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Abstract

Although interaction effects can be exploited to improve predictions and allow for
valuable insights into covariate interplay, they are given little attention in analysis.
We introduce interaction forests, which are a variant of random forests for cate-
gorical, continuous, and survival outcomes, explicitly considering quantitative and
qualitative interaction effects in bivariable splits performed by the trees constituting
the forests. The new effect importance measure (EIM) associated with interaction
forests allows ranking of the covariate pairs with respect to their interaction ef-
fects’ importance for prediction. Using EIM, separate importance value lists for
univariable effects, quantitative interaction effects, and qualitative interaction ef-
fects are obtained. In the spirit of interpretable machine learning, the bivariable
split types of interaction forests target well interpretable interaction effects that are
easy to communicate. To learn about the nature of the interplay between identified
interacting covariate pairs it is convenient to visualise their estimated bivariable
influence. We provide functions that perform this task in the R package diversity-
Forest that implements interaction forests. In a large-scale empirical study using
220 data sets, interaction forests tended to deliver better predictions than conven-
tional random forests and competing random forest variants that use multivariable
splitting. In a simulation study, EIM delivered considerably better rankings for the
relevant quantitative and qualitative interaction effects than competing approaches.
These results indicate that interaction forests are suitable tools for the challeng-
ing task of identifying and making use of well interpretable interaction effects in
predictive modelling.

1 Introduction

In predictive modelling, two covariate variables interact if the effect of one
variable on the outcome depends on the value of the other variable. Identi-
fying interaction effects allows for important new insights into the interplay
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between variables. For example, a variable (e.g., a medical treatment), may
have a strong effect, but only for a subgroup of the observations that have
certain values of a different variable. Beyond providing valuable insights,
considering these effects can also improve the performance of automatic
prediction rules.

Interaction effects between two variables A and B are often categorised
into two types: quantitative and qualitative interaction effects (Peto, 1982).
With quantitative interactions, the strength of the effect of variable A de-
pends on the value of variable B, but the direction of that effect does not
change in dependency of B. That is, independent of the value of variable
B, variable A either has a positive or negative effect on the outcome. In
contrast, in the case of qualitative interactions, the direction of the effect
of variable A changes depending on the value of variable B. For example,
variable A may have a positive effect on the outcome if the value of variable
B is low, but a negative effect if the value is high.

Random forests (Breiman, 2001) are one of the most popular machine
learning algorithms, known for their ability to capture complex non-linear
relationships between the (covariate) variables and the outcome. They are
ensembles of tree predictors, where the predictions of the forests are obtained
by summarising the predictions of the individual trees. It is often assumed
that random forests would exploit interaction effects between the variables
very effectively (see, e.g., the literature references given in Wright et al.
(2016)). The recursive splitting performed by the trees in random forests
indeed models interaction effects between variables. However, an interaction
effect between two variables is only modeled by a tree if there are branches in
the tree that use each of the two variables at least once for splitting. Given
the fact that the splits are selected by evaluating the predictive performances
of the variables individually, interaction effects between variables without
particularly strong marginal effects are not sufficiently accounted for. This
is because a pair of interacting variables is only selected for splitting if at
least one of them has a strong enough marginal effect to be selected for
the first of the splits in these interacting variables (Wright et al., 2016).
Interaction effects between variables that have a strong effect only when used
together may thus not be modelled sufficiently by the trees in random forests.
Kim and Loh (2001) (for classification tress) and Loh (2002) (for regression
trees) devised simple methods to allow selection of variables involved in
interactions that are free of (strong) marginal effects. Given their simplicity,
these methods can be expected to miss many pairs of interacting variables.
In particular, the splitting is performed in a univariable fashion with these
approaches, which hampers the methods’ ability to model the interaction
effects effectively. Interactions can be considered directly when performing
multivariable splitting, that is, when using several variables for the same
split. In the following, trees that use several variables for the same splits
will be denoted multivariate trees, while trees that use classical univariable,
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or “axis-aligned” splitting, will be denoted univariate trees.
A key feature of random forests, and an important milestone in the

field of interpretable machine learning in general (Molnar et al., 2020), is
their ability to rank the variables in descending order with respect to their
importance in prediction using Variable Importance Measures (VIMs). This
allows identification of variables most valuable for prediction. However, the
rankings obtained via the VIMs only allow conclusions on the importance
of the individual variables. They are not suitable for identifying interaction
effects valuable in prediction.

In this paper, the random forest variant “interaction forest” is intro-
duced. It employs multivariable splitting and allows ranking of quantitative
and qualitative interaction effects between variable pairs in descending or-
der with respect to their importance for prediction. This identifies relevant
interaction effects that potentially improve prediction and give insights into
the dependency pattern of the outcome on the covariate variables that would
be unobservable when focusing only on univariable effects. We introduce a
variable importance measure, Effect Importance Measure (EIM), with inter-
action forests which can be used to rank univariable effects and quantitative
and qualitative interaction effects separately. We use the term “effect im-
portance” here to stress that the goal of EIM is to rank the strengths of
univariable and interaction effects separately. In contrast, VIMs associated
with other random forest-type prediction methods rank the impacts of the
different variables without differentiating between main and interaction ef-
fects.

Quantitative and qualitative interaction effects are represented by differ-
ent split types in the trees of interaction forests. After forest construction,
the importance of these split types is measured separately for each consid-
ered variable pair. The importance scores obtained for these different split
types for each variable pair can then be interpreted in terms of the degrees
of association between the members of the variable pair with respect to the
two different interaction effect types considered. The split types are designed
to model well interpretable interaction effects. Therefore, the best-ranking
variable pairs tend to feature interaction effects that can be well interpreted
and consequently, well communicated. Our approach is strongly connected
to the rapidly emerging field of interpretable machine learning; see Molnar
et al. (2020) for an overview. This field is generally concerned with extract-
ing interpretable knowledge from machine learning models. Machine learn-
ing tends to focus primarily on achieving strong predictive performance and
less on obtaining insights into the dependency pattern between the outcome
and the variables. The latter is, however, important for drawing conclusions
on the subject matters studied using machine learning methods.

Apart from allowing us to identify and rank important interpretable
interaction effects, interaction forests tend to also feature a higher pre-
dictive performance than conventional random forests and competing ran-
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dom forest-based approaches that utilise multivariable splitting, as is re-
vealed in the analyses shown in this paper. Interaction forests are imple-
mented for categorical, continuous, and survival outcomes in the R package
diversityForest (currently version 0.3.0). The package is available online
from the CRAN repository.

The rest of the paper is structured as follows: Section 2 gives an overview
of existing approaches to construct multivariate trees, random forest-based
approaches that use multivariate trees, and random forest-based approaches
to detect interaction effects. In Section 3, the interaction forest algorithm is
described. Two comparison studies with other approaches are presented in
Section 4, where one of these uses real data sets and focuses on predictive
performance, while the other uses simulated data and focuses on interaction
detection. In Section 5 we summarise the main conclusions from the paper
and discuss further topics.

2 Existing work on multivariate trees, multivari-
ate tree ensembles, and approaches to identify-
ing interactions from tree ensembles

2.1 Multivariate tree approaches

The literature on multivariate trees is rich. An early example are multivari-
ate CARTs (Breiman et al., 1984) and an important recent contribution are
so-called “optimal” multivariate classification trees (Bertsimas and Dunn,
2017). The latter trees differ from conventional decision trees in that the
splits are not found individually, but rather entire trees are constructed at
once in such a way that the training error is minimised. We provide an
in-depth discussion on multivariate tree approaches in Section A.1 of Sup-
plementary Material 1.

2.2 Random forest-based approaches that use multivariate
trees

The following random forest-based approaches use multivariable splitting:
rotation forests (Rodŕıguez et al., 2006), mixed ensembles of univariate trees
and mean margins decision trees (Gashler et al., 2008), oblique random
forests (Menze et al., 2011), and canonical correlation forests (Rainforth and
Wood, 2015). We describe these approaches in Section A.2 of Supplementary
Material 1.

