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Abstract: In this paper, we propose Kripke-style models for the logics of evidence and truth
LETJ and LETF. These logics extend, respectively, Nelson’s logic N4 and the logic of first-degree
entailment (FDE) with a classicality operator ○ that recovers classical logic for formulas in its scope.
According to the intended interpretation here proposed, these models represent a database that
receives information as time passes, and such information can be positive, negative, non-reliable,
or reliable, while a formula ○A means that the information about A, either positive or negative,
is reliable. This proposal is in line with the interpretation of N4 and FDE as information-based
logics, but adds to the four scenarios expressed by them two new scenarios: reliable (or conclusive)
information (i) for the truth and (ii) for the falsity of a given proposition.

Keywords: Kripke models; logics of evidence and truth; paraconsistency

1. Introduction

The aim of this paper is to present Kripke-style models for the logics of evidence and truth LETJ
and LETF, introduced in [1,2]. Both are paraconsistent and paracomplete logics that extend respectively
Nelson’s logic N4 and the logic of first-degree entailment (FDE) with a classicality operator ○ that
recovers classical logic for formulas in its scope. The motivation for the logics of evidence and truth is
to model contexts of reasoning where one deals with positive and negative evidence, which can be
conclusive or non-conclusive. (On the notion of evidence, and N4 and FDE as evidence-preserving
logics, see [1] Section 2, [3] Section 3 and [2] Section 2.2.1.) Conclusive evidence is subjected to
classical logic, and non-conclusive to a paraconsistent and paracomplete logic that is N4 in the case
of LETJ and FDE in the case of LETF. According to the interpretation in terms of evidence and truth,
a pair of contradictory formulas A and ¬A expresses conflicting non-conclusive evidence for A and
¬A, and ○A means that there is conclusive evidence for the truth or the falsity of A. Conclusive
evidence is subjected to classical logic, and so when ○A holds, A is treated as true or false by the
formal systems. Thus, while A,¬A ⊬ B, in these logics it holds that ○A, A,¬A ⊢ B, which means that
conflicting evidence cannot be conclusive on pain of triviality. Both LETJ and LETF are logics of formal
inconsistency and undeterminedness [4–6]. Sound and complete valuation semantics were presented
for LETJ and LETF in [1,2], respectively.
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It is well known that the logics FDE and N4 can be interpreted in terms of preservation of
information, the latter in the sense of [7,8]. In terms of information, a formula ○A can be read as
meaning that the information about A is reliable, and LETJ and LETF can be interpreted in terms of
positive and negative information, which can be either reliable or unreliable. This idea fits Belnap and
Dunn’s proposal of interpreting FDE as a logic to be used by a computer that receives information
from different sources [9–11]. The semantic values True, False, Both and None, of what became known
as Belnap–Dunn 4-valued logic, express the circumstances in which the computer receives, respectively,
only positive, only negative, conflicting and no information at all, about a proposition A. In addition
to these four scenarios, LETJ and LETF are capable of representing two additional scenarios: when ○A
does not hold, we have the four scenarios above, but when ○A holds, exactly one among A and ¬A
holds, which means that the information about A, positive or negative, is reliable and subjected to
classical logic.

The Kripke-style models to be presented here are intended to represent a database that, as time
passes, receives information from different sources that may be either reliable or unreliable. Each stage
w represents one of the following six scenarios:

When w ⊮ ○A:

1. w ⊩ A, w ⊮ ¬A: at w the database has only the information that A is true;
2. w ⊮ A, w ⊩ ¬A: at w the database has only the information that A is false;
3. w ⊩ A, w ⊩ ¬A: at w the database has conflicting information about A;
4. w ⊮ A, w ⊮ ¬A: at w the database has no information about A.

When w ⊩ ○A:

5. w ⊩ A: at w the database has reliable information that A is true;
6. w ⊩ ¬A: at w the database has reliable information that A is false.

These six scenarios can be illustrated by the diagram below:

w2

p

w4

p, ○p

w5

p,¬p

w6

¬p, ○p

w3

¬p

w1

In stage w1, the database is empty and therefore has no information about p. In w2 it receives only
the information p, which in w2 is not taken as reliable. From w2, there are two possibilities: in w4 the
database receives the information that the information about p is reliable, which is expressed by ○p;
alternatively, in w5 the information ¬p is obtained, and so the information about p remains unreliable.
Analogous reasoning applies to w3, which may bifurcate into w5 or w6.

In the example above, nothing has been removed from the database. As we will see, LETJ requires
persistence for every formula, which means that once some information is inserted in the database
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it cannot be removed. On the other hand, in the case of LETF, different persistence clauses may be
adopted to express different criteria for revising information.

The remainder of this paper is structured as follows. Section 2 presents the models for LETJ and
proves soundness and completeness, and Section 3 does the same regarding LETF. Section 4 discusses
the persistence clauses that can be added to LETF for revisability of information and gives a proof that
the addition of these clauses to the semantics of LETF does not affect soundness, nor completeness.
Section 5 discusses some results related to how the classical behavior propagates across stages in LETJ
and LETF-models, and finally, Section 6, points out some possible further developments.

2. The Logic LETJ

The logic LETJ [1] is an extension of Nelson’s paraconsistent logic N4. An interpretation of
N4 in terms of positive and negative information can be found in [12]. In [8], a view according
to which paraconsistent logics should be interpreted without any ontological or epistemological
ingredients in terms of Dunn’s notion of information [7] is presented and defended. N4 is FDE plus
a semi-intuitionistic implication: Peirce’s law does not hold, but the equivalence between ¬(A → B)
and A ∧¬B holds. A Kripke semantics for N4 can be found in [13], p. 164, and it is essentially the local
conditions for ¬, ∨, ∧ that mimic the conditions of FDE, the local conditions for ¬(A → B) and the
intuitionistic global clause for→.

The language LJ of LETJ is composed of denumerably many sentential letters p1, p2, . . . , the unary
connectives ○ and ¬, the binary connectives ∧, ∨ and → and parentheses. The set of formulas of LJ ,
which we will also denote by LJ , is inductively defined in the usual way. Henceforth, Roman capitals
A, B, C, . . . will be used as metavariables for the formulas of LJ , while Greek capitals Γ, ∆, Σ, . . . will be
used as metavariables for sets of formulas.

