Electromyography and Clinical Neurophysiology

Volume 30
INDICES 1990

Posterior antebrachial cutaneous neuropathy. Case report. CheinWei Chang and ShinJoong Oh .. 3

Electromyography of arrow release in archery. M. P. Hennessy and A. W. Parker 7

Comparison of the electrophysiological pattern of fatigue between athletes required to perform explosive and endurance sports. J.J. Vatine, A. Blank, M. Shochina, A. Swissa, Y. Mahler, B. Gonen and A. Magora 19

Electromyographic findings in class II division 2 and class III malocclusions. G. Antonini, L. Colantonio, N. Macretti, G.L. Lenzi .. 27

Ulnar-to-median anastomosis and its role in the diagnosis of lesions of the median nerve at the elbow and the wrist. V. Golovchinsky ... 31

Somatosensory evoked potentials from median nerve; normative data. J. Verroust, A. Blinowska, R. Vilfrit, D. Couperie, D. Malapert, M. Perrier 35

Central motor conduction in ischaemic and hemorrhagic cerebral lesions. M.J. Segura, C.N. Gandolfo, R.E.P. Sica .. 41

Electrotomographic potentials of myelinated nerve fibers. A. Gydikov, A. Kossev, N. Trayanova and D. Stephanova .. 47

Nerve conduction velocity in patients under long term treatment with antiepileptic drugs. K.-H. Krause and P. Berlit .. 61

Planar vector projection of short-latency median nerve somatosensory evoked potentials. G. Adler .. 67

Diagnostic value of extensor digitorum brevis F-wave in L5 root compression. I. Aiello, S. Patraskakis, G.F. Sau, G. Zirattu, M. Bissakou, G. Patta and S. Traccis 73

Visual and auditory evoked potentials in migraine. M.E. Drake, A. Pakalnis, S.A. Hietter and H. Padamadan .. 77

Median frequency estimates of paraspinal muscles: reliability analysis. H.J. Biedermann, G.L. Shanks, J. Inglis .. 83

Myobiofeedback in motor reeducation of wrist and fingers after hemispherial stroke. O. Rathkolb, St. Baykoushev and V. Baykousheva 89

Effect of interelectrode recording distance on morphology of the antidromic sensory nerve action potentials at the finger. A.S. Wee and R.A. Ashley 93

Electrophysiologic evaluation of beri-beri polyneuropathy. W. Djoenaidi and S.L.H. Notermans .. 97
Mixed and sensory nerve action potentials of the median nerve in patients with peripheral neuropathy or motor neurone disease. K. Nakashima and K. Takahashi 105

Quantitative sensory thresholds in carpal tunnel syndrome. M.P. Merchut, M.A. Kelly and S. Cone Toleikis .. 119

The long loop reflex in spinocerebellar degeneration and motor neuron disease — its changes with TRH therapy. T. Touge, H. Takeuchi, A. Yamada, H. Miki and M. Nishiooka .. 131

The EMG-force relationships of skeletal muscle; dependence on contraction rate, and motor units control strategy. M. Solomonow, R. Baratta, H. Shoji and R. D’Ambrosia ... 141

Referral diagnosis versus electroneuropathological finding. Two years electroneuromyo- graphic consultation in a Rehabilitation Clinic. R. Danner .. 153

The brainstem auditory evoked potential: effects of high frequency filtering. N.A. Shaw .. 159

Relationship between the size of the recording electrodes and morphology of the compound muscle action potentials. A.S. Wee and R.A. Ashley 165

Height, an important factor in the latency of somatosensory evoked potentials. H. Sunwoo, Hyo K. Cho and Shin J. Oh ... 169

Segmental hypermobility in lumbar spine and entrapment of dorsal rami. Teuvo Sihvonen and Juhani Partanen ... 175

Comparison of human triceps surae H-reflexes obtained from mid and distal recording sites. M. Morelli, S.J. Sullivan and D.E. Seaborne .. 181

Secondary evoked muscle potential mapping according to the F, H, HF, FH features of nonexistence in proximal and distal limb muscles. A preliminary communication. A. Jušić, N. Fronjek, A. Bogunović, Lj. Šragalj, R. Baraba and S. Tomic .. 187

