMs and GRUs since sequential computation (word
by word) is carried out. The last drawback that should be addressed is that long
and short range dependencies are not explicitly modeled (Giacaglia, 2019).

An approach to overcome these issues is to use the attention mechanism within
neural networks, specifically by applying encoder-decoders (Giacaglia, 2019).

The majority of models used in machine translation are part of a family of encoder-
decoders (Cho et al., 2014a; Sutskever et al., 2014), also referred to as Sequence-
to-Sequence (seq2seq) (Cho et al., 2014b). Generally speaking, the task of the
encoder, which commonly is an RNN, is encoding the input sequence into a context
vector c (Goldberg, 2017; Bahdanau et al., 2014). Usually, the task of the decoder
is the prediction of the next word yt on the basis of the context vector c and the
prior word predictions {y1, . . . , yt−1}. Since the decoder uses a language modeling
objective, it can be formulated as a probability over translation y of the form:

p(y) =
T∏
t=1

p(yt|{y1, . . . , yt−1}, c). (8)

When applying an RNN, the conditional probabilities are each of the form

p(yt|{y1, . . . , yt−1}, c) = g(yt−1, st, c) (9)

with g being a nonlinear function and st noting the hidden state of the RNN (Bah-
danau et al., 2014). The encoder and the decoder are then jointly trained with the
goal of maximizing the probability of a correct translation given a source sentence.
Note that the encoder-decoder is helpful for mapping sequences of different lengths
(Goldberg, 2017; Bahdanau et al., 2014).

3.1.2 Attention

Facing the problem of performance decline of basic encoder-decoder models for
longer inputs, Bahdanau et al. (2014) present a new approach, namely an ex-
tension to the encoder-decoder. In contrast to the traditional encoder-decoder
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implementation, the authors perform an adaptive choice of subsets of those vec-
tors during the decoding. Hence, the model does not have to squeeze all the
information of an input sentence into a vector of a fixed length, like in the basic
encoder-decoder model and results in a performance improvement, especially for
longer input sentences (Bahdanau et al., 2014).
The model architecture for neural machine translation introduced by Bahdanau
et al. (2014) incorporates an encoder and a decoder. The encoder is a bi-RNN
since the authors wish that the annotations of a word not only summarize the
words occurring before the regarded word (like in the basic RNN), but also the
subsequent ones. Furthermore, the decoder in this architecture searches through
an input sentence while performing a decoding of a translation. Hereby, each
conditional probability in equation 9 is of the form

p(yi|{y1, . . . , yi−1},x) = g(yi−1, si, ci) (10)

with si being an RNN hidden state for time i:

hi = f(si−1, yi−1, ci). (11)

Here, a conditioning of the probability on the context vector ci which depends
on a sequence of annotations (h1, . . . , hT ) generated by the encoder is performed.
The his incorporate information about the whole input sequence, while focusing
strongly on parts which lie in the surrounding of the i-th input word. The context
vector ci can be represented as the weighted sum of the annotations hj:

ci =
T∑
j=1

αijhj. (12)

The computation of the weight αij takes on the form

αij = exp(eij)∑T
k=1 exp(eik)

(13)

with eij = a(ri−1, hj) being an alignment model which takes the hidden state of yi,
namely si−1, and the j-th annotation hj into consideration. The goal of the model
is to measure the matching between the inputs around position j and the output
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at position i. The alignment model a is defined as a feed-forward neural network
model and the training is carried out jointly with the rest of the model. αij can be
interpreted as the probability of the output yi being aligned to (translated from)
the input word xj. Note that αij can be interpreted as "the importance of the
annotation hj with respect to the previous hidden state si−1 in deciding the next
state si and generating yi" (Bahdanau et al., 2014, p. 4). With this, a so-called
attention mechanism is integrated in the decoder. By the implementation of
this mechanism, the encoder is not forced to encode all information of the input
sentence into a vector of fixed length. A spreading of information throughout the
sequence of annotations can be performed. This information can be selectively
acquired (Bahdanau et al., 2014).

Some mentioned drawbacks could still not be solved with the help of RNNs com-
bined with attention mechanism, e.g. the parallelization of input processing, which
increases the training time. To solve this issue, Transformers were introduced
which enable a parallelization of the regarding computations (Giacaglia, 2019).
This is described in the following section.

3.2 Transformer

With the introduction of an increasing amount of language models in the past few
years, the model architecture Transformer stands out in particular5. Model vari-
ants of Transformer form the current state-of-the-art models, achieving impressive
performance results on a wide range of NLP tasks. This model architecture solely
relies on an attention mechanism with which global dependencies between the in-
put and the output can be created. Apart from solely relying on an attention
mechanism, the special feature about Transformer is that significantly more par-
allelization is possible and new state-of-the-art results in machine translation were
reached in 2017 (Ashish Vaswani et al., 2017).

5the implementation is available at https://github.com/tensorflow/tensor2tensor

14

https://github.com/tensorflow/tensor2tensor


3.2 Transformer 3 Language models based on Transformer

3.2.1 Model architecture

The majority of transduction models is based on an encoder-decoder structure.
Consequently, the model is auto-regressive at each step, i.e. when creating the
next symbol, Transformer uses the symbols that were previously created as addi-
tional input. But in contrast to the encoder-decoder models described earlier, no
recurrent networks are used.

Figure 2: The Transformer - Model architecture (Ashish Vaswani et al., 2017, p. 3)

The encoder consists of a stack of six identical layers (N = 6). Each encoder layer
is composed of two sub-layers, namely a multi-head self-attention mechanism and
a simple feed-forward network that is position-wise fully connected. Additionally,
a residual connection and afterwards a layer normalization are inserted around
each sub-layer (see figure 2). The output of each sub-layer can therefore be
described as LayerNorm(x + Sublayer(x)). In order to make the residual
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connections easier, all sub-layers and the embedding layers generate outputs that
have a dimensionality of dmodel = 512.
Like the encoder, the decoder also consists of six identical layers. Each decoder
layer incorporates the two encoder sub-layers and a third sub-layer, in which
multi-head attention is carried out over the encoder stack. Residual connections
and layer normalization are inserted in a similar manner as in the encoder.
In order to avoid that positions attend subsequent positions, the self-attention
sub-layer within the decoder is modified. Because of this modification (also
referred to as masking) and the output embeddings being shifted by one position,
one can state that the predictions for position i only depend on the output at
positions < i (Ashish Vaswani et al., 2017).

As strings cannot be applied directly to the model, the first step is to embed the
input and output tokens (with dimension dmodel) by applying learned embeddings.
Ashish Vaswani et al. (2017) performed a conversion of the decoder output to
predicted next-token probabilities by applying a linear transformation and a
softmax function6. Note that the same weight matrix is shared between two
embedding layers and the linear transformation before applying the softmax.

Unlike RNNs or CNNs, the Transformer does not incorporate recurrence or con-
volution. Consequently, to avail oneself of the order of the sequence, so-called po-
sitional encodings were added at the bottoms of the decoder and encoder stacks in
the input embeddings. Their dimension equals the one of the embeddings (dmodel)
to enable an addition of both. Ashish Vaswani et al. (2017) made use of sine as
well as cosine functions of different frequencies which can be expressed as

PE(pos,2i) = sin
(

pos

100002i/dmodel

)
(14)

PE(pos,2i+1) = cos
(

pos

100002i/dmodel

)
. (15)

.
Equation 14 can be interpreted as each dimension i of PE complying with a

6the softmax is defined as softmax(x)i = exp(xi)∑
j exp(xj) (Goldberg, 2017)
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sinusoid, with pos being the position. The authors applied the displayed function
because they assumed "it would allow the model to easily learn to attend by
relative positions, since for any offset k, PEpos+k can be represented as a linear
function of PEpos" (Ashish Vaswani et al., 2017, p. 6). Moreover, they used the
sinusoidal version "because it may allow the model to extrapolate to sequence
lengths longer than the ones encountered during training" (Ashish Vaswani et al.,
2017, p. 6).

Figure 3: Left: Scaled Dot-Product Attention; Right: Multi-Head Attention consists of
several attention layers running in parallel (Ashish Vaswani et al., 2017, p. 4).

Ashish Vaswani et al. (2017) refer to the attention implemented in their work as
the "Scaled Dot-Product Attention" (see left side of figure 3). Hereby, queries and
keys with the dimensions dk and dv form the input. A set of queries is quantified by
the matrix Q, whereas a query can be described as a vector representation of one
word in the sequence. Keys that are represented by K are "vector representations
of all the words in the sequence" (Allard, 2019) and V are values that can be
defined in the same way as K. The output matrix (also referred to as Attention)
is computed as follows:

Attention(Q,K,V) = softmax

(
QKT
√
dk

V
)
. (16)

Ashish Vaswani et al. (2017) hypothesize that when regarding large key dimen-
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sionality dk, the dot product takes on large values, which results in a softmax
function with very small gradients. To prevent this from happening, the scale
factor 1√

dk
was added.

Furthermore, multi-head attention is applied in the Transformer architecture (as
can be seen in figure 2). This means that keys, values and queries are projected
h times while using different learned linear projections. In the next step, the
attention function is applied in parallel to each of the projected versions of keys,
values and queries. After performing a concatenation and a projection, we receive
the values of the multi-head attention. The above described procedure is visualized
on the right side of figure 3. The special characteristic of multi-head attention in
comparison to a single attention head is that joint attendance "to information
from different representation subspaces at different positions" is possible (Ashish
Vaswani et al., 2017, p. 4). The authors formulate multi-head attention as

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ).

(17)

Hereby, the projections are defined as the parameter matrices WK
i ∈ Rdmodel×dk ,

WV
i ∈ Rdmodel×dv , WQ

i ∈ Rdmodel×dk and WO ∈ Rhdv×dmodel . The authors
incorporated 8 attention layers or heads, where dk = dv = dmodel/8 = 64 is applied
for each head. Since a dimensionality reduction was performed on each head,
the computational costs resemble those of single-head attention with non-reduced
dimensions (Ashish Vaswani et al., 2017).

The multi-head attention is incorporated in three different places in the Trans-
former model. First, the encoder-decoder attention layers contain queries that
origin from the prior decoder layer, whereas the keys and values stem from the
output of the encoder. Therefore, all positions in the decoder have the permission
to attend over all input sequence positions. Furthermore, self-attention layers
which can also be found in the encoder, contain queries, keys and values that
all stem from the output of the prior encoder layer. Hence, all positions of
the encoder are allowed to attend all positions from the prior encoder layer.
Lastly, the self-attention layers in the decoder follow a similar principle as the
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ones in the encoder, except for the fact that the positions are only permitted to
attend each position up to (including) the position that is currently regarded. To
maintain the auto-regressive property of the decoder (and hence avoid left-side
information flow), a masking of input values of the softmax complying with
undesired connections is carried out. This masking equals setting the values to
−∞ (Ashish Vaswani et al., 2017).

A fully connected feed-forward network can be found in all of the layers in the
encoder and decoder which is connected by a ReLU activation function7. The
application is carried out in an identical and separate manner to each position
with x as the input.

FNN(x) = max(0; xW1 + b1)W2 + b2. (18)

Note that the linear transformations are equal to each other across the various
positions, whereas the parameters of each layer differ from each other. While
dmodel = 512 holds, the dimensionality of the inner layers is dff = 2048.

Ashish Vaswani et al. (2017) point out three main advantages of self-attention com-
pared to recurrent or convolutional layers. The first advantage they address is that
the connection of all positions is carried out with a constant number of sequential
operations, whereby the recurrent layer is in need of O(n) of those. Hence, the
computational complexity of self-attention is lower compared to recurrent layers
if n < d (n: sequence length; d: representation dimensionality) applies. When
regarding sentence representations that are utilized by state-of-the-art models in
machine translation, this usually applies. For long sequences, the computational
complexity of self-attention could be ameliorated by making the restriction to only
take an r-sized neighborhood in the input sequence into account. This way, the
maximum path length would be reduced to O(n/r).
To connect all pairs of input and output positions, O(n/k) convolutional layers
are needed when regarding contiguous kernels (for k < n), which extends the max-
imum path length between any two positions within the network. Note that the

7The rectified linear unit (ReLU), also known as the rectifier activation function, takes on the
form ReLU(x) = max(0, x) (Agarap, 2018, p. 45f))
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shorter the paths are, the easier the learning of long-range dependencies is. Even
though convolutional layers have higher computational expenses than recurrent
layers, separable convolutions have a much lower complexity. Nonetheless, even
when considering k = n, the complexity equals a self-attention layer combined
with a point-wise feed-forward layer, which is applied by the authors.
Additionally, the self-attention could provide models that have a higher inter-
pretability (Ashish Vaswani et al., 2017).

3.2.2 Training

In the scope of this scientific work, the Transformer should solve two tasks,
namely an English-to-German and an English-to-French translation task. For
the English-German training of the Transformer, an encoding of the sentences
with byte-pair encoding (BPE) whose source-target vocabulary contains approx.
37,000 tokens was performed (Ashish Vaswani et al., 2017)8. The English-French
training made use of the WordPiece embeddings (Wu et al., 2016) with 32,000
tokens9.
For the training of the Transformer, one machine with 8 NVIDIA P100 GPUs
was used. The base models were trained for 12 hours, whereby the training step
time was ca. 0.4 seconds. For the large models, the training step took about 1.0
seconds, resulting in a total training time of 3.5 days (Ashish Vaswani et al., 2017).

Within the Transformer architecture the Adam optimizer with the hyperparam-
eters β1 = 0.9, β2 = 0.98 and ε = 10−9 was used10. During training the learning
rate was increased for the warmup training steps in a linear way. Later, it was
decreased proportionally to 1√

step_num .

To prevent the model from overfitting, the authors implemented the regularization
types residual dropout and label smoothing during training. Dropout11 is applied

8For more insights on BPE, see appendix, section 8
9For more insights on WordPiece, see appendix, section 8

10The Adam optimizer is "an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments" (Kingma et al., 2014).
For more details and the pseudo-code, see Kingma et al. (2014).

11Within the dropout methodology neurons (incl. their connections) are randomly dropped
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to the output of every sub-layer, whereupon an addition to the sub-layer input
and a normalization is carried out. Furthermore, it is applied to the embedding
sums as well as the positional encodings in the decoder and encoder. The dropout
rate for the base model is 0.1. For label smoothing12 a value of εls = 0.1 was used.
As a consequence, the uncertainty of the model increases while simultaneously
showing an improvement in accuracy and BLEU score 13.

All in all, the Transformer models achieved better results than the previous
state-of-the-art models, such as ByteNet (Kalchbrenner et al., 2016) or ConvS2S
(Gehring et al., 2017) on machine translation tasks, e.g. WMT 2014 English-to-
German translation task. These results are achieved with only a fraction of the
training costs the competitive single models need.

3.3 BERT

The concept of pre-training a language model on a unlabeled text corpus with a
subsequent supervised fine-tuning on a specific task was introduced by Radford
et al. (2018). It represents the predecessor of a wide range of large pre-trained
language models. One of them forms the basis of three of the following models
(RoBERTa, DistilBERT and ALBERT) and is referred to as the Bidirectional
Encoder Representations from Transformers (BERT). Devlin et al. (2019)
describe it as a language representation model where the goal is to "pretrain
deep bidirectional representations from unlabeled text by jointly conditioning
on both left and right context in all layers" (Devlin et al., 2019, p. 1). After
the pre-training, a fine-tuning of the model with only one ancillary layer is
possible. With this model, a state-of-the-art performance on a large variety of
tasks, without crucially changing the architecture depending on the task, can be
achieved. BERT outperforms the former introduced models on eleven NLP tasks.

The architecture of BERT consists of two main parts, namely pre-training and

from the network during training time (Srivastava et al., 2014)
12Hereby, the classifier layer is regularized by performing an estimation of the "marginalized

effect of label-dropout during training" (Szegedy et al., 2015)
13the BLEU score is applied for evaluating the quality of text that was translated by a model

from one natural language into another (Wikipedia, the free encyclopedia, 2020a)
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fine-tuning. The pre-training is performed on the basis of unlabeled data, whereby
different pre-training tasks are taken into account. The first step in fine-tuning
is to initialize the model with the already pre-trained parameters. Thereupon,
a fine-tuning of all parameters is carried out, whereas labeled data from down-
stream tasks is used. For each downstream task, we receive a separate fine-tuned
model despite the fact that the initialized parameters are the same for every model.

Figure 4: Pre-training and fine-tuning procedures for BERT. Question-Answering ex-
ample (Devlin et al., 2019)

Figure 4 displays the two procedures for BERT. In the following, this example is
referred to several times. The unified architecture of BERT across diverse tasks is
a notable feature of BERT. Note that the architecture used for pre-training and
the one used for fine-tuning differ only in the output-layers.

"BERT’s model architecture is a multi-layer bidirectional Transformer encoder
based on the original implementation described in Ashish Vaswani et al., 2017
and released in the tensor2tensor library14" (Devlin et al., 2019, p. 3).
In the scientific work from Devlin et al. (2019) the number of layers which
represents the Transformer blocks is symbolized with L, H refers to the hidden
size and A to the number of self-attention heads. Furthermore, it is noted that

14see https://github.com/tensorflow/tensor2tensor
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the feed-forward/filter size is specified as 4H. The results are presented for the
two models BERTBASE with the parameters L = 12, H = 768, A = 12 and a total
number of 110 mil. parameters and BERTLARGE with L = 24, H = 1024 and
A = 16 and a total amount of 304 mil. parameters.
To draw a good comparison, BERTBASE’s model size was set to the same model
size as OpenAI GPT (Radford et al., 2018). Nevertheless, when comparing
those two models it should be noted that the BERT Transformer is based on
bidirectional self-attention, whereas constrained self-attention, which only enables
attendance to its left, is used in the GPT Transformer.

A single sentence, i.e. "an arbitrary span of contiguous text", as well as sentence
pairs, e.g. question-answer pairs, can be unequivocally represented in one token
sequence by the input representation. Hereby, the goal is to enable the processing
of a wide range of down-stream tasks for BERT. Furthermore, WordPiece em-
beddings (Wu et al., 2016) with a vocabulary of 30,000 tokens are used. Each
representation always starts with the special classification token [CLS]. For clas-
sification tasks, the associated final hidden state is then used as the sequence
representation. To distinguish the sentences of a sentence pair, they are separated
with the token [SEP] in the first step. Afterwards, a learned embedding is added
to every token, pointing out in which sentence it is contained (A or B). The input
embedding is referred to as E, [CLS]’s final hidden vector as C ∈ RH and the
final hidden vector corresponding to the i-th input token as Ti ∈ RH (see figure
4). Given a token, we can form the input representation by summing the given
token, segment as well as position embeddings. This is visualized in the following
figure 5.

23



3 Language models based on Transformer 3.3 BERT

Figure 5: BERT input representation (Devlin et al., 2019)

3.3.1 Pre-training BERT

For pre-training BERT two unsupervised tasks are used which are visualized on
the left side of figure 4. The first task is called Masked Language Model (MLM)
task or alternatively Cloze task (Taylor, 1953). In order to enable training a
deep bidirectional model without allowing each word to "view itself" and therefore
simply learn a copy and paste technique, Devlin et al. (2019) perform a random
masking of 15% of all tokens in each input sequence and a subsequent prediction
of the masked tokens. Hereby, the final hidden layers complying with the mask
tokens [MASK] serve as the input to an output softmax over the vocabulary.
Note that before performing the masking, WordPiece tokenization is carried
out. A drawback of this method is the generation of a discrepancy between the
pre-training and the fine-tuning because the [MASK] token is not present during
the fine-tuning. In order to reduce it, words to be masked are only substituted
with [MASK] in 80% of the cases and in 10% of the time with a random token.
The remaining 10% do not undergo a change. Ti is then used for predicting the
original token with cross entropy15, assuming the i-th token was chosen to be
masked.

The second pre-training task is the Next Sentence Prediction (NSP) task and has

15Koech (2020) formulate the cross entropy as LCE = −
n∑

i=1
yi log(ŷi) with yi as the true label

and ŷi as the softmax probability for the ith class. It "measures the dissimilarity between the
true label distribution y and the predicted label distribution ŷ" (Goldberg, 2017, p. 27)
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the goal of training a model which comprehends sentence relationships between
two sentences. This task can be easily created on the basis of a monolingual
corpus. If sentences A and B are chosen for each example in the pre-training, 50%
of the cases already contain examples in which B represents the next sentence
following A and is labeled as IsNext. In the remaining 50%, the next sentence is a
random sentence from the corpus which is then labeled as NotNext. For predicting
the next sentence, C is used (see figure 4). The sampling of both sentences is
performed in such a way that maximum sequence length resembles 512 tokens,
whereby a batch size of 256 sequences was selected (resulting in 128,000 tokens
per batch).