Definition 1. The logic LETJ is defined over LJ by the following natural deduction rules:

A B ∧IA ∧ B
A ∧ B ∧EA

A ∧ B
B

A ∨IA ∨ B
B

A ∨ B
A ∨ B

[A]
⋮
C

[B]
⋮
C ∨EC

[A]
⋮
B → IA → B

A → B A → EB

¬A ¬∧ I¬(A ∧ B)
¬B

¬(A ∧ B)
¬(A ∧ B)

[¬A]
⋮
C

[¬B]
⋮
C

¬∧ EC

¬A ¬B ¬∨ I¬(A ∨ B)
¬(A ∨ B)

¬∨ E¬A
¬(A ∨ B)

¬B
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A ¬B ¬→ I¬(A → B)
¬(A → B)

¬→ EA
¬(A → B)

¬B

A DNI¬¬A
¬¬A DNEA

○A A ¬A EXP○B
○A PEM○

A ∨¬A

As is customary, enclosing a formula A in square brackets indicates that A is a discharged hypothesis.
The notion of a derivation in LETJ can be inductively defined along the lines of the definition presented
in [14] (pp. 35–36). It suffices to say here that a derivation is a tree of labeled formulas whose nodes
are either a hypothesis or the conclusion of applying one of the rules above to formulas that occur
previously in the tree. Given Γ ∪ {A} ⊆ LJ , the notation Γ ⊢J A will be used to express that there is
a derivation D in LETJ such that A is the last formula that occurs in D (its conclusion) and all of D’s
undischarged hypotheses belong to Γ. ⊢J A will be treated as a shorthand for ∅ ⊢ A. When there is no
risk of confusion, we shall write ⊢ instead of ⊢J .

Definition 2. A Kripke modelM for LETJ is a structure ⟨W,≤, v⟩ such that W is a non-empty set of stages,
the accessibility relation ≤ is a partial order on W, and v ∶ LJ ×W Ð→ {0, 1} is a valuation function satisfying
the following conditions, for every w ∈ W:

1. v(A ∧ B, w) = 1 iff v(A, w) = 1 and v(B, w) = 1;
2. v(A ∨ B, w) = 1 iff v(A, w) = 1 or v(B, w) = 1;
3. v(¬¬A, w) = 1 iff v(A, w) = 1;
4. v(¬(A ∧ B), w) = 1 iff v(¬A, w) = 1 or v(¬B, w) = 1;
5. v(¬(A ∨ B), w) = 1 iff v(¬A, w) = 1 and v(¬B, w) = 1;
6. v(○A, w) = 1 only if exactly one of the following conditions obtains:

For every w′ ≥ w, v(A, w′) = 1 and v(¬A, w′) = 0;
For every w′ ≥ w, v(A, w′) = 0 and v(¬A, w′) = 1;

7. v(A → B, w) = 1 iff for every w′ ≥ w, if v(A, w′) = 1, then v(B, w′) = 1;
8. v(¬(A → B), w) = 1 iff v(A, w) = 1 and v(¬B, w) = 1;

P1. If v(A, w) = 1, then for every w′ ≥ w, v(A, w′) = 1, for every A ∈ LJ .

Given a Kripke modelM = ⟨W,≤, v⟩ and a stage w ∈ W, we say that a formula A holds in w (M, w ⊩J A)
if, and only if, v(A, w) = 1.

Definition 3. Let Γ∪{A} ⊆ LJ . We say that A is a semantic consequence of Γ (Γ ⊧J A) if, and only if, for every
modelM = ⟨W,≤, v⟩ and every w ∈ W, ifM, w ⊩J B, for every B ∈ Γ, thenM, w ⊩J A. A is said to be logically
valid if for every modelM and stage w ∈ W,M, w ⊩ A. As in the case of ⊢J , we shall sometimes write ⊩ and ⊧
instead of ⊩J and ⊧J , respectively.

Note that Clause 6 of Definition 2 gives only a necessary condition for v(○A, w) = 1. This mimics
the clause for ○A of the non-deterministic valuation semantics proposed in [1] (p. 3805) and will be
important for the results presented later, specially in Section 4. We will now prove that LETJ is sound
and complete with respect to ⊧J .
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Soudness and Completeness

Theorem 1. (Soundness Theorem) Let Γ ∪ {A} ⊆ L. If Γ ⊢ A, then Γ ⊧ A.

Proof. Suppose that Γ ⊢ A. We shall prove that Γ ⊧ A by induction on the number n of nodes in a
derivation D of A from Γ in LETJ . If n = 1, then A is the only formula that occurs in D and A ∈ Γ.
Since ⊧ is reflexive, it follows that Γ ⊧ A. Suppose now that n > 1 and that the result holds for every
derivation with fewer nodes than D. It is straightforward to check that for each ruleR of LETJ , if the
premises of R hold in w ∈ W, then so does its conclusion. Let us consider rule → I and leave the
remaining cases to the reader: suppose that there is a derivation D1 of B from Γ ∪ {A} in LETJ , and let
D be the derivation (of A → B from Γ) obtained from D1 by applying rule → I. Since D1 has fewer
nodes than D, it follows that Γ, A ⊧ B (by the induction hypothesis). LetM = ⟨W,≤, v⟩ and w ∈ W
be such thatM, w ⊩ C, for every C ∈ Γ, and let w′ ≥ w be such that v(A, w′) = 1. Since by (P1) the
values of the elements of Γ in w remain the same in w′, it follows thatM, w′ ⊩ C, for every C ∈ Γ.
Hence,M, w′ ⊩ B (since Γ, A ⊧ B and v(A, w′) = 1). Therefore, for every w′ ≥ w,M, w′ ⊩ A only if
M, w′ ⊩ B, i.e.,M, w ⊩ A → B.

Definition 4. (Regular set) Let ∆ ⊆ LJ . ∆ is a regular set if it satisfies the following three conditions (A regular
set, as defined here, corresponds to what is usually called a nontrivial prime theory. For the sake of convenience,
we shall adopt the former terminology throughout this paper.):

1. ∆ is nontrivial: ∆ ⊬ A, for some A ∈ LJ ;
2. ∆ is closed: if ∆ ⊢ A, then A ∈ ∆, for every A ∈ LJ ;
3. ∆ is disjunctive (or prime): if ∆ ⊢ A ∨ B, then ∆ ⊢ A or ∆ ⊢ B, for every A, B ∈ LJ .

Definition 5. Let ∆ ∪ {A} ⊆ LJ . ∆ is said to be maximal with respect to A if, and only if, (i) ∆ ⊬ A and (ii)
∆, B ⊢ A, for every B ∉ ∆.

