
European Journal for Philosophy of Science (2021) 11:21
https://doi.org/10.1007/s13194-020-00337-2

PAPER IN GENERAL PHILOSOPHY OF SCIENCE

Explication as a Three-Step Procedure: the case
of the Church-Turing Thesis

Matteo De Benedetto1

Received: 17 March 2020 / Accepted: 24 November 2020 /
© The Author(s) 2021

Abstract
In recent years two different axiomatic characterizations of the intuitive concept of
effective calculability have been proposed, one by Sieg and the other by Dershowitz
and Gurevich. Analyzing them from the perspective of Carnapian explication, I argue
that these two characterizations explicate the intuitive notion of effective calculability
in two different ways. I will trace back these two ways to Turing’s and Kolmogorov’s
informal analyses of the intuitive notion of calculability and to their respective out-
puts: the notion of computorability and the notion of algorithmability. I will then
argue that, in order to adequately capture the conceptual differences between these
two notions, the classical two-step picture of explication is not enough. I will present
a more fine-grained three-step version of Carnapian explication, showing how with
its help the difference between these two notions can be better understood and
explained.

Keywords Explication · Church-turing thesis ·
Foundational analyses of computability · Turing · Kolmogorov

1 Introduction

The Church-Turing Thesis (CTT) expresses the proposition that our intuitive notion
of effective calculability is captured by the formal notion of mechanical computabil-

� Matteo De Benedetto
matteo.debenedetto@lrz.uni-muenchen.de

1 Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft, Munich Center
for Mathematical Philosophy (MCMP), Ludwig-Maximilians-Universität München,
Geschwister-Scholl-Platz 1, D-80539, München, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13194-020-00337-2&domain=pdf
http://orcid.org/0000-0002-8155-6750
mailto: matteo.debenedetto@lrz.uni-muenchen.de

 21 Page 2 of 28 European Journal for Philosophy of Science (2021) 11:21

ity1. The notion of mechanical computability can be instantiated by one of the many
different formal notions of computability, all of which are extensionally equiva-
lent to each other: Turing-computability, general recursiveness, Post-computability,
λ-definability, and many others. This plethora of extensionally equivalent formal
notions designed to capture a single intuitive concept naturally presents itself as a
fantastic case study for philosophers interested in understanding the processes of
conceptual change and conceptual formalization in mathematics.

A philosophical question that naturally arises in connection with CTT is then:
how can one be sure that a precise formal notion adequately captures an intuitive
informal notion? In philosophical literature, one can find several frameworks that
aim to conceptualize this process of capturing an intuitive notion via a formal one.
Amongst them, Carnap’s concept of explication (Carnap 1950; Carus 2007) is partic-
ularly salient and useful. Recently, the significance of explication as a philosophical
method has been appreciated, both in the context of Carnap’s mature thought (Carus
2007; Wagner 2012; Leitgeb and Carus 2020) and in a broader meta-philosophical
context (Kuipers 2007; Justus 2012; Brun 2016).

In this work, I will analyze several instances of mechanical computability from
the perspective of Carnapian explication. Specifically, I will focus on two recent
axiomatic approaches to CTT: Sieg’s axioms for computors (Sieg 2013) and Der-
showitz’s & Gurevich’s axioms for computations (Dershowitz and Gurevich 2008).
In recent years, building upon Robin Gandy’s seminal work(s) in the 1980s, Wil-
fried Sieg has proposed axioms for human and mechanical computers. In 2008,
Dershowitz & Gurevich, coming from a completely different background, proposed
another axiomatic characterization of computability. Following Gurevich, I will refer
to these axiomatizations as “Foundational Analyses of Computability” (Gurevich
2012).

These axiomatic characterizations of computability will be analyzed in a purely
conceptual way, focusing on how they explicate the intuitive notion of effective
calculability. Consistently with the pluralism intrinsic to a Carnapian perspective,
there will be no discussion about the provability of CTT and related debates in the
philosophy of computability.

We will see that, from the perspective of Carnapian explication, these two founda-
tional analyses of computability differ in how they clarify and restrict the boundaries
of the intuitive notion of computability. These two different ways of analyzing the
notion of effective calculability can be traced back to two pioneers of computabil-
ity, Turing (1936) and Kolmogorov (1953). I will argue that the main conceptual
difference between them lies in the different outputs of their respective informal
analyses of effective calculability, i.e. two informal axiomatizations of what is effec-
tively calculable. These axiomatizations implicitly define two semi-formal notions of
computability: computorability and algorithmability.

1I use ‘mechanical computability’ as a neutral term of art to denote all the extensionally equivalent notions
for which one can state a version of CTT, e.g. general recursiveness, Turing computability, λ-definability,
etc. ‘Effective calculability’ denotes instead the intuitive notion of calculability.

European Journal for Philosophy of Science (2021) 11:21 Page 3 of 28 21

I will then argue that, in order to adequately capture the conceptual differences
between these two semi-formal notions, the classical two-step picture of explica-
tion is not enough. A more fine-grained three-step version of Carnapian explication
will thus be presented. I will call the new mid-level step of this refined version of
explication the semi-formal sharpening of the clarified explicandum. Thanks to this
three-step version of Carnapian explication the notions of computorability and algo-
rithmability can be understood as two different ways of semi-formally sharpening the
clarified notion of effective calculability.

The main aim of this work is then, two-fold: to improve the understanding of
explications of effective calculability and to sharpen the received view of Carnapian
explication. I will show how the refined three-step version of Carnapian explication
achieves a double pay-off corresponding to these two aims.

First, the three-step Carnapian explication allows a more fine-grained conceptual
treatment of foundational analyses of computability. Specifically, the new mid-
level step explains the conceptual differences between Sieg’s axioms for computors
and Dershowitz’s & Gurevich’s axioms for computations, explaining their differ-
ences in terms of the incompatibility between Turing’s and Kolmogorov’s ways of
semi-formally sharpening the clarified explicandum. This explanation clarifies also
some related philosophical debates over these analyses and stresses the conceptual
originality of Kolmogorov’s seminal work on computability.

Secondly, as the case of CTT shows, the three-step version of Carnapian expli-
cation seems a better tool than the original two-step version for treating complex
cases of explications with several explicata for a given explicandum. By adding the
new mid-level step of the semi-formal sharpening of a clarified notion between the
clarification of the intuitive concept and the formulation of a new one, this refined
version of Carnapian explication allows more fine-grained distinctions between dif-
ferent explications of a given concept. Even two explications that clarify the same
intuitive concept in the same way (i.e. they output the same clarified explicandum
after the clarification step), such as Turing’s and Kolmogorov’s “analyses” of effec-
tive calculability, can be semi-formally sharpened in different ways (i.e. they output
two different concepts after the semi-formal sharpening step). The new mid-level
step also provides further evidence for the importance of the intermediate steps in the
evolution of an explication (cf. Quinon 2019). These intermediate steps have often
been overlooked in philosophical discussions about explication, which have often
focused only on the explicandum and the explicatum, but the case of CTT shows that
without analyzing these steps it is sometimes impossible to properly understand the
conceptual differences between two explicata.

In Section 2, the notion of Carnapian explication in its original two-step version
will be presented. In Section 3, I will present, discuss, and compare Sieg’s axioms
for computors and Dershowitz’s & Gurevich’s axioms for computations through
the lens of Carnapian explication. Their conceptual differences will be traced back,
respectively, to Turing’s and Kolmogorov’s seminal ways of explicating effective
calculability and more specifically to the notions of computorability and algorithma-
bility. In Section 4, I will argue that the two-step canonical explication cannot capture
the differences between these two notions. I will then present a refined three-step

 21 Page 4 of 28 European Journal for Philosophy of Science (2021) 11:21

version of Carnapian explication and I will show how this more fine-grained version
is able to adequately conceptualize the differences between the notion of computora-
bility and the notion of algorithmability. Finally, I will draw some general conclusion
on the significance of this refined three-step version of explication for philosophical
debates about CTT and explication.

2 The Carnapian concept of explication

In Carnap’s own words:

“By the procedure of explicationwe mean the transformation of an inexact, prescientific
concept, the explicandum, into a new exact concept, the explicatum.” Carnap (1950, p.
3. Original emphases).

Explication is a procedure involving two concepts. On one side, there is the expli-
candum, belonging to natural language (or more generally an evolved language), the
scope of which thus contains arguably an amount of vagueness and ambiguity. On
the other side, there is the explicatum, belonging to a (more) precise language, the
scope of which is rigidly characterized by explicit and precise rules of use.

In recent years there has been a renewal of interest in explication as a philosophical
method. Significant parts of the philosophical debate over explication have focused
on the differences between explication and other philosophical methods (Floyd 2012;
Gustafsson 2014), on the desiderata that a good explicatum ought to exhibit (Brun
2017; Dutilh Novaes and Reck 2017), on the alleged shortcomings of explication as a
general method for philosophy (Strawson 1963; Reck 2012; Dutilh Novaes and Reck
2017), and on the possibility of explicating the concept of explication itself (Hanna
1967; Brun 2016; De Benedetto 2020). In all these discussions, most of the focus has
been put onto the explicandum and the explicatum, i.e. the starting and the ending
point of the procedure of explicating a given concept. In contrast, only few scholars
have tried to analyze what happens during the transformation of a given explican-
dum into an explicatum (Shepherd and Justus 2015; Quinon 2019). In this paper I
will focus on the breakdown of explication as the step-by-step transformation of an
intuitive concept into a more precise one, in order to understand where exactly in
this transformation process the conceptual differences between different foundational
analyses of computability lie. In order to do this, I will take an almost non-committal
stance towards the aforementioned recent debates on explication, assuming just that
explication is a useful philosophical method and that all the explicata of effective cal-
culability that I analyze are at least minimally satisfactory explications of the intuitive
concept.