The model was trained for a million steps, which equals about 40 epochs. Moreover,
Adam optimization was used with a "learning rate of 1-e4, β1 = 0.9, β2 = 0.999,
learning rate warmup over the first 10,000 steps, and linear decay of the learning
rate" (Devlin et al., 2019, appendix A.2). Furthermore, the authors applied a
dropout probability of 0.1 to all layers for regularization purposes as well as a
GeLU activation function16. The pre-training time for BERTBASE and BERTLARGE

amounts to four days, whereby the prior was trained on four and the latter on 16
Cloud TPUs. Since longer sequences are way less cheap in a computational sense
than shorter ones, the model was pre-trained with a sequence length of 128 in 90%
of the steps. For the remaining 10%, Devlin et al. (2019) used a sequence length
of 512 with the goal of learning the positional embeddings (Devlin et al., 2019).
The pre-training corpus consists of the BooksCorpus with 800 mil. words (Zhu
et al., 2015) as well as English Wikipedia with 2,500 mil. words, for which only
Wikipedia text passages are regarded (Devlin et al., 2019).

3.3.2 Fine-tuning BERT

Due to the self-attention methodology used in the Transformer, BERT is capable
of modeling various downstream tasks by swapping the corresponding inputs and
outputs, which makes fine-tuning easy. This procedure involves feeding BERT

16Gaussian Error Linear Unit (GeLU) is defined as GeLU(x) = xP (X ≤ x) = xΦ(x) =
x· 12(1+erf( x√

2
)) ≈ 0.5x(1+tanh(2π(x+0.044715x3))) with erf as the error function (Hendrycks

et al., 2016)
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with inputs and outputs of the respective task and fine-tuning all parameters end-
to-end.
The token representations are plugged into an output layer for tasks on token-level,
e.g. question answering or sequence tagging, whereby the [CLS] representation
serves as an input to an output classification layer, e.g. sentiment analysis or en-
tailment. Note that fine-tuning a model is relatively "cheap" in a computational
sense compared to pre-training (Devlin et al., 2019).
Most of the hyperparameter values of the model are taken over from the pre-
training, except for the learning rate, number of training epochs and the batch
size. Devlin et al. (2019) note that the optimal values for the mentioned hyper-
parameters depend on the task, whereby a certain range of values can result in
a good performance. For the batch size, possible candidates for optimal values
are 16 and 32, for the learning rate 2e-5, 3e-5 and 5e-5 and for the number of
epochs 2, 3 and 4. Furthermore, the authors mention that small datasets are way
less robust towards hyperparameter changes than large datasets that contain over
100,000 representations for example.

3.3.3 Experiments

Devlin et al. (2019) carried out a fine-tuning of BERT on 11 NLP tasks which are
described in the following.
The General Language Understanding (GLUE) benchmark (Wang et al., 2019)
represents a compilation of nine natural language understanding (NLU) tasks. We
present a more in-depth description of the respective tasks in chapter 4. For con-
ducting a fine-tuning on GLUE, the input sequence is represented as described
above. Furthermore, C ∈ RH - the final hidden vector - complying to [CLS]
is used as the aggregated representation. Hence, the classification layer weights
W ∈ RKlabel×H with Klabel being the number of labels, are the only new param-
eters initiated during fine-tuning. Furthermore, the authors compute a standard
classification loss log(softmax(CW T )).
For each GLUE task, the fine-tuning is performed for 3 epochs over the data with
a batch size of 32. The best fine-tuning learning rate was chosen on the devel-
opment set for each task and can take on a value in {2e-5, 3e-5, 4e-5, 5e-5}. In
addition, the fine-tuning based on small datasets can be volatile for BERTLARGE.

26



3.4 RoBERTa 3 Language models based on Transformer

Therefore, several random restarts were conducted, and the best model based on
the development set was selected.
Devlin et al. (2019)’s results show that BERTBASE as well as BERTLARGE perform
better than all regarded systems on all GLUE tasks by a considerable span and
improve the average accuracy of OpenAI GPT (Radford et al., 2018), the former
state-of-the-art. Interesting to note is the fact that the architecture of OpenAI
GPT’s and BERTBASE resemble each other except for the attention masking.
Furthermore, the authors underline BERTLARGE’s performance steadily being
better than the one of BERTBASE across every GLUE task. This applies especially
for GLUE tasks with small training datasets.

The authors additionally performed a fine-tuning experiment on the basis of the
Stanford Question Answering Dataset (SQuAD v1.1), which includes 100,000
crowdsourced question/answer pairs (Rajpurkar et al., 2016a) and on SQuAD v2.0
which is an extension of the prior one. Both experiments show that the BERT
models outperform the former state-of-the-art. The last fine-tuning experiment
undertaken by Devlin et al. (2019) is fine-tuning BERT based on the dataset Situ-
ations With Adversarial Generations (SWAG) (Zellers et al., 2018) which includes
113,000 examples of sentence-pair completion that have the goal of evaluating so-
called "grounded common sense inference". Again, BERT outperforms the former
state-of-the-art models.

3.4 RoBERTa

Large pre-trained language models such as XLM (Lample et al., 2019), GPT (Rad-
ford et al., 2018), BERT (Devlin et al., 2019) or XLNet (Yang et al., 2019) con-
tributed to a significant performance improvement. However, it turns out to be
difficult to identify the most important influencing factors of the method due to
their expensive training and the usage of private training data. Therefore, Liu
et al. (2019) conduct a replication study of the BERT pre-training, where they in-
vestigate certain modifications, being changes to the training time and batch size,
elimination of the NSP task, using longer sentences for training and modifying the
masking pattern.
Due to the discovery of BERT being undertrained, a new method for training
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BERT was suggested which is named RoBERTa 17. These new changes to BERT
result in a new state-of-the-art on four out of nine GLUE tasks and comply with
the SQuAD and RACE state-of-the-art results when controlling for training data.

3.4.1 Experiments

Liu et al. (2019) mostly apply BERT’s optimization hyperparameters with the
exception of the peak learning rate and the number of warmup steps. Those
are being tuned for each setting separately. Furthermore, a tuning of Adam’s
epsilon improved the performance in some cases, whereby using β2 = 0.98 led to
a stability improvement when using large batch sizes. Contrarily to the original
implementation of BERT (Devlin et al., 2019), RoBERTa is only trained on
sequences with the full length, whereas the maximum sequence length is 512
tokens (Liu et al., 2019).

As shown in Baevski et al. (2019), the increase of data size can lead to an
improvement of the performance of downstream-tasks. Hence, Liu et al. (2019)
collected as much data as possible which enables adapting the qualitative and
quantitative aspects of data in an appropriate way for each comparison. Addi-
tional to the BooksCorpus and English Wikipedia used in the BERT pre-training,
the Commom Crawl News data set (CC-NEWs) (Nagel, 2016), OpenWebText
(Gokaslan et al., 2019) which contains open-source web text, and STORIES
(Trinh et al., 2018) which includes a subset of CC-NEWS with a story-like
schema, were used for pre-training RoBERTa. As can already be seen, RoBERTa
uses much more data for pre-training than BERT. To be exact, BERT only uses
16GB, whereby RoBERTa uses 161GB which is ten times more data.

The pre-trained models are evaluated on downstream tasks of the benchmarks
GLUE (Wang et al., 2019), SQuAD (Rajpurkar et al., 2016a) and ReAding
Comprehension Dataset From Examinations (RACE) (Lai et al., 2017).

In the following, the factors which could influence BERT’s pre-training are de-
17code and models can be found at https://github.com/pytorch/fairseq/tree/master/

examples/roberta
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scribed. Hereby, the model architecture is kept fixed. Liu et al. (2019) start with
training the models with the same hyperparameter settings as BERTBASE.

3.4.2 Training Procedure Analysis

First, BERT’s MLM objective is regarded. BERT’s architecture relies on a
single static mask, whereby the masking itself is performed once during the data
preprocessing. A duplication of the training data was performed ten times which
leads to each sequence being masked in ten different ways over 40 training epochs.
This means that each sequence has been viewed four times with the same mask
during training. Liu et al. (2019) draw a comparison between this strategy and
the dynamic masking. In the latter, a masking pattern is produced each time
a sequence is given to the model. Especially for pre-training with more steps
or more data, this gains importance. The dynamic masking matches or slightly
improves the performance of RoBERTa’s static re-implementation of BERT.
Hence, the dynamic masking is used in their further analysis.

Even though Devlin et al. (2019) state that the deletion of the NSP task leads to a
performance deterioration on some GLUE tasks and SQuAD V1.1, the imperative
of this task was put into question (Lample et al., 2019; Yang et al., 2019; Joshi
et al., 2019). To get to the bottom of the two diverging statements, the following
four training techniques are regarded.
SEGMENT-PAIR+NSP is implemented according to BERT’s input format (Devlin
et al., 2019) and contains the NSP loss, i.e. the inputs contain segment pairs,
whereas each can consist of multiple sentences. The combined length cannot
exceed 512 tokens.
In SENTENCE-PAIR+NSP, natural sentence pairs which are sampled contiguously
from a portion of one or more documents are regarded. Because they are
way shorter than 512 tokens, the batch size is increased in order to match the
total number of tokens of SEGMENT-PAIR+NSP. The NSP loss is also taken into
consideration.
The third training format that is analyzed is called FULL-SENTENCES. Here, the
contiguous sampling of full sentences from either one or several documents is
carried out. The total length should not exceed 512 tokens. When the end of a
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document is reached, a sampling of sentences from the next document starts and
additional separator tokens are added between documents. In this scenario the
NSP loss is eliminated.
The last considered input format is called DOC-SENTENCES. The input resembles
FULL-SENTENCES with the exception that a crossing of the document boundaries
is not permitted. The sequence length of inputs sampled near to the end of a
document is often smaller than 512 tokens. Hence, a dynamical increase of the
batch size is applied in order to approximately match the number of tokens of
FULL-SENTENCES. The NSP loss is not regarded in this case (Liu et al., 2019).

Firstly, the authors draw a comparison between the performance of BERT’s input
format, SEGMENT-PAIR, and the format SENTENCE-PAIR. The evaluation shows
that the usage of individual sentences has a negative effect on the performance
of downstream tasks.Liu et al. (2019) hypothesize that this negative effect is
caused by the model not being able to learn long-range dependencies in this
case. Furthermore, applying DOC-SENTENCES results in a better performance
than BERTBASE and the removal of the NSP loss exhibits the same or slightly
better downstream task performance. The last finding in this experiment is that
the constraint for a sequence to originate from one document (DOC-SENTENCES)
shows a slightly better performance than regarding sequences from multiple
documents (FULL-SENTENCES). Nonetheless, to facilitate the comparison to re-
lated work, the authors decide on using FULL-SENTENCES in the remaining analysis.

Recent work has shown that application of very large mini-batches can lead to
faster optimization and better performance in the BERT training (You et al.,
2019). By using gradient accumulation18, BERT’s training of one million steps
with a batch size of 256 sequences can be transformed into a training of 125,000
steps with a batch size of 2,000 sequences or 31,000 steps with a batch size of
8,000. The results in Liu et al. (2019) show that the increase of batch sizes leads
to an improvement of perplexity for the MLM objective and of the end-task
accuracy. Another advantage of larger batches is that their parallelization is
easier. The authors further use a batch size of 8,000.

18a mechanism where batches are splitted into mini-batches that will be run sequentially (for
more details see Haleva (2020))
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Furthermore, the authors regard Byte-Pair-Encoding (BPE) which can handle
large vocabularies. Subword units which are determined by statistically analyzing
the training corpus form the basis of BPE. Its vocabulary size usually varies from
10,000 to 100,000 subword units, whereby unicode characters can make up a large
part of the vocabulary. In the scientific work of Radford et al. (2019) an implemen-
tation of BPE is presented in which bytes form the base subword units. The usage
of bytes leads to a subword vocabulary of smaller size (50,000 units), whereby an
encoding is still possible without the application of "unknown" tokens. BERT’s
implementation WordPiece (Wu et al., 2016) makes use of a character-level BPE
vocabulary with 30,000 tokens, which requires an input preprocessing beforehand.
In contrary, the byte-level BPE vocabulary containing 50,000 subword units which
is used in Liu et al. (2019) does not require previous tokenization or preprocessing.
Even though the byte-level BPE performs slightly worse on some tasks than the
character-level BPE, the authors decided on using the byte-level BPE for further
experiments because in their opinion the advantages of this method, namely being
a universal encoding scheme, predominate the small performance decline.

3.4.3 Evaluation of RoBERTa

The previously described modifications of the implementation of BERT are
aggregated in the following. More precisely, a training based on dynamic masking
with the application of FULL-SENTENCES, without the usage of an NSP loss is
performed with large mini-batches and a larger byte-level BPE. This configuration
carries the name Robustly optimized BERT approach (RoBERTa). In order
to be able to distinguish between the importance of the two addressed aspects
and modeling choices, Liu et al. (2019) start their investigation with training
RoBERTa according to BERTLARGE’s architecture. The pre-training is performed
for 100,000 steps on the basis of a similar book corpus and Wikipedia dataset.
The pre-training was carried out on 1024 V100 GPUs for about one day.

RoBERTa outperforms BERTLARGE, when controlling for training data. This
underlines the importance of the design choices that were analyzed in the section
above. In the next step, a training of RoBERTa is performed based on this
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data and the datasets CC-NEWS, OPENWEBTEXT and STORIES, keeping the
same number of training steps. The performance continues to improve across all
downstream tasks which emphasizes the relevance of data diversity as well as
size within the pre-training. In the last step, the duration of the pre-training is
set to be much longer, implicating an increase of training steps to 300,000 and
then to 500,000. Again, a large performance increase can be seen, whereby the
models with 300,000 and with 500,000 steps even outperform XLNetLARGE for the
majority of tasks. The authors state that even the models that were trained the
longest do not seem to overfit the data. For the remaining analysis on the three
benchmarks, the best RoBERTa model, i.e. the one which was trained for 500,000
steps based on the five datasets, is considered.

For the GLUE benchmark, two fine-tuning settings are taken into account. In
the first scenario, RoBERTa’s fine-tuning is based solely on training data of
the respective task, i.e. the fine-tuning is performed separately for each of the
tasks. Hereby, the hyperparameter sweep with learning rates taking on the values
{1e-5, 2e-5, 3e-5} and batch sizes the values {16, 32} is regarded with a linear
warmup for the first 6% of the steps, which is then replaced by a linear decay
to 0. The fine-tuning is performed for 10 epochs. Furthermore, early stopping,
which depends on the performance of each task, is applied. The remaining
hyperparameters equal the ones from the pre-training. Hereby, RoBERTa
outperforms BERTLARGE and XLNetLARGE on all nine tasks on the development
set. Even though RoBERTa and BERTLARGE use the MLM objective and their
architectures resemble each other, RoBERTa still achieves the state-of-the-art.
This underlines the fact that formats like data size and training steps (training
time) could be more important than initially assumed. In the second setting, Liu
et al. (2019) deal with the comparison of RoBERTa and other models on the test
set via the GLUE leaderboard. Hereby, a wide range of approaches are based on
multi-task fine-tuning, whereas the author’s approach only relies on single-task
fine-tuning. Note that the fine-tuning for the tasks RTE, STS and MRPC started
from the MNLI single-task model. In the second setting a wider hyperparameter
sweep with learning rate ∈ {1e-5, 2e-5, 3e-5}, batch size ∈ {16, 32}, weight
decay of 0.1, 10 being the maximal number of epochs, a linear learning rate
decay and a warmup ratio of 6% is regarded. Furthermore, ensembles of five to
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seven models per task are built. It should be noted that for the tasks QNLI and
WNLI task-specific fine-tuning approaches are performed in order to meet the
performance of the leaderboard approaches19. The second setting of RoBERTa
was uploaded to the GLUE leaderboard, where in four out of nine tasks it reached
state-of-the-art results.

RoBERTa’s performance on the SQuAD v1.1 development set equals XLNet’s
performance and outperforms BERTLARGE. Having a look at the SQuAD v2.0
results, one can see that RoBERTa shows new state-of-the-art results. Additional
to this analysis, the authors uploaded RoBERTa to the SQuAD v2.0 leaderboard.
RoBERTa shows a better performance than all but one of the single models
and has a score located at the top among models which renounce the usage of
additional data.

For the RACE benchmark, a concatenation of each candidate answer with the
according question and paragraph was performed, which can be seen as a modifi-
cation of RoBERTa. In the next step, an encoding of each sequence is performed
and the resulting [CLS] result is then fed to a full-connected layer with the goal of
predicting the correct answer. Question-answer pairs that exceed 128 tokens are
truncated. The maximum sequence length cannot exceed 512 tokens, so a trunca-
tion of the passage is also performed if necessary. The analysis of fine-tuning based
on RACE tasks shows that RoBERTa outperforms the other models on middle- as
well as high-school settings.

3.5 DistilBERT

Large pre-trained language models are widely used nowadays. On one hand, such
models show a large performance improvement and, on the other hand, the model
sizes become larger and larger, which implicates some reservations. One of them
is "environmental cost of scaling exponentially computing requirements of these
models" (Schwartz et al., 2019; Strubell et al., 2019; Sanh et al., 2020). Further-
more, the increasing computational and memory costs may lead to an obstruction

19for more details, see Liu et al., 2019, "Task-specific modifications"
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of a broad implementation of those models. In the scientific work of Sanh et al.
(2020), the authors introduce a new approach, namely, a distilled version of BERT
(DistilBERT). Within the scope of the model’s pre-training, knowledge distillation
is carried out. The authors have shown that an achievement of 97% of BERT’s
performance and simultaneous reduction of BERT’s model size by 40% as well as
training time by 60% is possible. Moreover, the model shows a good performance
on a wide range of down-stream tasks when fine-tuned. The model size is also
small enough, so that the model can even be run on mobile devices 20.

3.5.1 Knowledge distillation

Classification models in the field of supervised learning are ought to be generally
trained to predict a class based on the maximization of the estimated probability
of the "gold labels". Hereby, the cross-entropy loss between the predicted distri-
bution of the model and the (one-hot) distribution of the training labels should
be minimized. Often, a model that performs well results in an output distribution
where high probabilities are assigned to the correct class and probabilities around
zero to the remaining ones. Hereby, small probabilities also differ from each other,
which is an indicator for the generalization abilities of the model. The compres-
sion procedure knowledge distillation (Bucila et al., 2006, Hinton et al., 2015) is
about training a compact model (the student) to behave like a larger model (the
teacher) or an ensemble of models by matching the output distribution (Sanh et
al., 2020). A training of the student is performed based on a distillation loss of the
form Lce = ∑

i ti log(ri) with ti and ri being a probability estimated by the teacher
and the student, respectively. Hence, a cross-entropy is performed on soft targets
(probabilities of the teacher) rather than hard targets (one-hot encoding of the
gold class) (Sanh, 2019). Applying this objective leads to a "rich training signal"
based on making use of the whole teacher distribution. Further, the softmax-
temperature of the form pi = exp(zscore;i/Tsmooth)∑

j exp(zscore;j/Tsmooth)
(Hinton et al., 2015), with

Tsmooth controlling the smoothness of the output distribution and zscore;i being the
model score of class i, is applied. The same Tsmooth is used for the student as well
as the teacher at training time. At inference, Tsmooth is defined as 1, leading to the

20pre-trained weights as well as the training code can be viewed in the transformers library by
huggingface at https://github.com/huggingface/transformers
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standard softmax. The resulting training objective is then a linear combination of
the masked language model loss (Lmlm) (Devlin et al., 2019) and the distillation
loss. Furthermore, a cosine embedding loss Lcos with the tendency of aligning the
student’s and teacher’s hidden states vectors was added.