Lemma 1. If ∆ is maximal w.r.t. A, then ∆ is a regular set.

Proof. In order to prove that ∆ is a theory, suppose that ∆ ⊢ B and that B ∉ ∆. Thus, ∆, B ⊢ A.
By the transitivity of ⊢, it follows that ∆ ⊢ A, which contradicts the initial hypothesis. To prove that
∆ is a disjunctive set, suppose that ∆ ⊢ B ∨ C and that ∆ ⊬ B and ∆ ⊬ C, that is, B ∉ ∆ and C ∉ ∆.
Hence, ∆, B ⊢ A and ∆, C ⊢ A. Since ∆ ⊢ B ∨ C, it then follows by rule ∨E that ∆ ⊢ A, which also
contradicts the initial hypothesis.

Proposition 1. Let Γ ∪ {A} ⊆ LJ . If Γ ⊬ A, then there is a set ∆ ⊇ Γ that is maximal w.r.t. A.

Proof. Let B1, B2, . . . be a fixed enumeration of LJ and let the sequence ⟨Γn⟩n∈N be defined by:

1. Γ0 = Γ

2. Γn+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γn if Γn, Bn ⊢ A

Γn ∪ {Bn} if Γn, Bn ⊬ A

It can then be proven by a straightforward induction on n that Γn ⊬ A, for every n ∈ N. Let ∆ = ⋃n∈N Γn.
To prove that ∆ ⊬ A, it suffices to notice that if A were derivable from ∆, then, by the compactness
of ⊢, it would also be derivable from Γn, for some n ∈ N. Now, suppose that C ∉ ∆ and let n be such
that C = Bn. Since Bn ∉ Γn+1 (for Γn+1 ⊆ ∆), it follows by construction that Γn, Bn ⊢ A. Therefore,
∆, C ⊢ A.

Lemma 2. Let ∆ ⊆ LJ be a regular set and B, C ∈ LJ . Then:

1. B ∧C ∈ ∆ iff B ∈ ∆ and C ∈ ∆;
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2. B ∨C ∈ ∆ iff B ∈ ∆ or C ∈ ∆;
3. ¬¬B ∈ ∆ iff B ∈ ∆;
4. ¬(B ∧C) ∈ ∆ iff ¬B ∈ ∆ or ¬C ∈ ∆;
5. ¬(B ∨C) ∈ ∆ iff ¬B ∈ ∆ and ¬C ∈ ∆;
6. If ○B ∈ ∆, then one of the following conditions obtains:

For every regular set Σ ⊇ ∆, B ∈ Σ and ¬B ∉ Σ;
For every regular set Σ ⊇ ∆, B ∉ Σ and ¬B ∈ Σ;

7. B → C ∈ ∆ iff for every regular set Σ ⊇ ∆, if B ∈ Σ, then C ∈ Σ;
8. ¬(B → C) ∈ ∆ iff B ∈ ∆ and ¬C ∈ ∆.

Proof. Items (1)–(5) and (8) follow immediately from the definition of a regular set together with the
rules of LETJ . As for (6), suppose that ○B ∈ ∆. By PEM○, it follows that ∆ ⊢ B ∨ ¬B, and so either
B ∈ ∆ or ¬B ∈ ∆. Let Σ be a regular set such that ∆ ⊆ Σ and suppose that B ∈ ∆. Since ∆ ⊆ Σ, it then
follows that both ○B and B belong to Σ. Hence, ¬B ∉ Σ, for otherwise Σ would be trivial (in virtue of
rule EXP○ and the fact that Σ is a regular set). A similar reasoning suffices to show that if ¬B ∈ ∆, then
¬B ∈ Σ and B ∉ Σ, for every regular set Σ ⊇ ∆. Finally, to prove the left-to-right direction of (7), suppose
that B → C ∈ ∆ and let Σ ⊇ ∆ be a regular set such that B ∈ Σ. Since ∆ ⊆ Σ, it follows that B → C ∈ Σ
and so, C ∈ Σ (by rule → E). As for the right-to-left direction, suppose that B → C ∉ ∆. By rule → I,
it follows that ∆, B ⊬ C. By Proposition 1 and Lemma 1, there is a regular set ∆′ ⊇ ∆ ∪ {B} such that
C ∉ ∆′. Since ∆ ∪ {B} ⊆ ∆′, B ∈ ∆′. Therefore, there is a regular set Σ ⊇ ∆ such that B ∈ Σ and C ∉ Σ.

Proposition 2. If ∆ is a regular set, then there is a modelM = ⟨W,≤, v⟩ and a stage w ∈ W such that:

M, w ⊩ B if, and only if, B ∈ ∆, for every B ∈ LJ .

Proof. LetM = ⟨W,≤, w⟩ be such that:

1. W = {Σ ∶ Σ is a regular set};
2. ≤ = ⊆W ;
3. v ∶ LJ ×W Ð→ {0, 1} is defined by: v(B, Σ) = 1 iff B ∈ Σ, for every B ∈ LJ .

Since ∆ is a regular set, ∆ ∈ W. It follows from the definition of v that v(B, ∆) = 1 if, and only if, B ∈ ∆.
However, in order to complete the proof we are still required to show that v is a valuation, i.e., that it
satisfies all clauses of Definition 2. ThatM satisfies clauses (1)–(8) is an immediate consequence of
Lemma 2 above. Note, moreover, that since ≤ has been defined as the set inclusion relation over W,M
also satisfies (P1).

Theorem 2. (Completeness Theorem)

Let Γ ∪ {A} ⊆ LJ . If Γ ⊧ A, then Γ ⊢ A.

Proof. Suppose that Γ ⊬ A. By Proposition 1 and Lemma 1, there is a regular set ∆ ⊇ Γ such that
∆ ⊬ A. By Proposition 2, there is a modelM and a stage w ∈ W such that for every B ∈ LJ ,M, w ⊩ B if,
and only if, B ∈ ∆. Therefore,M, w ⊩ C, for every C ∈ Γ (since Γ ⊆ ∆), andM, w ⊮ A (for A ∉ ∆).