4



2.3 Approaches to identifying interactions from tree ensem-
bles

There exists a variety of approaches that aim to identify interactions us-
ing tree ensembles. The majority of these approaches use classical univari-
able splitting (Ishwaran, 2007; Kelly and Okada, 2012; Bureau et al., 2005;
Dazard et al., 2018; Chen and Zhang, 2013; Li et al., 2016; Basu et al., 2018;
Jiang et al., 2009). Ng and Breiman (2005) and Yoshida and Koike (2011)
perform multivariable splitting implicitly by using univariable splits in syn-
thetic variables formed from pairs of variables. Sorokina et al. (2008) use
so-called additive groves of trees (Sorokina et al., 2007) and Dirichlet pro-
cess forests (Du and Linero, 2019) take a Bayesian perspective. For more
detailed descriptions of these approaches, refer to Section A.3 of Supple-
mentary Material 1. The main conceptional difference between interaction
forests and these approaches, is that interaction forests target well inter-
pretable interaction effects. Identifying different types of interaction effects
is arguably less important because it is difficult to utilise the knowledge on
existing interaction effects, if these are overly complex.

In general, there seems to be much debate in the scientific community to
what degree it is possible to identify interaction effects using random forests
(Boulesteix et al., 2015b). For an overview on the meaning of the term
“interaction” with a focus on random forest methodology and the differen-
tiation of interactions from related, but different concepts, see Boulesteix
et al. (2015a).

3 The interaction forest algorithm

3.1 Data format

Let (xi,yi), i = 1, ..., n, denote the available data, where xi and yi are
the values of the covariate variables and the outcome values, respectively.
The variable vector xi is of length p, where each entry xij , j = 1, . . . , p,
contains the value of a particular variable for the ith observation, and yi is
a scalar in most cases, for example yi ∈ {0, 1} for binary outcomes. The
outcome may also take the form of a vector, for example yi = {yi,1, yi,2}
with yi,1 ∈ R>0 and yi,2 ∈ {0, 1} for survival outcomes, where yi,1 gives the
survival/censoring time and yi,2 the censoring indicator. While in the case
of training data, both, xi and yi are known, only xi is known in the case of
test data.
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3.2 Training and prediction

3.2.1 Interaction forests as specific diversity forests

On a technical note, interaction forests are specific diversity forests (Hor-
nung, 2020), which are themselves specific random forests according to the
definition of the term “random forest” in the original random forest article
by Breiman (2001). Note that this original definition was much more gen-
eral than the specific procedure commonly referred to by this term today.
The diversity forest algorithm is not a specific algorithm, but an alterna-
tive candidate split sampling scheme that makes complex split procedures in
random forests possible computationally by drastically reducing the num-
bers of candidate splits that need to be evaluated for each split. It also
avoids the well-known variable selection bias in conventional random forests
that has the effect that variables with many possible splits are selected too
frequently for splitting (Strobl et al., 2007). The candidate split sets differ
for each split in diversity forests and each of them is obtained in the follow-
ing way: For l = 1, . . . , nsplits (denoted npairs in the case of interaction
forests): 1) Sample one so-called split problem; 2) Sample a single or few
splits from the split problem sampled in the first step and add this (or these)
split(s) to the candidate split set. For example, in the case of conventional
univariable splitting, a split problem consists of all possible splits in one of
the variables. Here, to obtain a candidate set for a split, we repeatedly draw
variables and, instead of trying out all possible splits in these variables (as
would be done in conventional random forests), consider only one randomly
drawn split in each variable. Note that this procedure for univariable split-
ting is very similar to extremely randomized trees (Geurts et al., 2006); the
only difference is that with diversity forests the split problems (i.e., variables
in the case of conventional univariable splitting) are drawn with instead of
without replacement.

In the case of interaction forests, a split problem consists of the collection
of all possible splits of all considered split types (cf. Section 3.2.4) in a
specific pair of variables. Here, as will be described in Section 3.2.5, we
merely sample one split for each of the considered split types from each split
problem into the candidate split set. Given the fact that the split problems
contain very large numbers of splits for interaction forests, it would be too
demanding computationally to try out all splits in the split problems.

3.2.2 General remarks on interaction forests

As conventional random forests, interaction forest prediction rules consist
of large numbers of decision trees, where each of these is learned using
recursive binary splitting of a bootstrap sample or a random subset of the
training data. Therefore, for each tree, there are several observations that
are not used for learning. These observations are commonly referred to as
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the out-of-bag (OOB) observations associated with a tree, where the set of
all OOB observations of a tree is denoted as its OOB sample. The OOB
observations can be used in prediction error estimation and tuning parameter
optimisation, and they are required for the calculation of the EIM values
(see Section 3.3 for details).

Apart from the pre-processing described in Section 3.2.3, interaction
forests differ from conventional random forests only in the considered split
types (see Section 3.2.4) and in the way these splits are chosen during the
construction of the forest (see Section 3.2.5). Prediction is performed anal-
ogously as with conventional random forest; for details see Section B.1 of
Supplementary Material 1. In the rest of this subsection, we will describe
the differences of interaction forests to conventional random forests (Sections
3.2.3 to 3.2.5) and comment on the default values of the involved hyperpa-
rameters (Section 3.2.6).

3.2.3 Pre-selection of variable pairs that show indications of in-
teraction effects and handling of unordered categorical co-
variate variables

For data sets with low or moderate numbers of variables, we consider all
possible pairs of variables for splitting in interaction forests. For higher di-
mensional data, the number of possible variable pairs becomes very large,
making it impossible to consider all the pairs. As a solution, we use an
automatised procedure in the interaction forest algorithm to pre-select 5000
variable pairs that show indications of interaction effects if the number of
variables is larger than 100; that is, if the number of possible variable pairs
is larger than 5000. We detail this automatised procedure in Section B.2
of Supplementary Material 1. When constructing the trees in interaction
forests, we only consider the pre-selected promising variable pairs for split-
ting. If the number of pre-selected variable pairs would have been set to a
larger value than 5000, each pair would not have been considered frequently
enough in splitting to obtain stable EIM values using computationally well
feasible numbers of trees. It cannot be excluded that some relevant inter-
action effects are missed by this proceeding. However, 5000 pre-selected
variable pairs seems large enough for catching most pairs that show reason-
ably strong indications of interaction effects.

The split types used in interaction forests that model well interpretable
interaction effects (cf. Section 3.2.4) do not apply directly to unordered
categorical variables. This issue is dealt with by converting these vari-
ables into ordered variables in the same way as when using the op-
tion respect.unordered.factors="order" implemented in the R pack-
age ranger (version 0.12.1) (Wright and Ziegler, 2017). Wright and König
(2019) describe and empirically evaluate this option for conventional ran-
dom forest. The idea of this option is to take the outcome into account for
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ordering the categories in such a way that when moving along the ordering
of the categories, the outcome tends to change in a consistent direction.
See Section B.3 of Supplementary Material 1 or Wright and König (2019)
for more details. After ordering the categories of the unordered categorical
variables, each categorical variable is coded as 1, . . . , J , where J denotes the
number of categories of the variable.

3.2.4 Split types

We consider six different types of splits, which are visualised in Figure 1 and
described here. The univariable splits take the same form as in conventional

random forests, that is, xj < p
(j)
u vs. xj ≥ p

(j)
u , where xj denotes a variable

and p
(j)
u a split point in that variable.

The bivariable splits are divided into two different basic types: those as-
sociated with quantitative and those associated with qualitative interactions.
These two types of splits will be referred to as quantitative and qualitative
splits, respectively, in the following. As discussed in the introduction, in
the case of a quantitative interaction, the strength of the effect of variable
xj2 depends on the value of variable xj1 . If the quantitative interaction is
sufficiently strong, and if the influences of xj1 given xj2 and xj2 given xj1
are monotonically increasing or decreasing, the outcome of the observations
in one of the following four groups will differ systematically from that of all
other observations: 1) xj1 small and xj2 small, 2) xj1 small and xj2 large, 3)
xj1 large and xj2 small, 4) xj1 large and xj2 large. Therefore, we distinguish
four different types of quantitative splits, each associated with one of these
four groups (Figure 1). These splits divide the current node into two child
nodes based on whether each observation falls into the respective group as-
sociated with the split. For example, a split associated with the first of
the above four groups “xj1 small and xj2 small” takes the following form:

xj1 < p
(j1)
b ∩ xj2 < p

(j2)
b vs. (xj1 < p

(j1)
b ∩ xj2 < p

(j2)
b ){, where { denotes the

complementary set. The other three types of quantitative splits are defined
analogously.