3.5.2 Model architecture

DistilBERT is based on the same general architecture as BERT (Devlin et al.,
2019), whereas an elimination of the token-type embeddings and the pooler is per-
formed. At the same time, Sanh et al. (2020) halved the number of layers21 22.
Another aspect which the authors focus on is to figure out what the right initial-
ization of the student is, so that it converges. For the initialization of DistilBERT
from BERT the authors make use of the common hidden size of the student and
the teacher and take one of two layers (Sanh, 2019).
The authors’ suggested methods for training BERT are applied, i.e. a distillation
of DistilBERT is performed on very large batches without the usage of the NSP
objective while applying dynamic masking.
Furthermore, DistilBERT was trained on the same corpus as BERT. The training
was performed on eight 16GB V100 GPUs for about 90 hours.

3.5.3 Experiments

DistilBERT’s generalization capabilities and language understanding is analyzed
on the basis of the GLUE benchmark. For each task, the model is fine-tuned with-
out ensembling models or applying a multi-task scheme, resulting in scores based
on the development set. DistilBERT’s performance on all nine tasks is either sim-
ilar to ELMo’s (Peters et al., 2018) performance or outperforms it. In comparison
to BERT, DistilBERT maintains 97% of the performance while using only 60% of
the parameters (DistilBERT: 66 mil. parameters; BERT: 110 mil. parameters)
(Sanh et al., 2020).
Moreover, the model shows only a slightly worse performance than BERT on the

21modifications of the tensor’s last dimension (hidden dimension) did not show to have a high
influence on computational efficiency (Sanh, 2019)

22L2 distance was used as the distillation loss on the downstream tasks in some work, but
the research from Sanh et al. (2020) indicates that the cross-entropy loss performs better (Sanh,
2019)
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downstream tasks SQuAD v1.1 (Rajpurkar et al., 2016a) and "IMDb sentiment
classification task" (Maas et al., 2011), despite having a 40% smaller model size.
Sanh et al. (2020) further perform a study of whether to add another distillation
step during the adaption phase. Hereby, BERT which was fine-tuned on SQuAD
performs as a teacher for an additional loss term and DistilBERT is fine-tuned
on SQuAD. Two distillation steps, namely during pre-training and during fine-
tuning, are undertaken. Given the model size, DistilBERT takes on evaluation
values within three points of BERT.
An investigation of the speed-up/size trade-off of DistilBERT based on a full pass
on the STS-B development set again shows that the model only has 60% of BERT’s
parameters while also being 60% faster than BERT.
Lastly, DistilBERT’s ability to be used for on-the-edge-applications is analyzed
by the implementation of a mobile application designed for answering of ques-
tions. Hereby, a comparison of the average inference time on recent smartphones
of DistilBERT and BERTBASE fine-tuned for question answering is carried out.
DistilBERT needs 71% less inference time (if not taking the tokenization step into
account) and the weight of the model amounts to 207GB.

3.6 XLNet

The two most common pre-training objectives are autoregressive (AR) language
modeling and autoencoding (AE), such as BERT. The goal of autoregressive mod-
els is the estimation of the probability distribution of a corpus (Dai et al., 2015;
McCann et al., 2017; Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019).
It is only capable of encoding a uni-directional context and because downstream
NLU tasks are usually in need of bidirectional context information, AR language
modeling turns out as a sub-optimal choice for effective pre-training. Pre-training
based on AE has the goal of rebuilding the original data from damaged input.
This reconstruction can be performed due to the fact that density estimation is
not incorporated. Consequently, the "bidirectional information gap in AR language
model" (Yang et al., 2019, p. 2) mentioned earlier can be closed. Nevertheless, the
AE based pre-training implies a pre-training - fine-tuning discrepancy. Artificial
symbols which are used to damage the corpora in the first place (e.g. [MASK] in
BERT) do not appear in real data when fine-tuning. Additionally, BERT makes
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the oversimplified assumption that predicted tokens are independent from each
other, given the unmasked tokens.
Yang et al. (2019) introduce XLNet, a generalized autoregressive language model23.
The model incorporates the maximization of the expected log likelihood of a se-
quence w.r.t. all possible permutations of the factorization order. This makes it
possible to use bidirectional context. The model does not make use of corrupted
data, and hence is not exhibited to the fine-tuning - pre-training discrepancy. Fur-
thermore, it does not rely on the independence assumption used in BERT. In order
to improve the architectural design of XLNet, the segment recurrence mechanism
and the relative encoding scheme of Transformer-XL (Dai et al., 2019) are included
in the pre-training, whereby a reparameterization of the Transformer network is
performed.
Analyses show that XLNet performs better than BERT on a wide range of down-
stream tasks, such as GLUE, SQuAD, RACE, Yelp, IMDB and the ClueWeb09-B
document ranking task.

3.6.1 Model architecture

Objective: Permutation Language Modeling
Yang et al. (2019) follow the ideas incorporated in the orderless NADE (Uria
et al., 2016) and introduce the permutation language modeling objective which
is implemented in XLNet’s pre-training. This objective keeps the advantages of
AR models as well as BERT and also avoids the weaknesses of both. Given a
text sequence x = (x1, . . . , xT ), the objective can be formulated in the following
manner:

max
θ

Ez∼ZT

[
T∑
t=1

log pθ(xzt |xz<t)
]
. (19)

ZT is defined as the set of all possible permutations of the index sequence
(1, 2, . . . , T ), zt and z<t as the "t-th element and the first t − 1 elements of a
permutation z ∈ ZT " (Yang et al., 2019, p. 3).
Note that only the factorization is permuted and not the sequence order which is
a necessary choice since the model only takes sequences with a natural order into
account during fine-tuning.

23the implementation can be found at https://github.com/zihangdai/xlnet
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Two Stream Self-Attention for Target-Aware Representations
An implementation of the standard Transformer parameterization is not possible
due to the fact that if it is implemented naively, a prediction of the same dis-
tribution is performed without taking the target position into account. In order
to bypass this issue, a re-parameterization of the next-token distribution is intro-
duced:

pθ (Xzt = x|xz<t) = exp(e(x)ᵀgθ(xz<t , zt))∑
x′ exp(e(x′)ᵀgθ(xz<t , zt))

. (20)

Hereby, e(x) denotes the embedding of x and gθ(xz<t , zt) the context representa-
tions produced by neural models which additionally incorporate zt as input and
are therefore target position aware.

Figure 6: (a) Content stream attention. (b): Query stream attention. (c): Training of
permutation language modeling with two-stream attention. (Yang et al., 2019, p. 4)

Furthermore, the authors make use of two hidden representations instead of one
(like in the standard Transformer architecture) which are the following: hθ(xz≤t

),
short hzt is the content representation that carries out the encoding of the context
as well as xt. The second representation is the query representation gθ(xz<t , zt),
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short gzt . For this representation, only information about the context xz<t and the
position zt is available. The update rules of the query stream as well as the one
of the content stream, which are carried out with a shared set of parameters, are
displayed in figure 6. In the upper left corner (a), the update rule of the content
stream, which resembles the standard self-attention, can be seen. Hence, during
fine-tuning we can utilize only this stream as a Transformer. In (b) the update rule
of the query stream is shown. Hereby, the content wzt is not accessible. The right
side of figure 6, (c), gives an "overview of the permutation language modeling with
two-stream attention" (Yang et al., 2019, p. 4). Hereby, a trainable vector w serves
as initialization (g(0)

i = w) for the query stream and the according embedding for
the content stream (h(0)

i = e(xi)). The update of each stream is performed for
each self-attention layer m = 1, . . . ,M in the following way:

g(m)
zt
← Attention(Q = g(m−1)

zt
,KV = h(m−1)

z<t
; θ) (21)

h(m)
zt
← Attention(Q = h(m−1)

zt
,KV = h(m−1)

z≤t
; θ) (22)

To solve equation 20, the last-layer query representation h(M)
zt

can then be used.

In order to simplify the difficult optimization problem, which is caused by
permutation, the authors only carry out a prediction of the last tokens in a
factorization order. Hereby, a splitting of z into a non-target subsequence and
a target subsequence is performed. The log-likelihood of the target subsequence
given the non-target subsequence should then be maximized.

Incorporating Ideas from the Transformer-XL
XLNet includes two methodologies from Transformer-XL (Dai et al., 2019) which
are the relative positional encoding scheme and the segment recurrence mecha-
nism. The relative positional encoding scheme is applied without modification,
using the original sequence. The integration of the recurrence mechanism into the
permutation setting is not straight-forward and needs to be modified in order for
the model to be able to reuse hidden states from prior segments 24.

24for a more detailed explanation, see Yang et al., 2019, p. 5
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Modeling Multiple Segments
In order to enable XLNet to model multiple segments, it follows BERT’s pre-
training scheme by randomly sampling two segments and handle its concatenation
as one. The only memory that is being reused stems from the same context.
XLNet’s input takes the same form as BERT’s input, namely [CLS, A, SEP, B,
SEP]. Note that XLNet does not incorporate the NSP task (Yang et al., 2019).

In contrast to BERT, XLNet applies the relative encoding idea from Transformer-
XL which is to only model relationships between positions to the encoding of
segments. This means that it is only taken into account whether two positions in
a sequence are located within the same segment and not which specific segment
they originate from (like in BERT). By applying relative positional encoding, the
inductive bias of relative encodings is introduced, which leads to an improvement
of the generalization. Another benefit is that thereby a fine-tuning on tasks with
more than two input segments is enabled (Yang et al., 2019).

When comparing BERT and XLNet, it becomes clear that both models apply par-
tial prediction. Not only does it represent a necessity for BERT since no prediction
is possible if a masking of all tokens is performed, but it also helps reducing the
optimization difficulty for both models. Important to note is the fact that due
to the independence assumption of BERT, the model is not able to observe de-
pendencies between targets. Hence, "XLNet always learns more dependency pairs
given the same target and contains ’denser’ effective training signals" (Yang et al.,
2019, p. 6).

3.6.2 Experiments

XLNet’s pre-training is based on the same text corpora as BERT (Devlin et al.,
2019) as well as Giga5 (Parker et al., 2011), ClueWeb 2012-B (extended from
Callan et al., 2009) and CommonCrawl (Crawl, 2019), whereby short articles or
the ones with a low quality are not included. Furthermore, a tokenization with
SentencePiece was performed, resulting in subword pieces (For a more detailed
explanation of SentencePiece, see appendix, section 8).
In a fair comparison - pre-training both models and hyperparameters on the same
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data - the authors show that XLNet performs better than BERT on all regarded
downstream tasks. Furthermore, XLNet was compared to RoBERTa, whereby ad-
ditional data and the same hyperparameters as in RoBERTa were used for XLNet’s
pre-training to ensure a fair comparison. XLNet shows a better performance than
RoBERTa and BERT on all considered down-stream tasks. Furthermore, Yang
et al. (2019) notice that for explicit reasoning tasks such as SQuAD and RACE
that contain a longer context, XLNet’s performance gain is larger which could be
attributed to the fact that XLNet is additionally based on Transformer-XL. XLNet
also results in a considerable performance improvement for classification tasks.
The ablation study from Yang et al. (2019) underlines the importance of the
Transformer-XL backbone and the permutation LM which make a large contri-
bution to XLNet outperforming BERT on a large margin. Additionally, when
eliminating the memory caching methodology, a performance decrease can be ob-
served. Furthermore, the span-based prediction as well as the bidirectional input
pipeline represent an important component of XLNet. Lastly, the NSP objective
does not contribute to a performance improvement and was therefore removed
from XLNet (Yang et al., 2019).

3.7 ALBERT

As already described in the prior sections, the concept of pre-training full networks
and afterwards fine-tuning them on downstream tasks showed state-of-the-art re-
sults, whereby it has emerged that larger models perform better. Computational
constraints, e.g. memory limitations aggravate performing experiments with large
models. In order to overcome the obstacles of large memory consumption and
training time, Lan et al. (2019) present a modified version of BERT called A Lite
BERT (ALBERT)25.

3.7.1 Model architecture

ALBERT’s and BERT’s architecture resemble each other in the sense that both
are based on a Transformer encoder (Ashish Vaswani et al., 2017) and GELU

25the implementation of the model can be found at https://github.com/google-research/
ALBERT
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non-linearities (Hendrycks et al., 2016). Furthermore, the feed-forward/filter size
is fixed as 4H (H being the hidden size) and the number of attention heads as
H/64, like in Devlin et al. (2019).

Lan et al. (2019) present the following three main modifications of BERT’s
configurations.

Factorized embedding parameterization
In models like BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) or XLNet
(Yang et al., 2019), the size of the WordPiece embedding E equals H (E ≡ H).
On one hand, this is subpar from a modeling perspective since WordPiece
embeddings should learn representations that are context-independent while
hidden-layer embeddings are ought to learn context-dependent ones. Lan et al.
(2019) state that untying E from H leads to using the total model parameters
more efficiently corresponding to the modeling need itself, which indicates that
H � E. On the other hand, from a practical point of view, the vocabulary size
VLM is ought to be large in NLP. Hence, if E ≡ H applies, an increase of H results
in an increase of the embedding matrix of size VLM × E, which again can lead to
a model incorporating billions of parameters. For this reason, a factorization of
the embedding parameters, resulting in two matrices, is performed for ALBERT.
Hereby, the one-hot vectors are first projected into an embedding space of size
E and in the next step into the hidden space of size H. This causes a reduction
of the embedding parameters from O(VLM · H) to O(VLM · E + E · H), which is
significant in the case of H � E. The same E is used for all word pieces (Lan
et al., 2019).

Cross-layer parameter sharing
The authors further implement a sharing of all parameters across layers which
ensures that the model parameters do not increase with the network’s depth. It
is used as a default design choice for ALBERT. Having a look at the L2 distances
and cosine similarity (in terms of degree) of the input and the output embedding
for each layer, it can be stated that ALBERT’s crossover from layer to layer
is far more smooth than the one of BERT. This indicates that the cross-layer
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parameter sharing has an impact on the stabilization of network parameters.
Even though ALBERT’s metrics decline in comparison to BERT’s, they do not
show a convergence towards zero after 24 layers. This underlines the fact that
ALBERT’s embeddings are oscillating (Lan et al., 2019).

These two parameter reduction techniques lead to a significant reduction of the
number of BERT’s parameters while not seriously deteriorating the performance.
They also serve to improve the generalization of the model by stabilizing the
training.

Inter-sentence coherence loss
BERT’s pre-training is based on the MLM and the NSP task (Devlin et al., 2019).
In recent scientific papers (Liu et al., 2019, Yang et al., 2019) NSP was found
ineffective which was substantiated by the performance improvement across a va-
riety of downstream tasks and as a consequence it was removed. Lan et al. (2019)
hypothesize that the ineffectiveness of the task is based on the simplicity of the
task compared to the MLM task. NSP combines topic prediction with coherence
prediction in one task, even though topic prediction represents an easier task which
also shows bigger overlaps with what is learned when applying the MLM loss. The
authors introduce a loss which is based mainly on modeling inter-sentence coher-
ence, the Sentence Order Prediction (SOP) loss. For creating positive examples, it
follows BERT’s technique and samples two consecutive segments originating from
the same document. Negative examples are based on the same two segments with
a reversed order. This way, "finer-grained distinctions about discourse-level coher-
ence properties" are learned (Lan et al., 2019, p. 5). Later on, it is shown that the
NSP task is not able to solve the SOP task. In contrast to that, SOP is able to
solve the NSP task to an appropriate extent. Consequently, ALBERT shows an
improved performance for multi-sentence encoding tasks.
Important to note is the fact that ALBERT has much less parameters in compar-
ison to BERT. ALBERTLARGE for example incorporates 18 times less parameters
than BERTLARGE. Lan et al. (2019) note that the most important advantage of
ALBERT’s design choices is the improved parameter efficiency.
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3.7.2 Experiments

In the following, the experimental setup is displayed in more detail in order to
quantify the earlier addressed parameter efficiency.

The baseline models are pre-trained based on the same corpora as BERT (Devlin
et al., 2019). Furthermore, the maximum sequence length is set to 512, whereby
input sequences shorter than 512 tokens are randomly generated with a probability
of 10%. The vocabulary size is 30,000 tokens which are generated by applying
SentencePiece (Kudo et al., 2018) like in XLNet (Yang et al., 2019). Moreover,
the creation of masked inputs for the MLM task is carried out with n-gram masking
(Joshi et al., 2019). The probability for the maximum length n of n-gram can be
formulated in the following manner:

p(n) = 1/n
N∑
k=1

1/k
. (23)

The authors set n to the value of 3. Note that all model updates apply a batch
size of 4,096 and use a LAMB optimizer26 for which the learning rate is set to
0.00176 (You et al., 2019). All models are trained for 125,000 steps on Cloud
TPU V3, whereby the used number of TPUs depends on the model size and
takes on values from 64 to 512. The described experimental setup is applied to
all of the versions of ALBERT and BERT models from Lan et al. (2019). The
evaluation of the model takes place based on the three common benchmarks
GLUE (Wang et al., 2019), SQuAD (Rajpurkar et al., 2016a) and RACE (Lai
et al., 2017). Similar to Liu et al. (2019), an early stopping is performed based on
the development sets.

The authors’ research shows that ALBERTXXLARGE only uses 70% of BERTLARGE’s
parameters while outperforming it on the development set of various downstream
tasks, such as SQuaD v1.1 and v2.0, MNLI, SST-2 and RACE (Lan et al., 2019).

26You et al. (2019) introduced LAMB, a layerwise adaptive large batch optimization strategy
which enables a stable training of large batches. The underlying logic comes from LARS (You
et al., 2017), which performs poorly on attention models. For a detailed explanation of LAMB,
see You et al. (2019)
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Furthermore, it takes approximately 1.7 less time for ALBERTLARGE to iterate
through data than BERTLARGE, indicating ALBERT models having a higher
data throughput than its associated BERT models. Changing the vocabulary
embedding size E on ALBERTBASE under the non-shared condition, the largest
E (= 768) results in a better performance. When regarding this effect under the
all-shared condition, E = 128 shows the best performance and is therefore used in
further analyses. Lan et al. (2019) further compare cross-layer parameter-sharing
strategies applied to ALBERTBASE with E = 128 and E = 768. In general, a
cross-layer sharing strategy can be described as performing a division of L layers
into N groups of size M where each group is sharing the parameters. The authors
show that the performance improves with a smaller M . Since decreasing M

results in a large increase of the number of parameters, the all-shared strategy
is chosen to be the default choice of ALBERT. A further experiment that is
conducted is a comparison between the following inter-sentence losses: none (like
in XLNet and RoBERTa), NSP (like in BERT) and SOP (like in ALBERT)
applied to ALBERTBASE. Hereby, the performance on the MLM, NSP and SOP
task is regarded where it can be seen that the NSP loss does not solve the SOP
task well. On the other hand, the SOP loss shows a good performance for the
NSP and the SOP task. Furthermore, an improvement of the downstream task
performance can be monitored if the SOP loss is applied. Another question to be
answered is about the performance of ALBERTXXLARGE compared to BERTLARGE

if both are trained for approximately the same amount of time. The authors
display that ALBERTXXLARGE shows significant better performance results on
the downstream tasks than BERTLARGE. It is further shown that training with
additional data has a large positive effect when regarding the development set
MLM performance. This can also be observed for the downstream tasks apart
from the SQuAD benchmarks. Due to the fact that even after a training of one
million steps, the authors’ largest model does not show overfitting the dropout
was removed which resulted in a performance increase of the MLM task. For
a performance comparison between state-of-the-art models and ALBERT, the
models were trained on the BERT vocabulary as well as the additional data
used in XLNet and RoBERTa. Furthermore, the fine-tuning was performed
only on a single task and the results which are based on the development set
represent median results of five runs. For ALBERT, the earlier described best
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design choices were applied. Furthermore, the checkpoints for the final ensemble
model are chosen based on the performance on the development set, whereby the
number can vary depending on the task. Both ALBERT model variants - the
single model and the ensemble model - outperform the state-of-the-art models on
all benchmarks.

The Appendix in Lan et al. (2019) contains a detailed table about the chosen
hyperparameters for downstream tasks. Since the other presented scientific works
mention a learning rate range, but do not specify concrete learning rate values and
the hyperparameters in Lan et al., 2019 are adapted from Devlin et al. (2019), Liu
et al. (2019) and Yang et al. (2019), we set the respective learning rates in our
analyses according to the table in Lan et al. (2019).