3. From LETJ to LETF

The logic LETF was introduced in [2] as an extension of FDE equipped with both a classicality
operator ○ and a non-classicality operator ●, dual to ○—cf. [2] Section 3.1. (Hilbert and Gentzen-style
systems for FDE can be found in [15] Section 2.2.) LETF can also be obtained from LETJ by dropping
the implication and adding ●, with the respective rules, which say essentially that ●A holds if, and only
if, ○A does not hold. As far as we know, classical negation cannot be defined in LETF, so ● had to be
introduced as a primitive symbol. In the intended interpretation of the Kripke models presented here,
●A means that in the database there is no reliable information about A.
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Definition 6. Let LF be the language obtained from LJ by replacing → by the unary connective ●. The logic
LETF results from adding the following rules to the set of LETJ ’s→-free rules:

○A ●A ConsB
Comp○A ∨ ●A

We shall use ⊢F to denote the derivability relation generated by LETF and abbreviate it to ⊢
whenever appropriate.

Definition 7. A Kripke model M for LETF is a structure ⟨W,≤, v⟩ as in Definition 2, except that (7), (8)
and (P1) are replaced by:

7′. v(●A, w) = 1 iff v(○A, w) = 0

As in the case of LETJ , we say that A holds in w (M, w ⊩F A) if, and only if, v(A, w) = 1. The definition of
LETF’s semantic consequence relation, to be denoted by ⊧F, is like the one for LETJ (Definition 3), with the
obvious adjustments. When there is no risk of ambiguity, we write simply ⊩ and ⊧ instead of ⊩F and ⊧F.

Theorem 3. (Soundness Theorem) Let Γ ∪ {A} ⊆ LF. If Γ ⊢ A, then Γ ⊧ A.

Proof. Suppose that Γ ⊢ A. We shall prove that Γ ⊧ A by induction on the number n of nodes in a
derivation D of A from Γ in LETF. If n = 1, then D contains only one formula and so either A ∈ Γ or it
is the result of applying rule Comp. If A ∈ Γ, then Γ ⊧ A, by the reflexivity of ⊧. As for the latter case,
suppose that A is the formula ○B ∨ ●B and letM = ⟨W,≤, v⟩ and w ∈ W be arbitrary. By Definition 7(7′),
v(○B, w) = 1 or v(●B, w) = 1. It then follows from clause (2) of Definition 7 that v(○B∨●B) = 1. Therefore,
M, w ⊩ A, and sinceM and w were arbitrary, we may conclude that Γ ⊧ A. Suppose now that n > 1
and that the result holds for every derivation with fewer nodes than D. It is straightforward to check
that for each rule R of LETF (other than Comp), if the premises of R hold in w ∈ W, then so does
its conclusion.

The proof of the completeness of LETF with respect to the class of models characterized in
Definition 7 is also similar to the one for LETJ , except for some minor differences. In particular,
the definitions of regular and maximal sets (Definitions 4 and 5), and the proofs of Lemma 1 and
Proposition 1 will carry over to the case LETF. Hence, we shall assume those results to hold without
presenting their proofs.

Lemma 3. Let ∆ ⊆ LF be a regular set and B, C ∈ L. Then:

1. B ∧C ∈ ∆ iff B ∈ ∆ and C ∈ ∆;
2. B ∨C ∈ ∆ iff B ∈ ∆ or C ∈ ∆;
3. ¬¬B ∈ ∆ iff B ∈ ∆;
4. ¬(B ∧C) ∈ ∆ iff ¬B ∈ ∆ or ¬C ∈ ∆;
5. ¬(B ∨C) ∈ ∆ iff ¬B ∈ ∆ and ¬C ∈ ∆;
6. If ○B ∈ ∆, then one of the following conditions obtains:

For every regular set Σ ⊇ ∆, B ∈ Σ and ¬B ∉ Σ;
For every regular set Σ ⊇ ∆, B ∉ Σ and ¬B ∈ Σ;

7′. ●B ∈ ∆ iff ○B ∉ ∆.

Proof. Items (1)–(5) follow immediately from the definition of a regular set together with the rules
of LETF. As for (6), it can be proven exactly as in the proof of Lemma 2. Finally, to prove (7′) it suffices
to notice that if ○B, ●B ∈ ∆, then ∆ would be trivial, and that either ○B ∈ ∆ or ●B ∈ ∆ (by rule Comp and
the assumption that ∆ is regular).

Proposition 3. If ∆ is a regular set, then there is a modelM = ⟨W,≤, v⟩ and a stage w ∈ W such that:
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M, w ⊩ B if, and only if, B ∈ ∆, for every B ∈ LF.

Proof. LetM = ⟨W,≤, v⟩ be such that:

1. W = {Σ ∶ Σ is a regular set};
2. ≤ = ⊆W ;
3. v ∶ LF ×W Ð→ {0, 1} is defined by: v(B, Σ) = 1 iff B ∈ Σ, for every B ∈ LF.

Since ∆ is a regular set, ∆ ∈ W. It then follows from the definition of v that v(B, ∆) = 1 if, and only if,
B ∈ ∆, for every B ∈ LF. By Lemma 3 above, ∆ satisfies all clauses of Definition 7, and we are done.

Theorem 4. (Completeness Theorem)

Let Γ ∪ {A}. If Γ ⊧ A, then Γ ⊢ A.

Proof. Suppose that Γ ⊬ A. By (the LETF-analogues of) Proposition 1 and Lemma 1, there is a regular
set ∆ ⊇ Γ such that ∆ ⊬ A (and so A ∉ ∆). By applying Proposition 3, it then follows that there is a
modelM = ⟨W,≤, v⟩ and a stage w ∈ W such that for every B ∈ LF, v(B, w) = 1 if, and only if, B ∈ ∆.
Therefore,M, w ⊩ C, for every C ∈ Γ, butM, w ⊮ A, that is, Γ ⊭ A.

Although the persistence clause (P1) of Definition 2 is necessary for proving the soundness of
LETJ , it can be completely dispensed with in LETF. As we shall see in the next section, there are
some reasons why supplementing the semantics of LETF with some weaker versions of (P1) may be
desirable. Before we do so, it is worth noting that even in the absence of (P1), for formulas ○A, LETF
already requires the values of A or ¬A to be preserved across stages.

Proposition 4. LetM = ⟨W,≤, v⟩ and A ∈ L. For every w ∈ W, it holds that:

1. If v(○A, w) = v(A, w) = 1, then v(A, w′) = 1, for every w′ ≥ w;
2. If v(○A, w) = v(¬A, w) = 1, then v(¬A, w′) = 1, for every w′ ≥ w.

Proof. This is an immediate consequence of clause (6) of Definition 7.