Explication is traditionally seen as a two-steps procedure. First of all, one has to
clarify the explicandum, trying to explicitly state the intended meaning of the concept
that one wants to explicate. Since the explicandum is still expressed in a natural
language, an exact definition is not required. What (Carnap 1950, pp. 3-5) requires
from the explicator, instead, is to state some positive and negative instances of the
explicandum, together with some description or (partial) rules of use.

European Journal for Philosophy of Science (2021) 11:21 Page 5 of 28 21

This step clarifies and (if necessary) disambiguates the concept that one seeks to
explicate. It is, in fact, possible that in trying to clarify the explicandum, the explicator
realizes that there are two or more different concepts that are ambiguously grouped
in natural language within a single notion. A famous example of this phenomenon
occurred in Carnap’s (1950) explication of probability. In clarifying this concept,
Carnap in fact realized that behind the intuitive understanding of probability lie two
different notions, the logical and the frequentist concepts of probability. In clarifying
the explicandum, the explicator also freely chooses the context of the explicandum
that she wants to explicate. It is, in fact, often the case that a given explication wants to
replace only some contexts or uses of the intuitive notion. A classical example of this
decision of context are Tarski’s opening remarks (Tarski 1933) before his explication
of the concept of truth, where he states that he is interested in explicating the context
of truth-assertions like “‘snow is white’ is true” and not in explicating uses such as
“you are a true friend”.

Then, there is the second step of the explication, i.e. the formulation of the explica-
tum in a certain target theory via an explicit definition or by stating its rules of use (Fig. 1).

The purpose of explication is the substitution, relative to a specific function-
context, of an inexact concept with a (more) precise one. Explication is an inherently
pragmatic procedure, i.e. its adequacy is not a matter of right or wrong, but of what
is more or less satisfactory for the task that the explicator has in mind. Judging this
adequacy is then never an all or nothing matter. The explicator has always a certain
degree of freedom in choosing the explicatum for substituting a given concept. In
Carnap’s late terminology, as Stein stressed, questions about explication adequacy
are thus external questions:

“The explicatum, as an exactly characterized concept, belongs to some formalized
discourse – some ‘framework’. The explicandum (. . .) belongs ipso facto to
a mode of discourse outside that framework. Therefore any question about the rela-
tion of the explicatum to the explicandum is an ‘external’ question; this holds, in
particular, of the question whether an explication is adequate.” Stein (1992, p. 280).

Even though explication is not a matter of right or wrong, one can still judge
whether an explication is a good one or a bad one. In fact, external questions for
Carnap can still be objects of rational discourse, although of the pragmatic kind of
rationality that is often called instrumental. Relative to a specific purpose or function,
one can state certain pragmatic meta-principles that a concept has to respect in order
to qualify as a good explicatum for a certain explicandum. Carnap (1950, pp. 5-8)
stated four desiderata that a good explicatum has to respect:

• Similarity: to the extent to which the other desiderata allow it, the explicatum
ought to be as much as similar to the explicandum (exact similarity, i.e. identity,
is explicitly not required).

Fig. 1 The two-step structure of Carnapian explication

 21 Page 6 of 28 European Journal for Philosophy of Science (2021) 11:21

• Fruitfulness: the explicatum ought to be connected with other scientific con-
cepts, in order to make as many generalizations as possible expressible within
the theory in which it is framed.

• Exactness: rules of use of the explicatum ought to be stated in an exact form (e.g.
definitions, axioms).

• Simplicity: the explicatum ought to be as simple as the other desiderata allow it
to be.

These principles give a hint of the virtues that a good explicatum has to possess,
but they are intrinsically pluralist in their intent. Carnap, in fact, stresses how it is
always possible to have different explicata that are equally adequate in respect to a
given explicandum. In matters of explication, there is no absolutely correct answer to
the problem of capturing an informal notion with a (more) formal one.

3 Two foundational analyses of computability

I am now going to apply the Carnapian notion of explication to the case of CTT,
more specifically to the case of two recent foundational analyses of computability,
one due to Sieg and the other by Gurevich and Dershowitz. Carnapian explication
has been previously applied to two classical explications of effective calculability,
namely Turing computability (Floyd 2012) and general recursiveness (Hanna 1967;
Quinon 2019), but not to more recent models of computability2. In what follows, I
will focus mostly on how the concept of effective calculability gets transformed in
the explication process.

3.1 The Turing-Gandy-Sieg explications

In the introduction, I said that Sieg presented axioms for calculability. More exactly,
he gave axioms for calculators, both human and mechanical ones. Why did he state
his explication in terms of calculators? In Sieg’s own words, “to investigate calcu-
lations is to analyze symbolic processes carried out by calculators; that is a lesson
we owe to Turing” (Sieg 2002a, p. 390). Then, in order to properly understand
Sieg’s work one has to grasp the significance of concepts such as human calculator,
mechanical device, and symbolic process.

3.1.1 Turing’s analysis and Gandy’s principles for mechanisms

Turing was the first to put the notion of an abstract calculator at the center of an expli-
cation of effective calculability. In fact, before Turing, with the important exception
of Post’s unpublished drafts (Post 1941), one cannot find any (significant) occurrence
of the term ‘computor’ or ‘calculator’ in any seminal work on computability. Even

2Considering the robustness and the success of the concept of mechanical computability in capturing
an intuitive notion, one may wonder why Carnap does not mention CTT as a paradigmatic example of
explication. For an analysis of this issue and a possible answer to it, see Quinon (2019).

European Journal for Philosophy of Science (2021) 11:21 Page 7 of 28 21

though the scope of their explications was human effective calculations, pre-Turing
explications of calculability, such as Church’s (Church 1936), Gödel’s (1934), and
Kleene’s (1936) do not take in account any sort of calculator3. Before Turing, the
problem of adequately defining mechanical computability was centered around the
possible ways in which numeric functions can be deduced in a suitable formalism,
i.e. ‘calculability in a logic’ (Church 1936; Sieg 1997).

Turing changed the level of analysis, understanding that in order to properly clarify
the intuitive notion of effective calculability, one has to work not on the super-
ficial calculus of the numerical functions, but instead on the symbolic processes
underneath:

“The real question at issue is ‘What are the possible processes which can be carried
out in computing a number?’” (Turing 1936, p. 135)

Changing the question allowed Turing to put the computor at the center of his
explication of effective calculability. For Turing, a function is computable if and only
if it can be computed by an idealized human being working in a clerical fashion.
Restrictions on the calculation process can then be stated as bounds on the possible
actions of the abstract computor, motivated by human physical-cognitive limitations.

Turing imagined a computor working on a one-dimensional paper, something like
‘a child’s arithmetic book’, printing only a finite number of symbols. Infinity is for-
bidden because “if we were to allow an infinity of symbols, then there would be
symbols differing to an arbitrary small extent” (Turing 1936, p. 135). Ruling out
any form of ingenuity, the behavior of the abstract computor is fully determined by
the symbols at which she is looking at the moment, together with his state of mind.
Actions of the Turing computor have, then, to meet some natural, physical and cog-
nitional, limitations: only a fixed number of symbols can be observed at one glance
by the computor, only a fixed number of states of mind can be involved in the calcu-
lation, all the actions of the computor can be divided into elementary operations, and
so on.

In Sieg’s reconstruction of Turing’s analysis, these limitations are summarized by
three general bounds4:

• “(B) (Boundedness) There is a fixed bound on the number of configurations a
computor can immediately recognize.

• (L) (Locality) A computor can change only immediately recognizable (sub-)
configurations.

• (D) (Determinacy) The immediately recognizable (sub-)configuration deter-
mines uniquely the next computational step (and id).” (Sieg 2002a, pp. 249-250).

Turing concluded his explication of effective computability formulating the fun-
damental notion of a Turing machine. One of Sieg’s explicit aims is then to sharpen

3Following Gandy, I take the term ‘computor’ to denote an idealized human calculator. I use the terms
‘computer’ and ‘calculator’ to refer to any kind of computing agent, being it a human or a mechanical
device of some sort.
4Sieg, following Post, imposes these bounds on instantaneous descriptions (ids). For my analysis, this
makes no difference.

 21 Page 8 of 28 European Journal for Philosophy of Science (2021) 11:21

Turing’s informal argument via the axiomatic method. This is why he stated his foun-
dational analysis in terms of calculations by abstract calculators. The other explicit
aim of Sieg’s axioms is to axiomatically characterize another, more general class of
calculators, i.e. mechanical devices. Where in the case of computors his work builds
upon Turing’s analysis, in the case of mechanical devices Sieg attacked the problem
by improving and simplifying Robin Gandy’s treatment of machine computability5.

The term machine is understood by Gandy “with its nineteenth century mean-
ing” (Gandy 1980, p. 125). More specifically, he thinks that machines are discrete
deterministic mechanical devices. With this wording, he excludes analogue machines
and other devices the calculations of which cannot be described in discrete terms or
that are not entirely deterministic. Examples of machines in Gandy’s restricted sense
are Turing machines, Von Neumann’s crystalline automata and John Conway’s ‘the
game of life’. According to Gandy, the main difference between a computor and a
mechanical device is that the latter is able to act in parallel, performing a finite though
unbounded number of bounded computations at the same time. Any machine of this
kind must satisfy four principles.