GLUE task Learning rate
CoLA 1e-5
STS 2e-5
SST-2 1e-5
MNLI 3e-5
QNLI 1e-5
QQP 5e-5
RTE 3e-5
MRPC 2e-5
WNLI 2e-5

Table 1: Learning rates for ALBERT in GLUE tasks, Lan et al. (2019), A.4, p. 17
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4 GLUE

Since we fine-tune the large pre-trained language models described above on the
the GLUE tasks in order to conduct a fine-tuning and inference time measure-
ment, the GLUE tasks are shortly described in this chapter. Hereby, it should
be noted that we always use the training set for the analysis of the fine-tuning
time and the development set to analyze the inference time. We also added the
performance measures referring to the respective GLUE task. The comparison of
performance measures of our analysis and the GLUE benchmark should be han-
dled with care, since the GLUE benchmark incorporates performance results on
the test set, whereas the performance results of our analyses are based on the
development sets.
GLUE is a benchmark that consists of nine tasks in the field of sentence under-
standing in the English language. With the help of those tasks, a wide variety
of domains, quantities of data as well as challenges can be covered. This bench-
mark is built in such a manner that "good performance should require a model to
share substantial knowledge (e.g. trained parameters) across all tasks, while still
maintaining some task-specific components" (Wang et al., 2019). This statement
underlines the fact that applying models with a Transformer architecture such as
BERT, ALBERT, etc. - like we do in the scope of this thesis - is not only permit-
ted, but also recommended. In the following, each of the GLUE tasks is described,
respectively.
Since we fine-tune the earlier described models on each of these tasks, we regard
the respective training dataset in our analysis. The following structure is adopted
from Wang et al. (2019).

4.1 Single-sentence Tasks

4.1.1 CoLA

Firstly, the task CoLA which is also called "The Corpus of Linguistic Acceptabil-
ity" (Warstadt et al., 2018) is described. This task contains English decisions
on acceptability which are obtained from journal articles and books dealing with
theory on linguistic. Each element of the dataset consists of a sequence of words
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which is commented with whether this element represents a grammatical English
sentence or not (0: not a grammatical English sentence; 1: grammatical English
sentence) (Wang et al., 2019). For evaluation purposes, the Matthews correlation
coefficient is applied (Matthews, 1975). This coefficient has the goal to evaluate
the performance of unbalanced binary classification tasks. It can take values from
-1 to 1, whereas 0 can be interpreted as guessing, +1 as perfect prediction and -1
as total disagreement between observation and prediction (Warstadt et al., 2018;
Wikipedia, the free encyclopedia, 2020d).
The CoLA training dataset consists of 8,550 observations. Approximately 29.56%
of them are labeled as 0 and can therefore be interpreted as "not a grammatical
English sentence". About 70.44% of the observations are "grammatical English
sentences". "One more pseudo generalization and I’m giving up." represents an
example for a grammatical English sentence (label=1), whereas "Mary’s criticism
him was cruel." is an example from the CoLA dataset for a sentence that is not
grammatically correct (label=0).

4.1.2 SST-2

The dataset SST-2 that stands for "the Stanford Sentiment Treebank" (Socher et
al., 2013) has the goal to predict the sentiment of a sentence. The sentences stem
from movie recensions and human comments on the respective sentiment. In this
case, it is a binary classification problem where the values are "positive" (label =
1) or "negative" (label = 0) (Wang et al., 2019).
The training dataset consists of 67,349 sentences, whereby 44.22% are labeled
as "not good"/"negative" (label = 0) and the remaining 55.78% are labeled as
"good"/"positive". An example for a sentence that was annotated with the label
0 is the following: "the movie’s major and most devastating flaw". On the other
hand, the sentence "most certainly has a new career ahead of him" was marked
with the label 1.
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4.2 Similarity and Paraphrase Tasks

4.2.1 MRPC

The next task that represents a part of the GLUE tasks is the dataset "The Mi-
crosoft Research Paraphrase Corpus" (Dolan et al., 2005), which can be abbrevi-
ated by MRPC. It contains sentence pairs which origin from online news sources.
Humans commented on whether two sentences that make a sentence pair can be
seen as equivalent in a semantic manner. Due to the fact that both classes are
not balanced, the F1 score is reported additionally to the accuracy (Wang et al.,
2019).
The training dataset contains 3,668 sentence pairs of which 32.55% are labeled as
not semantically equivalent (label = 0) and 67.44% as semantically equivalent (la-
bel = 1). The sentences "It was called mandatory, but Dupont said authorities did
not force people to leave." and "While it was being called mandatory, Dupont said
authorities were not forcing people from their homes." are labeled as semantically
equivalent (label 1) and the two sentences "Istomin later married Casals’ widow,
Marta, after Casals’ death in 1973." and "In 1975 he married Marta Casals, the
widow of Pablo Casals." as not semantically equivalent (label 0).

4.2.2 QQP

The QQP - Question Question Pairs27 - task contains question pairs that stem
from Quora which is a community question-answering website. Here, the goal of
distinguishing between semantically equivalent and non-equivalent question pairs
is pursued. The classes are imbalanced. Consequently, the F1 score as well as the
accuracy are reported. Wang et al. (2019) used the test set for computing perfor-
mance measures. Important to note is hereby the fact that the class distribution
of the labels differs between the test and the training set.
The QQP training dataset contains 363,870 question pairs. 63.07% of these obser-
vations are not semantically equivalent and the remaining 36.93% form the positive
class which contains semantically equivalent questions. An example for the pos-
itive class is the question pair "What is the most beautiful memory you have?"
and "What is your most beautiful memory?". In contrast to this, the question pair

27https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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"How long does it take to walk a marathon?" and "How long is a marathon?" is
regarded as semantically non-equivalent.

4.2.3 STS-B

The next task that is regarded is the Semantic Textual Similarity Benchmark,
short STS-B (Cer et al., 2017). The sentence pairs that form the corpus are
gathered from natural language inference data, image and video captions as well as
news headlines. Additionally, humans assigned a similarity score to the respective
sentence pairs which ranges from 1 to 5, whereas the goal is the prediction of those
scores. The evaluation is carried out by applying the correlation coefficients from
Pearson and Spearman (Wang et al., 2019). The training dataset consists of 5,749
sentence pairs. The score distribution can be viewed in the following graphic:

Figure 7: Distribution of similarity scores in STS-B training data

Figure 7 shows that score 3 and 4 represent the most widely represented similarity
score in the STS-B training dataset. A sentence pair that was annotated with a
similarity score of 0 is "A boy is crawling into a dog house." and "A cat is playing on
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the floor.". Another example is the sentence pair "Six dead in Philippine restaurant
blast" and "6 killed in Philippines restaurant blast." which was assigned with the
score 5.

4.3 Inference Tasks

4.3.1 MNLI

The inference tasks include, amongst other tasks, MNLI, which is also called the
"Multi-Genre Natural Inference Corpus" (Williams et al., 2018). It contains sen-
tence pairs that consist of a premise and a hypothesis sentence. Additionally,
entailment annotations are included. The goal of the task is the entailment predic-
tion, i.e. whether the premise sentence represents an entailment of the hypothesis
sentence, a contradiction or none of the above (is neutral). In the MNLI task, the
premise sentences are drawn from ten different sources in total, e.g. government
reports and fiction.
In the training set, which consists of 392,702 examples, each class has nearly the
same frequency, i.e. each class contains approximately 33.33% of the examples.
An example for a sequence pair that represents a contradiction is the following:
"You’ve got to look in the mirror every morning and ask ’What am I organizing for
?’" and "You don’t need to know why you are organizing.". Note that the test set
is split into a matched and a mismatched version. The matched section refers to
in-domain data, whereas mismatched refers to cross-domain data. Furthermore,
Wang et al. (2019) advise to utilize the SNLI data (Bowman et al., 2015) which
consists of 550 thousand observations as additional data.

4.3.2 QNLI

The next dataset that is regarded is the "Stanford Question Answering Dataset"
(Rajpurkar et al., 2016b). It represents a question-answering dataset that includes
pairs consisting of questions and paragraphs. Hereby, the answer (one sentence)
to the according question is included in the paragraph which is gathered from
Wikipedia.
The task is modified to a sentence pair classification by Wang et al. (2019). This is
undertaken by generating pairs of each question and each sentence in the according
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context. Furthermore, question-sentence pairs that evince a modest lexical overlap
are screened out. The goal of this task is the determination of whether the context
sentence includes the answer to the according question. On one hand, by using
the amended task, the requirement of selecting the exact answer does not have to
be fulfilled. On the other hand, the assumption that the input always contains
the answer and hence the lexical overlap is a reliable indicator cannot longer be
presumed. The modified task is named QNLI (Wang et al., 2019).
The QNLI training dataset contains 104,743 examples, whereas the dataset is
balanced. An ’entailment’ example is the following: "What age ran from 1700
to 1200 BCE?" as the question and "The Late Bronze Age (from 1700 to 1200
BCE)" as the sentence. A ’not entailment’ example is the following: "What type
of weather is a rarity in Houston?" and "Houston has mild winters in contrast to
most areas of the United States.".

4.3.3 RTE

The "Recognizing Textual Entailment" task, short RTE, was generated by com-
bining four textual entailment datasets, namely data from RTE1 (Dagan et al.,
2006), RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al., 2007) and RTE5
(Bentivogli et al., 2009). These datasets are based on Wikipedia text as well as
news. In order to ensure consistency, all four datasets were transformed to a two-
class split. Datasets with three classes were modified in such a manner that the
classes ’neutral’ and ’contradiction’ were combined to one class named ’not entail-
ment’ (Wang et al., 2019). The RTE training dataset consists of 2,490 sentence
pairs. The dataset is balanced with a class frequency of 49.84% for ’entailment’
and the remaining 50.16% for ’not entailment’. An example of an RTE sentence
pair labeled as ’entailment’ is "Catastrophic floods in Europe endanger lives and
cause human tragedy as well as heavy economic losses." and "Flooding in Europe
causes major economic losses.". In contrary, "The Chicago White Sox are a major
league baseball team based in Chicago, Illinois." and "The Bulls basketball team
is based in Chicago, Illinois." was labeled as ’not entailment’.
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4.3.4 WNLI

The last dataset that is considered in this setting is the "Winograd Schema Chal-
lenge" (Levesque et al., 2011). This task "is a reading comprehension task in which
a system must read a sentence with a pronoun and select the referent of that pro-
noun from a list of choices" (Wang et al., 2019, p. 5). A manual construction of
the examples was undertaken. Each of these examples depends on the contextual
information that is allocated by a phrase or word within the sentence itself. The
ambiguous pronoun is substituted by each possible referent in order to form sen-
tence pairs. The goal of this sentence pair classification task is the prediction of
whether the transformed sentence is entailed by the original sentence. The evalua-
tion set of this WNLI task is based on data from fiction books (Wang et al., 2019).
Note that whilst the training dataset is balanced (label = 0: 50.87% and label = 1:
49.13%), the test dataset, which was used by Wang et al. (2019) for evaluation, is
imbalanced with 65% of examples labeled as ’not entailment’. Furthermore, there
exists a data idiosyncrasy, which means that there are cases where the develop-
ment set as well as the training set contain equivalent sentences. Hence, if the
training examples are learned by heart by the model, a wrong label prediction will
be made on the according development set example (Wang et al., 2019).
The training dataset contains 635 examples. One of these examples is the follow-
ing: "Dan had to stop Bill from toying with the injured bird. He is very cruel." as
sentence1 and "Dan is very cruel." as sentence2. This sentence pair is labeled as
zero which is equivalent to ’not entailment’. An entailment example (with label =
1) is "Sara borrowed the book from the library because she needs it for an article
she is working on. She reads it when she gets home from work." as sentence1 and
"She reads the book when she gets home from work." as sentence2.
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5 Experimental setup and implementation

In the following chapter, we make some important notes on the experimental as
well as technical setup, along with a comparison of the Python modules time and
timeit.

5.1 Experimental setup

The focus of the following analysis (chapter 6 and 7) is the measurement of the
fine-tuning and inference time of LM models on the above presented GLUE tasks.
The regarded LM models are the uncased and cased versions of BERTBASE as
well as DistilBERTBASE, RoBERTaBASE, AlBERTBASE and the cased version of
XLNetBASE (the uncased version is not implemented in the transformers module
we use). We fine-tuned the Transformer models which are integrated in the Python
module transformers (Wolf et al., 2019) on the GLUE tasks WNLI, RTE, MRPC,
CoLA, SST-B and STS-2. These models include bert-base-cased and bert-base-
uncased which represent the cased and uncased version of BERTBASE, respectively.
Furthermore, distilbert-base-cased and distilbert-base-uncased are included in the
analysis. These are the cased and uncased version of DistilBERTBASE. Within the
uncased versions of BERT and DistilBERT, the text has been lowercased before
tokenization was performed, for example New York turns into new york. Further-
more, accent markers are eliminated in the uncased version. In the cased versions,
the text is not pre-processed before tokenization 28 (Devlin et al., 2019). Addi-
tionally, we fine-tuned roberta-base, which represents RoBERTaBASE. The model
albert-base-v1 represents ALBERTBASE and xlnet-base-cased is the cased version
of XLNetBASE

29. Moreover, it is important to note that we did not fine-tune large
versions of the described models due to computational limitations. For the same
reason, we fine-tuned the respective models only for one epoch (instead of two or
three that are recommended the presented LM papers).
We use different hyperparameter sweeps for the fine-tuning itself. Here, we follow
the respective hyperparameter recommendations included in the scientific work
about ALBERT (see chapter 3.7) since it incorporates a more detailed hyperpa-

28for more information, see https://github.com/google-research/bert
29The exact model configurations can be found at https://huggingface.co/
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rameter table for fine-tuning on GLUE which relies on the hyperparameter con-
figurations from BERT. The weight decay30 was set to 0.01 and Adam epsilon to
1e-6. The learning rate ranges from 1e-5 to 5e-5, depending on the regarded GLUE
dataset (see table 1). Furthermore, a variation of the hyperparameters maximum
sequence length and batch size is included since they have the highest potential,
along with the dataset and the model, to have an effect on the respective fine-
tuning and inference time. The training batch size (or evaluation batch size) is set
to {8, 16, 32} and the maximum sequence length to {128, 256, 512}. Note that
when measuring the fine-tuning time, we regard different training batch sizes since
the measurement is included in the fine-tuning (training) of the model itself. For
measuring the inference time, different evaluation batch sizes are applied since the
measurement is included in the prediction function which is used during evalua-
tion. In the following analysis, we refer to the training batch size when mentioning
the batch size in the fine-tuning time setting and to the evaluation batch size when
addressing it in the inference time setting.

5.2 Technical setup

We carry out the analyses with Python (Van Rossum et al., 2009), using Visual
Studio Code and Jupyter Notebooks (Kluyver et al., 2016). The large pre-trained
language models which are fine-tuned in the scope of our analyses are implemented
in the Python module transformers by huggingface (Wolf et al., 2019). When
fine-tuning, we go through the hyperparameter combinations via grid search, so
that all hyperparameter combinations are regarded. We integrate the time mea-
surements in the transformers v.3.0.0 module (Wolf et al., 2019), more precisely
in the script trainer.py31. Furthermore, we include an additional argument defining
the number of fine-tuning iterations in the training_args.py script31 32. The fine-
tuning was carried out using the script run_glue.py33, which is also incorporated
in the transformers module and is based on the machine learning framework
PyTorch (Paszke et al., 2019). For the implementation of the fine-tuning time, we
follow McCormick’s and Ryan’s implementation (McCormick et al., 2019a) and

30also referred to as L2 regularizer (Goldberg, 2017, p. 30)
31 the scripts can be found in the folder src/transformers
32the modified scripts can be retrieved at https://github.com/annakorotkova/transformers
33this script can be found in the folder /examples/text-classification/
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include it in the train() function. The fine-tuning time measurement starts before
defining the total train loss and ends after updating the learning rate. All in all,
we measured how long the training (here fine-tuning) takes for one epoch. While
we perform the fine-tuning five times for the tasks WNLI, RTE and MRPC, it is
carried out three times for the CoLA, SST-B and STS-2 to get stable values of
the fine-tuning time. The number of repetitions is reduced for the tasks CoLA,
SST-B and STS-2 since they contain more observations and therefore have higher
computational costs. Inference in the field of machine learning can be defined as
"the process of using a trained machine learning algorithm to make a prediction"
(DeBeasi, 2019). Thus, we integrate the time measuring of the inference in the
prediction loop function (_prediction_loop()) that is also used by the evaluate()
function which is applied when evaluating the model. Hereby, passing one input
to the model is measured, whereby one input equalized one batch. This results
in multiple measurements, depending on the number of batches, which is why we
perform the fine-tuning once instead of multiple times. Both analyses are carried
out on the virtual machine Ubuntu 18.04.1 LTS, incorporating a Tesla V100 PCIe
16GB GPU. The respective runs are logged with wandb (Biewald, 2020), a tool
which enables tracking machine learning experiments.

5.3 Time modules in Python

In order to measure the fine-tuning as well as the inference time of large
pre-trained LMs in Python, it is necessary to decide which time measuring
function to use. As noted before, we implement this measurement in Python
(Van Rossum et al., 2009), whereby there are two main modules that should
be considered. In the following, we describe the Python modules time (Python
Software Foundation, 2020b) and timeit (Python Softwarer Foundation, 2020)
as well as the regarded functions and illustrate our decision on the function we use.

First, it is important to note that the Python module timeit is generally speak-
ing more suitable for conducting performance tests/comparisons than the time
module due to the fact that it measures the time multiple times without the need
to additionally implement a for loop (Ardit, 2019). Nonetheless, the functions
implemented in the timeit module are rather suitable for measuring the time per-
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formance of short code snippets or whole functions than long code snippets. This
holds since the module operates based on a different namespace than the Python
script itself. Important to note is that there are two types of namespaces, namely
the local namespace and the global one. The local namespace for a function is
created when the function is called, whereas the creation of the global namespace
for a module is carried out when the module definition is read in (Python Soft-
ware Foundation, 2020a). The time measurement should be integrated in functions
that not only require passing the global namespace but also the local namespace as
they refer to prior defined functions and arguments. Consequently, the namespaces
should be merged and passed to the function in order to enable the time measuring.
By following this procedure, it is possible to provide the variables/modules that
were already implemented via the argument globals that can be found within the
functions in the timeit module and which determines the namespace the function
should operate on. However, it is rather advised against to perform such a merging.
Because of the reason described above, we decided to work with the time module
of Python and integrate an iteration of the time measurement (Python Software
Foundation, 2020b; Python Softwarer Foundation, 2020). The next decision that
needs to be made is the question of which time function to use. Hereby, it has to
be decided whether the system time (also called process time) of the code snippet
or the wall-clock time - which equals the real time - should be measured. Since
interpretability is the first priority and the measurement runs on a virtual machine
which is only used by us, we decided to measure the wall-clock time, even though
it is less precise than the system time. For this purpose we use the time() function
that is integrated in the time module (Python Software Foundation, 2020b).
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6 Analysis of fine-tuning time

The following chapter contains the analysis of fine-tuning time. First, we perform
a descriptive analysis where the fine-tuning time is grouped by the respective hy-
perparameters, tasks as well as models. This is followed by a correlation matrix,
ANOVAs, where the fine-tuning time is grouped by the respective hyperparame-
ters, tasks and models and a log-linear regression. Lastly, we illustrate the relation
between the fine-tuning time and the accuracy.

6.1 Descriptive analysis

We perform a fine-tuning based on the tasks WNLI, RTE, MRPC, CoLA, STS-B
and SST-2, whereas a fine-tuning of the tasks QNLI, QQP and MNLI failed. Due
to the fact that these are the three largest tasks containing the highest numbers
of examples and that fine-tuning large pre-trained language models requires a lot
of memory, we hypothesize that the fine-tuning failed due to a lack of RAM 34.
This issue is also addressed by Devlin et al., 2019. Since the fine-tuning which
was performed in their scientific work used a Cloud TPU with 64GB RAM, the
authors state that the usage of a GPU with 12GB - 16GB RAM could lead to
out-of-memory issues when using the same hyperparameters as in the paper35.
The final dataset that is used for further analyses contains 291 observations in total.
The main variable of interest is the fine-tuning time. As mentioned earlier, the
fine-tuning was carried out multiple times for each hyperparameter combination
in order to receive more stable results. In the following, the minimum fine-tuning
time per hyperparameter combination is regarded. With this, we specify how long
a fine-tuning would take at least. In the following, the fine-tuning time refers to
the minimal fine-tuning time if not stated otherwise.