Thus, in LETF, whenever ○A holds in a certain stage w, both A and ¬A will retain their values in
every stage w′ accessible from w; and since exactly one of A or ¬A holds in w whenever ○A does, this
entails that exactly one of A or ¬A will hold in every such w′.

4. Persistence Clauses and Information Revision

In this section we explore different persistence relations that may hold in a Kripke model for
LETF and indicate how each of those relations may be useful for representing different criteria for
revising information.

Recall that, given a model M and a stage w ∈ W, v(A, w) = 1 expresses that positive
information A is available at w, while v(A, w) = 0 expresses that there is no such information in w.
Likewise, v(¬A, w) = 1 indicates the presence at w of negative information ¬A, whereas v(¬A, w) = 0
is to be interpreted as the lack of such information. When the information about A is reliable at w,
we have v(○A, w) = 1. For the sake of convenience, we may express the same thing more succinctly by
saying that the information conveyed by A (which may assume the form ¬B or ○B) is available at w
whenever v(A, w) = 1, and that no such information is available at w whenever v(A, w) = 0.

Now, how are we to understand the fact that A may assume different values in two ≤-related
stages? The following definitions may be of some help: given stages w, w′ ∈ W such that w ≤ w′,
we shall say that in w′ we have acquired the information conveyed by A whenever v(A, w) = 0 and
v(A, w′) = 1; and that we have revised that same information whenever v(A, w) = 1 and v(A, w′) = 0.
Using this new terminology, we can then describe the following four scenarios:
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1. v(A, w) = 1 and v(A, w′) = 1: the information conveyed by A was available at w and it has not
been revised in the process of moving from w to w′ (i.e., it remained available);

2. v(A, w) = 1 and v(A, w′) = 0: the information conveyed by A was available at w but it has been
revised in the process of moving from w to w′;

3. v(A, w) = 0 and v(A, w′) = 0: the information conveyed by A was unavailable at w, nor was it
acquired in the process of moving from w to w′ (i.e., it remained unavailable);

4. v(A, w) = 0 and v(A, w′) = 1: the information conveyed by A was unavailable at w but it has been
acquired in the process of moving from w to w′.

4.1. Persistence Conditions

Having the notions characterized in (1)–(4) at our disposal, we can now categorize the models of
LETF according to the different revisability relations that may or may not hold between formulas and
stages. In other words, we can distinguish classes of models in terms of the kinds of information that
are allowed to be revised.

Let a literal be a propositional letter or the negation of a propositional letter, and let basic
information be the (positive and negative) information conveyed by literals. The models of LETF can
be classified according to whether or not they satisfy one of the following persistence conditions:

P1. Total non-revisability

For every w′ ≥ w, if v(A, w) = 1, then v(A, w′) = 1.

P2. Non-revisability of reliable information

For every w′ ≥ w, if v(○A, w) = 1, then v(○A, w′) = 1.

P3. Non-revisability of reliable information and basic information

For every w′ ≥ w, if v(○A, w) = 1, then v(○A, w′) = 1;

For every w′ ≥ w, if v(p, w) = 1, then v(p, w′) = 1;

For every w′ ≥ w, if v(¬p, w) = 1, then v(¬p, w′) = 1.

Condition (P1), which was already present in LETJ , amounts to the constraint of total
non-revisability: it states that no information whatsoever is allowed to be revised at any stage. In other
words, every new piece of information acquired at a certain stage is always passed on to the subsequent
stages, leaving no room for data to be removed in the light of new information.

It is to be noted, however, that (P1) does not quite fit in the intended interpretation of LETF. This is
because if ●A were to always persist across stages, we would be prevented from acquiring reliable
information about A whenever that information had been previously deemed unreliable. On the other
hand, in the semantics for LETJ , total non-revisability was required because of the intuitionistic clause
for implication. Since ● is absent from LETJ , this does not represent a problem there, although the
presence of (P1) does prevent revising information in LETJ-models.

(P2) corresponds to the constraint that information already marked as reliable cannot be revised.
Thus, once ○A holds in a stage w, it cannot be removed at any stage w′ ≥ w. Recall that in Proposition 4
we have proved, even in the absence of (P2), that the fact that ○A holds in a certain stage w is already
sufficient for the non-revisability of either A or ¬A (which depends on which of A and ¬A actually
holds in w). However, this did not prevent the revisability of ○A itself; that is, it did not rule out such
models as:

w1
p

w2
p, ○p

w3
p
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Requiring models to satisfy (P2) will, however, prevent situations in which A (¬A) is non-revisable
in virtue of ○A holding in a certain stage, even though ○A itself is allowed to be revised at any
further stage.

Another important aspect of (P2) is that it entails (actually, is equivalent to):

P2′. If v(●A, w′) = 1, then for every w ≤ w′, v(●A, w) = 1.

(P2′) says that if some information is unreliable at a stage w′, it must have been unreliable in every
stage w that precedes w′ (To prove that (P2) entails (P2′), suppose that v(●A, w′) = 1 and let w ≤ w′.
Suppose further that v(○A, w) = 1. By (P2), it then follows that v(○A, w′) = 1, which contradicts clause
(7′) of Definition 7. Therefore, v(●A, w) = 1. Suppose now thatM satisfies (P2′) and let w ∈ W be
such that v(○A, w) = 1. For any arbitrary w′ ≥ w, v(○A, w′) = 1 or v(●A, w′) = 1. If v(●A, w′) = 1, then
v(●A, w) = 1 (by (P2′)). This result contradicts clause (7′) of Definition 7. Therefore, v(○A, w′) = 1.).

Finally, (P3) adds to (P2) the requirement of non-revisability of basic information. This makes
sense if we think of a database in which only literals and formulas of the form ○p can be inserted.
Given a modelM that satisfies (P3), it can be easily proved that any formula A in which neither ○ nor
● occur will be preserved across ≤-related stages.

Proposition 5. LetM = ⟨W,≤, v⟩ and w ∈ W. Let A ∈ LF be such that neither ○ nor ● occur in A. IfM
satisfies (P3) and v(A, w) = 1, then for every w′ ≥ w, v(A, w′) = 1.

Proof. The result can be proved by a straightforward induction on the complexity of A; this proof is
left to the reader.

Concerning the result above, it is to be noted that the condition (P3) added to LETF does not
collapse into (P1) because (P3) does not apply to formulas like ●A, nor to formulas in which ○ and ●
appear in the scope of ¬.