In the case of a qualitative interaction, the direction of the effect of xj2
is different for small values of xj1 than for large values of xj1 . As in the
case of the quantitative interactions, we focus on qualitative interactions
for which xj1 given xj2 and xj2 given xj1 are monotonically increasing or
decreasing. For such interactions, the direction of the influence of xj2 will
be opposite between observations with small and large xj1 values. If a
qualitative interaction of this type is sufficiently strong, the outcome of
observations with small xj1 values, and simultaneously small xj2 values, will
be similar to that of observations with large xj1 values and at the same
time large xj2 values. Moreover, the outcome of observations with small xj1
values and at the same time large xj2 values will be similar to the outcome
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of observations with large xj1 values and at the same time small xj2 values.
Based on these considerations, qualitative splits take the following form in

interaction forests: (xj1 < p
(j1)
b ∩ xj2 < p

(j2)
b ) ∪ (xj1 > p

(j1)
b ∩ xj2 > p

(j2)
b ) vs.

(xj1 ≤ p
(j1)
b ∩ xj2 ≥ p

(j2)
b ) ∪ (xj1 ≥ p

(j1)
b ∩ xj2 ≤ p

(j2)
b ).

Univariable splits Quantitative splits 

𝑥𝑗1 

𝑥𝑗2 

𝑝 𝑢
(𝑗1)  

𝑥𝑗1 

𝑥𝑗2 
𝑝 𝑢
(𝑗2)  

Qualitative splits 

𝑥𝑗1 

𝑥𝑗2 

𝑝 𝑏
(𝑗1)  

𝑝 𝑏
(𝑗2)  

𝑥𝑗1 

𝑥𝑗2 

𝑝 𝑏
(𝑗1)  

𝑝 𝑏
(𝑗2)  

𝑥𝑗1 

𝑥𝑗2 

𝑝 𝑏
(𝑗1)  

𝑝 𝑏
(𝑗2)  

𝑥𝑗1 

𝑥𝑗2 

𝑝 𝑏
(𝑗1)  

𝑝 𝑏
(𝑗2)  

𝑥𝑗1 

𝑥𝑗2 

𝑝 𝑏
(𝑗1)  

𝑝 𝑏
(𝑗2)  

1) 2) 3) 

4) 5) 

6) 

Figure 1: Split types considered in the interaction forest algorithm. Each
square visualises the variable space spanned by two variables xj1 and xj2 .

The points p
(j1)
u , p

(j2)
u , and (p

(j1)
b , p

(j2)
b ) denote the split points for univariable

and bivariable splits, respectively. The white and gray areas depict the
regions associated with the two child nodes of the splits. For each drawn
variable pair in the candidate split sampling one candidate split of each of
these split types is drawn, see Section 3.2.5 for details.

The forms of the quantitative and qualitative splits given above repre-
sent simplifications of actual quantitative and qualitative interaction effects
and do not cover all possible types of interaction effects. For example, quan-
titative interaction effects for which xj2 is only influential for small and large
xj1 values, but not moderate xj1 values are not covered. These split forms
were chosen for three reasons. First, in the spirit of interpretable machine
learning, these split forms model interaction effect types that are well in-
terpretable and communicable. Second, if the split forms would be more
sophisticated, each interacting pair would have a larger proportion of its
possible splits be nonsensical with its true interaction effect. By contrast,
while the simple split forms of interaction forests are not suitable for repro-
ducing the true interactions exactly, many of the possible splits will repre-
sent them sufficiently well. Sampling adequate candidate splits with high
frequency is especially important in the case of larger numbers of variables,
since more variables means the number of possible pairs is large. Third,
the forms of the quantitative and qualitative splits were chosen to be par-
ticularly different from each other. This makes the algorithm better able to
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differentiate between quantitative and qualitative interactions. If the forms
of the splits were more sophisticated, many of the sampled splits would not
be very specific for quantitative and qualitative interactions, respectively.

3.2.5 Split selection in the tree construction

As noted above, the trees in interaction forests are grown using recursive
binary splitting. The fact that the candidate split sets in interaction forests
are sampled randomly from iteratively re-sampled split problems, makes
them specific diversity forests. A split problem in interaction forests is the
collection of all possible splits in a single pair of variables that are of the six
split types shown in Figure 1.

Each node split is selected in the following way in the construction of
the trees:

1. Drawing of the candidate split set:
The candidate split set, consisting of univariable and bivariable candi-
date splits in a number npairs of randomly sampled variable pairs, is
drawn in the following way (npairs is similar to the parameter mtry
in random forest):
For pair = 1, . . . , npairs:

(a) Drawing of the variable pair to consider.
Draw randomly a variable pair xj1 and xj2 from the set of con-
sidered variable pairs, which, for p ≤ 100, represents all possible
variable pairs or, for p > 100, a subset selected by the procedure
described in Section B.2 of Supplementary Material 1.

(b) Drawing of univariable splits.

Add two univariable split points p
(j1)
u and p

(j2)
u , one for each vari-

able xj1 and xj2 to the candidate split set. These split points
are drawn in the following way: Sort the unique values of the
variables, calculate the midpoints between the adjacent sorted
unique values, and randomly draw one of these midpoints.

(c) Drawing of bivariable splits.
In this step, five bivariable splits in the variable pair xj1 and xj2
are added to the candidate split set: one of each of the four quan-
titative split types and one qualitative split (cf. Section 3.2.4).

Each of these five splits uses the same split point (p
(j1)
b , p

(j2)
b ),

which is drawn in the following way:

i. Draw p
(j1)
b by taking the average of two randomly drawn

unique xj1 values.

ii. Draw p
(j2)
b under the constraint that each quadrant in the

two-dimensional coordinate system with origin (p
(j1)
b , p

(j2)
b )
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will contain at least one observation. The latter constraint
ensures that all five bivariable splits will be valid. The pro-

cedure used for drawing p
(j2)
b is described in detail in Section

B.4 of Supplementary Material 1.

2. Calculation of the split criterion values associated with the different
candidate splits.
For each candidate split in the candidate split set obtained in the first
step, perform the following:

(a) Assign each of the observations in the current node to one of the
two child nodes using the respective candidate split.

(b) Calculate the value of the considered split criterion (e.g., the Gini
impurity for categorical outcomes) for the division of the current
node obtained in (a).

3. Selection of the best candidate split.
Choose the split out of all candidates considered in the first step that
is associated with the best split criterion value calculated in the second
step.

3.2.6 Hyperparameter values

Most hyperparameters of interaction forests, such as the minimum node
size or the number of trees, are the same as those in conventional random
forests. In general, the performance of random forests has been seen to be
quite insensitive to changes in their hyperparameter values (Probst et al.,
2019). As noted before, interaction forests are specific diversity forests. In
Hornung (2020), it was seen that the performance of diversity forests is also
quite insensitive to changes in the size of the candidate split sets, that is,
the numbers of candidate splits repeatedly sampled for each split, which
is npairs × 7 in interaction forests (cf. Section 3.2.5). For these reasons it
should generally not be necessary to optimise the default hyperparameter
values used in the implementation of interaction forests in the R package
diversityForest, version 0.3.0. In Section B.5 of Supplementary Mate-
rial 1 the default values we use for the main hyperparameters are presented,
where we also provide reasonings for choosing each value.

3.3 Effect Importance Measure (EIM): Ranking univariable
effects, quantitative, and qualitative interaction effects
separately

The Effect Importance Measure (EIM), associated with interaction forests,
delivers separate ranking lists for the univariable effects and the quantita-
tive and qualitative interaction effects. The EIM values obtained for these
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three different types of effect will be denoted univariable, quantitative, and
qualitative EIM values, respectively.

EIM uses a variant of importance measure suggested by Hapfelmeier
et al. (2014) that is similar to the classical permutation VIM (Breiman,
2001) of random forests. In Hapfelmeier et al. (2014), the main motivation
for introducing PropRandom was that it can deal with missing values in the
data. We use it for calculating the EIM values, because it is more efficient
than the permutation VIM with respect to computing time. As with the
classical permutation VIM, with the approach by Hapfelmeier et al. (2014),
the importance value of each variable is based on comparing the prediction
accuracies of the trees on their OOB samples with estimates of the trees’
prediction accuracies we would expect if the variable was not available during
prediction. The single but important difference to the classical permutation
VIM is that the trees’ prediction accuracies expected if the variable was
not available are obtained in the following way in Hapfelmeier et al. (2014):
The OOB observations are dropped down the trees and in each instance in
which a split uses the variable of interest, the OOB observations are assigned
randomly to one of the two child nodes. The probabilities used for the two
child nodes are set proportional to their sizes.