34Random Access Memory (RAM) can be defined as a short-term computer memory in which
all running processes and programs are stored temporarily (Aschermann, 2017)

35for more insights, see https://github.com/google-research/bert/blob/master/README.md
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Figure 8: Boxplot of fine-tuning time in seconds

Figure 8 displays the boxplot of the fine-tuning time in seconds. Hereby, the weld
point of the distribution lies between 40.3 and 5,848.836. Both values represent
the lower and the upper whisker, respectively, while the lower whisker is also the
minimum in this case. The median takes on the value 1,195.4. Furthermore, some
outliers can be detected which can take on values up to 5,9139.1 (maximum). The
mean of the fine-tuning time is 3,670.5 and the standard deviation 7,650.9, which
underlines the high spread in the data. A more detailed table of the ten highest as
well as the ten lowest fine-tuning times can be found in the appendix (see table 31
and 32). Note that models that are fine-tuned on the SST-2 task, most of which
incorporate a maximum sequence length of 512, take on the highest fine-tuning
times. Models that were fine-tuned on the WNLI task (in five of ten cases it is the
distilbert-base-uncased models), most of which show a maximum sequence length
of 128, take on the lowest fine-tuning times. Both observations intuitively make

36the values for the fine-tuning time are rounded up to one decimal point
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sense as the SST-2 task contains the highest amount of examples, while WNLI
represents the smallest dataset. This gives a first intuition about which factors
might influence the fine-tuning time.

Figure 9: Histogram of fine-tuning time in seconds

The first bin in figure 9 contains 219 data points (out of 291) which represent
the majority of the data. This means that, as stated before, the majority of the
fine-tuning times takes on values between approximately 40 and 2,995. The second
bin, which ranges from about 2,995 to 5,950, contains 31 data points, followed by
the third bin ranging from approximately 5,950 to 8,905 which contains 12 values.
The following bins show a frequency of 7 at maximum. This underlines the fact
that the fine-tuning time shows a right skewed distribution. Note that due to
computational limitations higher fine-tuning time values are not possible because
a fine-tuning of very large datasets with models that require a long fine-tuning
would go beyond the scope of this work. This should always be kept in mind
during the analysis.
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6.1.1 Comparison across GLUE tasks

As described earlier, we regard the GLUE tasks WNLI, RTE, MRPC, CoLA,
SST-B and STS-2 in this analysis. The total number of observations per task
should be 63, which results from the number of models (7) multiplied with
the number of regarded values of the maximum sequence length (3) and of the
training batch size (3). RTE is the only dataset with 63 observations because no
(technical) problems occurred when fine-tuning on RTE. Note that a fine-tuning
of bert-base-cased and distilbert-base-cased on WNLI, STS-B and SST-2 could
not be performed due to errors37. This results in a reduced dataset with 45
observations (63 − 2 · 3 · 3 = 45) for WNLI and STS-B. Furthermore, the XLNet
models were not fine-tuned on the SST-2 task due to computational limitations
and runs crashed for albert-base-v1 when applying a maximum sequence length
of 521 tokens, probably also due to lack of RAM. Hence, we receive 33 obser-
vations for SST-2 (63 − 2 · 3 · 3 − 1 · 3 · 3 − 3 = 33). For MRPC, fine-tuning
distilbert-base-cased and bert-base-cased failed when applying a sequence length
of 128 and 256, whereby it worked for a maximum sequence length of 512. This
results in 51 observations (63 − 2 · 2 · 3 = 51). For CoLA, we did not fine-tune
XLNet because the run time was again too high. Therefore, the dataset for this
task incorporates 54 observations (63 − 1 · 3 · 3 = 54). This complicates a fair
comparison and should always be kept in mind during the analysis.

As described in the chapter 4 of this thesis, the tasks themselves also contain
different numbers of examples. The following figure shows the fine-tuning time
grouped by the number of observations of the respective GLUE task. The colors
of the boxplots correspond to the tasks. The training dataset of WNLI is the
smallest task with 635 observations, followed by RTE with 2,490 examples, MRPC
with 3,668, SST-B with 5,749 and CoLA with 8,550 observations. The training
dataset of STS-2 is with a dataset size of 67,349 the largest GLUE task that we
regard in this analysis and incorporates a clearly larger amount of data compared
to the other GLUE training sets.

37an issue was also created for this case which can be found at https://github.com/huggingface/
transformers/issues/4828
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The following figure displays the fine-tuning time grouped by the respective task
size number that corresponds to a specific task. Note that the colors of the boxplots
correspond to the respective tasks.

Figure 10: Boxplot of fine-tuning time grouped by number of examples per task

A notable trend can be viewed in figure 10, indicating that the number of
examples that a dataset contains plays an important role for the fine-tuning time.
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To further investigate this trend, a more detailed view is displayed in table 2. All
numerical values in this table, except for the task size, refer to the fine-tuning
time.

task name task size count mean std min median max
WNLI 635 45 308.2 359.0 40.3 179.5 1648.8
RTE 2490 63 1062.1 1247.7 154.8 636.7 6668.0
MRPC 3668 51 1764.9 1970.5 229.9 1050.3 10063.2
STS-B 5749 45 2812.3 3362.9 368.4 1655.7 16341.8
CoLA 8550 54 2555.2 1858.1 523.5 2100.4 6988.0
SST-2 67349 33 19175.3 14623.1 4017.2 15637.1 59139.1

Table 2: Descriptive analysis of fine-tuning time grouped by tasks

We can see that the higher the task size is, the higher the key figures of the
fine-tuning time is, such as mean, standard deviation and median. The only
exception is the task CoLA. As stated above, it should be noted that for this
task we did not fine-tune the model XLNet, which might be the reason for this
exception.

Therefore, it is necessary to regard the respective fine-tuning times grouped by
task without xlnet-base-cased, which is displayed in table 3:

task name task size count mean std min median max
WNLI 635 36 204.5 151.5 40.3 154.5 589.1
RTE 2490 54 765.3 573.8 154.8 597.8 2280.4
MRPC 3668 42 1258.8 867.5 229.9 998.0 3387.7
STS-B 5749 36 1826.6 1286.5 368.4 1422.5 5132.8
CoLA 8550 54 2555.2 1858.1 523.5 2100.4 6988.0
SST-2 67349 33 19175.3 14623.1 4017.2 15637.1 59139.1

Table 3: Descriptive analysis of fine-tuning time grouped by tasks without XLNetBASE

Table 3 exhibits a clear trend since all statistical figures increase with higher task
size. Hence, the more sequences a task contains, the higher the fine-tuning time
is, which is intuitively plausible.
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6.1.2 Comparison across large pre-trained LMs

As already hinted, the fine-tuning time could also depend on the model. Thus, the
fine-tuning time grouped by the models is regarded in the next step. The following
figure 11 shows the according boxplots.

Figure 11: Boxplot of fine-tuning time grouped by models

At first glance, the model distilbert-base-cased exhibits the smallest fine-tuning
times with only a few outliers. The model bert-base-cased shows a similar pattern.
This can be attributed to the fact that, as mentioned before, it was not possible
to perform a fine-tuning on all tasks for these two models. Therefore, it is helpful
to have a closer look at the descriptive analysis.
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model count mean std min median max
distilbert-base-cased 21 1004.0 810.4 154.8 817.5 3164.9

distilbert-base-uncased 54 2633.1 5248.1 40.3 659.5 26147.2
albert-base-v1 51 2801.7 4291.8 75.5 1096.4 19153.6
bert-base-cased 21 2116.3 1718.9 323.2 1567.9 6485.4

bert-base-uncased 54 5448.9 11216.6 79.5 1388.9 59139.1
roberta-base 54 5430.3 11186.5 79.6 1410.4 59108.7

xlnet-base-cased 36 3611.9 4097.2 147.4 1848.7 16341.8

Table 4: Descriptive analysis of fine-tuning time by model

In table 4, it can be viewed that distilbert-base-cased has the smallest fine-tuning
time mean and standard deviation. However, when having a look at the fine-
tuning time minimum or median, this statement cannot be confirmed. This leads
to the hypothesis that the fact that the model incorporates only 21 runs could
lead to the small values. We can make a very similar assertion for bert-base-cased.
When comparing the fine-tuning times of the remaining models, we see that
distilbert-base-uncased has the smallest average fine-tuning time and the smallest
median and minimum. Nonetheless, when regarding the standard deviation and
the maximum, albert-base-v1 shows smaller values, which could also stem from
the difference in the counts of both models. Hence, it can be said that both
models evince small fine-tuning time values in comparison to bert-base-uncased,
roberta-base and xlnet-base-cased. Bert-base-uncased has the largest average
fine-tuning time as well as standard deviation. Roberta-base displays very similar
values. This could originate from the large outliers, which can be seen in figure
11. In contrary to this, xlnet-base-cased has the highest median, a small standard
deviation and only few outliers. Hereby, it should be noted that xlnet-base-cased
only contains 36 runs, while bert-base-uncased and roberta-base each contain 54
runs. Therefore, the smaller average fine-tuning time of xlnet-base-cased could
stem from the fact that we did not perform a fine-tuning on the largest tasks
CoLA and STS-B.

In the next step, we only regard the fine-tuning time for the tasks WNLI, RTE,
MRPC and STS-B to generate an equal data basis for the models distilbert-base-
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uncased, bert-base-uncased, roberta-base and xlnet-base-cased, which enables a
fair comparison of the fine-tuning time among these models.

model count mean std min median max
distilbert-base-uncased 36 572.3 532.3 40.3 392.0 2285.6

albert-base-v1 36 1075.3 1070.6 75.5 627.2 4442.8
bert-base-uncased 36 1179.4 1164.5 79.5 733.1 5132.8

roberta-base 36 1153.7 1045.5 79.6 780.4 4056.4
xlnet-base-cased 36 3611.9 4097.2 147.4 1848.7 16341.8

Table 5: Descriptive analysis of fine-tuning time by model without SST-2 and CoLA

In table 5, distilbert-base-uncased exhibits the smallest statistical figures for the
fine-tuning time. All displayed key values of albert-base-v1 are approximately
two times larger than the one of distilbert-base-uncased. The fine-tuning time
of roberta-base is the third largest among the displayed models, followed by
bert-base-uncased and xlnet-base-cased. It should be noted that in this table
(table 5), in contradiction to the one before (table 4), the model xlnet-base-
cased exhibits the largest values for the fine-tuning time mean, median and
standard deviation. This leads to the assumption that xlnet-base-cased takes
the longest fine-tuning time (the fine-tuning time median is more than twice as
high as the fine-tuning time median of roberta-base), when keeping the other
variables constant. Furthermore, the differences in fine-tuning times between
the models roberta-base, bert-base-uncased and albert-base-v1 are not as large,
when comparing them to the fine-tuning times of distilbert-base-uncased and
xlnet-base-cased. Hence, it could be stated that the use of XLNet leads to rather
high and applying DistilBERT to rather low fine-tuning times.

In order to compare the cased model versions of BERT and DistilBERT with their
respective uncased versions, we only regard a fine-tuning of the models on the
tasks RTE and CoLA in order to enable a fair comparison. This results in a count
of 18 observations (see table 6).
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model count mean std min median max
distilbert-base-cased 18 984.6 876.5 154.8 732.4 3164.9

distilbert-base-uncased 18 990.6 901.4 166.2 714.2 3180.0
bert-base-cased 18 2032.2 1835.9 323.2 1491.7 6485.4

bert-base-uncased 18 2021.6 1883.0 311.8 1462.7 6851.5

Table 6: Descriptive analysis of fine-tuning time by model only with RTE and CoLA

Having a look at table 6, we can see that the fine-tuning times of the cased and
the uncased version of both, DistilBERT and BERT, respectively, do not exhibit
large differences. In both cases the cased version shows higher a higher median.
Nonetheless, no clear statement can be made about whether the uncased or the
cased version leads to larger fine-tuning times since all other statistical key figures
for distilbert-case-uncased for example are higher than the ones of the cased ver-
sion. All in all, this leads to the assumption that it makes little difference whether
the cased or uncased version of a model is used.

6.1.3 Comparison across maximum sequence length

Another important hyperparameter that could have an effect on the fine-tuning
time is the maximum sequence length. The following plot (figure 12) displays the
boxplots of fine-tuning time grouped by the maximum sequence length, which can
take on the values 128, 256 or 512 in the scope of the analysis.
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Figure 12: Boxplot of fine-tuning time grouped by maximum sequence length

The boxplots show a clear trend which indicates that the larger the maximum
sequence length is, the larger the fine-tuning time is. Next, a more detailed look
at the statistical key figures of the fine-tuning time grouped by the maximum
sequence length is illustrated.

max. seq. len. count mean std min median max
128 96 1620.7 2744.9 40.3 627.2 12611.0
256 96 3020.0 5133.4 73.7 1133.5 20238.7
512 99 6325.7 11336.0 169.2 2314.6 59139.1

Table 7: Descriptive analysis of fine-tuning time by maximum sequence length; max.
seq. len. in table stands for maximum sequence length

Table 7 shows that when doubling the maximum sequence length, the fine-tuning
time also demonstrates an approximately doubled value. Hence, the fine-tuning
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time is the smallest for a maximum sequence length of 128 and the largest for 512,
which indicates a linear effect of the maximum sequence length on the fine-tuning
time.

6.1.4 Comparison across batch size

Another hyperparameter that could have an effect on the fine-tuning time is the
batch size. A visualization of the fine-tuning time grouped by the batch size is
displayed in the following plot.

Figure 13: Boxplot of fine-tuning time grouped by batch size

Having a look at figure 13, the regarded groups do not exhibit any large differences.
Nonetheless, one can see that the median of the fine-tuning time decreases with an
increasing batch size. In the next step, we investigate the fine-tuning time grouped
by batch size in more detail (table 8).
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batch size count mean std min median max
8 97 3793.0 7286.2 64.3 1318.7 43090.0
16 97 3341.0 6447.1 48.0 1135.6 37749.2
32 97 3886.4 9055.7 40.3 1033.9 59139.1

Table 8: Descriptive analysis of fine-tuning time by batch size

Table 8 exhibits a decline of the fine-tuning time median with increasing batch
size. Interesting to note is that this does not apply for the remaining values. The
fine-tuning time mean, for example for a batch size of 16, is the smallest, followed
by the fine-tuning time for a batch size of 8 and 32. Since a larger batch size
results in less batches, which lead to less parameter and learning rate updates and
hence, less calculations, the monitored effect does not match with the intuition.
We would expect to monitor a decline of the fine-tuning time with increasing
batch size.

To further investigate the observed effect, we consider a more detailed table, in
which we grouped the fine-tuning time additionally by the maximum sequence
length. Moreover, we do not include the GLUE tasks MRPC and SST-2 since
the fine-tuning based on these tasks was not performed for all maximum sequence
lengths. Hereby, only the mean, the median and the standard deviation are dis-
played (the count is for each row 23).
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max. seq. length batch size mean std median
128 8 738.9 547.5 614.0

16 563.2 411.5 431.7
32 536.5 454.4 368.4

256 8 1257.0 1002.3 1000.8
16 1269.8 1151.5 815.1
32 1095.4 1018.2 665.2

512 8 3219.4 3467.5 1916.3
16 745.9 2741.0 1542.9
32 3587.6 3107.9 2285.6

Table 9: Descriptive analysis of fine-tuning time by batch size and maximum sequence
length. The tasks MRPC and SST-2 are excluded

When regarding the fine-tuning time median for each batch size per maximum
sequence length, it becomes clear that the median decreases with an increasing
batch size for the maximum sequence length. Having a closer look at the maximum
sequence length 512, we can detect that when applying a batch size of 32, the
highest fine-tuning time median across the different batch sizes appears. The
smallest fine-tuning time median occurs when using a batch size of 16, followed
by the median for a batch size of 8 (for a maximum sequence length of 512).
This effect contradicts the addressed intuition, which can also be observed for the
remaining maximum sequence lengths (128 and 256), namely that the fine-tuning
time decreases with an increasing batch size. This could be attributed to the fact
that with a larger sequence length, the frequency of padding tokens38 increases,
which might lead to a higher convergence time, which then might lead to irritating
effects. However, this is a vague hypothesis which cannot be verified and should
definitely be scrutinized.

38Padding, i.e. adding padding tokens [PAD], is performed by the tokenizers in huggingface
when the actual sequence is shorter than the maximum sequence length. For more insights, see
https://huggingface.co/transformers/main_classes/tokenizer.html
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6.2 Correlation matrix

In the next step, we regard the Pearson correlations between the batch size, the
maximum sequence length, the task size and the fine-tuning time (figure 14).

Figure 14: Correlation plot of fine-tuning time, number of examples per task, maximum
sequence length and batch size

We can see that the correlation between the fine-tuning time and the task size
is, with a positive Pearson correlation of 0.73, the highest among the displayed
correlations. This indicates a strong positive relationship between the fine-tuning
time and the task size. Furthermore, a rather moderate positive correlation can
be detected between the maximum sequence length and the fine-tuning time.
The remaining correlations indicate no or very weak relationships between the
variables. Due to the fact that the model represents a categorical variable, it is
not included in the correlation matrix. To determine if there exists a relationship
between the fine-tuning time and the model, an ANOVA is generated in the
following analysis (section 6.3). This is also carried out for the other variables.
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In summary, we can state that the task size, the maximum sequence length and
model have an effect on the fine-tuning time. The batch size seems to be of
secondary importance. In order to make further investigations, we generate a one-
way ANOVA for each hyperparameter and perform a log-linear regression (section
6.4 and 6.3).

6.3 ANOVA

In the next step, we regard ANOVAs for the fine-tuning time with the respective
hyperparameters as groups. An ANOVA tests if the mean of a metric variable
(here: fine-tuning time) shows significant differences across three or more groups.
Hereby, a test for overall difference is performed, meaning that at least one of
the groups shows statistical difference from the other groups but it does not
tell which group it is. The requirements to actually conduct an ANOVA, being
a normal distribution of the residuals, homoscedasticity and independence of
samples, could not be met39. But since the ANOVAs we present in the following
serve solely as an additional indicator for the effect of hyperparameters on the
fine-tuning time, the violation of the assumptions is regarded as not severe.
Furthermore, the unequal data basis for the respective groups should always be
kept in mind. Hence, the following statements should be taken with a grain of
salt. Due to the fact that we only regard three values for the hyperparameters
batch size and maximum sequence length, respectively, we transform those hyper-
parameters to categorical variables. This enables performing an ANOVA for the
fine-tuning time for each variable, which we analyze in the following in more detail.

First, we have a look at the ANOVA for the fine-tuning time grouped by the GLUE
tasks, which is displayed in table 10.

sum of squares df F PR(>F)
between samples 9.156+09 5 66.742 5.535e-46
within samples 7.820e+09 285 - -

Table 10: ANOVA of fine-tuning time, groups: GLUE tasks

39see appendix section 8 for more details
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The ANOVA shows a significant result. Hence, at least two of the six task groups
(WNLI, RTE, MRPC, STS-B, CoLA and SST-2) differ from each other, i.e. the
fine-tuning time mean shows significant differences for at least two of the tasks.
For a more accurate statement, post-hoc tests need to be performed, which are
skipped since their reliability would be questionable.

The next ANOVA (table 11) regards the fine-tuning time grouped by the models.

sum of squares df F PR(>F)
between samples 6.348e+08 6 1.839 0.0915
within samples 1.634e+10 284 - -

Table 11: ANOVA of fine-tuning time, groups: models

This ANOVA displays a p-value of 0.0915. Depending on how the significance
level is determined, this indicates a significant (if α = 0.1) or not significant
(if α = 0.05) result. The possible non-significance could be attributed to the
unbalanced data which especially occurs when regarding the model groups.
Hence, it is difficult to make a clear statement.

In the next step, we have a look at the ANOVA for the fine-tuning time grouped
by the maximum sequence length.

sum of squares df F PR(>F)
between samples 1.157e+09 2 10.537 0.000038
within samples 1.582e+10 288 - -

Table 12: ANOVA of fine-tuning time, groups: maximum sequence lengths

Table 12 shows a significant result, which means that at least two of the three
groups (128, 256 and 512) significantly differ from each other. Therefore, the
fine-tuning time mean differs for at least two levels of the variable maximum
sequence length.