The first principle states how one should be able to describe a machine. Gandy
chooses (isomorphic classes of) hereditarily finite sets to suitably describe each state
of the machine. From a given machine state, a structural operation gives us the next
state of the machine. After having stated the form of description of his machines,
Gandy imposes three different bounds on their working. These limitations should
be understood as aiming to avoid the possibility of an omniscient device. Principle
II expresses the requirement that the hierarchy of structures describing the machine
has a maximum height. Principle III instead requires that any device can be uniquely
reassembled from parts of bounded size. Gandy himself remarked that almost any
kind of machine (in the general sense of the term) can be described in a way for which
Principle II and III are satisfied. The most important principle is then the fourth, the
Principle of Local Causality, which contains Gandy’s core idea of how a machine
computes:

“Principle IV. (Preliminary version [of the Principle of Local Causality]) The next
state, Fx, of a machine can be reassembled from its restrictions to overlapping
‘regions’ s and these restrictions are locally caused. That is, for each region s of
Fx there is a ‘causal neighborhood’ t ⊆ T C(x) of bounded size such that Fx ↑ s

depends only on x ↑ t .” Gandy (1980, p. 135).

This principle forbids globally instantaneous signal propagation in the machine,
allowing it only for locally determined regions from which a given state depends.
This principle mirrored, in a more general way, both the locality and the bound-
edness conditions imposed by Turing on human calculations. Where in the case of
human computors those restrictions were motivated by an appeal to human memory
and intellectual natural limitations, Gandy motivates his fourth principle appealing

5Note that the focus of this work will remain the notion of effective calculability and its explications. I will
talk about machine computability only in relation to mechanical computability, since Gandy’s and Sieg’s
work on machine calculators is intertwined with their explication of effective calculability.

European Journal for Philosophy of Science (2021) 11:21 Page 9 of 28 21

to physics, specifically to the ban of instantaneous action at distance contained in
General Relativity theory. This impossibility, together with Gandy’s second physi-
cal assumption, namely that there is a lower bound on the size of distinguishable
atomic components of the machine, provides the pivotal finiteness of the causal
neighborhood on which the machine at every step of the computation operates6.

We have now everything that we need in order to properly understand Sieg’s
axioms for calculators. Let us turn to them, now.

3.1.2 Sieg’s axioms for computors and the notion of computorability

Sieg has presented his axioms in various works throughout the last two decades
Sieg (2002a, b, 2009). Throughout the years, Sieg has changed the presentation of
his axioms. Technically speaking, he repeatedly simplified his set-theoretic frame-
work by changing some secondary definitions of operations and sets. Philosophically
speaking, the latest presentations of his axioms place more emphasis on Turing’s
symbolic view of calculation than on the boundedness and the locality conditions,
thereby making Turing’s ideas appear closer to Post than they are usually considered
to be7. However, the conceptual core of his work has remained steadily the same for
almost two decades and this is what matters for my analysis.

For the computor case, Sieg reformulates Turing’s informal limitations, empha-
sizing the pivotal role of working with finite symbolic configurations, à la Post.
According to him, the following aspects of the computors’ work are what characterize
them:

• (i) “they operate deterministically on finite configurations
• (ii) they recognize in each configuration exactly one pattern (from a bounded

number of different kinds of such)
• (iii) they operate locally on the recognized patterns
• (iv) they assemble the next configuration from the original one and the result of

the local operation.” Sieg (2009, p. 587).

These four semi-formal bounds axiomatically define the notion that I call com-
putorability, i.e. the mid-level notion of computability obtained via Turing analysis.

The mathematical formulation of Sieg’s explicata on suitably defined systems uses
the concept of ‘discrete dynamical system’, i.e. a system described by a class of
syntactical configurations D together with an operation F : D → D8. States are
presented within the same set-theoretic framework of Gandy’s work, i.e. hereditar-
ily finite sets. Abstracting from specific representations, states of the computational
processes are represented by structural classes. A structural class S is a class of
states closed under ∈-isomorphisms. In order to achieve a real abstract description of

6For a more detailed discussion of Gandy’s constraints and his underlying physical assumptions, see Sieg
and Byrnes (1999).
7That said, it should not be thought that Sieg equates Turing’s and Post’s takes on computability. See, in
this respect, Sieg et al. (2016).
8For a full presentation of the technical details of Sieg’s axioms, see Sieg (2002a).

 21 Page 10 of 28 European Journal for Philosophy of Science (2021) 11:21

the system, Sieg makes all operations G work structurally. Thus, a computor can be
described with a pair 〈S, G〉, where S is a structural class and G a structural operation
on S. In order to express the ability of the computor to assemble a new state from the
actual state, a process I believe to be philosophically crucial in Sieg’s take on com-
putability, and the two Turing bounds imposed on the actions of the computor, Sieg
introduces two important notions: causal neighborhood (Cn) and determined regions
(Dr). A causal neighborhood is a member of a fixed finite class of isomorphism
types, such that there does not exist another member into which it is ∈-embeddable.
The determined regions of a state z (Dr(z, x)) are, instead, a set of states which are,
roughly speaking, isomorphic over a certain causal neighborhood of a given state x

and their new atoms structurally correspond to each other. We can finally see the def-
inition of a Turing computor, suitably representing Turing locality and boundedness
conditions:

“M = 〈S; T , G〉 is a Turing computor on S, where S is a structural class, T a finite
set of stereotypes, and G a structural operation on ∪T , if and only if, for every
x ∈ S there is a z ∈ S, such that:

(LC.0) (∃!y)y ∈ Cn(x)

(LC.1) (∃!v ∈ Dr(z, x))v ∼=x G(Cn(x))

(A.1) z = (x \ Cn(x)) ∪ Dr(z, x).” Sieg (2009, p. 589).

Sieg proposes an analogous set-theoretic definition of a Gandy machine, straight-
forwardly extending this framework to the case of a mechanical device (Sieg 2009, p.
591).

One can now see how Sieg’s explication achieves its two intended aims. He man-
ages to axiomatically characterize the informal bounds imposed by Turing in his
analysis of the intuitive concept of effective calculability. The boundedness and the
locality conditions are expressed through a uniqueness restriction to the causal neigh-
borhood of the state at which the computor is looking and to the determined regions
considerable by the computor in the process of assembling the next state. In the case
of a Gandy machine, these conditions are loosened up in order to allow the com-
puter to perform an unbounded number of bounded computations at the same time.
This looseness shows how the concept of a discrete deterministic mechanical device
generalizes the concept of a computor.

I can then reconstruct this group of explications of effective calculability in terms
of Carnapian explication. The pivotal first-step, what is usually known as Turing
analysis, is the clarification of the explicandum. The intuitive notion of effective
calculability gets clarified and disambiguated, the context of uses and the scope of
the concept becomes clearer. The output of this clarification is what is defined by
Sieg’s semi-formal axioms for computors, what I have called computorability. This
was firstly achieved informally by Turing, recognized (and used as a basis for the case
of machine calculability) by Gandy, and finally made explicit by Sieg. Then, from
the notion of computorability, different explicata can be formulated, such as Turing
machines or the Gandy-Sieg set-theoretical notions of human calculators. Here is a
diagram of the conceptual structure of this group of explications (Fig. 2):

European Journal for Philosophy of Science (2021) 11:21 Page 11 of 28 21

Fig. 2 The two-step structure of the Turing-Gandy-Sieg explications of effective calculability

I have thus presented Sieg’s foundational analysis of computability, together with
the related works of Turing and Gandy, showing how it can be understood as a
Carnapian explication. I will now turn to Dershowitz’s & Gurevich’s alternative
foundational analysis.

3.2 The Kolmogorov-Dershowitz-Gurevich explications

As in Sieg’s case, Dershowitz’s & Gurevich’s axiomatization (Dershowitz and Gure-
vich 2008) of the intuitive properties of calculability is the result of decades of
work on computability. I will thus recall Gurevich’s previous work on computability,
specifically focusing on the history, the ideas, and the aims of the ASM project9, the
results of which led to Dershowitz’s & Gurevich’s axiomatization.

According to Gurevich’s own reconstruction, the original idea behind the ASM
project was to provide an operational semantics for algorithms by elaborating on
what he calls the “implicit Turing thesis” (Gurevich 1991, p. 267), i.e. the proposition
stating that every algorithm can be simulated by an appropriate Turing machine. It
was the aim of finding a more efficient simulation of algorithms, something closer
and more faithful to computer scientists’ actual view of algorithms, that moved him
to start the ASM project.

In order to achieve a better simulation of algorithms, the main conceptual idea is to
work at an arbitrary abstraction level, thereby considering any algorithm as an independent
entity, without imposing a specific data-representation level on its simulation. This
conceptual approach to explicating effective calculability can be traced back to Kol-
mogorov’s take on computability. Gurevich repeatedly highlighted the significance
of Kolmogorov’s work for his own approach to computability. I take the connection
between Gurevich’s and Kolmogorov’s work to be crucial to understand Der-
showitz’s & Gurevich’s axiomatization of calculability. Since Kolmogorov’s take on
computability is not so well known, I will briefly present his ideas on computability.

3.2.1 Kolmogorov’s hidden analysis

If Turing’s approach to the problem of explicating the notion of effective calcula-
bility was to look at the possible actions of the computor performing the symbolic

9ASM stands for Abstract State Machines, previously known also as Evolving Algebras. As the name tells
us, these are idealized machines designed to emulate various classes of algorithms.

 21 Page 12 of 28 European Journal for Philosophy of Science (2021) 11:21

calculation process, Kolmogorov instead tried to impose restrictions onto the evolu-
tion of the computation in a different way. Together with his own student Uspenski,
he seemed to be conceptually dissatisfied with the approach of Turing and the other
pioneers of the 1936 confluence to computability. He wanted to find a new approach,
trying to apprehend the concept of an algorithmic process in all its generality (Kol-
mogorov and Uspenski 1958, pp. 62, 68; Uspensky and Semyonov 1993, pp. 253,
258).