The latter procedure does not transfer directly to interaction forests. In
contrast to conventional random forests, we need a vector for each of the
considered six split types, rather than a single vector of variable importance
values (cf. Section 3.2.4). When calculating the importance value of a vari-
able or variable pair with respect to a specific split type, we assign the OOB
observations randomly to the child nodes in each instance that a split uses
the variable or variable pair of interest, and simultaneously is of the split
type of interest (from the six considered split types). For example, the pre-
diction accuracy of a tree we would expect if a specific variable pair xj1 and
xj2 would have no effect in prediction with respect to the qualitative split
type (number 6 in Figure 1) would be estimated as follows: When dropping
the OOB observations down the tree, assign them randomly to one of the
two child nodes only for splits that use both of these variables xj1 and xj2
and are qualitative splits at the same time. In the following, we will refer to
the procedure by Hapfelmeier et al. (2014) as PropRandom for “proportional
randomisation”.

The EIM values for univariable effects, quantitative, and qualitative in-
teraction effects are calculated as follows:

1. Calculate the OOB prediction accuracies of the trees.

2. Calculate univariable EIM values.
First, calculate the prediction accuracies of the trees with the influ-
ences of the respective univariable effects eliminated using the trees’
OOB observations, where the predictions for the OOB observations
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are obtained by applying PropRandom with respect to the respective
univariable splits. Second, subtract these prediction accuracies from
those calculated in the first step and average these differences across
all trees to obtain the univariable EIM values.

3. Calculate qualitative EIM values.
Using PropRandom, the qualitative EIM values are calculated for each
considered variable pair analogously to the univariable EIM values.

4. Calculate quantitative EIM values.
As a first step, for each of the four different quantitative split types
(cf. again Section 3.2.4), we apply the same procedure as in the cases
of the univariable and qualitative splits.

This results in four vectors of quantitative EIM values. However, the
four different quantitative interaction effects targeted by the four quan-
titative split types are mutally exclusive, which is why each variable
pair can feature only one of these four interaction effect types. There-
fore, we need to classify the quantitative interaction effect associated
with each considered variable pair as one of the four quantitative in-
teraction effect types.

Prior to classifying the effects, however, we need to take care of a
different issue: The raw quantitative EIM values are not yet specific for
the targeted interaction effect types. More precisely, two variables that
both feature strong univariable effects, but no interaction effect, will
have large raw quantitative EIM values for two of the four quantitative
split types. For example, consider the scatter plot of the variable pair
with only main effects in Figure 4. Here, the quantitative EIM value
associated with split type two in Figure 1 will be large, but also that
associated with split type five. The corners of these split types in
Figure 1 are opposing. We make use of the latter when adjusting the
raw quantitative EIM values to make them specific for quantitative
interaction effects. For reasons of brevity, we describe the procedure
used for adjusting the raw EIM values in Section B.6 of Supplementary
Material 1.

The quantitative interaction effect types assigned to the respective
quantitative interaction effects are the ones associated with the largest
of the four adjusted quantitative EIM values. These largest adjusted
quantitative EIM values are also the final quantitative EIM values.

Note that, for larger numbers of variables (p > 100), a subset of 5000 promis-
ing variable pairs is pre-selected prior to the construction of the interaction
forest (cf. Section 3.2.3). Therefore, it is possible that not all variables were
available for splitting in the construction of the interaction forest, but only
those occurring in at least one of the pre-selected promising variable pairs.
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Univariable EIM values associated with variables unavailable for splitting are
set to zero. For higher dimensional data this can have the effect that some
important variables receive univariable EIM values of zero if these variables
are not featured in the pre-selected variable pairs. Another issue associated
with univariable EIM values for higher dimensional data is that variables
that are featured in a larger number of pre-selected variable pairs can receive
too large univariable EIM values (cf. also the exemplary real data analysis
in Section C.4 of Supplementary Material 1). These variables tend to be
used more often for splitting because they are not only contained in more
pre-selected variable pairs than others, but also in more candidate split sets
since we sample from the (pre-selected) variable pairs in the candidate split
sampling and not from the individual variables (cf. Section 3.2.5). There-
fore, variables that are in more pre-selected variable pairs are considered
more often for splitting, which is why they tend to receive larger univariable
EIM values. Given these issues, we strongly recommend interpreting the
univariable EIM values with caution, if the data are high-dimensional. If
it is of interest to measure the univariable importance of the variables for
high-dimensional data, an additional conventional random forest should be
constructed and the VIM values of this random forest be used for ranking
the univariable effects.

3.4 Visual exploration and classification of the interaction
effects

Using the EIM values, the quantitative and qualitative interaction effects
can be ranked with respect to their importance in prediction. However, the
quantitative and qualitative EIM values do not yet allow to draw conclu-
sions on the exact forms of the interaction effects. The latter is, however,
crucial for learning about the nature of the interplay between the variables
in interacting pairs. This makes it also possible to identify false positive
results, meaning pairs of variables that received high quantitative or qual-
itative EIM values, but do not interact. The latter check for false positive
results is important because to date there is no option to test whether the
EIM values are significantly different from zero. Even if there are no inter-
acting variable pairs in the data set, the quantitative and qualitative EIM
values of some variable pairs will take the first place.

The easiest interpretable way of studying the natures of interaction ef-
fects between pairs of variables is visual exploration. In the diversityForest
R package we provide functions that apply flexible regression techniques to
variable pairs and plot their fits. An example of such a plot is shown in Fig-
ure 2. This plot was taken from the exemplary real data analysis in Section
C.1 of Supplementary Material 1. Note that it is always important to not
overinterpret details of the fits of flexible regression techniques due to their
tendency to overfit the observed data.
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Figure 2: Example of plot produced by the diversityForest R package to
visualise the estimated bivariable influence of a variable pair. The estimated
influence of the stock prices of two aerospace companies (company2 and
company7) on the stock price of a third aerospace company (company10) is
shown. The contour plot in the left panel shows a two-dimensional LOESS
fit. For reasons of clarity, the points in the left panels do not show all 950
observations in the data set, but a random subset of 300 observations. The
lines in the right panel show cross sections of the two-dimensional LOESS
fits in the left panel. This data set was obtained from the open science online
platform OpenML (Vanschoren et al., 2013) under the data set ID 223.

In many applications, a specific variable is of main interest. For exam-
ple, in a medical study the interest may lie in investigating how a specific
treatment influences the outcome versus a placebo. We offer an option in
diversityForest that allows the user to focus on a specific variable when
visually examining the bivariable influences of variable pairs with large quan-
titative or qualitative EIM values.

We strongly encourage readers interested in applying interaction forests
to their own data to consult Section C of Supplementary Material 1. Here,
we show illustrative interaction forest analyses that use real data sets, where
we demonstrate important functionalities from the diversityForest pack-
age together with the corresponding R commands.

4 Comparison study of interaction forests with ex-
isting alternatives

We compared the performance of interaction forests with that of competing
approaches. The performance was evaluated both in terms of prediction and
in terms of the ability to identify interaction effects. Predictive performance
was evaluated using a collection of 220 real data sets. We used simulated
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data for evaluating the performance of the algorithms with respect to iden-
tifying interaction effects, because for real data the interaction structure
between the variables is not known. All R code and data used to perform
and evaluate the analyses are made available in Supplementary Material 2.

4.1 Comparison with respect to predictive performance us-
ing real data sets

4.1.1 Data

The data material consists of 220 publicly available data sets with binary
outcome and various numbers of covariate variables. Details on these data
sets and their pre-processing can be found in Hornung (2020) where these
data sets were used in identical form as in this paper. Information on their
acquisition can be found in Couronné et al. (2018), where this collection of
data sets was used for the first time.

4.1.2 Study design

The following random forest-based methods were included in this compari-
son: interaction forests (IF), random forests (RF) (Breiman, 2001), canon-
ical correlation forests (Rainforth and Wood, 2015) (CaF), oblique random
forests (Menze et al., 2011) (ObF), and rotation forests (Rodŕıguez et al.,
2006) (RoF). Note that except for RF, all of these approaches use multi-
variable splitting. Because RF can be seen as a baseline method in this
study, the configuration of RF was adjusted to the default configuration of
IF (cf. last paragraph of Section 3.2.3 and Section 3.2.6), in order to put
neither method at an advantage or disadvantage. For CaF, ObF, and RoF
we used the default configurations provided in the respective R implementa-
tions. As a validation scheme, we used five times repeated 5-fold stratified
cross-validation. As performance measures, we used the area under the re-
ceiver operating characteristic curve (AUC), the accuracy (ACC), and the
Brier score (Brier). Further details on the design of this comparison study
are given in Section D.1 of Supplementary Material 1.