The conditions (P1), (P2) and (P3) are not exhaustive. The idea of these models as representations of
information revision can be developed in different ways, even allowing revisability of reliable information.
We can think of different revisability conditions as different levels of access to the database.
Total non-revisability (P1) would be a level of access that can insert information but cannot remove
anything from the database. Non-revisability of reliable information (P2) fits the idea of two different
levels of access: a level-1 access that can only insert basic information but cannot remove nor mark
anything as reliable (i.e., cannot insert ○A), and a level-2 access that can remove any information not
marked as reliable and mark information as reliable (i.e., can insert and remove literals and insert ○A),
but still cannot remove or change reliable information, which is marked with ○. This does not mean,
however, that in both cases reliable information cannot be revised once and for all, but only that the
model is not able to represent, so to speak, a sort of higher level access to the database.

4.2. Adding Persistence to LETF

The reader may ask at this point what would be the result of adding the persistence clauses above
to the semantics of LETF. After all, it seems that modifying Definition 7 would restrict the class of
models originally characterized in the previous section and, as a result, we should expect LETF to
retain soundness but not completeness with respect to the new, more restricted, classes of models.
As we shall now see, though, this is not really the case, for no matter which persistence clause we
choose to supplement Definition 7 with, LETF will continue to be sound and complete with respect
to the new class of models. Let us first prove this fact and then explain why none of the persistence
clauses (P1)–(P3) interfere with the completeness of LETF.

Soundness and Completeness with Persistence

To prove that soundness and completeness will continue to hold with respect to the classes of
models corresponding to each of the persistence clauses (P1)–(P3), it will suffice to consider the class
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generated by the most restrictive condition, (P1). In order to establish this result it will be convenient
to first introduce some preliminary notation. We shall use the symbol C to denote the class of models
originally characterized in Definition 7—i.e., models with no persistence constraints, except for those
stated in Proposition 4—and Ci (1 ≤ i ≤ 3) to denote the class that results from adding (Pi) to that
definition. Note that, for every i, Ci is properly included in C, C1 is properly included in both C2 and
C3, and C3 in C2, since every model that satisfies (P1) also satisfies (P2) and (P3), and every model that
satisfies (P3) satisfies (P2). Finally, ⊧i denotes the semantic consequence relation generated by the
models in Ci (We shall continue to use ⊢ and ⊧ as abbreviations for respectively ⊢F and ⊧F throughout
this section.). We can then prove that:

Lemma 4. LetM = ⟨W,≤, v⟩ be a member of C and let w ∈ W. Then there is a modelM1 = ⟨W1,≤1, v1⟩ in C1

and a stage w1 ∈ W1 such thatM, w ⊩ B if, and only if,M1, w1 ⊩ B, for every B ∈ L.

Proof. LetM1 be defined by:

1. W1 = {w};
2. ≤1= {⟨w, w⟩}; and
3. v1 ∶ LF ×W1 → {0, 1} is a total function such that for every B ∈ LF:

v1(B, w) = 1 iff v(B, w) = 1

Given thatM1 has only one stage, v1 (vacuously) satisfies (P1). Hence, all we need to do in order to
complete the proof is to show that v1 satisfies all clauses of Definition 7. Since clauses (1)–(5) and (7′)
are all locally formulated, they follow immediately from the definition of v1. Concerning clause (6),
which is the only global clause among (1)-(7’), we may proceed as follows. Suppose that v1(○C, w) = 1.
Hence, v(○C, w) = 1, and so exactly one of (I) and (II) below obtains:

(I) For every w′ ∈ W such that w′ ≥ w, v(C, w′) = 1 and v(¬C, w′) = 0;
(II) For every w′ ∈ W such that w′ ≥ w, v(C, w′) = 0 and v(¬C, w′) = 1.

Suppose that (I) holds. Thus, v(C, w) = 1 and v(¬C, w) = 0, and, so, v1(C, w) = 1 and v1(¬C, w) = 0.
Since w is the only element of W1, we may conclude that for every w′ ∈ W1 such that w′ ≥ w,
v1(C, w′) = 1 and v1(¬C, w′) = 0 (and similarly in the case of (II)). When v1(○C, w) = 0, it follows
that v(○C, w) = 0, and there is nothing to be proved since clause 6 has just one direction and is vacuous
on this condition.

Theorem 5. Let Γ ∪ {A} ⊆ L. Then Γ ⊧ A if, and only if, Γ ⊧1 A.

Proof. Since every model that belongs to C1 also belongs to C, it follows immediately that if Γ ⊭1 A,
then Γ ⊭ A. As for the other direction, suppose that Γ ⊭ A. Hence, there is a model M in C and
a stage w ∈ W such thatM, w ⊩ B, for every B ∈ Γ, andM, w ⊯ A. By Lemma 4 above, there is a
modelM1 = ⟨W1,≤1, v1⟩ in C1 and w1 ∈ W1 such thatM1, w1 ⊩ B, for every B ∈ Γ, andM1, w1 ⊮ A.
Therefore, Γ ⊭1 A.

Lemma 4 states that no matter how many stages a given modelM has, for each stage w ofM,
we can always find a corresponding model with exactly one stage w1 such that the same formulas
hold in both w and w1. Notice that because W1 contains only one stage,M1 (vacuously) satifies each
of the persistence clauses (P1)–(P3). This means that Lemma 4 and Theorem 5 would still be provable
in exactly the same way if C1 (and the corresponding consequence relation ⊧1) were replaced by either
C2 or C3. As a result, all of ⊧, ⊧1, ⊧2 and ⊧3 turn out to have the same extension which, together with
the soundness and completeness of LETF, yields:

Corollary 1. Let Γ ∪ {A} ⊆ LF. Then:
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1. Γ ⊢ A iff Γ ⊧1 A;
2. Γ ⊢ A iff Γ ⊧2 A;
3. Γ ⊢ A iff Γ ⊧3 A.

How can LETF be sound and complete with respect to all of ⊧, ⊧1, ⊧2 and ⊧3, in spite of those
relations being characterized in terms of different classes of models? As we shall see, the reason has to
do with the fact that in the semantics for LETF there is no clause that states a sufficient condition for ○A
to hold in a given stage. Before we get to that, however, we first need to take a look at the soundness
and completeness proofs of LETF presented in the previous section, in order to make sure that they
would still work had we adopted any of those alternative notions of consequence relation.