The effects of stimulus rate on the brainstem auditory evoked potential. N.A. Shaw ... 195

Reproducibility of somatosensory evoked potentials (SEPs) after median nerve stimulation. T. Andersson and A. Persson .. 205

On the parameterization of the EMG interference pattern power spectrum (EMG-IP-PS). I. Yaar and L. Niles ... 213

A volume conductor study of electrotonic potentials of unmyelinated excitable fibers. A.A. Gydikov and N.A. Trayanova .. 227

Electrophysiological and magnetic resonance imaging correlates of brainstem demyelinating lesions. A. Uncini, A. Faricelli, M. Assetta, A. Serio, A. Tartaro and D. Gambi 233

Electromyographic findings in Emery-Dreifuss disease. K. Rowińska-Marcińska and I. Hausmanowa-Petrusewicz .. 239

Muscle vibration facilitates orderly recruitment of motor units. C.-C. Mao, K.C. McGill and L.J. Dorfmann ... 245

Well preserved complex motor activities along with extreme electrophysiological pathology in patients with M. Charcot-Marie-Tooth. Study of 10 cases. A. Jušić .. 253
Post-contraction variations in motor pool excitability. B. R. Etnyre, T. Kinugasa and L. D. Abraham ... 259

Electrophysiologic signs of sensory fiber lesion in spinal amyotrophies and the role of physiologic variations of sensory finger innervation pattern. A. Jušć, I. Bošnjak and Z. Hundozi ... 265

Radiation-induced brachial plexopathy: clinical and electromyographical (EMG) considerations in 13 cases. P. Fardin, S. Lelli, P. Negrin and S. Maluta ... 277

Surface EMG and motor unit activity of partially denervated human muscle during fatiguing submaximal isometric contraction. Ch. Giroux and B. Maton ... 283

Aging and quantitative sensory thresholds. M. P. Merchut and S. Cone Toleikis ... 293

Forearm Median Nerve Conduction Velocity in Carpal Tunnel Syndrome. W. S. Pease, H. H. Lee and E. W. Johnson ... 299

Transmission of acoustic or vibratory signals from a contracting muscle to relatively distant tissues. A. S. Wee and R. A. Ashley ... 303

Refractory studies in early detection of Carpal Tunnel Syndrome. S. K. Palliyath and L. Holden ... 307

Technical approaches to hemisphere-selective transcranial magnetic brain stimulation. B.-U. Meyer, H. Kloten, T. C. Britton and R. Benecke ... 311

In Memoriam Prof. Dr. A. GYDIKOV ... 323

Volume-conducted or “far-field” compound action potentials originating from the intrinsic-hand muscles. A. S. Wee and R. A. Ashley ... 325

Electromyographic reflexes evoked in human flexor carpi radialis by tendon vibration. F. W. J. Cody, C. N. Goodwin and H. C. Richardson ... 335

Comparison of stretch reflex activities and reaction times in two separate age groups of human subjects. D. Sciarretta and P. Bawa ... 345

Sensory nerve conduction study in forearm segment of superficial radial nerve: standardization of technique. Chein Wei Chang and Shin Joong Oh ... 349

Modulation of stretch activity with instruction. D. Sciarretta and P. Bawa ... 353

Determination of peak-ratio by digital turns-amplitude analysis on line. R. Liguori, K. Dahl, S. Vingtoft and A. Fuglsang-Frederiksen ... 371

Chronic inflammatory demyelinating polyneuropathy as first manifestation of human immunodeficiency virus infection. A. Cruz Martínez, J. Rabano, C. Villoslada and A. Cabello ... 379

Do joint receptors modulate the motoneuron excitability? M. A. Sabbahi, A. M. Fox and C. Druffle ... 387

Comparisons between surface electrodes and intramuscular wire electrodes in isometric and dynamic conditions. B. Giroux and M. Lamontagne ... 397

Observations of the posterior tibial nerve SEP of patients requiring extradural spinal surgery. A. N. Guthkelch, C. R. Bamford, J. A. Gaines and R. B. Dzioba ... 407
Quadriceps excitability is enhanced by a conditioning tap to the Achilles tendon. D.M. Koceja, G. Kamen and J.R. Burke ... 415