Lastly, an ANOVA for the fine-tuning time and the batch sizes is examined.
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sum of squares df F PR(>F)
between samples 1.630e+07 2 0.138 0.8708
within samples 1.696e+10 284 - -

Table 13: ANOVA of fine-tuning time, groups: batch sizes

The ANOVA (table 13) shows non-significant results, which leads to the statement
that there is no statistically significant difference in the fine-tuning time mean
for the different levels of batch size (8, 16 and 32). Even though this does not
match the general intuition, as already addressed, it matches the results from the
descriptive analysis of the fine-tuning time.

All in all, we could see that the results match the observations that were made
during the descriptive analysis, namely that the tasks as well as the maximum
sequence length seem to have a large effect on the fine-tuning time. In contradiction
to that, the batch size does not seem to have a high effect on the fine-tuning time.
Lastly, it is difficult to make a statement for the model since we assume that the
disbalance which is present in the data influences the model data in a non-negligible
manner.

6.4 Log-Linear Regression

In the next step, we set up a log-linear regression model as an add-on to the
descriptive analysis. Additional test of the assumptions, which should be met
to perform a linear regression, can be viewed in the appendix, section 8. Not
all assumptions could be met but since this regression serves as an explanatory
basis and the effect size is of main interest, meeting all of the assumptions is of
secondary importance. In the conducted regression, the logarithmic fine-tuning
time is the dependent variable and the hyperparameters are included in the model
as independent variables. The model variables are included as dummy variables
with bert-base-uncased as the reference category. Hence, the interpretations of the
β-coefficients are carried out with respect to this model. The same procedure is
done for the task variable, RTE being the reference category. Furthermore, the hy-
perparameters batch size and maximum sequence length are included in the model.
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As already hinted, the dependent variable fine-tuning time was logarithmized40

due to its right skewed distribution, whereby an approximately normal variable is
aspired. Another goal which is hereby pursued, is to approach linearity between
the independent variables and the dependent variable. When regarding a linear
regression without transforming the variables, the R2 results in 0.659, whereas
the model with the variable transformations leads to an R2 of 0.984. Hence, the
log-linear model is regarded in the following.

In the first step, we examine some key values of the transformed variable in order
to have a better intuition for it.

Transformed variable mean std min median max
log(fine-tuning time) 7.146 1.420 3.696 7.086 10.988

Table 14: Descriptive analysis of log fine-tuning time

The logarithmic fine-tuning time ranges from approximately 3.7 to 11.0 and its
median takes on the approximate value of 7.1.

While keeping in mind that the log-linear regression should not be taken as a face
value, the respective coefficients are regarded.

40all logarithmic transformations in this context refer to the natural logarithms
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variable coeff standard error p-value
Intercept 5.5126 0.045 0.000

model[albert-base-v1] -0.0953 0.036 0.009
model[bert-base-cased] 0.0127 0.050 0.779

model[distilbert-base-cased] -0.7139 0.050 0.000
model[distilbert-base-uncased] -0.6955 0.036 0.000

model[roberta-base] 0.0075 0.036 0.835
model[xlnet-base-cased] 0.9598 0.041 0.000

task[WNLI] -1.3674 0.038 0.000
task[MRPC] 0.3593 0.036 0.000
task[STS-B] 0.8380 0.038 0.000
task[CoLA] 1.2047 0.035 0.000
task[SST-2] 3.2659 0.042 0.000
batch size -0.0041 0.001 0.000

max. sequence length 0.0040 6.86e-05 0.000

Table 15: Log-linear regression model: β-coefficients

Table 15 displays the β-coefficient of the log-linear regression model. The
according p-values of the coefficients should be regarded with caution and are not
necessarily reliable since not all assumptions for conducting a linear regression
could be satisfied. Having a look at the model coefficients, one can see that
xlnet-base-cased has the largest positive effect on the logarithmic fine-tuning time
among the models and compared to the model bert-base-uncased for the task RTE
(c.p.). It can be interpreted in the following manner: The model xlnet-base-cased
results in a fine-tuning time that is approximately exp(0.9589)− 1 = 1.611 times
larger41 than the one of bert-base-uncased for the task RTE, while holding the
other variables constant. The contrary applies when fine-tuning distilbert-base-
cased. It results in a fine-tuning time decrease compared to bert-base-uncased for
RTE (c.p.). More precisely the fine-tuning of distilbert-base-cased on RTE results
in a 1− exp(−0.7139) = 1− 0.4897 = 0.5103 times smaller fine-tuning time than
for bert-base-uncased and RTE (c.p.). The other coefficients can be interpreted
in a similar manner. Interesting to note is that the coefficients for bert-base-cased

41or 0.9589 times larger than the logarithmic time
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and roberta-base take on low values and are not significant, which matches the
observations from the descriptive analysis since these fine-tuning times did not
show a high difference in comparison to bert-base-uncased. Furthermore, we
can see that the only task coefficient with a negative sign is WNLI, which is
reasonable since WNLI contains less examples than RTE. The other tasks all
incorporate more observations than RTE and therefore contribute to a larger
fine-tuning time for bert-base-uncased, in comparison to the GLUE task RTE
(c.p.). The coefficient with the highest value among the task coefficients (and
among all β-coefficients) is the one of SST-2, the largest task in this setting.
Hence, if a fine-tuning bert-base-uncased on the SST-2 task is performed, the
fine-tuning time is approximately exp(3.2659) − 1 = 26.204 times larger than
a fine-tuning of bert-base-uncased performed on RTE (c.p.). Furthermore,
the batch size shows a negative β-coefficient, indicating that when increasing
the batch size by one unit for the fine-tuning of bert-base-uncased on RTE,
the fine-tuning time is about 1 − exp(−0.0041) = 1 − 0.9959 = 0.0041 times
smaller (c.p). When regarding a 32-unit increase (which makes sense in our
case), then the fine-tuning time is about 1 − exp(−0.0041 · 32) = 0.123 = 12.3%
smaller for bert-base-uncased and RTE (c.p.). When increasing the maximum
sequence length by 128 units (which is reasonable with regard to the context), the
fine-tuning time for bert-base-uncased and RTE shows an approximate increase
of about 1− exp(0.004 · 128) = 0.6686 = 66.86% (c.p.).

All in all, we can state that the β-coefficients of the log-linear regression match
the assumptions drawn from the descriptive analysis, namely that the batch size
only has a small effect on the fine-tuning time, whereas the task size as well as
the maximum sequence length play an important role for the fine-tuning time.
The larger the task size is, the higher the fine-tuning time is. The same relation
applies for the maximum sequence length. While some models do not show high
differences in the fine-tuning time (roberta-base, albert-base-v1 and both BERT
model versions), others show high differences (xlnet-base-cased and both Distil-
BERT model versions). We additionally implemented a Random Forest in order
to get an intuition of the variable importance, which displays similar results (see
appendix 8 for more details).
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6.5 Accuracy and fine-tuning time

Lastly, an interesting aspect to examine is the relation between fine-tuning time
and performance measure. In the following, the performance measure accuracy
is regarded which was calculated for the tasks WNLI, RTE, MRPC and SST-2.
For CoLA, Matthews correlation coefficient and for STS-B, the Spearman and
the Pearson correlation coefficient were computed. Since we only have 54 and
45 data points for these measures, respectively, it is hard to make assumptions
on the relation between them and the fine-tuning time. Since the accuracy is
calculated for 192 observations, we regard the relation between the accuracy and
the fine-tuning time in the following (figure 15).

Figure 15: Scatterplot between fine-tuning time and accuracy

The Scatterplot in figure 15 displays a clear trend, namely that the accuracy
increases with higher fine-tuning time. Furthermore, the Pearson correlation be-
tween the fine-tuning time and the accuracy amounts to approximately 0.52, which
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indicates a moderate positive relationship between both. This statements should
be treated with caution since not the fine-tuning time itself but factors like the
model complexity and task size which lead to an increased fine-tuning time could
attribute to this trend. Nonetheless, the displayed trend matches the intuition
that longer training leads to higher accuracy.
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7 Analysis of inference time

The following chapter covers the analysis of inference time. For this, a fine-tuning
of the same large pre-trained language models that were described in section 6.1
was performed. First, a descriptive analysis of the inference time grouped by
the respective hyperparameters, is carried out. Secondly, a correlation matrix
is displayed, followed by ANOVAs, for which the inference time is grouped by
the hyperparameters. The penultimate section consists of a log-linear regression.
Lastly, the relation between the inference time and the accuracy is regarded.

7.1 Descriptive analysis

For this analysis, a fine-tuning based on the tasks WNLI, RTE, MRPC, CoLA,
and STS-B was performed, whereby a fine-tuning of the tasks QNL, QQP and
MNLI failed (like in the analysis of the fine-tuning time), probably due to lack of
RAM. Due to computational costs and temporal limitation of this master’s thesis,
a fine-tuning of the language models based on SST-2 could not be carried out.
The final dataset that we use for further analyses contains 267 observations in
total. The main variable of interest is the inference time. Hereby, the fine-tuning
was not carried out multiple times any more due to the fact that by performing
the fine-tuning one time, inference is carried out multiple times (dependent on the
number of batches) in order to perform an evaluation of the regarded model. The
input size for the evaluation and hence, the inference depends on the regarded
batch size. Consequently, the number of inference times also depends on the
batch size. The smaller the batch size is, the more batches are generated and the
higher the number of performed inferences is. Hence, one then receives a higher
number of measurements for the inference time. The same argument applies for
the task size. A bigger task size creates more batches (assuming one regards
the same batch size) and hence more measurements of the inference time. It
should be noted that the input is based on the development set of the respective
task. For example, when regarding the development set of WNLI which contains
71 observations and applying a batch size of 32 for the evaluation, we receive
approximately 2.22 batches, which result in three batches. The first two batches
contain 32 observations, while the last batch contains 7 observations. The three
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resulting inference times differ mainly due to the different input size. Since the last
batch usually contains less observations, we do not regard the last inference time
and take the minimum of the prior inference times (for one specific hyperparameter
combination). In the following, we analyze the minimum fine-tuning time per
hyperparameter combination. The inference time refers to the minimal inference
time if not stated otherwise.

Figure 16: Boxplot of inference time in seconds

In figure 16, the boxplot of the inference time, measured in seconds, is visualized.
The weld point of the distribution lies between the lower whisker (0.092 42), which
is also the minimum in this case, and the upper whisker (3.832). The median takes
on the value 0.628. The boxplot displays some outliers which reach values up to
the maximum of 27.374. Further important statistical key figures are the mean and
the standard deviation which take on the values 1.974 and 3.734, respectively. A
more detailed table of the ten highest as well as the ten lowest inference times can

42the values are rounded up to three decimals for the inference time
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be found in the appendix (see table 34 and 35). Note that the table with the ten
lowest inference times solely exhibits the model xlnet-base-cased with a maximum
sequence length of 512. Furthermore, the batch size is 32 for the five highest
inference time and later takes on the value 16. On the other hand, the table with
the ten lowest inference times exhibits the two variants of the DistilBERTBASE, a
maximum sequence length of 128 and a batch size that mostly takes on the value
8. Both observations intuitively makes sense and give a first intuition about which
factors might have an impact on the inference time.

Figure 17: Histogram of inference time in seconds

At first glance, we detect a right skewed distribution of the inference time in figure
17. Hereby, the first bin contains 193 observations (out of 267) and hence, most of
the inference times take on values between about 0.092 and 1.456. The second bin,
ranging from 1.456 to 2.820, incorporates 32 observations, followed by the third
bin which contains values up to 4.183 with 15 data points. The remaining bins
contain mostly up to three data points, except for one which contains nine. This

83



7 Analysis of inference time 7.1 Descriptive analysis

underpins the already addressed right skewed distribution. We should keep in
mind that due to computational limitations, more hyperparameter combinations
with higher sequence lengths and batch sizes could not be regarded, which also
partly leads to this distribution.

The same computational problems/limitations that are described in section 6.1
apply here. Due to the fact that a fine-tuning time of the task SST-2 requires a
long computation time, we did not perform a fine-tuning on this task in order to
analyze the inference time. Furthermore, we performed a fine-tuning of XLNet on
CoLA additional to the already described training. This results in a dataset with
267 examples.

7.1.1 Comparison across GLUE tasks

Since the measurement of inference time is incorporated in the prediction loop
function, which is then utilized for the evaluation, a different dataset is regarded
than during the fine-tuning itself, namely the development set of each task. Note
that the respective dataset size is different from the according training data. WNLI
still represents the smallest dataset with a task size of 71 examples, followed by
RTE with 277 examples. MRPC contains 408 sequences, whereby CoLA contains
1,042 and STS-B is the largest dataset in this setting with 1,500 examples.
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In the following graphic, the inference time is grouped by the respective task size
number that corresponds to a specific task. The colors of the boxplots correspond
to the respective tasks.

Figure 18: Boxplot of inference time grouped by number of examples per task

In figure 18, we can see that with a larger task size, the standard deviation of
the inference time decreases. This might stem from the fact that the larger a
task is, the more batches are generated which leads to an increased number of
inference time measurements, making the minimum inference time more stable.
The smallest tasks WNLI and RTE incorporate the largest outliers. Important to
note is the fact that one cannot rely on the accuracy of the decimal points when
measuring time (Python Software Foundation, 2020b) which aggravates concrete
statements about the inference time. This should be kept in mind during the whole
analysis.
In the following table, the inference time grouped by task is investigated in more
detail with the help of various statistical key figures.
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task name task size count mean std min median max
WNLI 71 45 2.684 4.836 0.093 0.691 27.374
RTE 277 63 2.218 4.147 0.095 0.618 26.956
MRPC 408 51 1.791 3.334 0.096 0.649 19.563
CoLA 1500 54 1.491 2.883 0.092 0.564 18.843
STS-B 1042 45 1.810 3.366 0.094 0.653 19.205

Table 16: Descriptive analysis of inference time by tasks

Having a look at the key figures in table 16, we see that the inference time mean
is the largest for the smallest tasks WNLI and RTE which can be attributed
to the large outliers. The standard deviation is higher for smaller batch sizes.
When having a look at the median, this trend cannot be clearly read out, which
aggravates a clear statement about the effect of the task on the inference time.

Since the models albert-base-cased, distilbert-base-cased and bert-base-cased could
not be fine-tuned on some datasets and some maximum sequence lengths (see
section 6.1), we exclude them for the following comparison, which is displayed in
table 17, to enable a fair comparison of the inference time across the GLUE tasks.

task name task size count mean std min median max
WNLI 71 36 2.899 5.278 0.093 0.715 27.374
RTE 277 36 2.855 5.177 0.097 0.726 26.956
MRPC 408 36 2.133 3.904 0.096 0.648 19.563
CoLA 1500 36 2.028 3.692 0.092 0.586 18.843
STS-B 1042 36 2.040 3.718 0.094 0.674 19.205

Table 17: Descriptive analysis of inference time by tasks, without the models albert-
base-cased, distilbert-base-cased and bert-base-cased

Table 17 exhibits that the task size appears to not necessarily have an effect on
the inference time, which makes sense because the input size depends on the batch
size and not on the task size since the examples are split into batches (of a certain
size). RTE shows the highest inference time median, whereby CoLA incorporates
the smallest inference time median. In summary, it can be said that no clear
pattern can be detected at first glance.
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7.1.2 Comparison across large pre-trained LMs

An important aspect influencing the inference time could be the choice of the
model. Note that the measuring of inference time is performed on models which
were fine-tuned beforehand on the different GLUE tasks. The following figure
visualizes the inference time grouped by model.

Figure 19: Boxplot of inference time grouped by models

Figure 19 displays a large inference time with a large standard deviation of xlnet-
base-cased compared to the other models. The two versions of the DistilBERTBASE

model show the smallest values for the inference time with the smallest standard
deviation. Table 18 demonstrates the respective key figures in more detail.
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model count mean std min median max
distilbert-base-cased 21 0.565 0.586 0.092 0.297 2.465

distilbert-base-uncased 45 0.561 0.636 0.092 0.287 3.062
albert-base-v1 45 1.238 1.616 0.182 0.633 7.570
bert-base-cased 21 1.387 1.529 0.181 0.658 6.643

bert-base-uncased 45 1.342 1.548 0.183 0.631 7.027
roberta-base 45 1.351 1.610 0.183 0.648 7.433

xlnet-base-cased 45 6.310 7.164 0.331 3.474 27.374

Table 18: Descriptive analysis of fine-tuning time by model

At first glance, we see that in comparison to the other models, both versions of
the DistilBERTBASE model illustrate small inference times, whereas XLNetBASE

incorporates large values. The inference times of the BERTBASE models, the ones
of albert-base-v1 and roberta-base, are all situated in a similar value range. We
made a similar observation during the analysis of the fine-tuning time and state
that the use of XLNet leads to rather high inference times, whereas applying
DistilBERT results in rather low inference times.

To enable a fair comparison of the inference time for the cased model versions of
BERT and DistilBERT with their respective uncased versions, we solely regard the
models on the tasks RTE and CoLA, which result in a count of 18 observations.

model count mean std min median max
distilbert-base-cased 18 0.540 0.609 0.092 0.279 2.465

distilbert-base-uncased 18 0.616 0.740 0.092 0.319 3.062
bert-base-cased 18 1.366 1.627 0.181 0.622 6.643

bert-base-uncased 18 1.416 1.650 0.183 0.618 6.800

Table 19: Descriptive analysis of fine-tuning time by model for RTE and CoLA

Table 19 shows that the statistical key figures of the uncased version of
DistilBERTBASE regarding the inference time are higher than the ones of the cased
version. The same can be stated for BERTBASE, except for the median. Nonethe-
less, the differences (especially regarding the median) are little, which is why they
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could also be attributed to measurement instabilities. This leads to the assump-
tion that (as for the fine-tuning time) it makes litte difference whether we use the
case or the uncased version.

7.1.3 Comparison across maximum sequence length

In the next step, we have a look at the inference time grouped by the maximum
sequence length. This is visualized in the following figure (figure 20).

Figure 20: Boxplot of inference time grouped by maximum sequence length

The visualization exhibits a clear connection between the maximum sequence
length and the inference time. This intuitively makes sense. The larger the se-
quences are (the more tokens they contain), the more there is to process during
inference, which leads to a larger inference time. A more detailed view is repre-
sented below.
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maximum sequence length count mean std min median max
128 87 0.458 0.517 0.092 0.322 2.769
256 87 1.242 1.553 0.150 0.616 9.252
512 93 4.078 5.537 0.287 1.751 27.375

Table 20: Descriptive analysis of fine-tuning time by batch size

This table underlines the statements above since all key figures of the inference
time increase with a higher maximum sequence length. A doubling of the
maximum sequence length 128 leads to an approximate doubling of the inference
time median. Note that increasing the maximum sequence length from 256 to
512 results in statistical key figure of inference time that are even higher than the
doubled value of their predecessors, e.g. the inference time mean in now more
than three times higher.

In order to carry out a fair comparison across different maximum sequence lengths,
we regard all values, except for the ones of the task MRPC since a fine-tuning of
distilbert-base-cased and bert-base-cased failed for the maximum sequence lengths
128 and 256. This can be viewed in the following table.

maximum sequence length count mean std min median max
128 72 0.458 0.532 0.0915 0.316 2.769
256 72 1.174 1.35 0.150 0.601 5.581
512 72 4.422 5.764 0.287 2.161 27.374

Table 21: Descriptive analysis of inference time by maximum sequence length, excluding
MRPC

Table 21 shows that the larger the maximum sequence length is, the higher the
inference time is. The more tokens a sequence incorporates, the more there is to
analyze, which results in a higher inference time. The observations stated above
are exhibited even more in this table, which speaks for a clear connection between
the inference time and the maximum sequence lenght.
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7.1.4 Comparison across batch size

Finally, the inference time grouped by batch size is visualized in the following plot.

Figure 21: Boxplot of inference time grouped by batch size

Graphic 21 exhibits a clear trend, indicating that the batch size has a large effect
on the inference time. A higher batch size results in a higher inference time. For a
more in depth investigation of this statement, we examine the according statistical
key figures in the following table.

batch size count mean std min median max
8 89 0.854 1.706 0.092 0.319 8.347
16 89 1.729 3.022 0.144 0.608 15.804
32 89 3.340 5.185 0.249 1.942 27.374

Table 22: Descriptive analysis of fine-tuning time by model
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Note that a larger batch size means that the model evaluation is based on a
larger input size, e.g. a batch size of 8 contains 8 sequences for which inference
is performed. A clear effect can be seen in figure 21 and table 22, indicating that
the inference time increases with larger batch sizes since all statistical key figures
show this pattern. Having a look at the respective inference median one can see
that the inference mean for batch size 16 is approximately twice as high as the one
for batch size 8. The median inference time for a batch size of 32 is about three
times larger than the one for batch size 16.