Uspenski tells us that a fundamental idea in Kolmogorov’s work on computability
was to view calculation steps as objects, analyzable independently from any computer
whatsoever (Uspensky and Semyonov 1993, pp. 253-254; Uspensky 1992, p. 395).
Komogorov tried to outline the structure of an arbitrary algorithm, without reference
to the specific agent computing it10.

Kolmogorov proposed what Uspenski calls a “philosophical scheme” (Uspensky
1992, p. 394), i.e. a semi-formal axiomatic characterization of what an algorithm is:

1. “An algorithm � applied to any ‘condition’ (‘initial state’) A from some
set D(�) (‘domain of applicability’ of the algorithm �) gives a ‘solution’
(‘concluding state’) B.

2. The algorithmic process may be subdivided into separate steps of apriori
bounded complexity; each step consists of an ‘immediate processing’ of the
state S (that occurs at this step) into the state S∗ = ��(S).

3. The processing ofA0 = A intoA1 = ��(A0) ,A1 intoA2 = ��(A1),A2 into
A3 = ��(A2), etc., continues until either a nonresultative stop occurs (if the
operator �� is not defined for the state that just appeared) or until the signal
saying that the ‘solution’ has been obtained occurs. It is not excluded that the
process will continue indefinitely (if the signal for the solution’s appearance
never occurs).

4. Immediate processing of S into S∗ = ��(S) is carried out only on the basis
of information on the form of an apriori limited ‘active part’ of the state S and
involves only this active part.” (Kolmogorov 1953).

At first glance, the philosophical originality of Kolmogorov’s take is not evi-
dent. Kolmogorov’s philosophical scheme seems another definition of what I called
computorability, i.e. the output of Turing’s praised analysis. After all, does not
Kolmogorov, as Turing did first, sharpen effective calculability by imposing a bound-
edness and a locality condition? Is his proposal, then, just another example of
Turing’s praised way of thinking about computability? With the help of the previous
philosophical considerations, a second look at Kolmogorov’s axiomatization shows
that this is not the case.

Terminological similarities between the two formulations should not trick one
into equating these two informal characterizations. In fact, if Turing framed the
two bounds by imposing constraints on the possible actions of the computor, in

10Gurevich reported that Leonid Levin, in private conversation, told him that Kolmogorov viewed com-
putations as physical processes. See Gurevich (2012, p. 6, 2015, p. 197). For my analysis, what matters
is that Kolmogorov saw computations as objects that can be treated independently from any computer
whatsoever, besides them being either abstract or physical entities.

European Journal for Philosophy of Science (2021) 11:21 Page 13 of 28 21

Kolmogorov’s axiomatization what is bounded and local is every step of the com-
putational process, which is seen as the structural evolution from the input to the
(possible) output. We can better appreciate Kolmogorov’s originality by noting that
no specific set of initial states or elementary operations is singled out by his defini-
tion of an algorithm. The restrictions imposed by these four intuitive considerations
are structural limitations on the computational process. Specifically, all the steps of
the algorithm must be bounded in their complexity and each of these steps must con-
sist of an elementary transformation that depends only on a limited active part of the
state under consideration. Both the boundedness and the locality constraint, then, are
understood in a completely different way than in Turing’s analysis. Thus, in stating
his informal bounds, Kolmogorov focuses on the computational process and not, as
Turing did, on the actions of the computor. From the point of view of the compu-
tational process, then, effectiveness is achieved by restricting our attention to those
processes whose steps satisfy the bounded complexity and the limited active part
requirements.

This focus on the computational process is connected with Kolmogorov’s afore-
mentioned programmatic aims of characterizing the general structure of an arbitrary
algorithm. Kolmogorov and Uspenski stressed this point by stating that the Kol-
mogorov thesis is stronger than the Turing thesis, claiming that Kolmogorov did not
want to just reduce computations to his definition, but also to capture their actual
structure (Kolmogorov and Uspenski 1958, p. 74; Uspensky 1992, p. 396, 1993, p.
251). Coherently with this more abstract aim, Kolmogorov and his students repeat-
edly stressed how Kolmogorov’s approach to computability is more general than
previous ones.

I will then refer to the hidden process that led Kolmogorov to his 1953 philo-
sophical scheme as Kolmogorov analysis. Despite not being explicit, we have seen
that there is evidence in the writings of Kolmogorov and his own students that
Kolmogorov analysis is philosophically different from Turing’s one. Kolmogorov
analysis wants to capture the structure of an arbitrary algorithm, stating the non-
trivial restrictions characterizing classical computability on the general evolution of
the computational process.

Note that here I stress a generality of Kolmogorov’s approach to computability
that, coherently with the Carnapian perspective of this paper, is purely conceptual
and lies in its semi-formal axiomatization of an arbitrary algorithm. Kolmogorov’s
work on computability can also be said to be technically more general than Turing’s,
because Kolmogorov machines work on bounded graphs and are known to be able
to implement more algorithms than classical Turing machines. This is a historically
interesting fact, but should not be confused or merged with the conceptual generality
stressed above. Also, Sieg and Byrnes have shown that Turing’s approach to com-
putability can be suitably generalized to bounded graphs, achieving with the so-called
K-graph machines the same level of technical generality as Kolmogorov machines
(Sieg and Byrnes 1996).

Kolmogorov achieved a semi-formal axiomatization of effective computability
which is conceptually different from Turing’s one. In the next subsection I will
show how Dershowitz’s & Gurevich’s axiomatization of computability recovers the
conceptual approach of Kolmogorov’s work on computability.

 21 Page 14 of 28 European Journal for Philosophy of Science (2021) 11:21

3.2.2 Dershowitz’s and Gurevich’s axioms for computations and the notion
of algorithmability

Dershowitz & Gurevich presented their characterization of effective calculability
(Dershowitz and Gurevich 2008), adding a restriction to the initial states allowed by
Gurevich’s postulates for sequential algorithms (Gurevich 2000)11. Gurevich thinks
about algorithms in terms of objects independent from any computer: “in our view,
rather common in computer science, algorithms are not humans or devices; they
are abstract entities” (Gurevich and et al. 2014, p. 38). What Gurevich wants to
stress with this wording is not the (quite trivial) fact that algorithms should not be
identified with their computing agents, something that every computability pioneer
would obviously agree with. Gurevich, following Kolmogorov’s footsteps, stresses
instead that his explication of calculability treats algorithms and effective computa-
tions independently from their calculators. This philosophical standpoint justifies the
technical motto of the ASM project of simulating algorithms at an arbitrary abstrac-
tion level, which can be traced back to Kolmogorov’s and Uspenski’s aforementioned
programmatic aims.

According to Gurevich, then, it is possible to informally characterize any classical
(i.e. sequential) algorithm by three non-trivial constraints on the evolution of the
computational process, called the Sequential Postulates. For any sequential algorithm
A:

“POSTULATE I (Sequential time). An algorithm is a state transition system. Its
transitions are partial functions.” Dershowitz and Gurevich (2008, p. 313).

The first postulate tells us that a sequential algorithm, taking this wording in its
vague acceptation, is a sequence of discrete computational steps. Gurevich excludes
from the scope of his analysis continuous (analog) processes, transfinite computation
sequences (involving limits), nondeterministic transitions, and nonprocedural input-
output specifications.

“POSTULATE II (Abstract state). States are structures, sharing the same fixed,
finite vocabulary. States and initial states are closed under isomorphism. Tran-
sitions preserve the domain, and transitions and isomorphisms commute.” (Der-
showitz and Gurevich 2008, p. 317).

The second postulate tells us how algorithmic states are represented. It states that
any algorithm, on his native level of abstraction, can be represented by (and actu-
ally, according to Gurevich, is) a (series of) first-order logical structure(s). There
is obviously a certain degree of speculation in this thesis and Gurevich did not
present any kind of justification for this proposition except for a classical argument
by example: “logic experience shows that any kind of static mathematical situation
can be adequately described as a first-order structure” (Gurevich 1999, p. 10). This
representational tenet is shared also by Uspenski (1992, p. 395).

11Classically, a sequential algorithm (sometimes called sequential-time algorithm) is an algorithm that
executes determined, isolated computations bounded step after bounded step.

European Journal for Philosophy of Science (2021) 11:21 Page 15 of 28 21

Moreover, this postulate tells us that neither the vocabulary nor the base set of the
algorithm states change during the computation. The evolution of the computational
process is thereby given by suitable changes in the values of the functions of a given
state12. The isomorphic closure is then imposed on the states and transitions of the
algorithm for the same reasons adduced by Gandy and Sieg.

“POSTULATE III (Bounded exploration). Transitions are determined by a fixed
finite ‘glossary’ of ‘critical’ terms. That is, there exists some finite set of (variable-
free) terms over the vocabulary of the states, such that states that agree on
the values of these glossary terms, also agree on all next-step state changes.”
Dershowitz and Gurevich (2008, p. 319).

The third postulate expresses the effectiveness requirement, a fundamental lim-
itation imposed on transitions. It can be seen as a generalization of Kolmogorov’s
bounded complexity and limited active part ideas. This restriction is pivotal to
characterize sequential algorithms and, a fortiori, effectively calculable functions.
Specifically, this postulate bounds the number of terms that have to be considered in
order to make a transition from a given state to the next one. Unbounded searches
and infinitary rules are therefore forbidden.

Philosophically speaking, this postulate is informally justified by what Gurevich
calls the “Accessibility Principle”, i.e. the assertion that, from the point of view of
process-evolution, the only way in which a given algorithm A can access an element
a of a given state X is to produce a ground term suitably evaluating that element.
Then, the finite set T , which this postulate is about, is nothing but the set of all these
terms.