Electromyographic study of the sternocleidomastoid muscle in head movements. D. Costa, M. Vitti and D. De Oliveira Tosello ... 429

Double pattern of relationship between skin temperature, thermoregulation and sensory nerve conduction. J. Koczocik-Przedpelska and S. Górski ... 435

Conduction velocity along muscle fibers in situ in healthy infants. A. Cruz Martinez and J.M. López Terradas ... 443

Discharge pattern of tonically activated motor units during unloading. L. Gerilovsky, A. Struppler, F. Velho and O. Niehage ... 459

Unilateral enhancement of early and late blink reflex components in hemidystonia. R. Raffaele, A. Palmeri, G. Ricca, A. Casabona and V. Perciavalle ... 469

The behaviour of the mean power frequency of the surface electromyogram in biceps brachii with increasing force and during fatigue. With special regard to the electrode distance. B. Gerdle, N.-E. Eriksson and L. Brundin ... 483

Magnetic stimulation F-responses. S. Gominak, D. Cros and B. Shahani ... 491

Aging effects on brainstem auditory evoked potentials. P. Costa, P. Benna, C. Bianco, P. Ferrero and B. Bergamasco ... 495

F-response assessment in healthy control subjects. B. Fierro, D. Raimondo and A. Modica ... 501

Nerve conduction velocity in patients under long term treatment with antiepileptic drugs

K.-H. Krause and P. Berlit

Abstract

Motor and sensory nerve conduction velocity (NCV) of median nerve and motor NCV of peroneal nerve were measured in 548 epileptic patients, aged 20 to 40 years, under long term treatment with antiepileptic drugs. Compared with a control collective of 70 healthy persons in the same age the epileptics showed a reduction of all NCV's. 19 percent of the epileptic collective had at least 1 diminished NCV. Negative correlations with total amount and average daily dose of antiepileptic drugs were found in both sexes for sensory NCV of median nerve and motor NCV of peroneal nerve, only in males also for motor NCV of median nerve.

Only in females, duration of therapy correlated negative with sensory NCV of median and motor NCV of peroneal nerve. In patients under monotherapy the group with carbamazepine treatment showed the lowest NCV values, the difference being significant for motor NCV of median nerve in comparison to phenytoin and valproate sodium. It is concluded, that NCV generally is lowered under long term treatment with antiepileptic drugs and that phenytoin has no specific influence compared with the other drugs.

Introduction

A negative influence of phenytoin on the function of peripheral nerves has been discussed already in 1942 (10). Meanwhile a reversible lowering of nerve conduction velocity (NCV) has been proven in cases with acute phenytoin intoxication (1, 13, 18, 21). Concerning the possible implication of long term treatment the discussion is controversial: studies showed different results, the frequency of electrophysiological abnormalities ranging from 0% to 89% (2, 5-9, 11, 16, 22, 24-26). Ramirez et al. described a reversible neuropathy after 30 years of phenytoin administration, characterized by axonal shrinkage and secondary demyelination in sural nerve biopsy (19). The aim of our study was: 1. to compare NCV's of a big number of patients, treated for a long time with several antiepileptic drugs, with those of a control collective, 2. to evaluate possible relations of NCV's with total amount and daily dose of anticonvulsants as well as with the duration of treatment, and 3. to compare the patients under monotherapy with respect to possible differences in NCV's.

Materials and methods

548 epileptics (313 males, 235 females) of the Heidelberg outpatient clinic for convulsive disorders were investigated, who took antiepileptic drugs since 1 year at least. To keep out influences of age, well-known for NCV's, only patients with an age of 20 to 40 years were considered. A further criterion for exclusion was the presence of a possible other cause of neuropathy like diabetes mellitus, uremia or alcohol abuse. For each anticonvulsant drug taken by the patient, duration of therapy and
average daily dose were fixed. The whole dose and the average daily dose of all anticonvulsants were expressed as equivalent units, 1 unit equaling 50 mg phenytoin, 30 mg phenobarbital, 125 mg primidone, 50 mg CHP-phenobarbital, 200 mg carbamazepine, 50 mg mephenytoin, 250 mg ethosuximide, 300 mg valproate sodium, 2 mg clonazepam, 300 mg mesuximide, 100 mg sultiam, or 250 mg trimethadione. NCV's were compared by Wilcoxon test with the values of 70 healthy controls of the same age group. Motor conduction velocity (MCV) of median and peroneal nerve was measured with a DISA 1500 EMG system using surface stimulating and recording electrodes, sensory conduction velocity (SCV) of median nerve on the forearm in antidromic technique using ring electrodes on the second digit. Skin temperature was constant at 34°C by use of an automatic DISA skin temperature system.