4.1.3 Results

Table 1 shows the performances of the methods summarised across all 220
data sets. IF performed best with respect to the median for all three per-
formance metrics. Treating all data sets as independent, each metric was
tested for significant differences in terms of the median between IF, and
each of the four competitors using paired Wilcoxon tests. Subsequently, we
adjusted the p-values for multiple testing separately for each metric using
the Holm-Bonferroni method. Here, IF was significantly better than the
competitors with respect to all metrics except for RF with respect to the
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AUC ACC Brier

IF 0.9182 [0.7820, 0.9862] 0.8822 [0.7664, 0.9499] 0.0890 [0.0425, 0.1641]
RF 0.9140 [0.7815, 0.9829] 0.8787 [0.7670, 0.9512] 0.0923 [0.0401, 0.1645]
CaF 0.8842 [0.7660, 0.9781] 0.8761 [0.7555, 0.9468] 0.0962 [0.0391, 0.1748]
ObF 0.9051 [0.7721, 0.9824] 0.8644 [0.7356, 0.9465] 0.0985 [0.0461, 0.1818]
RoF 0.8632 [0.7652, 0.9685] 0.8676 [0.7544, 0.9421] 0.1016 [0.0437, 0.1686]

Table 1: Performances of the methods summarised across the 220 data sets.
The numbers show the medians of the cross-validated metrics across the
data sets. The numbers in square brackets show the 25% quantiles and 75%
quantiles (i.e., the first and third quartiles) of the cross-validated metrics
obtained for each data set. Larger AUC values, larger ACC values, and
smaller Brier values indicate a better performance.

ACC (adjusted p-values: AUC: IF vs. RF: p < 0.001, IF vs. CaF: p < 0.001,
IF vs. ObF: p = 0.001, IF vs. RoF: p < 0.001; ACC: IF vs. RF: p = 0.247,
IF vs. CaF: p = 0.002, IF vs. ObF: p = 0.002, IF vs. RoF: p < 0.001; Brier:
IF vs. RF: p = 0.009, IF vs. CaF: p < 0.001, IF vs. ObF: p < 0.001, IF vs.
RoF: p < 0.001). It must be noted that these p-values should be interpreted
with caution because the data sets are not all independent as several of them
form groups in the sense that they constitute versions of the same data set
(details on the data sets can be found in the supplementary files of Hornung
(2020)). However, apart from the test “IF vs. RF” for the ACC all p-values
are considerably smaller than the significance threshold α = 0.05. The effect
sizes of the tests were largely in the small to moderate range (AUC: IF vs.
RF: r = 0.33, IF vs. CaF: r = 0.37, IF vs. ObF: r = 0.22, IF vs. RoF: r
= 0.52; ACC: IF vs. RF: r = 0.08, IF vs. CaF: r = 0.22, IF vs. ObF: r =
0.23, IF vs. RoF: r = 0.26; Brier: IF vs. RF: r = 0.18, IF vs. CaF: r =
0.24, IF vs. ObF: r = 0.33, IF vs. RoF: r = 0.34). RF featured the second
best median performance for all three metrics. The rankings between the
remaining methods are not consistent across the different metrics in Table 1.

Figure 3 shows the ranks each method achieved among the other meth-
ods for each data set. Smaller values of the ranks correspond to a better
performance. Small and large values of the ranks will often be referred to as
“good ranks” and “bad ranks”, respectively. IF tended to achieve consider-
ably better ranks than the other methods with respect to the AUC and the
Brier. While there are no notable visible indications of an improvement of
IF over RF in terms of the ACC in Figure 3, IF featured the best mean rank
among the methods (results not shown). RoF achieved the worst ranks
among all methods for all three metrics. CaF achieved the second worst
ranks with respect to the AUC and strongly varying ranks with respect to
the Brier. In the case of the latter, CaF performed best and worst over pro-
portionally often. In fact, CaF took the best place the most often among the
five methods with respect to the Brier score. Further analysis revealed that
few of the data sets for which CaF performed best with respect to the Brier
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involved many variables. This suggests that CaF is particularly effective for
data sets with few variables. It must be noted that the comparison to CaF
is not completely fair in the cases of the AUC and the Brier. This is be-
cause the latter two metrics evaluate the performance with respect to class
probability estimation. CaF did not originally offer the possibility to obtain
class probability estimates, which is why we simply used the proportions of
the trees predicting either class as class probability estimates. It might be
possible to conceive more efficient procedures for obtaining class probability
estimates using CaF.

AUC ACC Brier

IF RF CaF ObF RoF IF RF CaF ObF RoF IF RF CaF ObF RoF
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Figure 3: Ranks of the methods with respect to the different performance
metrics. Each stacked bar shows the number of data sets for which the
respective method achieved the indicated rank among all other methods.

Using LOESS regression, we also investigated the dependencies of the
mean ranks of the methods with respect to the three metrics on the number
of variables in the data sets and on the sample sizes. Here, we saw no
notable dependency of the mean rank of IF on the number of variables. For
the ACC and the Brier, the mean rank of IF also did not depend notably on
the sample size. In the case of the AUC, IF achieved slightly better mean
ranks for large sample sizes. We describe the results of this LOESS analysis
in detail in Section D.2 of Supplementary Material 1.

4.2 Comparison with respect to performance in interaction
effect importance ranking using simulated data

4.2.1 Study design

Using simulated data, we compared the ranks of interacting variables ob-
tained using the quantitative EIM (IF-EIM-quant) and qualitative EIM (IF-
EIM-qual) of IF with the corresponding rankings obtained using alternative
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approaches. We also compared the univariable rankings obtained using the
univariable EIM (IF-EIM-univ) with those obtained using the classical per-
mutation VIM associated with RF (RF-V). When calculating the ranks, ties
in the importance scores were broken randomly.

The following alternative approaches for ranking the predictive impor-
tance of interaction effects were included in the comparison study: the paired
association measure (PA) (Ishwaran, 2007), the Interaction Minimal Depth
Maximal Subtree measure (IMDMS) (Dazard et al., 2018), and the stabil-
ity score of iterative random forests (iRF) (Basu et al., 2018). There do
not seem to be publicly available R implementations for any of the other
approaches mentioned in Section 2.3 (for descriptions of these approaches,
see Section A.3 of Supplementary Material 1). As a baseline method we
also included a naive metric calculated using the permutation VIM of RF
(RF-V-pairs): For each pair of variables, we measured the importance of
the interaction effect as the mean of the permutation VIM values obtained
for the two variables. This metric does not, similar to Bureau et al. (2005),
measure the importance of the interaction between the features, but focuses
only on the importance of the individual features. Any measure that focuses
on interaction detection should be superior to this naive metric.

As in the first comparison study (cf. Section 4.1), we adjusted the config-
uration of RF to the default configuration of IF. For the remaining methods,
except for in the case of the number of trees, we used the default config-
urations of these methods provided in the respective R implementations.
Because IF uses 20000 trees per default when calculating EIM values (cf.
Section 3.2.6), we used 20000 trees for all methods to avoid potentially
putting the other methods at a disadvantage. An exception was the largest
sample size considered in the simulation (n = 1000): Here, in the cases of
iRF and PA using 20000 trees was not feasible computationally, which is
why we used these two methods’ default choices for the numbers of trees in
the case of the largest sample size. For more details on this, see Section E.1
of Supplementary Material 1.

While EIM, PA, and IMDMS return interaction importance scores for
each pair of variables, iRF returns comparably short lists of tuples that are
candidates for tuples featuring high-order interactions. Therefore, the re-
sults obtained using iRF are not directly comparable to those obtained using
EIM, PA, and IMDMS. We describe the procedure we used to obtain ranks
for all variable pairs with iRF in Section E.1 of Supplementary Material 1.
In this procedure, we decided to err on the side of giving iRF an advantage
rather than risking a disadvantage. For example, we did not calculate ranks
of the interacting (and non-interacting) pairs attributed by iRF for simu-
lation iterations for which iRF did not select the respective pairs; treating
these ranks as missing. This disregards the fact that iRF was clearly not
successful in identifying the interacting pair for these simulation iterations.
Another possibility would have been to impute the ranks attributed by iRF

19



for these iterations. However, it would have been necessary to make as-
sumptions that potentially put iRF at a disadvantage. We wanted to avoid
a disadvantage, because our goal was to investigate whether IF tends to
outperform the competing approaches or not. If IF would still perform bet-
ter than iRF, even if the latter is put at an advantage, we would have more
certainty that IF truly performs better than iRF in the investigated context.