The accessibility principle shows how Dershowitz’s & Gurevich’s postulates con-
ceptually differ from Sieg’s. This principle makes explicit a philosophical tenet of
Kolmogorov analysis, namely the idea of explicating effective calculability indepen-
dently from any calculator. If the central concept in Sieg’s formal treatment is the
notion of assembly (together with the related notions of causal neighborhood and
determined regions), i.e. the formal representation of the actions that the computing
agent can perform during the process of assembling a new state from a given one,
in Dershowitz’s & Gurevich’s account the computing agent is completely out of the
conceptual picture. Technically, the absence of a specific data-representation level
makes it impossible to say something about how the computation process is carried
out by the computing agent. Gurevich stresses this inability:

“Imagine yourself being an executor of A at a state X. Since you cannot take
advantage of a particular representation of the elements, the only way to access
elements of X is to use the basic functions of X. Essentially you use X as an
oracle.”13 (Gurevich 1999, p. 14, my emphasis).

12This encompasses also formulas usually expressed by relations. In fact, in Gurevich’s formal frame-
work relations are represented by functions and boolean values. Therefore first-order logical formulas are
expressed in a quantifier-free way.
13Note that I have changed the symbols used by Gurevich to denote an algorithm and its state in order to
make the quote coherent with the present terminology.

 21 Page 16 of 28 European Journal for Philosophy of Science (2021) 11:21

Gurevich presented these three postulates, proving a representation theorem
between processes satisfying these axioms and a particular type of abstract transition
system, called abstract state machine (ASM) (Gurevich 2000). ASMs are a partic-
ular version of static algebras, i.e. first-order structures without relations, including
in their language three Boolean values as primitive (true, false, undef), as well as
the usual Boolean operations. Basic transition rules are recursively constructed by
two constructors working on basic update instructions. The problem of representing
the addition of new atomic elements, something common in many sequential algo-
rithms, is solved by using a Reserve universe, a naked set from which an appropriate
constructor can take an element when it is needed. A sequence of rules is called a
program. An ASM is then defined in the following way14:

“An abstract state machine (ASM) is given by: a set (or proper class) S of
algebraic states, closed under isomorphism, sharing a vocabulary F ; a set (or
proper class) I ⊆ S of initial states, closed under isomorphism; a program
P , consisting of finitely many commands, each taking the form of a guarded
assignment: if p then t := u for terms t and u over F and conjuction p of
equalities and disequalities between terms.” (Dershowitz and Gurevich 2008, p.
321, original emphases).

Gurevich proved a representation theorem, known as the “ASM Theorem” (Der-
showitz and Gurevich 2008) or the “Main Theorem” (Gurevich 2000), ensuring that
every algorithm that satisfies the three sequential postulates is step-by-step equivalent
to a certain ASM program.

In order to adequately characterize computable functions, Dershowitz & Gurevich
added another postulate to this characterization. In fact, one cannot be sure that a pro-
cess satisfying the sequential postulates computes only calculable functions, because
initial states are not restricted to computable ones and the other bounds work at a high
level of abstraction. Recall that the computing agent is conceptually out of the picture
and it technically acts as a kind of oracle. If, then, the initial state of a certain process
is an oracle-like non-computable input, the resulting output of the computation can
be outside the scope of Turing computable functions. Thus, Dershowitz & Gurevich
need to impose, differently from Sieg’s axiomatization, an explicit limitation on the
set of possible initial states:

“POSTULATE IV (Arithmetical State). Initial states are arithmetical and blank.
Up to isomorphism, all initial states share the same static operations, and there
is exactly one initial state for any given input values.” Dershowitz and Gurevich
(2008, p. 325).

The fourth postulate restricts the set of initial states only to arithmetical blank
states15, thereby restricting the domain of the algorithmic processes allowed only to

14For a full technical presentation of ASMs see Gurevich (1995) or Gurevich (2000).
15The authors definition of an arithmetical state is quite long. Roughly speaking, an arithmetical state is
a combination of natural numbers, truth values (true, false and undefined), dynamic functions and arith-
metical operations. Such an arithmetical state is considered blank when all operations, except the input,
have an undefined value.

European Journal for Philosophy of Science (2021) 11:21 Page 17 of 28 21

the numerical ones. A process satisfying both the sequential postulates and this fourth
postulate is called an arithmetical algorithm. An ASM that satisfies the fourth postu-
late is called an arithmetical ASM. Using the concept of arithmetical ASM the authors
proved that every arithmetical algorithm can be emulated by a certain arithmetical
ASM and the co-extensiveness of arithmetical ASMs and partial recursiveness.

Then, Dershowitz & Gurevich recovered Kolmogorov’s and Uspenski’s forgotten
conceptual approach to the problem of explicating effective calculability. They gave
a new characterization of Kolmogorov’s semi-formal axiomatization. Their postu-
lates make explicit the philosophical elements behind Kolmogorov’s philosophical
scheme, such as the aim of capturing the general structure of an arbitrary algorithm,
the emphasis on a more direct simulation of computations, the pivotal restrictions
imposed on the evolution of the computing process. I will refer to the semi-formal
notion of calculability implicitly defined by the Kolmogorov-Dershowitz-Gurevich
postulates as algorithmability.

Let me reconstruct the conceptual structure of this group of explications of effec-
tive calculability in terms of Carnapian explication. The clarification of the explican-
dum was implicitly achieved by Kolmogorov in the process that led him to his 1953
philosophical scheme, i.e. Kolmogorov analysis. I called the conceptual offspring
of his efforts algorithmability, i.e. what is defined by the Kolmogorov-Dershowitz-
Gurevich semi-formal axioms for computations. From this notion, different explicata
can be formulated, such as the classical Kolmogorov machines or the more recent
ASMs. Here is a conceptual diagram of this second group of explications (Fig. 3):

I have thus presented Dershowitz’s & Gurevich’s foundational analysis of com-
putability, together with Kolmogorov’s seminal take, explaining how it can be
understood as a Carnapian explication. In what follows I will conceptually compare
this group of explications with the Turing-Gandy-Sieg ones.

4 Foundational analyses of computability as three-step explications

We have seen how Sieg’s and Dershowitz’s & Gurevich’s axiomatizations build upon
different approaches to computability and how some of the differences between their
technical frameworks depend on their different conceptual background. Specifically,
Sieg proposed axioms for calculators, building upon Turing’s and Gandy’s semi-
nal works on computability. The conceptual core of his axioms for computors and
mechanical devices is the degree of freedom that the calculator is allowed to have.

Fig. 3 The two-step structure of the Kolmogorov-Dershowitz-Gurevich explications of effective
calculability

 21 Page 18 of 28 European Journal for Philosophy of Science (2021) 11:21

Dershowitz & Gurevich, following Kolmogorov’s footsteps, instead proposed axioms
for computations, considering them independently from any calculator whatsoever.
The core of their axioms are the abstract state and the bounded work postulates,
i.e. non-trivial representational and procedural limitations of the calculation process
itself.

These approaches can be traced back, respectively, to Turing’s praised analysis of
calculability and Kolmogorov’s seminal ideas about the intuitive notion of algorithm.
In explication terms, it seems prima facie that Turing and Kolmogorov clarified the
notion of effective calculability in two different ways, arriving respectively at the
notions of computorability and algorithmability.

However, where exactly lies the conceptual difference between these two groups
of explications? Several possibilities should be considered. These authors could for
instance have explicated different intuitive concepts. Alternatively, there could be two
possible disambiguations of effective calculability, as in the case of logical and sta-
tistical probability (Carnap 1950). Another possibility could be that these two groups
of explications differ in the way in which they clarify their common explicandum
or in the way in which they formulate their explicatum. In other words, where does
the branching between these two groups of explications happen? Does it happen at
the stage of the clarification of the explicandum or does it happen at the stage of the
formulation of the explicatum? My proposal is that this difference lies neither in the
first clarification step nor in the final step of the formulation of the explicatum, but
rather in an additional step between the two.

The difference between these two approaches to computability cannot lie in the
final step of the formulation of the explicatum. After all, there are many other
instances of mechanical computability, extensionally equivalent to Turing com-
putability, that do not show any such conceptual difference. Take Post’s explication
of effective calculability, for instance. Post’s notion of normal system generability
is indeed a different formalization of the intuitive concept of calculability than Tur-
ing’s one. According to Post, a function is effectively calculable if and only if it(s
symbolic representation) can be generated via the iterative application of certain sub-
stitution rules (Post 1943). This characterization of computability is then by no means
conceptually reducible to Turing’s one. However, Post’s work can be completely
subsumed under the conceptual approach of the Turing-Gandy-Sieg explications (cf.
Sieg 2018). Even though Post does not specify a semi-formal notion of computabil-
ity, his work seems to implicitly make use of the notion of computorability. In fact,
what matters in Post’s systems are the possible moves that one is allowed to make
in order to solve the specific symbolic substitution puzzle, i.e. in order to calculate a
certain function. In order to explicate the notion of effective calculability, Post then
pays attention to the symbolic processes that can be carried out by an idealized human
being working in a clerical way, just as Turing did16. Thus, the difference between
Turing’s and Kolmogorov’s approaches must be sought elsewhere.

16In order to better appreciate this connection, see Turing’s late take on solvable and unsolvable puzzles
in Turing (1954).