That the soundness theorem would continue to hold follows immediately from the fact each Ci
is included in C, which, in turn, implies that if ⊢ is sound with respect to the models in C, then it is
also sound with respect to models in the more restricted class Ci (given that Γ ⊧ A implies Γ ⊧i A).
Notice, moreover, that since nowhere in the proof of Theorem 3 was any of (P1)–(P3) appealed to,
the proof would work equally well had we adopted any of ⊧1, ⊧2, ⊧3 instead of ⊧.

Concerning the completeness theorem, we need to consider the modifications (if any) that would
be necessary if the proof were being formulated with respect to models satisfying one of (P1)–(P3).
As it turns out, there is precisely one place in the whole proof that requires more attention, viz.,
Proposition 3.

Recall that it was established in Proposition 3 that for any regular set ∆ of formulas of LF, one can
find a modelM and a stage w ofM such that a formula holds in w if, and only if, it belongs to ∆.
While proving this result, the modelM was defined in such a way that its stages were all the regular
sets of LF, its accessibility relation ≤ was taken to be the inclusion relation ⊆ over W, and its valuation
function was defined in terms of the characteristic function of each Σ ∈ W. Now, had we proved this
result with respect to models that satisfy one of (P1)-(P3), we would have to make sure thatM did
indeed satisfy the corresponding clause. In the case of (P1), for example, this would require showing
that for every regular sets Σ and Σ′ such that Σ ≤ Σ′, the fact that formula A belongs to Σ implies that
it also belongs to Σ′ (and similarly for the other clauses). At this point, it becomes clear, however,
that this requirement, as well as the ones corresponding to the other clauses, was already satisfied in
the original proof of Proposition 3, given the way ≤ was defined (i.e., in terms of ⊆). Hence, as in the
case of the proof of the soundness of LETF, the proof of its completeness would also remain unaltered.

Why does the adoption of any of the persistence clauses above bring no changes whatsoever
upon the corresponding deductive system? We can reach a better understanding of this fact by taking
a closer look at the proof of Lemma 4, for it is precisely because of that result that we are able to prove
the equivalence between ⊧, ⊧1, ⊧2 and ⊧3.

The proof tells us that given any modelM belonging to C and a stage w in this model, one can
always extract a modelM1 out ofM such that w is the only stage ofM1 and the same formulas hold
in w with respect to either model. That the semantic values of formulas containing no occurrences of
either ○ or ● are carried over to the new model is a consequence of the fact that the semantic conditions
of formulas formed with ¬,∧,∨ are all local, and so they do not depend on the values their subformulas
have at stages other than w.

There is no need to take formulas ●A into account here because their semantic conditions are
stated directly in terms of those for ○A. So let us consider what happens with formulas of the form ○A.
Assuming thatM, w ⊩ ○A, the only reason why ○A could fail to hold in w (w.r.t.M1) is if there were
some w′ ≥ w inM1 such that v(A, w′) = v(¬A, w′). However, since w is the only stage inM1 and
since A and ¬A inherit in M1 the values they had in M, this cannot happen. What if ○A did not
hold in the originalM? Could the elimination of all stages inM except for w also eliminate all the
counterexamples to ○A inM? The answer is ‘no’, and the reason for this is that the definition of a
Kripke model for LETF (with or without any of (P1)–(P3)) does not state any sufficient condition for ○A
to hold in a stage. If this were the case, then while moving fromM toM1 we would have no guarantee
that the (sufficient) condition for ○A to hold inM would not become satisfied in virtue of there being
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fewer stages inM1 than inM—and so ○A would hold inM1, even though it failed to hold inM.
This situation is thus very different from what takes place in intuitionistic logic. For imagine what
would happen if we attempted to prove an analogue of Lemma 4 for intuitionistic logic. Although
every formula that holds in w in the original modelM would continue to hold in w in the new model
M1, it could well happen that a formula A → B that did not hold in w (w.r.t.M) would nonetheless
hold in w w.r.t.M1. This is because all the counter-examples to A → B could end up being eliminated
inM1. Notice that this phenomenon depends essentially on the fact that in order for A → B to hold in
a stage w in a Kripke model for intuitionistic logic, there can be no stage w′ ≥ w such that A holds in
w′ and B does not hold in w′, which amounts to a sufficient condition for A → B to hold in w. And it is
precisely one such condition that is missing in the case of LETF’s ○ operator.

It is worth noting that, as a matter of fact, a semantics for LETF does not need a global clause
for ○, which means that from the strictly technical point of view, Kripke-style models for LETF collapse
into standard models. Nevertheless, the conceptual idea of Kripke models for intuitionistic logic,
in which propositions are proved as time passes, has an analogy with the idea of a database that
receives information as time passes. Moreover, if we change the ‘only if’ of the semantic clause for ○
(Definition 2 item 6) to an ‘if and only if’, we obtain an appealing sufficient condition for ○A: if at
a stage w we ‘look to the future’ and either across all stages A holds or across all stages ¬A holds,
then ○A holds in w (we return to this point in Section 6 below). Therefore, although strictly speaking
we have here ‘Kripke-style’ models rather than Kripke models, from the conceptual point of view our
proposal here seems to be quite justified.

Remark 1. In Omori and Sano [16], p. 162 we find Kripke models for the logic cBS4, which is an extension of
LETJ with the following axioms:

A3. A → ○A ≡ ¬A → ○A,
A8. ¬○A ≡ (A ≡ ¬A).

The semantics is given by Kripke models for N4 plus clauses tantamount to the following:

i. w ⊩ ○A iff ∀w′ ≥ w, (w′ ⊩ A and w′ ⊮ ¬A) or (w′ ⊮ A and w′ ⊩ ¬A);
ii. w ⊩ ¬○A iff ∀w′ ≥ w, w′ ⊩ A iff w′ ⊩ ¬A.

Omori and Sano adopt a Dunn-style relational semantics, with two relations ⊩+ and ⊩−, but the result is
the same, since w ⊩− A is equivalent to w ⊩+ ¬A. The logics cBS4, BD○ and BS4 discussed in [16] are indeed
related, respectively, to the logics of evidence and truth LETJ , LETF, and LETK (the latter is LETJ plus Peirce
Law, see [17], pp. 82–83). A more detailed analysis of the similarities and differences between these logics will be
done elsewhere.