The simulation involved a binary, balanced outcome and 68 continu-
ous predictor variables. Fifty variables had no effect and the remaining
involved both univariable effects and pairs with quantitative or qualitative
interaction effects. For each effect type, three different levels of strength
were considered: Strong, moderate, and weak. Three different sample sizes:
100, 500, and 1000 were considered and for each sample size 200 data sets
were generated. The effects simulated for the different variables are listed
in Table 2. The simulation design is detailed in Section E.3 of Supplemen-
tary Material 1. Exemplary simulated data is shown in Figure 4. The first
panel shows a scatter plot between two variables with only main effects,
but no interaction effects. For both variables, observations in the second
outcome class tend to feature larger values than those in the first outcome
class. Therefore, the observations from the second class concentrate in the
upper-right corner of the plot and the observations from the first class in the
lower-left corner. The middle panel of Figure 4 shows a scatter plot between
two variables with a quantitative interaction effect. Here, the observations
from the second class tend to concentrate in the lower-right corner of the
plot. For values of X7 smaller than about zero, there is no influence of X8.
In this region, the green points (second class) are scattered evenly among
the red points (first class); the density of green points does not increase or
decrease with larger values of X8. In contrast, in the case of larger values
of X7, there are much more observations from the second class for smaller
values of X8 than for larger values. This means that the probability for
observing observations from the second class is increasingly strongly and
negatively influenced by X8 for larger values of X7. A scatter plot between
two variables with a qualitative interaction effect is shown in the right panel
of Figure 4. Here, in the case of smaller values of X13 up until about one,
there are much more values from the second class for smaller X14 values.
Conversely, in the case of larger values of X13, there are increasingly more
values from the second class for larger X14 values. Thus, for small X13 values
X14 has a negative influence on the probability for observing observations
from the second class, but a positive influence for larger X13 values.

4.2.2 Results

Table 3 shows the median ranks the variables with main effects only received
with respect to the univariable EIM values calculated using IF and with
respect to the values of the classical permutation VIM calculated using RF.
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Predictor variables Effect type

X1, . . . , X6 only main effect, no interaction effect

X1, X2 strong effect
X3, X4 moderate effect
X5, X6 weak effect

X7, . . . , X12 quantitative interaction effect

{X7, X8} strong effect
{X9, X10} moderate effect
{X11, X12} weak effect

X13, . . . , X18 qualitative interaction effect

{X13, X14} strong effect
{X15, X16} moderate effect
{X17, X18} weak effect

X19, . . . , X68 no effect

Table 2: Simulation design. Interacting variables are enclosed in curly brack-
ets.
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Figure 4: Exemplary pairs of variables with strong effects in a simulated
data set (sample size: 500). Each point corresponds to an observation in
the data set. The two colors distinguish the two outcome classes, where
red and green points show observations from the first and second class,
respectively. Corresponding pairs of variables for moderate and weak effects
are shown in addition in Supplementary Figure S43 .

The ranks are small and very similar between the two methods. The ranks
obtained for the individual simulated data sets are shown in Supplementary
Figure S44. Note that, while the variables with the strongest main effect
received a median rank of two for both methods, these variables received the
best rank more often than the second-best rank for all sample size scenarios
(results not shown).

The median ranks obtained for the variable pairs with quantitative in-
teraction effects are shown in Table 4, and the corresponding ranks for all
data sets in Supplementary Figure S45.

For the smallest considered sample size, none of the methods were able
to consistently identify the variables with quantitative interaction effects.
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Effect: Strong Moderate Weak

n = 100

IF-EIM-univ 2.0 [1.0, 3.0] 4.0 [3.0, 7.0] 9.0 [6.0, 16.0]
RF-V 2.0 [1.0, 3.0] 4.0 [3.0, 7.0] 10.0 [6.0, 17.0]

n = 500

IF-EIM-univ 2.0 [1.0, 2.0] 4.0 [3.0, 5.0] 9.0 [8.0, 10.0]
RF-V 2.0 [1.0, 2.0] 4.0 [3.0, 5.0] 9.0 [7.0, 10.0]

n = 1000

IF-EIM-univ 2.0 [1.0, 2.0] 4.0 [3.0, 5.0] 9.0 [8.0, 10.0]
RF-V 2.0 [1.0, 2.0] 4.0 [3.0, 5.0] 9.0 [8.0, 10.0]

Table 3: Simulation results – univariable effects. The numbers show the
median ranks the respective variables obtained across the simulated data
sets. The numbers in square brackets show the 25% quantiles and 75%
quantiles of the ranks obtained for the simulated data sets. Note that for
the variables with main effects only, each effect strength was represented
by two variables in the simulation design. When calculating the quantities
shown in the table, we simply pooled the ranks obtained for both variables
of each effect strength.

The median ranks obtained with iRF are the smallest for this sample size.
However, this result is misleading as for a large proportion of the simulation
iterations the respective variable pairs were not selected at all by iRF. In
these cases, iRF was clearly not successful in identifying these quantitative
interaction effects. Beyond the results obtained for iRF, the best median
rank is 19 in the small sample size scenario and was achieved using IF-EIM-
quant for the strongest quantitative interaction effect. However, in practice
a variable pair receiving a rank of 19 would most likely not be detected, as
there would be too many other variable pairs with better ranks in that case.
Nevertheless, for 25% of the simulation iterations the strongest quantitative
interaction effect achieved a rank better than 5 in the small sample size
scenario for IF-EIM-quant (Table 4).

For moderate and large sample sizes, IF-EIM-quant delivered a median
rank of one for the variable pair with strong quantitative interaction effect.
The variable pair with moderate quantitative interaction effect also received
good median ranks using IF-EIM-quant for these sample sizes: a median
rank of seven for sample size 500 and a median rank of three for sample
size 1000. The weak quantitative interaction effect was not detectable using
IF-EIM-quant. Apart from PA for the strong quantitative interaction effect,
the other methods did not deliver median ranks in ranges that would be of
use in practice. Generally, PA performed better than IMDMS and RF-V-
pairs performed worst. Apart from the variable pair with strong quantitative
interaction pair, iRF did not select the pairs with quantitative interaction
effects for the (great) majority of simulation iterations for moderate and
large sample sizes.
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Effect: Strong Moderate Weak

n = 100

IF-EIM-quant 19.0 [5.0, 75.8] 141.0 [33.0, 452.0] 675.0 [237.0, 1361.5]
RF-V-pairs 199.0 [79.5, 285.2] 329.5 [208.8, 491.2] 704.0 [493.5, 1066.5]
PA 107.5 [28.8, 579.8] 324.5 [91.0, 756.5] 729.0 [288.5, 1411.2]
IMDMS 77.5 [20.0, 189.2] 259.5 [111.8, 442.5] 499.5 [300.2, 872.5]
iRF 16.0 [5.5, 25.5] (46%) 29.5 [18.2, 36.8] (17%) 37.0 [30.0, 50.0] (2%)

n = 500

IF-EIM-quant 1.0 [1.0, 2.0] 7.0 [4.0, 20.0] 100.5 [35.0, 251.5]
RF-V-pairs 138.0 [79.8, 156.2] 331.0 [268.0, 392.2] 532.5 [457.0, 593.0]
PA 11.0 [5.0, 21.2] 34.0 [17.0, 149.8] 294.0 [100.0, 946.2]
IMDMS 22.0 [16.8, 30.0] 147.5 [71.2, 257.2] 510.5 [382.2, 589.5]
iRF 26.0 [18.0, 38.0] (85%) 59.0 [43.5, 73.0] (18%) – [–, –] (0%)

n = 1000

IF-EIM-quant 1.0 [1.0, 1.0] 3.0 [2.0, 5.0] 43.0 [20.0, 108.0]
RF-V-pairs 138.5 [86.8, 142.0] 332.0 [271.0, 389.0] 570.0 [513.0, 626.0]
PA 11.0 [5.8, 46.2] 35.0 [14.0, 186.2] 360.0 [117.5, 955.8]
IMDMS 24.0 [19.0, 29.0] 160.0 [86.5, 211.8] 515.0 [442.8, 592.5]
iRF 28.5 [17.0, 44.0] (99%) 77.0 [65.0, 91.0] (22%) 87.0 [87.0, 87.0] (0%)

Table 4: Simulation results – quantitative interaction effects. The numbers
show the median ranks that the respective variable pairs obtained across
the simulated data sets. The numbers in square brackets show the 25%
quantiles and 75% quantiles of the ranks obtained for the simulated data
sets. In the case of iRF, the percentages of the simulated data sets for which
the respective pairs were selected using iRF are shown in addition. For the
moderate sample size scenario (n = 500) iRF did not select the variable pair
with the weakest quantitative interaction effect for any of the simulated data
sets, which is why the corresponding entry in the table is empty.