European Journal for Philosophy of Science (2021) 11:21 Page 19 of 28 21

Does perhaps the difference between these two groups of explications lie in the
first step of these explications, i.e. in the clarification of the explicandum? Are these
two foundational analyses two distinctive way of disambiguating or clarifying the
intuitive notion of effective calculability? Even though it is certainly tricky to give
arguments for the uniqueness of an intuitive, vague concept that different people
tried to capture, some evidence can be provided. Despite their conceptual differ-
ences, Kolmogorov and Turing were trying to explicate the same informal notion:
effective calculability. Compare the examples and the initial discussion contained
in Kolmogorov and Uspenski (1958) with the ones in Turing (1936). Moreover, if
one looks at the two foundational analyses of computability here treated, both Sieg
and Dershowitz & Gurevich explicitly state that the aim of their work is to capture
the intuitive notion of effective calculability, as traditionally understood and clari-
fied (Sieg 2009; Dershowitz and Gurevich 2008). Turing and Kolmogorov explicated
also the same contexts and uses of the term, i.e. the same clarified explicandum. Just
like Turing, Kolmogorov was interested in explicating classical calculability in all
its symbolic generality, abstracting away from the actual limitations of any computer
or any domain. The difference between these two groups of explications is thus not
explainable as a difference in the clarification of effective calculability such as the
one at play in Church’s work on general recursiveness (Quinon 2019, pp. 22-25).

Where then does the conceptual difference between Turing’s and Kolmogorov’s
approaches to computability lie? It seems that the traditional, two-step version of Car-
napian explication is not fine-grained enough to capture the differences between the
semi-formal notions of computorability and algorithmability. In what follows I will
present a refined three-step version of Carnapian explication that is able to capture
the conceptual differences between these two groups of explications.

4.1 Explication as a three-step procedure: the semi-formal sharpening
of the clarified explicandum

As recalled in Section 2, Carnapian explication is originally a two-steps procedure.
I am now going to propose a refinement of the explication with the help of which
I will achieve a better analysis of the two groups of explications of effective calcu-
lability treated above. This refinement adds another mid-level step, the semi-formal
sharpening of the clarified explicandum, to the procedure, making it thus become a
three-step method.

In the first step of Carnapian explication, i.e. the clarification of the explican-
dum, the explicator ought to clarify and (possibly) disambiguate the concept that she
seeks to explicate, relative to a given context of use. My claim is that after this first,
classically recognized step, in some cases the explicator sharpens this notion into a
semi-formal one, a mid-level ExplicanDum∗∗. Only after this sharpening, the expli-
cator passes to the final third step of the procedure of explication, i.e. the formulation
of the explicatum (Fig. 4).

The process of getting from ED∗ to this semi-formal mid-level notion ED∗∗,
i.e. the semi-formal sharpening of the clarified explicandum, is not a theoretically
neutral step. Here the explicator has to make a theoretical choice amongst various
possible directions in the sharpening. Every sharpening must in fact possess a given

 21 Page 20 of 28 European Journal for Philosophy of Science (2021) 11:21

Fig. 4 The structure of the refined three-step version of explication

theoretical focus, which is given by the core aspects of the concept on which the
sharpening focuses. The explicator highlights certain aspects of the concept, while
she leaves other aspects at the borders of the conceptual sharpening.

Using a visual analogy, think about the action of shooting a picture of a landscape
with a reflex camera. In order to take a good picture of the landscape, one has to
focus the reflex camera on certain parts of the landscape, inevitably blurring the rest.
It is impossible to focus on every element of the landscape at the same time. In order
to take a good picture one has to choose what to focus on. Perhaps one wants to get a
clear shot of the background of the landscape or perhaps one wants to put into focus
the foreground. You cannot have both at the same time.

This is completely analogous to what happens in the process of semi-formally
sharpening the clarified explicandum. The succession of shots of the same landscape
in (Fig. 5) represents the possible evolution of a given explication. In (a) we can see
a completely blurred landscape with unclear boundaries. This represents the starting

Fig. 5 Succession of shots of the same landscape with different focuses, representing the evolution of a
given explicandum during the first two steps of the refined three-step version of explication

European Journal for Philosophy of Science (2021) 11:21 Page 21 of 28 21

point of any explication, i.e. a given intuitive explicandum ED, the scope of which is
undefined and that perhaps contains a great deal of ambiguity and vagueness. In (b)
we can instead see the same blurred landscape, this time framed inside clear bound-
aries. This represents the clarified explicandum ED∗, which is obtained from the
original explicandum through the clarification and the disambiguation of the uses and
the contexts for which the notion is being explicated. Pictures (c) and (d) represent
instead two different ways of putting the landscape into focus, respectively highlight-
ing the foreground and the background of the picture, while inevitably blurring the
rest of the image. The passage from (b) to one of these two pictures represents the
semi-formal sharpening of the clarified explicandum. In this second step, the expli-
cator sharpens the clarified explicandum ED∗ onto a semi-formal sharpened ED∗∗.
By stating semi-formal axioms or definitions, the explicator freely chooses the parts
and features of the clarified explicandum that she wants to highlight. The parts and
features to highlight and therefore the direction onto which the clarified explican-
dum is sharpened is never a philosophically neutral step. As represented by Pictures
(c) and (d), multiple choices are always possible17. The semi-formal sharpening step
thus changes neither the uses nor the context in which the explicandum is explicated,
but it makes more precise the notion via a theoretically-laden semi-formal definition.

Finally, there is the last step of the explication, i.e. the formulation of the explica-
tum. I left this step out of the landscape-picture analogy because this step is different
from all the others, due to its focus on the explicatum and not on (a disambiguated
or clarified or sharpened version of) the explicandum. The explicatum can be a fully
formalized notion or even an informal one in some cases (e.g. the famous fish-piscis
example in Carnap 1950), but it is always a whole other concept, fully detached from
the explicandum.

Let me stress that one should not expect the mid-level step of the sharpening of the
clarified explicandum to occur in every explication whatsoever, but only in certain
complex cases where many different formal explicata are meant to replace a single
explicandum. Apart from the CTT case, other examples of concepts that may exhibit
different sharpenings of the same clarified explicandum and for which the three-
step explication seems an appropriate tool of analysis are formal theories of truth
(Horsten 2011; Halbach 2014), different conceptions of set (Incurvati 2020), theories
of informal proofs (Leitgeb 2009; Sjögren 2011), notions of logical consequence
(Etchemendy 1990), and mathematical conceptions of infinity (Mancosu 2009).

In the next subsection, I will show how this refined three-step version of explica-
tion is able to account for the conceptual differences between the two foundational
analyses of computability seen in Section 3. Specifically, the step of the semi-formal

17Some scholars outside the Carnapian tradition have also highlighted this possibility of sharpening
concepts in multiple directions. See for instance (Smith 2011, pp. 27-29). Shapiro also stressed, in a Wais-
mannian fashion, the possibility of this multiple sharpening in Shapiro (2013). However, it should be noted
that despite some similarities, my concept of sharpening is a technical term that has to be understood inside
the proposal of the three-step version of explication.

 21 Page 22 of 28 European Journal for Philosophy of Science (2021) 11:21

sharpening of the clarified explicandum will prove itself to be pivotal into adequately
capturing the difference between the notions of computability and algorithmability.

4.2 Computorability vs Algorithmability

Applying my refined three-step version of Carnapian explication to the two afore-
mentioned groups of explications of effective calculability gives us this conceptual
picture (Fig. 6):

The branching between these two groups of explications happens neither in the
first step of clarifying the explicandum nor in the final step of the formulation
of the explicatum, but instead on the mid-level. The second-step, the semi-formal
sharpening of the clarified explicandum, is where the two foundational analyses of
computability differ. From the perspective of this refined version of explication, then,
the notion of computorability and the notion of algorithmability are two semi-formal
sharpenings of the clarified notion of effective calculability. Despite sharpening
the same clarified notion, namely the classical concept of calculability clarified
in terms of symbolic processes, they do that in two different ways, paradigmati-
cally exemplified by Turing’s praised analysis and Kolmogorov’s hidden analysis of
computability.

Let me state more precisely what these two semi-formal sharpenings of the
clarified notion of effective calculability underlie:

• Computorability.
The sharpening is achieved in terms of the possible actions of the computor.

Bottom-up bounds are imposed on the freedom of the agent of the computation.
The conceptual focus of the analysis is at the calculation level.

• Algorithmability.
The sharpening is achieved in terms of non-trivial structural features of the

process of computation. Top-down restrictions are imposed on the evolution of
the computational objects. The conceptual focus of the analysis is at the abstract
algorithmic level.

Then, the difference between the notion of computorability and the notion of algo-
rithmability can be understood in terms of two different semi-formal sharpenings of
the same clarified explicandum.

Fig. 6 The three-step structure of the Turing-Gandy-Sieg and the Kolmogorov-Dershowitz-Gurevich
explications of effective calculability

European Journal for Philosophy of Science (2021) 11:21 Page 23 of 28 21

Turing was the first one to sharpen the clarified notion of effective calculability,
in what is usually called Turing analysis. Technically, I want to stress that this name
is misleading. This is not a conceptual analysis, this is conceptual engineering of an
intuitive notion into, first, a clarified notion and then into a sharpened one. Turing
merged these two steps in his famous informal exposition of 1936. In his ‘analysis’,
he fixed the use and the context of his explication of effective calculability, abstract-
ing the notion of effective calculability from practical limitations, ruling out infinity
and any kind of ingenuity, and focusing on the symbolic processes underneath any
calculation process. This disambiguation and clarification of effective calculability
belongs to the explication step of the clarification of the explicandum. At the same
time, Turing sharpened this clarified explicandum by arguing that what is effectively
calculable has to be computable by an abstract human calculator respecting in his
actions the bounds that we are now all familiar with, thereby implicitly giving a
semi-formal definition of the notion of computorability. This implicit semi-formal
axiomatization of effective calculability in terms of actions of a computor belongs
instead to the mid-level step of the sharpening of the clarified explicandum.