7.2 Correlation matrix

In the next step, we have a look at the Person correlations. The following corre-
lation plot (figure 22) shows the Pearson correlation between the batch size, the
sequence length, the task size and the inference time.

Figure 22: Correlation plot of inference time, number of examples per task, maximum
sequence length and batch size
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The correlation between the inference time and the sequence length takes on the
highest value (0.42) among the presented correlations. This indicates a moderate
positive relationship between both variables. Furthermore, we detect a positive
moderate to small correlation between the inference time and the batch size. All
other correlations are either zero or take on very low values. Since calculating
correlations on categorical variables is not possible, the variable model is not
displayed in this correlation matrix. To determine if there is a relationship
between this variable and the inference time, we perform a one-way ANOVA in
the following (section 7.3). This analysis is also performed for the other variables.

After carrying out the descriptive analysis for the inference time, we can state that
the hyperparameters batch size and maximum sequence length have the largest
influence on the inference time. While the choice of the model also has an effect
on the inference time, the task itself seems to be of secondary importance. In
order to further investigate these effects, an ANOVA and a log-linear regression
are calculated in the following. These represent an add-on to the descriptive
analysis and should not be taken at face value since not all of the assumptions
for conducting ANOVAs and the log-linear regression, respectively, could not be
met43.

7.3 ANOVA

In the first step, an ANOVA of inference time grouped by the tasks (WNLI, RTE,
MRPC, STS-B and CoLA) is regarded (table 23).

sum of squares df F PR(>F)
between samples 44.057 4 0.787 0.534
within samples 3664.997 262 - -

Table 23: ANOVA of inference time, groups: GLUE tasks

This ANOVA shows non-significant results, which leads to the conclusion that no
significant differences in the inference time mean can be detected for the different

43The test of the assumptions for performing a linear regression and an ANOVA, respectively,
can be found in the appendix, section 8 and 8, respectively
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tasks. This matches the findings of the descriptive analysis since clear trends
could not be detected.

The next ANOVA regards the inference time grouped by the models.

sum of squares df F PR(>F)
between samples 1044.694 6 16.991 1.500e-16
within samples 2664.359 260 - -

Table 24: ANOVA of inference time, groups: models

This ANOVA (table 24) exhibits significant results, which indicate a difference in
the inference time mean between at least two of the seven models (the respective
cased and uncased versions of BERTBASE and DistilBERTBASE, albert-base-v1,
roberta-base and xlnet-base-cased). To investigate concretely which groups differ
from each other, post-hoc tests need to be performed, which are not carried out in
this analysis since already the expressiveness of the ANOVAs should be scrutinized.

The following table displays an ANOVA of inference time grouped by the maximum
sequence length.

sum of squares df F PR(>F)
between samples 658.221 2 28.479 6.317e-12
within samples 3050.832 264 - -

Table 25: ANOVA of inference time, groups: maximum sequence lengths

The displayed ANOVA (table 25) exhibits significant results. Hence, the means
of the inference time differ significantly for at least two of the three maximum
sequence lengths (128, 256 and 512).
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Lastly, the inference time grouped by batch size is examined.

sum of squares df F PR(>F)
between samples 282.980 2 10.903 0.000028
within samples 3426.07 264 - -

Table 26: ANOVA of inference time, groups: batch sizes

The ANOVA (table 26), which shows the inference time with respect to the batch
sizes, points out a significant p-value. Consequently, we can make the statement
that the inference time means differ significantly at least for two of the three batch
sizes (8, 16 and 32). Interesting to note is the fact that in comparison to the p-
values of the two prior ANOVAs, this p-value is larger, which could be attributed
to the fact that the distances between the batch sizes themselves are not very
large.

7.4 Log-Linear Regression

In the present section a log-linear regression with the logarithmized inference
time as the target variable is regarded as an add-on to the descriptive analysis.
This regression is very similar to the one introduced in section 6.4, with the only
exception that a different target variable, namely the logarithmized inference
time, is regarded.
Similar to the log-linear regression that we carried out for the fine-tuning time,
the target variable inference time was logarithmized44. We performed this
transformation for the same reasons, namely, to ensure linearity and approach
normality. When comparing a linear regression in which the inference time was
not logarithmized with this log-linear regression, we can detect that the log-linear
regression exhibits a better performance (R2 = 0.553 vs R2 = 0.920). Hence, we
elucidate the log-linear regression in the following.

44all logarithmic transformations in this context refer to the natural logarithm
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Before having a look at the β-coefficients of the log-linear regression, we regard
the statistical key values of the transformed variables (table 27).

Transformed variable mean std min median max
log(inference time) -0.206 1.240 -2.391 -0.465 3.310

Table 27: Descriptive analysis of log inference time

Since taking the log of values between 0 and 1 results in negative values and
the inference time exhibits many values within this range, some statistical
figures take on negative values. The logarithmized inference time ranges from
approximately -0.47 to 3.31 and its median takes on the approximate value of -0.46.

Keeping in mind that the log-linear regression serves as an add-on, the β-
coefficients are examined in the following (table 28).

variable coeff standard error p-value
Intercept -2.6125 0.089 0.000

model[albert-base-v1] -0.0795 0.076 0.295
model[bert-base-cased] -0.0824 0.098 0.400

model[distilbert-base-cased] -0.9253 0.098 0.000
model[distilbert-base-uncased] -0.8215 0.076 0.000

model[roberta-base] 0.0037 0.076 0.961
model[xlnet-base-cased] 1.2977 0.076 0.000

task[WNLI] 0.0104 0.073 0.886
task[MRPC] -0.2899 0.069 0.000
task[CoLA] -0.2377 0.064 0.000
task[STS-B] -0.2560 0.073 0.000
batch size 0.0585 0.002 0.000

max. sequence length 0.0049 0.000 0.000

Table 28: Log-linear regression model: β-coefficients

Table 28 exhibits the respective β-coefficients of the log-linear regression. As
in section 6.4 already noted, the respective p-values should be regarded with
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caution since not all assumptions for conducting a linear regression could be
satisfied. The model reference category is bert-base-uncased and the task reference
category is RTE. When regarding the β-coefficients of the models, we can see
that xlnet-base-cased has the largest positive effect on the logarithmic inference
time among all models, compared to the inference time bert-base-uncased on
RTE (c.p.). More precisely, when fine-tuning the xlnet-base-cased on the task
RTE, the inference time is about exp(1.2977) − 1 = 3.6609 − 1 = 2.6609 times
larger than the one of bert-base-uncased and RTE (c.p.). Furthermore, the model
distilbert-base-cased for example has the opposite effect on the inference time
(c.p.). When applying distilbert-base-cased on RTE, the inference time is about
1 − exp(−0.9253) = 0.6036 times smaller than the one of bert-base-uncased
fine-tuned on RTE (c.p.). The other model coefficients can be interpreted in a
similar manner. Furthermore, it is interesting to note that the β-coefficients of
albert-base-v1, bert-base-cased and roberta-base take on smaller values compared
to the other model β-coefficients and are not significant (although the significance
should be regarded with caution). This matches the observations made in the
descriptive analysis since the inference times of these models do not differ much in
general and in comparison to bert-base-uncased. When having a look at the task
β-coefficients, it becomes clear that the task size does not have an impact on the
inference time (as already observed in the descriptive analysis and the ANOVA).
While the task WNLI - the one with the smallest task size - has an increasing effect
on the inference time for bert-base-uncased compared to the task RTE (c.p.)45,
the other tasks exhibit negative coefficients, which indicate a decrease in inference
time for bert-base-uncased compared to RTE (c.p.). A clear trend is hereby
difficult to distinguish. When increasing the batch size by eight units (which is
reasonable in this context), the inference time is exp(0.0585 · 8) − 1 = 0.5967
times larger for bert-base-cased and RTE (c.p.). Having a look at the effect of the
maximum sequence length, one can detect that increasing the maximum sequence
length by 128 leads to a exp(0.0049 · 128) − 1 = 0.8724 larger inference time for
bert-base-uncased and RTE, while holding the other coefficients constant.

All in all, the observations made during the analysis of the log-linear regression
45attention: the impact is not significant
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match the observations which result from the descriptive analysis of the inference
time. More precisely, the maximum sequence length and the batch size play an
important role for the inference time. With a larger maximum sequence length as
well as batch size, the inference time shows an increase. Depending on which model
is regarded, the model could also have an effect on the inference time (e.g. xlnet-
base-cased and both DistilBERT model versions). Moreover, we implemented a
Random Forest, which indicates that the variable maximum sequence length is the
most important variable among the regarded variables, followed by the model and
the batch size. The task exhibits the lowest variable importance (see appendix 8
for more details).

7.5 Accuracy and inference time

Furthermore, an interesting aspect to examine is the relation between the inference
time and the performance measure. In the following, we present the performance
measure accuracy, which was calculated for the tasks WNLI, RTE and MRPC.
For CoLA, Matthews correlation coefficient and for STS-B the Spearman and the
Pearson correlation coefficient were computed. Since we only have 63 and 45 data
points for these measures, respectively, it is hard to make assumptions for the
relation between them and the inference time. Since the accuracy is calculated for
159 observations, we regard the relation between the accuracy and the inference
time in the following figure.
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Figure 23: Scatterplot between inference time and accuracy

Note that, in contrary to the relation between fine-tuning time and the accuracy,
no clear trend can be seen in this scatterplot (figure 23). The pattern seems rather
random and the Pearson correlation between both variables amounts to -9.99e-4,
which indicates that there is no relationship between both.

7.6 Comparison to the results by huggingface

A direct comparison of our results and the ones from the benchmark study by
huggingface is not possible since we integrate other models into our analysis than
huggingface. More precisely, we take the pre-trained LMs which were fine-tuned
on GLUE tasks into consideration, whereas the models regarded in the benchmark
study by huggingface are fine-tuned on SQuAD v2. Furthermore, the BERT model
displayed in table 29 and 30 incorporates L = 10 layers (i.e. Transformer blocks)
and a hidden size of H = 512, which represents a smaller architecture than the one
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of BERTBASE. Nonetheless, it is interesting to have a look at the results of their
study, which are displayed in table 29 and 3046 and draw a comparison between
the observed trends.

model name batch size seq length time in s
aodiniz/bert_uncased_L-10_H-51 256 8 0.033
aodiniz/bert_uncased_L-10_H-51 256 32 0.119
aodiniz/bert_uncased_L-10_H-51 256 128 0.457
aodiniz/bert_uncased_L-10_H-51 256 512 2.21

deepset/roberta-base-squad2 256 8 0.064
deepset/roberta-base-squad2 256 32 0.25
deepset/roberta-base-squad2 256 128 1.01
deepset/roberta-base-squad2 256 512 4.65

Table 29: Inference speed results by huggingface with varying sequence lengths, https:
//github.com/huggingface/transformers/blob/master/notebooks/05-benchmark.ipynb

The table displays that when holding the hyperparameters constant,
RoBERTaBASE shows higher inference time than the BERT model. This trend
could not be detected in our analysis, which could be attributed to the fact that
the BERT architecture in our analysis is larger that the one that is regarded by
huggingface. Furthermore, the inference time increases with increasing sequence
length. Not only the same trend could be detected in our analysis, but the re-
trieved inference times take on values which lie in a similar value range. Hence,
this table helps verifying the findings of the inference time analysis in chapter 7.1.

model name batch size seq length time in s
aodiniz/bert_uncased_L-10_H-51 8 512 0.056
aodiniz/bert_uncased_L-10_H-51 64 512 0.402
aodiniz/bert_uncased_L-10_H-51 256 512 1.591

Table 30: Inference speed results by huggingface with varying batch sizes, https://github.
com/huggingface/transformers/blob/master/notebooks/05-benchmark.ipynb

46The benchmark study can be viewed at https://github.com/huggingface/transformers/blob/
master/notebooks/05-benchmark.ipynb; following their notation, the name of the BERT model
is shortened in both tables and stands for "aodiniz/bert_uncased_L-10_H-512_A-8_cord19-
200616_squad2"
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Table 30 displays an increase of the inference time, when enlarging the batch size
for the BERTmodel. This trend can also be seen in our analysis (section 7.1 to 7.4).

Consequently, both observations, namely that the inference time increases with
larger maximum sequence length and with an increase of the batch size, could be
seen in both analysis, which verifies our hypotheses made in section 7.1 to 7.4.
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8 Conclusion and Outlook

The main goal of this scientific work is the measurement and exploration of
fine-tuning and inference time of large pre-trained LMs. In order to conduct
an analysis of these, different hyperparameter combinations were regarded,
including the hyperparameters maximum sequence length and batch size. We
fine-tuned a wide range of pre-trained LMs based on numerous GLUE tasks.
Subsequently, we analyzed the resulting fine-tuning and inference times across
the regarded variables and underlined the effects by integrating ANOVAs and
log-linear regression models. Moreover the relation between the accuracy and the
fine-tuning time was regarded. For the inference time, we further compared our
results to the benchmark study from huggingface.
The performed analyses show that the task itself, or better the task size, has
the largest effect on the fine-tuning time. The larger the task is, the higher the
fine-tuning time is. While the batch size appears to only have a small effect on
the fine-tuning time, the effect it has on the inference time is shown to be large.
Furthermore, the maximum sequence length is shows to have an effect on the
fine-tuning time and the inference time, respectively. The cased model version
of XLNetBASE exhibits the largest fine-tuning times. Applying RoBERTaBASE,
both versions of BERTBASE and the light version of BERT, namely ALBERTBASE

results in inference times which lie in a similar value range, respectively. The
same statement holds for the fine-tuning time when applying RoBERTaBASE and
both versions of BERTBASE, followed by a slightly lower fine-tuning time for
ALBERTBASE. As Sanh et al. (2020) noted, DistilBERTBASE incorporates about
40% less parameters than BERTBASE, which causes a much lower fine-tuning and
inference times.

Since the effect of the batch size on the fine-tuning time that we detected in
our analysis does not follow the general intuition, it should be further analyzed.
Hereby, a larger value range, for example the existing sweep plus the values {64,
128, 256, 512} could be regarded. Moreover, the hyperparamters epoch, taking
on the recommended values from Devlin et al. (2019) in the range of {2,3,4} and
learning rates, taking on the values {1e-5, 2e-5, 3e-5, 5e-5} (just like in table 1),
could be included in the sweep.
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Furthermore, all runs that crashed due to technical limitations, such as lack of
RAM (which probably occurred when fine-tuning of QNLI, QQP and MNLI),
should be performed. Hereby, the usage of a more "powerful" GPU with more
RAM should be considered. The fine-tuning for the cased version of BERTBASE

and DistilBERTBASE could not be performed, presumably due to a bug. Since this
bug might be fixed in a newer version of the transformers package of huggingface
(Wolf et al., 2019), it should be used for further analyses. Furthermore, it is inter-
esting to note that when we fine-tuned WNLI on those models with a maximum
sequence length of 64 and 80, the fine-tuning succeeded. Hence, a different value
range for the maximum sequence length could be considered. Moreover, to enable
a more exhaustive research, multiple GPUs with more RAM could be used.
To distinguish if the task type has an effect on the fine-tuning and inference time,
an analysis with a constant task size across the different tasks could be performed.
This could also be done the other way around, namely by changing the task size
while keeping the task type constant (or performing the fine-tuning on the same
task with different task sizes).
Since the research was only performed based on PyTorch, it would be interesting
to distinguish if the usage of TensorFlow would result in different fine-tuning and
inference times. A comparison of inference times on CPU and GPU for PyTorch
and TensorFlow was already carried out by huggingface47. Nonetheless, no such
research exists for language models which were fine-tuned on GLUE tasks. More-
over, to our knowledge, an investigation of the fine-tuning time was not performed
up to this point of time.
Note that due to computational limitations caused by the usage of one GPU and
the computationally expensive architecture of large pre-trained LMs, this analysis
reaches its limits. Generally speaking, a more exhaustive analysis should be per-
formed in order to be able to make more concrete statements about the effect size
of the different parameters on the fine-tuning and inference time. Furthermore,
more time measurements, especially for the measurement of fine-tuning time could
be performed in order to receive more stable results. Hence, there is still much po-
tential for future work. Moreover, this master’s thesis shows that some language
models, especially XLNetBASE, but also RoBERTaBASE and BERTBASE exhibit

47For more details, see https://medium.com/huggingface/benchmarking-transformers-
pytorch-and-tensorflow-e2917fb891c2

103

https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2
https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2
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large fine-tuning times. This applies especially for fine-tuning those LMs on large
datasets, as is common in NLP to achieve good performance values. With this
statement, we underline the fact that there is still much potential to improve the
computational costs of pre-trained LMs in terms of training times, but also memory
and invest more in researching both issues. With further pursuing the conducted
analysis of fine-tuning and inference time of LMs, the main origins for higher val-
ues (i.e. specific hyperparameter combinations) of both could be discovered and
concrete recommendations could be made.
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Appendix

Subword tokenization methods

Large pre-trained language models make use of several subword tokenizers, which
contain two elements, namely, the generation of a vocabulary construction and
the tokenization. During the vocabulary construction procedure a text corpus
is taken as an input and a new vocabulary of a desired size is produced. The
new vocabulary is then applied to new text during the tokenization procedure,
resulting in a sequence of tokens (Bostrom et al., 2020).

Note that BERT uses the WordPiece method (Schuster et al., 2012). RoBERTA
and DistilBERT apply the BPE method (Gage, 1994; Sennrich et al., 2016) over
raw bytes. XLNET and ALBERT apply the SentencePiece tokenizer.

BPE can be described as a simple data compression algorithm implemented by
Philip Gage, where a replacing of the most common pairs of consecutive bytes in
the data with a single byte not included in the data is performed (Gage, 1994).
Sennrich et al. (2016) adjust the BPE for the segmentation of words. Hereby,
the authors regard character or character sequences instead of bytes. In the first
step, each word is represented by a sequence of characters with an end-of-word
symbol ".". The authors perform an iterative counting of all symbol pairs with a
subsequent merging of the most common pairs, whereby each merging results in
a new symbol (a character n-gram). This results in a symbol vocabulary of a size
that resembles the initial vocabulary with addition of the merge operations. As
the desired size represents a hyperparameter, it can be defined by the user48.

The WordPiece model (WPM) deals with the generation of a vocabulary which
includes individual characters, subwords as well as words. Words that are not
included in the vocabulary are split into the largest possible subwords. Therefore,
these words do not need to be treated in any special way, e.g. out-of-word-tokens,
which leads to an improved accuracy (McCormick et al., 2019b; Wu et al., 2016;
Schuster et al., 2012). The WordPiece model represents a language-modeling

48For a more detailed explanation plus pseudo-code, see Sennrich et al. (2016)
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based variant of BPE, where "each potential merge is scored based on the
likelihood of an n-gram language model trained on a version of the corpus
incorporating that merge" (Bostrom et al., 2020).49

SentencePiece is a "language-independent subword tokenizer and detokenizer de-
signed for Neural-based text processing" (Kudo et al., 2018, p. 1). This tokenizer
has the ability to train subword models from raw sentences, without any prior
tokenization into word sequences, whereas the creation of a language independent
end-to-end system is possible. Furthermore, it contains the BPE (Sennrich et al.,
2016 and the unigram language model (Kudo, 2018). In contrast to both methods,
SentecePiece can perform a training from raw text data (Kudo et al., 2018)50.