The summarised results obtained for the qualitative interaction effects
are shown in Table 5 and the corresponding results for all data sets in Sup-
plementary Figure S46. Here, IF-EIM-qual delivered better median ranks
than IF-EIM-quant for the quantitative interaction effects (Table 4). While
for the smallest sample size, only the variable pair with strongest effect re-
ceived very low median ranks using IF-EIM-qual, in the case of moderate and
large sample sizes, this method delivered very low median ranks for all three
variable pairs. The other methods delivered worse results compared to the
case of the quantitative interaction effects. PA again performed second-best
here. However, the smallest median rank obtained using PA is 20.5, which is
not small enough for practical purposes. The median ranks obtained using
PA are considerably worse for sample size 1000 than for 500. This result
is most likely attributable to the fact that, as described in Section 4.2.1,
for the largest sample size, the computational burden associated with PA
made it impossible to use 20000 trees per forest with this method. As seen
in Table 5, iRF rarely selected variable pairs with qualitative interaction
effects. In fact, only for one simulated dataset did iRF select a variable pair
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Effect: Strong Moderate Weak

n = 100

IF-EIM-qual 1.0 [1.0, 3.0] 10.0 [2.0, 217.5] 263.0 [21.8, 1058.8]
RF-V-pairs 1265.5 [813.2, 1721.2] 1323.5 [957.8, 1786.5] 1439.5 [1028.2, 1853.8]
PA 145.5 [48.5, 428.2] 403.5 [111.8, 1076.8] 932.5 [437.0, 1676.0]
IMDMS 800.5 [582.0, 1170.2] 906.5 [629.8, 1394.5] 1129.5 [804.0, 1495.2]
iRF 35.0 [35.0, 35.0] (0%) – [–, –] (0%) – [–, –] (0%)

n = 500

IF-EIM-qual 1.0 [1.0, 1.0] 2.0 [2.0, 2.0] 3.0 [3.0, 5.0]
RF-V-pairs 837.5 [748.5, 1032.8] 1022.5 [802.2, 1311.0] 1256.0 [973.5, 1577.0]
PA 20.5 [15.8, 26.0] 37.0 [26.0, 72.0] 152.0 [79.0, 321.5]
IMDMS 740.0 [692.8, 796.5] 801.5 [739.0, 926.0] 919.0 [772.2, 1116.8]
iRF – [–, –] (0%) – [–, –] (0%) – [–, –] (0%)

n = 1000

IF-EIM-qual 1.0 [1.0, 1.0] 2.0 [2.0, 2.0] 3.0 [3.0, 3.0]
RF-V-pairs 745.0 [739.0, 782.5] 825.0 [759.0, 924.2] 1149.5 [947.0, 1470.0]
PA 52.0 [26.0, 134.0] 188.5 [106.5, 374.5] 796.0 [297.5, 1538.5]
IMDMS 739.0 [739.0, 740.0] 740.0 [739.0, 779.2] 849.5 [770.0, 955.2]
iRF – [–, –] (0%) – [–, –] (0%) – [–, –] (0%)

Table 5: Simulation results – qualitative interaction effects. The numbers
show the median ranks the respective variable pairs obtained across the
simulated data sets. The numbers in square brackets show the 25% quantiles
and 75% quantiles of the ranks obtained for the simulated data sets. In
the case of iRF, the percentages of the simulated data sets for which the
respective pairs were selected using iRF are shown in addition. The empty
entries for iRF show cases for which iRF did not select the corresponding
variable pair for any of the simulated data sets.

of this kind, which was in the case of the variable pair with strongest quali-
tative interaction effect in the small sample size scenario. RF-V-pairs again
delivered the worst median ranks. It is a reassuring result that the baseline
method RF-V-pairs performed worst as it suggests that all the other studied
approaches are able to differentiate between variable pairs with and without
interaction effect at least to some extent.

As IF-EIM-quant is a measure targeting quantitative interaction effects,
it should not only rank true quantitative interaction effects good, but also
true qualitative interaction effects bad. If IF-EIM-quant would rank both
quantitative and qualitative interaction effects good, it would no longer be
possible to interpret variable pairs with large IF-EIM-quant values as can-
didates for variable pairs with strong quantitative interactions. Analogous
considerations can be made with respect to IF-EIM-qual. Moreover, vari-
able pairs that feature main effects only, but no interaction effects, should
be ranked bad by IF-EIM-quant and IF-EIM-qual in order to avoid incor-
rectly classifying such variable pairs as featuring interactions. To study how
specific the values of IF-EIM-quant and IF-EIM-qual are with respect to the
interaction effect types they target, we calculated the median ranks variable
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pairs with qualitative interaction effects obtained for IF-EIM-quant, the me-
dian ranks variable pairs with quantitative interaction effects obtained for
IF-EIM-qual, and the median ranks variable pairs with only main effects,
but no interaction effects, obtained for both metrics, IF-EIM-quant and
IF-EIM-qual.

These results are shown in Table 6. The median ranks obtained using
IF-EIM-qual and IF-EIM-quant for the variable pairs with quantitative and
qualitative interaction effects, respectively, are bad, which suggests that the
values of these metrics are sufficiently specific for the types of interaction
effects they target. For the variable pairs with main effects only, the re-
sults differ between IF-EIM-qual and IF-EIM-quant: For IF-EIM-qual, the
median ranks obtained for these variable pairs are very bad. This result is
not surprising because bivariable influences of variable pairs with qualita-
tive interaction effects differ strongly from bivariable influences of variables
with main effects only. For IF-EIM-quant, the median ranks obtained for
the variable pairs with main effects only are better than in the case of IF-
EIM-qual. However, the reasonably strong quantitative interaction effects
are still well identifiable using IF-EIM-quant, because the median ranks
obtained for the variable pairs with only main effects are generally much
worse than those obtained for the variable pairs with quantitative interac-
tion effects (cf. Table 4). The only exception is that the variable pair, for
which both variables had the strongest main effects, received better median
ranks than the variable pair with weak quantitative interaction effect. The
median ranks obtained for the pair with weak quantitative interaction ef-
fect were, however, not in ranges that would be of use in practice anyway.
We also computed the median ranks obtained for these variable pairs with
main effects only using the competing methods (Supplementary Table S1).
Here, except for in the case of the variable pair with the weakest effects, the
median ranks obtained using IF-EIM-quant (and IF-EIM-qual) were worse
than those obtained using the other methods with the exception of RF-V-
pairs. The latter interestingly delivered slightly worse ranks in some settings
with weak and moderate effects. The variable pair with strongest main ef-
fects, but no interaction effects, had a median rank of 1 for all methods
except for IF-EIM-qual and IF-EIM-quant. These results strongly suggest
that IF-EIM-qual and IF-EIM-quant are better able to differentiate between
interacting variable pairs and variable pairs that feature main effects only
than the other compared approaches.