Turing’s approach has been the prevailing way of semi-formally sharpening effec-
tive calculability since his 1936 analysis. After Turing, Gandy improved and made
(some) assumptions underlying Turing’s approach explicit, using them in order to
attack the general problem of machine computability and thereby generalizing Tur-
ing’s analysis of an abstract computor with his four ‘principles for mechanisms’. Sieg
continued this tradition with a detailed historical analysis of the conceptual back-
ground of the 1936 confluence and by axiomatically improving Turing’s and Gandy’s
foundational analyses of computability.

The first occurrence of the Kolmogorov’s approach to explicating effective
calculability was instead Kolmogorov’s own 1953 informal axiomatization of an
algorithm. Kolmogorov, like Turing, implicitly clarified and sharpened effective cal-
culability, merging these two steps into the hidden analysis behind his semi-formal
definition of algorithmability. Together with Uspenski, he improved the 1953 treat-
ment, arriving at the definition of a Kolmogorov machine, the first explicatum
obtained via the sharpened notion of algorithmability. Despite the fruitfulness of
Kolmogorov’s model of computation (Uspensky 1992; Sieg and Byrnes 1996), the
originality of his conceptual take has not been equally recognized. Gurevich and
the ASM project revitalized Kolmogorov’s approach to explicate effective calcu-
lability and the notion of algorithmability. As I stressed in Section 3, the ASM
project approach to computability was mainly motivated by technical reasons, but
nevertheless it recovered Kolmogorov’s forgotten conceptual approach. A remark-
able offspring of this project is Gurevich’s axiomatic characterization of sequential
algorithms, which makes evident the originality of the Kolmogorov-focus based view
of computation. Together with Dershowitz, Gurevich then restricted his axioms in
order to capture effective computations, thereby achieving a foundational analysis of
computability deeply rooted in Kolmogorov’s approach.

The refined three-step version of explication is also able to explain some debates
about these two foundational analyses of computability. Recall that the semi-formal
sharpening of the clarified explicandum always implies a theoretical choice. Two
different semi-formal sharpenings of the same clarified explicandum are therefore

 21 Page 24 of 28 European Journal for Philosophy of Science (2021) 11:21

conceptually incompatible. This can be seen in some remarks made by Sieg and
Gurevich on each other’s foundational analysis.

Sieg doesn’t recognize the originality of Dershowitz’s & Gurevich’s axioms,
objecting to their claim of their approach being more general than the Gandy-Sieg one
(Sieg 2013, pp. 119-121). We have seen that the generality stressed by Dershowitz &
Gurevich is of a conceptual nature, being namely the fact that Kolmogorov’s semi-
formal sharpening of the clarified notion of calculability into algorithmability focuses
on the abstract algorithmic level and not on the level of computation. This cannot be
captured nor fully understood from the perspective of Turing’s sharpening and thus
within Sieg’s framework18.

This conceptual tenet of Turing’s way of semi-formally sharpening effective cal-
culability also has a formal correlate in the technical framework of Sieg’s explicatum,
in its focus on how a certain state of the computation is assembled, i.e. the input-
output behavior on the specific level of data-representation at which the calculator
works. Symmetrically, in Dershowitz’s & Gurevich’s treatment there is no place for
any concept of calculator whatsoever. There is no trace of a computor in their for-
mal framework or in their postulates, and Gurevich’s accessibility principle explicitly
forbids any meaningful notion of calculator. The technical correlate of this princi-
ple is the abstraction from any specific data-representation that makes the evolution
of the state work via an oracle-like ground-term production. The assumption of Kol-
mogorov’s way of semi-formally sharpening effective calculability explains their
aforementioned claims of conceptual generality and also their critiques of Gandy’s
machines as a model of parallel computation. From the perspective of the notion
of algorithmability, since the calculator is out of the conceptual picture, a Gandy
machine seems then an unnatural layering of mechanical devices (Gurevich 2012, pp.
271-272). More generally, since both Gandy’s and Gurevich’s treatment of machine
calculability heavily builds on their respective explications of effective calculability,
conceptual differences between their formal models of machine computability can be
explained by their opposite way of semi-formally sharpening effective calculability.

Another philosophical difference between these two groups of explications that
can be explained by my refined three-step version of explication is the one stressed
by Smith in the context of his idea of a squeezing argument for effective calcula-
bility (Smith 2013, pp. 357-364). He stressed how Kolmogorov imposed limitations
on the concept of effective computation as top-down restrictions, in sharp contrast
to Turing’s bottom-up bounds on the actions of the computor. This difference is a
consequence of the different semi-formal sharpening of the clarified explicandum
achieved by these two pioneers of computability. Turing, in order to arrive at the
notion of computorability, had to impose bottom-up bounds on the possible actions of
the computor, having chosen to highlight the agent of the computation. Kolmogorov,

18It should be noted that Sieg also criticizes Dershowitz’s & Gurevich’s proposal on other, technical,
grounds, such as the alleged technical generality of ASMs or the alleged proof of CTT that Dershowitz &
Gurevich claim to have. Despite finding these objections very serious, I will, as already mentioned, leave
out from the present work these kinds of discussions.

European Journal for Philosophy of Science (2021) 11:21 Page 25 of 28 21

instead, highlighted the abstract structure of an arbitrary algorithm and its evolution
process and thus, in order to define the notion of algorithmability, imposed the pivotal
limitations as top-down restrictions.

5 Conclusion

Let me recall the main steps of the present work. I have conceptually analyzed
two groups of explications of effective calculability: the Turing-Gandy-Sieg and the
Kolmogorov-Dershowitz-Gurevich ones. I have argued that, from the perspective of
Carnapian explication, their conceptual differences can be traced back to Turing’s
and Kolmogorov’s different ‘analyses’ of effective calculability and specifically to
the different semi-formal notions of computorability and algorithmability. We have
then seen how the classical two-step version of Carnapian explication is not able to
capture the difference between these two notions, tying it neither to the step of the
clarification of the explicandum nor to the step of the formulation of the explicatum. I
have thus proposed a refined three-step version of Carnapian explication which adds
the mid-level step of the semi-formal sharpening of the clarified explicandum. With
the help of this three-step version of explication, it is possible to adequately cap-
ture and conceptualize the difference between algorithmability and computorability
in terms of two different semi-formal sharpenings of the same clarified explicandum.
The three-step version of explication is also able to give a novel perspective on some
philosophical debates related to these foundational analyses of computability.

The presentwork naturally presents itself as open to various possibilities of futurework.
First, the example of CTT shows the significance of the intermediate steps in the
evolution of a given explication. Since, as I mentioned in Section 2, recent philo-
sophical discussions over explication do not take intermediate steps of the procedure
into much consideration, it would be interesting to see what the three-step version
of explication can give to these debates. The new mid-level step could perhaps
allow more fine-grained readings of some classical desiderata of explication such
as similarity and might help understand better the differences between Carnapian
explication and other philosophical methods. Secondly, it seems natural to apply the
three-step version of explication to other examples of explications similar to CTT,
such as formal theories of truth, logical consequence, informal provability, concep-
tions of set, and infinity. I expect to find at least in some of these cases conceptual
differences analogous to the one between Turing’s and Kolmogorov’s approaches
to computability. Finally, if in the future other different foundational analyses of
computability will be proposed, it would be interesting to see whether they implic-
itly of explicitly define a semi-formal notion of computability different from both
algorithmability and computorability and therefore another way of sharpening the
clarified notion of effective calculability.

Acknowledgments I am indebted to Joe Dewhurst, Norbert Gratzl, Hannes Leitgeb, and two anonymous
referees for helpful comments on previous drafts of this paper. I am also indebted to Filippo Gatteschi who
took the beautiful pictures of our hometown used in Fig. 5.

 21 Page 26 of 28 European Journal for Philosophy of Science (2021) 11:21

Funding Open Access funding enabled and organized by Projekt DEAL. This publication was funded by
the LMU Munich’s Institutional Strategy LMUexcellent within the framework of the German Excellence
Initiative.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Brun, G. (2016). Explication as a method of conceptual Re-Engineering. Erkenntnis, 81(6), 1211–1241.
Brun, G. (2017). Conceptual Re-Engineering: From explication to reflective equilibrium. Synthese, 197,

925–954.
Carnap, R. (1950). Logical foundations of probability. Chicago: The University of Chicago Press.
Carus, A.W. (2007). Carnap and Twentieth-Century thought: Explication as enlightenment. Cambridge:

Cambridge University Press.
Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathemat-

ics, 58, 345–363.
De Benedetto, M. (2020). Explicating ‘Explication’ via Conceptual Spaces. Erkenntnis, https://doi.org/10.

1007/s10670-020-00221-8.
Dershowitz, N., & Gurevich, Y. (2008). A natural axiomatization of computability and proof of Church’s

Thesis. Bulletin of Symbolic Logic, 14, 299–350.
Dutilh Novaes, C., & Reck, E. (2017). Carnapian explication, formalisms as cognitive tools, and the

paradox of adequate formalization. Synthese, 194(1), 195–215.
Etchemendy. (1990). The Concept of Logical Consequence. Cambridge: Harvard University Press.
Floyd, J. (2012). Wittgenstein, Carnap, and Turing: Contrasting Notions of Analysis. In Wagner, P. (Ed.)