Fine-tuning time

Ten highest fine-tuning times

The following table displays the ten highest fine-tuning times.

task model seq. len. b.s. f. time acc
SST-2 bert-base-cased 512 32 59139.1 0.92
SST-2 roberta-base 512 32 59108.7 0.94
SST-2 bert-base-uncased 512 8 43090.0 0.92
SST-2 roberta-base 512 8 42174.8 0.94
SST-2 roberta-base 512 16 37749.2 0.93
SST-2 bert-base-uncased 512 16 37449.8 0.91
SST-2 distilbert-base-uncased 512 32 26147.2 0.90
SST-2 distilbert-base-uncased 512 8 20886.2 0.89
SST-2 roberta-base 256 8 20238.7 0.93
SST-2 bert-base-uncased 256 16 19283.4 0.92

Table 31: Ten highest fine-tuning times; b.s. stands for batch size, seq. len. for maximum
sequence length, f. time for fine-tuning time and acc. for accuracy

49For a more detailed explanation plus pseudo-code, see Schuster et al., 2012 and Bostrom
et al., 2020

50For a more detailed explanation plus pseudo-code, see Kudo et al., 2018
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Ten lowest fine-tuning times

The following table displays the ten lowest fine-tuning times.

task model seq. len. b.s. f. time acc
WNLI distilbert-base-uncased 128 32 40.3 0.41
WNLI distilbert-base-uncased 128 16 48.0 0.48
WNLI distilbert-base-uncased 128 8 64.3 0.42
WNLI distilbert-base-uncased 256 32 73.7 0.42
WNLI albert-base-v1 128 32 75.50 0.4
WNLI bert-base-uncased 128 32 79.5 0.48
WNLI roberta-base 128 32 79.6 0.52
WNLI albert-base-v1 128 16 86.5 0.46
WNLI distilbert-base-uncased 256 16 90.2 0.39
WNLI roberta-base 128 16 92.1 0.56

Table 32: Ten lowest fine-tuning times; b.s. stands for batch size, seq. len. for maximum
sequence length, f. time for fine-tuning time and acc. for accuracy

Check ANOVA assumptions

In order to conduct an ANOVA some assumptions have to be met. These are
elaborated in the following.

Since the measurement of fine-tuning time is performed separately for each
regarded hyperparameter combination for different models and on different GLUE
tasks, they do not depend on the prior or later trainings. Hence, we assume that
the regarded time measurements do not depend on each other. Nonetheless, this
assumption follows a general logic and cannot be verified or rejected with certainty.

The residuals have to follow a normal distribution. This can be tested by per-
forming the Shapiro-Wilk test. The null-hypothesis assumes that the data (here:
the residuals) is drawn from a normal distribution. For all ANOVAs that were
carried out, this test results in small p-values (5.28e-27, 1.26e-28, 9.14e-27 and
1.56e-26). Hence, we reject the null-hypothesis to a significance level of 0.05 and a
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normal distribution for the residuals cannot be assumed. Note that the test does
not exhibit a high power if small data sizes are regarded (Bedre, 2018). Hence,
we have a look at the according Q-Q-plot to gain a better understanding about
whether the groups exhibit a normal distribution or not.

Figure 24: Q-Q plot for fine-tuning time grouped by task

Figure 25: Q-Q plot for fine-tuning time grouped by model
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Figure 26: Q-Q plot for the fine-tuning time grouped by maximum sequence length

Figure 27: Q-Q plot for the fine-tuning time grouped by batch size

All Q-Q plots indicate a non-normal distribution of the respective residuals, which
leads to the conclusion that the assumption about the normal distribution cannot
be met.
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In order to check if the assumption of the homogeneity of variances can be met,
we carry out Levene’s test since this test can be conducted if the data is not drawn
from a normal distribution (Bedre, 2018). The null-hypothesis states that samples
from populations have equal variances. The test results in very small p-values
for the maximum sequence length and the task (0.0009 and 4.250e-24). Hence,
we reject the null hypothesis to a significance level of 0.05 for both variables.
Consequently, the homogeneity of variances cannot be assumed. The test results
in a p-value of 0.867 for the batch size, which is why the null hypothesis cannot
be rejected to a significance level of 0.05, indicating that homogeneity of variances
can be assumed. For the model, Levene’s test results in a p-value of 0.085.
Depending on the significance level (e.g. 0.05 or 0.1), the null hypothesis of
homogeneity of variances can either be rejected or not.

All in all, the tests should be regarded with caution since not only the between
group independence should be questioned, but the respective groups do not al-
ways incorporate the same number of examples and are therefore not balanced.
Since some assumptions could not be met, the values resulting from the conducted
ANOVAs should be regarded with caution.

Check assumptions for linear regression

In order to conduct a linear regression, following five assumptions have to be
fulfilled:

• Linear relationship

• Multivariate normality

• No or little multicollinearity

• No autocorrelation

• Homoscedasticity

Since the model and the task are included as dummy variables in the log-linear
regression, they meet the linearity assumption. Since the variables maximum
sequence length and batch size only include three values and no clear trend could
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be detected, we can also assume linearity.

To further check the normality assumptions, we display a Q-Q plot of the residuals.

Figure 28: Q-Q plot for the residuals of the log-linear regression for log. fine-tuning time

Having a look at figure 27, we can see that the normality assumption can be met.
This is probably caused by taking the logarithm of the fine-tuning time.
We have a look at condition number51 to distinguish if multicollinearity is present
in the data. Since this number takes on a high value (2.51e+03), multicollinearity
might be present and hence, the assumption cannot be met.
In order to ascertain if autocorrelation of lag 1 of the error terms is present, we
conduct a Durbin-Watson test. The null hypothesis is that no autocorrelation is
present in the data. If the test statistic takes on a value of 2 and since in our case
it amounts to 1.821, no problems with autocorrelation should occur (Wikipedia,
the free encyclopedia, 2020c). Note that this statement only follows a rule of
thumb.
To test if homoscedasticity is present, we conduct a Breusch-Pagan test. The null

51The condition number "measures the sensitivity of a function’s output as compared to its
input [...]. When we have multicollinearity, we can expect much higher fluctuations to small
changes in the data, hence, we hope to see a relatively small number, something below 30."
(McCarty, 2018)
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hypothesis is that homoskedasticity is present (Wikipedia, the free encyclopedia,
2020b). In our case the p-value is 1.363e-7. Hence, we can reject the null
hypothesis and therefore homocedasticity of the residuals. Hence, the fifth
assumption can be fulfilled in our case.

Due to the fact that not all assumptions for conducting a linear regression could
be met, the conducted log-linear regression should be regarded with a grain of salt.

Random Forest Regression - Variable importance

In order to get better insights about the variable importance of variables which
could influence the logarithmic fine-tuning time, we perform a Random Forest
Regression, in which the logarithmic fine-tuning time is the dependent variable and
the remaining variables are the independent ones. The following table displays the
respective variable importances. Hereby, it should be noted that the categorical
variables task and model were encoded in order to perform this analysis.

Variable Variable Importance
task 0.656

max. sequence length 0.233
model 0.096

batch size 0.015

Table 33: Random Forest Regression for log. fine-tuning time: Variable Importance
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Inference time

Ten highest inference times

The following table displays the ten highest inference times.

task model seq. len. b.s. inf. time acc spear mcc
WNLI xlnet-base-cased 512 32 27.37 0.56 - -
RTE xlnet-base-cased 512 32 26.96 0.57 - -
MRPC xlnet-base-cased 512 32 19.56 0.81 - -
STS-B xlnet-base-cased 512 32 19.21 - 0.83 -
CoLA xlnet-base-cased 512 32 18.84 - - 0
WNLI xlnet-base-cased 512 16 15.80 0.56 - -
RTE xlnet-base-cased 512 16 15.45 0.57 - -
CoLA xlnet-base-cased 512 16 11.72 - - 0
STS-B xlnet-base-cased 512 16 11.42 - 0.83 -
MRPC xlnet-base-cased 512 16 11.17 0.81 - -

Table 34: Ten highest inference times; b.s. stands for batch size, seq. len. for maximum
sequence length, inf. time for inference time and acc. for accuracy; spear for Spearman
correlation coefficient and mcc for Matthews correlation coefficient
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Ten lowest inference times

The following table displays the ten lowest inference times.

task model seq. len. b.s. inf. time acc spear mcc
CoLA distilbert-base-cased 128 8 0.0915 - - 0.23
CoLA distilbert-base-uncased 128 8 0.092 - - 0
WNLI distilbert-base-uncased 128 8 0.093 0.38 - -
STS-B distilbert-base-uncased 128 8 0.094 - 0.84 -
RTE distilbert-base-cased 128 8 0.095 0.54 - -
MRPC distilbert-base-uncased 128 8 0.096 0.71 - -
RTE distilbert-base-uncased 128 8 0.097 0.57 - -
CoLA distilbert-base-uncased 128 16 0.144 - - 0
STS-B distilbert-base-uncased 128 16 0.146 - 0.84 -
CoLA distilbert-base-cased 128 16 0.147 - - 0.23

Table 35: Ten lowest inference times; b.s. stands for batch size, seq. len. for maximum
sequence length, inf. time for inference time and acc. for accuracy; spear for Spearman
correlation coefficient and mcc for Matthews correlation coefficient

Note that in both tables (34 and 35), the Matthews correlation coefficient takes
on the value 0 in some cases. This might indicate that the performance could
not be measured properly. Nonetheless, this data is used in the analysis since
the inference times take on reasonable values and the failure of measuring the
performance is not an indicator for an inference time measurement failure.

Check ANOVA assumptions

In order to conduct an ANOVA some assumptions have to be met. These are
elaborated in the following.

Since the measurement of inference time is performed separately for each regarded
hyperparameter combination for different models and on different GLUE tasks,
they do not depend on the prior or later trainings. Hence, we assume that the
regarded time measurements do not depend on each other. Nonetheless, this
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assumption follows a general logic and cannot be verified or rejected with certainty.

The residuals have to follow a normal distribution. As stated before, when checking
the ANOVA assumptions for the fine-tuning time (see 8), an appropriate test to
check this assumption is the Shapiro-Wilk test. For all ANOVAs that were carried
out, this test results in small p-values (1.054e-23, 1.300e-25, 2.914e-22 and 3.383e-
26). Hence, we reject the null-hypothesis to a significance level of 0.05 and a
normal distribution for the residuals cannot be assumed. Due to the low power of
the test for small datasets, we further regard the according Q-Q-plot.

Figure 29: Q-Q plot for inference time grouped by task
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Figure 30: Q-Q plot for inference time grouped by model

Figure 31: Q-Q plot for the inference time grouped by maximum sequence length
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Figure 32: Q-Q plot for the inference time grouped by batch size

All Q-Q plots indicate a non-normal distribution of the respective residuals, which
leads to the conclusion that the assumption about the normal distribution cannot
be met.

In order to check if the assumption of the homogeneity of variances can be
met, we carry out Levene’s test (just as in section 8 in the appendix). The
null-hypothesis states that samples from populations have equal variances. The
test results in very small p-values for the maximum sequence length, the batch
size and the model (4.389e-9, 0.0008 and 2.790e-16). Hence, we we reject the
null hypothesis to a significance level of 0.05 for both variables. Consequently,
the homogeneity of variances cannot be assumed. The test results in a p-value
of 0.540 for the task, which is why the null hypothesis cannot be rejected to a
significance level of 0.05, indicating that homogeneity of variances can be assumed.

All in all, the tests should be regarded with caution since not only the between
group independence questioned, but the respective groups do not always incorpo-
rate the same number of examples and are therefore not balanced. Since some
assumptions could not be met, the values resulting from the conducted ANOVAs
should be regarded with caution.
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Check assumptions for linear regression

The same assumptions that we mention in section 8 in the appendix have to be
fulfilled in order to conduct a linear regression for the inference time.

For the linearity assumption, the same argument as in section 8 in the appendix
applies.

To further check the normality assumptions, we display a Q-Q plot of the residuals.

Figure 33: Q-Q plot for the residuals of the log-linear regression for log. inference time

Having a look at figure 33, we can see that the normality assumption can be met.
This is probably caused by taking the logarithm of the fine-tuning time.
To detect possible multicollinearity, we regard the condition number. Since this
number takes on a high value (2.51e+03), multicollinearity might be present and
hence, the assumption cannot be met.
In order to ascertain if auto-correlation of lag 1 of the error terms is present, we
conduct a Durbin-Watson test. The null hypothesis is that no autocorrelation
is present in the data. If the test statistic takes on a value of 2 evidence of
autocorrelation is present. The test statistic which takes on a value of 1.143 in
our case and is therefore higher than 1.0. Nonetheless, since it surpasses the value
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1.0 only by a small amount, it could be an indicator for positive serial correlation
(Wikipedia, the free encyclopedia, 2020c). Note that this statement only follows
a rule of thumb.
To test if homoscedasticity is present, we conduct a Breusch-Pagan test. The null
hypothesis is that homoskedasticity is present (Wikipedia, the free encyclopedia,
2020b). In our case the p-value is 2.828e-6. Hence, we can reject the null
hypothesis and therefore homocedasticity of the residuals. Hence, the fifth
assumption can be fulfilled in our case.

Due to the fact that not all assumptions for conducting a linear regression could
be fulfilled, the conducted log-linear regression should be regarded with a grain of
salt.

Random Forest Regression - Variable importance

In order to get better insights about the variable importance of variables which
could influence the logarithmic inference time, we perform a Random Forest Re-
gression, in which the logarithmic inference time is the dependent variable and
the remaining variables are the independent ones. The following table displays
the respective variable importances. Note that the categorical variables task and
model were encoded in order to perform this analysis.

Variable Variable Importance
max. sequence length 0.505

model 0.248
batch size 0.231

task 0.017

Table 36: Random Forest Regression for log. inference time: Variable Importance
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Electronic Annex

The electronic appendix contains all datasets, Python scripts, sweep configuration
files and plots that were used in the scope of this master’s thesis.

To run the analyses, the following requirements must be met:

• Python, version 3.8 (Van Rossum et al., 2009)

• Visual Studio Code, version 1.48

• Jupyter Notebook, version 6.0.3 (Kluyver et al., 2016)

The enclosed USB flash drive contains the following folders and files which are
located in the folder Master’s Thesis Korotkova52:

• Master’s Thesis_Korotkova.pdf : the present scientific work in .pdf format

• GLUE.ipynb

– download GLUE tasks data following the instructions on https://
github.com/nyu-mll/GLUE-baselines

– some superficial analyses of the GLUE tasks

• https://github.com/annakorotkova/transformers: modified transformers
module53

– the module transformers by huggingface (version 3.0.0) was forked
from https://github.com/huggingface/transformers

– added argument finetuning_iters in training_args.py54 to pass number
of iterations (default: 3)

– measurement of the fine-tuning time was integrated in the script
trainer.py54 inside the train() function

52The electronic annex can also be retrieved at the GitHub repository https:
//github.com/annakorotkova/Exploration-of-fine-tuning-and-inferencetime-of-large-pre-
trained-languagemodels-in-NLP/settings

53for more details about the changes, see https://github.com/annakorotkova/transformers/
blob/master/README_Anna’s_Notes.md

54 can be found in the folder src/transformers
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– measurement of inference time was integrated to the script trainer.py
inside the _prediction_loop() function, which was later used by the
evaluate() function55

• sweep files: contains two sub-folders56

– finetuning time contains the sweep configuration files used in the anal-
ysis to perform the measuring of fine-tuning time

– inference time contains the sweep configuration files used in the analysis
to perform the measuring of fine-tuning time. Those files are addition-
ally marked with "inf" in their file name

– files with "unc" in their name incorporate the configuration for time
measurement for all regarded models, except for distilbert-base-cased
and bert-base-cased

– files with "cased" in their name incorporate the time measurement
for distilbert-base-cased and bert-base-cased This distinction was per-
formed since fine-tuning distilbert-base-cased and bert-base-cased failed
on several GLUE tasks

– files with "all" in their name incorporate the configuration for time mea-
surement for all regarded models

– files with "xlnet" in their name incorporate the configuration for time
measurement for xlnet-base-cased. This distinction was performed since
xlnet-base-cased takes long fine-tuning times and could therefore not be
fine-tuned for all GLUE tasks

– Note! For some configurations there only exists the configuration file for
fine-tuning time measurement for distilbert-base-cased and bert-base-
cased. This is the case for tasks where the fine-tuning of these models
already failed. Hence, the inference time could not be measured.

– files with "crashed" in their name are configuration files created for runs
that crashed before and should be rerun

55all modifications to the codes are marked with a comment "# added by Anna"
56Important to note: this file also contains sweep files of runs that crashed in order to rerun

them. Hence, the content of some files might overlap. They were added to match the runs that
are logged in wandb
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– files with "reduced" in their name contain a limited sweep since it is run
for try out reasons (if prior runs failed for example)

Hereby, the fine-tuning and the measurement of the fine-tuning as well as inference
time was performed on a virtual machine. To execute the measurement of the fine-
tuning and inference time, respectively, the following steps were executed:

• Cloning of the forked and modified repository https://github.com/
annakorotkova/transformers

• Adding downloaded GLUE files to workspace folder in Visual Studio Code

• Creating sweep configurations

• Run sweeps with the following commands in the terminal:

– To enable an execution of the measurements without crashing if the
computer turn to standby mode, the command screen -S mysession
should be used57

– wandb sweep {} with {} being the placeholder for the respective sweep
name, e.g. sweep_wnli_cased.yaml.
→ wandb sweep sweep_wnli_cased.yaml

– The terminal outputs some sweep characteristics (such as sweep
ID or the link where the sweep can be viewed). It also
puts out a line of the following form: "Run sweep agent
with: wandb agent anna_korotkova/transformers-examples_text-
classification/o7ifco7k"58

This line should be copied and executed in the terminal

Figure 34 illustrates the last key point.

Figure 34: Run a sweep, which is logged at wandb

57the session can be checked with the command screen -r -d mysession
58o7ifco7k is the sweep ID (in wandb the runs are logged under this name)
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After following these steps, the fine-tuning for the respective sweep should
be performed. Hereby, it should be noted that a wandb account is required
in order to enable this process59. The logged runs from our analysis can be
retrieved at https://wandb.ai/anna_korotkova/transformers-examples_text-
classification/sweeps?workspace=user-anna_korotkova. The names of the re-
spective sweeps include their respective sweep ID and some information about
the sweep itself. The naming of these follows a similar to the one of the sweep files.

Furthermore, the electronic annex incorporates the following files and sub-folders:

• wandb time data contains two sub-folders

– finetuning time: contains contains all Excel datasets which incorporate
the fine-tuning time data that was used in the analysis (within the script
Analysis finetuning time.ipynb)

– inference time: contains all Excel datasets which incorporate the infer-
ence time data which was used in the analysis (within the Python script
Analysis inference time.ipynb).

– All Excel files were downloaded from wandb (the respective
sweeps can be viewed at https://wandb.ai/anna_korotkova/
transformers-examples_text-classification/sweeps?workspace=user-
anna_korotkova. The data can be retrieved when clicking on the
respective sweep, followed by clicking on the sweep table). It should
be noted that the files do not match exactly the wandb sweeps since
some files were revised. This was done, so that no runs are included
two times since some sweeps were rerun because they crashed the first
time.

• Analysis finetuning time.ipynb

– Descriptive analysis of the minimum fine-tuning time of finished runs
for different hyperparameter combinations

– ANOVAs of fine-tuning time grouped by task, model, maximum se-
quence length and batch size, respectively

59A helpful website for enabeling a quick start is https://docs.wandb.com/quickstart
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– Log-linear regression with log. fine-tuning time as the dependent vari-
able

– Regression Random Forest with log. fine-tuning time as the dependent
variable

– Exploration of the relation between fine-tuning time and accuracy

• Analysis inference time.ipynb

– Descriptive analysis of the minimum inference time of finished runs for
different hyperparameter combinations

– ANOVAs of fine-tuning time grouped by task, model, maximum se-
quence length and batch size, respectively

– Log-linear regression with log. inference time as the dependent variable

– Regression Random Forest with log. inference time as the dependent
variable

– Exploration of the relation between inference time and accuracy

• plot contains two sub-folders

– fine-tuning time: This sub-folder contains all plots that were generated
during the analysis of the fine-tuning time (run script Analysis finetun-
ing time.ipynb)

– inference time: This sub-folder contains all plots that were generated
during the analysis of the inference time (run script Analysis inference
time.ipynb)

• finetuning_time_table.xlsx

– Table of fine-tuning times grouped by model, number of examples (task
size), maximum sequence length and batch size (run script Analysis
finetuning time.ipynb))

– The fine-tuning time is colored with a color palette (from Excel) that
ranges from green to red. Green stands for small fine-tuning times and
red for high ones
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• inference_time_table.xlsx

– Table of inference times grouped by model, number of examples (task
size), maximum sequence length and batch size (run script Analysis
inference time.ipynb))

– The inference time is colored with a color palette (from Excel) that
ranges from green to red. Green stands for small fine-tuning times and
red for high ones
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