5 Discussion

In this paper, we have proposed and evaluated a random forest type method,
interaction forests, that allows ranking of the importance of quantitative and
qualitative interaction effects between variable pairs using a novel measure,

25



n = 100 n = 500 n = 1000

IF-EIM-qual: Quantitative interaction effects

Strong 533.0 [177.2, 1190.0] 235.0 [40.0, 744.0] 86.5 [14.0, 397.0]
Moderate 705.5 [249.8, 1269.5] 403.5 [92.0, 1020.2] 299.0 [34.0, 788.2]
Weak 1020.5 [470.0, 1640.0] 784.5 [339.8, 1360.2] 664.5 [233.8, 1266.2]

IF-EIM-quant: Qualitative interaction effects

Strong 252.0 [110.0, 515.5] 177.0 [81.5, 307.2] 169.0 [72.5, 293.5]
Moderate 429.5 [170.5, 838.0] 254.5 [136.2, 517.0] 279.5 [165.8, 478.8]
Weak 938.5 [462.2, 1450.2] 466.0 [275.5, 800.5] 500.0 [334.8, 891.2]

IF-EIM-qual: Pairs with only main effects

Strong 992.5 [591.2, 1414.2] 741.0 [382.0, 1117.5] 665.0 [372.8, 1031.0]
Moderate 1033.0 [606.2, 1460.5] 816.0 [411.5, 1350.8] 739.5 [345.0, 1134.2]
Weak 1004.5 [571.2, 1589.0] 951.0 [487.5, 1443.2] 788.5 [328.2, 1328.0]

IF-EIM-quant: Pairs with only main effects

Strong 28.0 [6.0, 114.8] 23.5 [6.8, 124.0] 17.0 [5.0, 72.0]
Moderate 93.5 [20.0, 329.8] 52.0 [11.0, 211.2] 31.0 [12.0, 140.0]
Weak 338.0 [154.8, 1028.2] 192.0 [65.0, 465.5] 111.0 [29.8, 346.8]

Table 6: Simulation results – specificity of IF-EIM-qual and IF-EIM-quant.
The first (upper) part of the table shows the median ranks the variable
pairs with quantitative interaction effects obtained using IF-EIM-qual. The
second part of the table shows the median ranks the variable pairs with
qualitative interaction effects obtained using IF-EIM-quant. The third and
fourth part of the table show the median ranks variable pairs with only main
effects, but no interaction effects obtained using IF-EIM-qual and IF-EIM-
quant, respectively. For the variable pairs with only main effects, but no
interaction effects, we considered the pair with the two variables that both
have strong effects (“Strong”), the pair with the two variables that both
have moderate effects (“Moderate”), and the pair with the two variables
that both have weak effects (“Weak”, cf. Table 2). The median ranks were
obtained across the simulated data sets. The numbers in square brackets
show the 25% quantiles and 75% quantiles of the ranks obtained for the
simulated data sets.

the Effect Importance Measure (EIM). The concept of interaction forests
is quite similar to that of the well-established conventional random forests.
However, interaction forests do not suffer from the disadvantage of conven-
tional random forests that interaction effects between variable pairs without
particularly strong marginal effects are not taken into account sufficiently.
Using a large real-data study we showed that interaction forests tend to
feature a better predictive performance than random forests and competing
random forest-based approaches that use multivariable splitting. A simula-
tion study suggested that EIM is better able to detect variable pairs with
quantitative and qualitative interaction effects than competing approaches.
Here, the rankings obtained from the EIM value lists for quantitative in-
teraction effects on the one hand and qualitative interaction effects on the
other were confirmed to be reasonably specific for each of these two types
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of interaction effects.
In the spirit of interpretable machine learning, interaction forests focus

on well interpretable types of interaction effects that are easy to communi-
cate. We propose estimating the bivariable influences of variable pairs with
large quantitative and qualitative EIM values using flexible regression tech-
niques and then visualising them. In our R package diversityForest we
offer functions that perform this task in an automated way. This makes it
possible to learn what forms the interaction effects between the individual
interacting variable pairs take, which is crucial for interpretive purposes.

Interaction forests are specific diversity forests where the distinguish-
ing feature of the latter is that they make using complex split procedures
possible by strongly limiting the number of tried candidate splits in tree
construction. While Hornung (2020) evaluated diversity forests exclusively
for classical univariable, binary splitting, interaction forests are the first
diversity forest method that uses a complex split procedure. The latter
procedure would not have been feasible computationally using conventional
split selection, which illustrates the practicability of diversity forests. Note
that, beyond the problem of the computational burden, it might be anyway
counterproductive regarding predictive performance to optimise multivari-
able splits over all possible splits in the context of a random forest type
method. Given the flexibility of multivariable splits, the relevant predictive
information in the training data would likely be modelled by only a few con-
secutive locally optimised multivariable splits. This would result in small
trees that make similar predictions. However, as shown by Breiman (2001),
in order to achieve a good predictive performance, the predictions of the
trees in a random forest should be diverse.

While the splitting procedure used in interaction forests is complex, it
is only as complex as necessary for modelling the targeted types of easily
interpretable interaction effects. These types of interaction effects can be
communicated clearly using statements of the following kind: “The strength
of the positive (negative) effect of variable A on the outcome depends on
the level of variable B.” for quantitative interactions, and “For observations
with small values of variable B, the effect of variable A is positive (negative),
but for observations with large values of B, the effect of A is negative (pos-
itive).” for qualitative interactions. Obtaining separate EIM value lists for
quantitative and qualitative interactions is necessary from a technical point
of view, because the (adjusted) quantitative and qualitative EIM values do
not live on the same scale, making it difficult to pool these values. How-
ever, differentiating between quantitative and qualitative interaction effects
is also meaningful because these two types are interpreted in different ways
and qualitative interactions can be expected to be rarer than quantitative
interactions.

The simulation study suggested that interaction forests perform better
with respect to detecting qualitative than quantitative interaction effects.

27



This result is not surprising, because qualitative interaction effects are in
general stronger than quantitative interaction effects. Therefore, variable
pairs featuring qualitative interaction effects are more distinguishable from
non-interacting variable pairs than are variable pairs featuring quantita-
tive interaction effects. In contrast to the result obtained using interaction
forests, the competing methods performed better with respect to detecting
quantitative than qualitative interaction effects. This is likely related to our
observation that these methods seem less effective than interaction forests
with respect to differentiating interacting variable pairs from variable pairs
with strong main effects only. While EIM performed well in detecting quan-
titative and qualitative interaction effects for moderate and large sample
sizes, for small sample sizes only strong qualitative interaction effects were
detectable consistently using EIM.

The implementation of interaction forests in the R package
diversityForest is closely based on the popular random forest implementa-
tion in the R package ranger (Wright and Ziegler, 2017). Tree construction
and the calculation of the EIM values is performed in C++ using all cores
available on the system by default. Using a desktop computer (2.5 GHz, 32
GB RAM, 12 cores), we performed a quick runtime check with data from
the simulation study: Constructing 20000 trees and calculating univariable,
quantitative, and qualitative EIM values took 0.20 minutes, 1.39 minutes,
and 3.30 minutes for samples sizes 100, 500, and 1000, respectively. In
the simulation study, the number of variables was 68 with 2278 possible
variable pairs. For smaller numbers of variables, the numbers of possible
variable pairs become much smaller, which is why the calculations are much
faster for lower dimensional data. Moreover, the number of considered (i.e.,
pre-selected) variable pairs is at most 5000 in interaction forests. There-
fore, even for high-dimensional data (e.g., genomics data) the computing
times do not become larger than roughly two times those for the simulated
data. While these computation times are reasonable, the calculation of the
permutation VIM values of classical random forest (using ranger) is never-
theless considerably faster than the calculation of the EIM values, since for
the former is not necessary to consider the variable pairs.

While interaction forests are implemented for categorical, continuous,
and survival outcomes in diversityForest, we have evaluated its perfor-
mance exclusively for categorical outcomes. However, with the exception of
the split criterion used, the components of the interaction forests algorithm
(e.g., the split types and the EIM calculation procedure) are the same for
continuous and survival outcomes. Therefore, the results obtained in this
paper should be largely transferable to continuous and survival outcomes.

An interesting venue for future research would be the development of a
procedure for statistically testing whether the values of EIM differ signifi-
cantly from zero. For the classical permutation VIM, a number of such ap-
proaches have already been developed. Many of these methods are based on
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permutation strategies (Tang et al., 2009; Altmann et al., 2010; Hapfelmeier
and Ulm, 2013) and require large numbers of re-computations of the orig-
inal forest under permutations of the data. Therefore, they would not be
suitable in the case of interaction forests as the latter are computationally
more demanding than conventional random forests. The Vita (Janitza et al.,
2018) approach could, however, be a promising candidate for implementing
such a test for the EIM values. Because Vita is based on the empirical dis-
tribution of the VIM values, it is suitable specifically for data with many
variables, where a large proportion of these are uninformative. However,
this does not pose an issue in the cases of the quantitative and qualitative
EIM values: First, the number of possible variable pairs soon becomes large
beyond data sets with only few variables. Thus, there are generally many
quantitative and qualitative EIM values which makes it possible to work
with the empirical distributions of these values. Second, interaction effects
are usually sparse. Independent of the issue of testing, interaction forests
can be used as exploratory tools to obtain interesting interpretable insights
into the interplay between variables in non-parametric predictive modelling.
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The above folder contains all R Code written to perform the analyses presented in
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