Carnap’s Ideal of Explication and Naturalism (pp. 34–46). UK: Palgrave Macmillan.
Gandy, R.O. (1980). Church’s thesis and principles for mechanisms. In Barwise, J., Keisler, H.K., Kunen,

K. (Eds.) The Kleene Symposium (pp. 123–145). North-Holland: Amsterdam.
Gödel, K. (1934). On undecidable propositions of formal mathematical systems. Mimeographed lecture

notes by S. C. Kleene and J. B. Rosser, reprinted with revisions in Davis, M. (Ed.), The Undecidable:
Basic papers on Undecidable Propositions, Unsolvable Problems And Computable Functions (pp. 39–
74). Hewlett: Raven Press.

Gurevich, Y. (1991). Evolving algebras: an attempt to discover semantics. In Rozenberg, G., & Salomaa,
A. (Eds.) Current Trends in Theoretical Computer Science (pp. 266–292): World Scientific.

Gurevich, Y. (1995). Evolving algebra 1993: Lipari guide. In Börger, E. (Ed.) Specification and Validation
Methods (pp. 9–36): Oxford University Press.

Gurevich, Y. (1999). The sequential ASM thesis. Bulletin of european association for theoretical computer
science, 1–32.

Gurevich, Y. (2000). Sequential abstract state machines capture sequential algorithms. ACM Transactions
on Computational Logic, 1, 77–111.

Gurevich, Y. (2012). Foundational Analyses of Computation. In Cooper, S.B., et al. (Eds.) How the World
Computes. Turing Centennial Conference (pp. 264–275). Berlin: Springer.

Gurevich, Y., et al. (2014). What is an algorithm? (revised). In Olszewski, A. (Ed.) Church’s Thesis: Logic,
Mind and Nature: Copernicus Center Press.

Gurevich, Y. (2015). Semantics-to-Syntax Analyses of Algorithms. In Sommaruga, G., & Strahm, T. (Eds.)
(pp. 187–206): Turing’s revolution.

Gustafsson, M. (2014). Quine’s Conception of Explication - and Why It Isn’t Carnap’s. In Harman, G., &
Lepore, E. (Eds.) A Companion to W.V.O. Quine (pp. 508–525): Wiley.

Halbach, V. (2014). Axiomatic theories of truth revised edition. Cambridge: Cambridge University Press.

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1007/s10670-020-00221-8
https://doi.org/10.1007/s10670-020-00221-8

European Journal for Philosophy of Science (2021) 11:21 Page 27 of 28 21

Hanna, J.F. (1967). An Explication of ‘Explication’. Philosophy of Science, 35, 28–44.
Horsten, L. (2011). The Tarskian Turn. Deflationism and Axiomatic Truth. MIT Press.
Incurvati, L. (2020). Conceptions of set and the foundations of mathematics. Cambridge: Cambridge

University Press.
Justus, J. (2012). Carnap on concept determination: Methodology for philosophy of science. European

Journal for Philosophy of Science, 2, 161–179.
Kleene, S.C. (1936). General recursive functions of natural numbers. Mathematische Annalen, 112(5),

727–742.
Kolmogorov, A.N. (1953). On the notion of algorithm. Uspekhi Mat Nauk., 8(4), 175–176.
Kolmogorov, A.N., & Uspenski, V.A. (1958). To the definition of an algorithm. Uspehi Math. Nauk.,

13(4), 3–28.
Kuipers, T.A.F. (2007). Introduction. Explication in philosophy of science. In Kuipers, T.A.F. (Ed.) hand-

book of the philosophy of science, General Philosophy of Science - Focal Issues (pp. vii–xxiii):
Elsevier.

Leitgeb, H. (2009). On Formal and Informal Provability. In Bueno, O., & Linnebo, Ø. (Eds.) New Waves
in Philosophy of Mathematics (pp. 263–299). London: Palgrave Macmillan.

Leitgeb, H., & Carus, A. (2020). Rudolf Carnap Zalta, E.N. (Ed.)
Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was cantor’s theory of

infinite number inevitable?. Review of Symbolic Logic, 2(4), 612–646.
Post, E.L. (1941). Absolutely Unsolvable Problems and Relatively Undecidable Propositions: Account of

an Anticipation. Unpublished draft. Reprinted in Davis, M. (Ed.), The Undecidable: Basic papers on
Undecidable Propositions, Unsolvable Problems And Computable Functions, (pp. 340–433). Hewlett:
Raven Press.

Post, E.L. (1943). Formal reductions of the general combinatorial decision problem. Amer. J. Math., 65,
197–215.

Quinon, P. (2019). Can Church’s thesis be viewed as a Carnapian explication?. Synthese,
https://doi.org/10.1007/s11229-019-02286-7.

Reck, E. (2012). Carnapian Explication: a case study and critique. In Wagner, P. (Ed.) Carnap’s Ideal of
Explication and Naturalism (pp. 96–116): Palgrave Macmillan.

Shapiro, S. (2013). The open-texture of computability. In Copeland, J., Posy, C., Shagrir, O. (Eds.)
Computability: Gödel, Turing, Church, and Beyond (pp. 153–181). Cambridge: The MIT Press.

Shepherd, J., & Justus, J. (2015). X-Phi And carnapian explication. Erkenntnis, 80, 381–402.
Sieg, W., & Byrnes, J. (1996). K-graph Machines: generalizing Turing’s machines and arguments. In

Hajek, P. (Ed.) Gödel ’96, Lecture Notes in Logic, (Vol. 6 pp. 98–119): Springer.
Sieg, W. (1997). Step by Recursive Step: Chuch’s Analysis of Effective Calculability. Bulletin of Symbolic

Logic, 3(2), 154–180.
Sieg, W., & Byrnes, J. (1999). An Abstract Model for Parallel Computations: Gandy’s Thesis. The Monist,

82(1), 150–164.
Sieg, W. (2002a). Calculations by man and machine: Mathematical presentation. In Proceedings of the

Cracow International Congress of Logic, Methodology and Philosophy of science, Synthese Series
(pp. 245–260). Dordrecht: Kluwer Academic Publishers.

Sieg, W. (2002b). Calculations by man and machine: Conceptual analysis. In Sieg, W., Sommer, R., Tal-
cott, C. (Eds.) Reflections on the Foundations of Mathematics. Essays in honor of Solomon Feferman,
Lecture Notes in Logic 115, Assoc. for Symbolic Logic (pp. 390–409). Natick: A. K. Peters, Ltd.

Sieg, W. (2009). On Computability. In Irvine, A. (Ed.) Handbook of the Philosophy of Mathematics
(pp. 535–630): Elsevier.

Sieg,W. (2013). Axioms for Computability: Do they allow a proof of Church’s Thesis?. In Zenil, H. (Ed.) A
Computable Universe: Understanding and exploring nature as computation (pp. 99–123). Singapore:
World Scientific Publishing.

Sieg, W., Szabó, M., McLaughlin, D., Omodeo, E.G., Policriti, A. (2016). Why Post did [not] have Tur-
ing’s Thesis. InMartin Davis on Computability, Computational Logic, and Mathematical Foundations
(pp. 175–208): Springer.

Sieg, W. (2018). What is the Concept of Computation?. In Manea, F., Miller, R.G., Nowotka, D. (Eds.)
CiE 2018: Sailing Routes in the World of Computation, (Vol. 10936 pp. 386–396): Lecture Notes in
Computer Science.

Sjögren, J. (2011). A note on the relation between formal and informal proof. Acta Analytica, 25, 447–458.
Smith, P. (2011). Squeezing arguments. Analysis, 71(1), 22–30.

https://doi.org/10.1007/s11229-019-02286-7

 21 Page 28 of 28 European Journal for Philosophy of Science (2021) 11:21

Smith, P. (2013). An Introduction to gödel’s Theorems, 2nd edn. Cambridge: Cambridge University Press.
Stein, H. (1992). Was carnap entirely wrong after all?. Synthese, 93, 275–295.
Strawson, P.F. (1963). Carnap’s Views on Constructed Systems versus Natural Languages in Analytic

Philosophy. In Schilpp, P.A. (Ed.) The Philosophy of Rudolf Carnap (pp. 503–518). Chicago: Open
Court.

Tarski, A. (1933). Der Wahrheitsbegriff in den formalisierten Sprachen. English translation, (1956) The
concept of truth in formalized languages. In Tarski, A. (Ed.) Logic, Semantics: Metamathematics. 2nd
edn. (pp. 152–278). Oxford: Oxford University Press.

Turing, A.M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, ser. 2 42(Parts 3 and 4), 230–265; Turing, A.M. (1937):
A correction, ibid. 43, 544–546.

Turing, A.M. (1954). Solvable and unsolvable problems. Science News, 31, 7–23.
Uspensky, A.V. (1992). Kolmogorov and mathematical logic. The Journal of Symbolic Logic, 57(2), 385–

412.
Uspensky, A.V., & Semyonov, A.L. (1993). Kolmogorov’s Algorithms or Machines. In Shiryayev,

A.N. (Ed.) Selected Works of A. N. Kolmogorov, Volume III, Mathematics and Its Applications (Soviet
Series), (Vol. 27 pp. 251–260): Springer.

Wagner, P. (Ed.) (2012). Carnap’s ideal of explication and naturalism. UK: Palgrave Macmillan.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Explication as a Three-Step Procedure: the case of the Church-Turing Thesis
	Abstract
	Introduction
	The Carnapian concept of explication
	Two foundational analyses of computability
	The Turing-Gandy-Sieg explications
	Turing's analysis and Gandy's principles for mechanisms
	Sieg's axioms for computors and the notion of computorability

	The Kolmogorov-Dershowitz-Gurevich explications
	Kolmogorov's hidden analysis
	Dershowitz's and Gurevich's axioms for computations and the notion of algorithmability

	Foundational analyses of computability as three-step explications
	Explication as a three-step procedure: the semi-formal sharpening of the clarified explicandum
	Computorability vs Algorithmability

	Conclusion
	References