Although the ‘only if’ direction of the semantic clause (i) is equivalent to the clause for ○ in LETJ (and in
LETF if persistence for ○A holds, see Section 4.2), the behavior of the classicality operator ○ in cBS4 is quite
different from its behavior in LETJ and LETF. A formula ¬○A in cBS4 has some analogy to a formula ●A in
LETF, since in the former ⊢ ○A ∨ ¬○A and ○A,¬○A ⊢ B hold. However, whether or not ○A holds in LETJ
and LETF is left undetermined even in those circumstances in which exactly one between A and ¬A holds.
The rationale for this is that the information that only A (or ¬A) holds may be reliable, and in this case ○A holds,
or unreliable, and so ○A does not hold. In LETF this can be expressed by the formulas A ∧ ○A and A ∧ ●A.
This feature of LETJ and LETF is essential for the intended interpretation in terms of positive and negative,
reliable or unreliable, information.

Modal interpretations for variants of the consistency operator have been proposed before. The first one
appears in [18] where ○A is defined as A → ◻A, obtaining a conceptualization of ○ that preserves all the
essential properties of a consistency connective (under a specific negation). In view of its definition, the semantic
interpretation of ○ depends naturally on a modal reading. This does not exactly signify assigning a possible-world
interpretation to ○, but rather defining a modal formula that behaves like ○. Later on, a modal approach for
consistency combined with modal negations was proposed in [19].
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5. Some Properties of LETJ and LETF

The following properties clarify some aspects of LETJ and LETF that bear directly on their
intended interpretations:

Proposition 6. In LETJ and LETF the following inferences do not hold:

1. ○A ⊢ ○¬A;
2. ○A, ○B ⊢ ○(A ∗ B) (∗ ∈ {∨,∧});
3. ○A, ○B ⊢ ○(A → B) (in LETJ only);
4. ●(A ∗ B) ⊢ ●A ∨ ●B (∗ ∈ {∨,∧}, in LETF only).

Proof. Left to the reader.

It is easy to find counterexamples for all the inferences above. The semantic values of the
conclusions are left undetermined by the premises because there is no sufficient condition for w ⊩ ○A.
As a consequence, in both LETJ and LETF propagation rules over {¬,∨,∧,→} do not hold. On the
other hand, let us say that a formula A behaves classically in LETJ or LETF if ⊢ A ∨¬A and A,¬A ⊢ B
hold; so in both LETJ and LETF, although they do not have propagation rules, the classical behavior
propagates over {¬,∨,∧,→}. More precisely:

Proposition 7. Suppose ○¬n1 A1, . . . , ○¬nm Am hold for ni ≥ 0 (where ¬ni , ni ≥ 0, represents ni occurrences of
negations before the formula Ai).

Then:

1. Any LETF-formula formed with A1, . . . , Am over {∧,∨,¬} behaves classically;
2. Any LETJ-formula formed with A1, . . . , Am over {∧,∨,¬→} behaves classically.

Proof. Item (1) has been proved in [2], Fact 31. To prove (2), given that for any n ≥ 0, ○¬n A ⊢ A ∨¬A
and ○¬n A, A,¬A ⊢ B, it remains to be proved that: (i) ○¬n A, ○¬mB ⊢ (A → B) ∨ ¬(A → B) and
(ii) ○¬n A, ○¬mB, (A → B),¬(A → B) ⊢ C. The proofs of (i) and (ii) are left to the reader.

This result establishes that even though, say, ○p and ○q do not entail ○(p∨ q), ○(p∧ q), etc., they do
entail that every formula formed with p and q over {¬,∨,∧} has a classical behavior. Hence, if formulas
of the form ○A are required to persist across stages in LETF (i.e., if models are required to satisfy (P2)),
this behavior is also transmitted across ≤-related stages:

Proposition 8.

1. In LETJ , if w ⊩ ○¬n1 A1, ..., w ⊩ ○¬nm Am, then for any formula B formed with A1, . . . , Am over
{∧,∨,¬,→ }, and for any w′ ≥ w, B behaves classically in w′;

2. In LETF, assuming persistence for formulas ○A, if w ⊩ ○¬n1 A1, ..., w ⊩ ○¬nm Am, then for any formula B
formed with A1, . . . , Am over {∧,∨,¬}, and for any w′ ≥ w, B behaves classically in w′.

Proof. Item (1) follows from Proposition 7 item 2 above and the fact that persistence holds for every
formula in LETJ . Item (2) follows from Proposition 7 item 1 above and the persistence of every
formula ○A.

6. Final Remarks and Further Research

In this paper we proposed Kripke-style models for the logics LETJ and LETF introduced
respectively in [1,2]. The intended interpretation of these models is in terms of a database that
receives positive and negative information, that can be either unreliable or reliable, the reliable
information being subjected to classical logic. We claim that the semantics is sound with respect to this
intended interpretation.
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A remarkable feature of these models is that there is no sufficient condition for ○A. This mimics
the fact that in the valuation semantics for LETJ and LETF different values for A and ¬A do not
imply ○A, and there is a rationale for this. The information that exactly one of either A or ¬A holds is
not enough, for we still need the information that such information is reliable. Note that this is what
distinguishes the scenarios 1 and 2 respectively from 5 and 6 mentioned in the Introduction.

There are no introduction rules for ○ in LETJ and LETF. The idea that the reliability of a formula
comes from outside the formal system is appealing, but it could be made more precise. The reliability
and conclusiveness of p and ¬p are expressed by logics of evidence and truth as the classicality of p.
Although it is reasonable that no rule concludes ○p, and propositions 7 and 8 show that classical
behavior propagates over the standard propositional connectives, it could be an advantage to have
propagation rules for ○. This can be obtained simply by changing item 6 of Definition 2, and the
corresponding definition for LETF, putting an ‘if and only if’ in the place of ‘only if’. More precisely,
if we make the necessary condition for w ⊩ ○A also a sufficient condition, the consequent of the
result expressed by Proposition 8 becomes stronger: for any formula B formed with A1, . . . , Am over
{∧,∨,¬}, and for any w′ ≥ w, w′ ⊩ ○B. Investigating the consequences of such a change in the semantics
presented here, however, will be done elsewhere.

An algebraic semantics for N4 was proposed in [20] by means of the N4-lattices. In a similar
vein, it was proved in [21] Section 9.3 that the logic LETJ is sound and complete with respect to
Fidel-structures. As LETF can be defined from LETJ by dropping the implication and adding the
operator ● and the rules Cons and Comp, a natural conjecture is that both LETF and LETJ would
be algebraizable (or at least count with an algebraic semantics) by way of the non-deterministic
algebraization methods of [22]. This of course has still to be proved.
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