Results

The epileptics had lower mean values of NCV's compared with the controls (table 1). 69 epileptics showed a slowing of MCV of peroneal nerve <45 m/s, 21 a reduction of MCV of median nerve <50 m/s and 44 a reduction of SCV of median nerve <55 m/s (see Figures 1-3). Considering overlapping in some patients, 102 epileptics remained with at least 1 pathological value of NCV. Correlation with drug parameters were calculated separately for males and females, because both sexes differed in dose of medication (Krause, 1987). In both sexes, MCV of peroneal nerve and SCV of median nerve correlated negative with drug parameters, whereas only in males MCV of median nerve showed such a correlation (Table 2). The results of the patients under monotherapy with phenytoin, carbamazepine, primidone, or valproate sodium since 1 year at least are compiled in Table 3. For all NCV's the group under carbamazepine showed the lowest values, this difference being significant for MCV of median nerve in Kruskal-Wallis test (p<0.05) and after Duncan (for carbamazepine compared to phenytoin and valproate sodium).
Table 1. — Mean value and standard deviation of motor and sensory conduction velocity of median nerve and of motor conduction velocity of peroneal nerve in epileptics and controls with p value of Wilcoxon test

<table>
<thead>
<tr>
<th></th>
<th>Epileptics</th>
<th>Controls</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n x SD</td>
<td>n x SD</td>
<td></td>
</tr>
<tr>
<td>Median nerve, MCV</td>
<td>548 55.8 ± 4.0 70</td>
<td>57.5 3.3 0.0002</td>
<td></td>
</tr>
<tr>
<td>Median nerve, SCV</td>
<td>548 61.1 ± 4.8 70</td>
<td>62.7 3.9 0.0014</td>
<td></td>
</tr>
<tr>
<td>Peroneal nerve, MCV</td>
<td>548 49.3 ± 3.9 70</td>
<td>51.9 4.0 0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. — Correlations between drug parameters (total amount of all anticonvulsants as equivalent units, average daily dose as equivalent units per day and duration of antiepileptic treatment) and motor and sensory conduction velocity of median as well as motor conduction velocity of peroneal nerve (R = Spearman’s rank correlation coefficient and p value) in epileptic males (m, n = 313) and females (f, n = 235)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Equivalent units total</th>
<th>Equivalent units/d</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median nerve, m</td>
<td>R = -0.13254</td>
<td>R = -0.13747</td>
<td>n.s.</td>
</tr>
<tr>
<td>MCV</td>
<td>p = 0.0190</td>
<td>p = 0.0149</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>n.s.</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Median nerve, m</td>
<td>R = -0.14491</td>
<td>R = -0.19165</td>
<td>n.s.</td>
</tr>
<tr>
<td>SCV</td>
<td>p = 0.0103</td>
<td>p = 0.0007</td>
<td>n.s.</td>
</tr>
<tr>
<td>f</td>
<td>R = -0.17483</td>
<td>R = -0.13712</td>
<td>R = -0.15571</td>
</tr>
<tr>
<td>Peroneal nerve, m</td>
<td>R = -0.13731</td>
<td>R = -0.14558</td>
<td>n.s.</td>
</tr>
<tr>
<td>MCV</td>
<td>p = 0.0015</td>
<td>p = 0.0099</td>
<td>p = 0.0022</td>
</tr>
<tr>
<td>f</td>
<td>R = -0.19850</td>
<td>R = -0.14275</td>
<td>R = -0.19896</td>
</tr>
</tbody>
</table>

Table 3. — Mean value and standard deviation of motor and sensory conduction velocity of median nerve and motor conduction velocity of peroneal nerve in epileptics under monotherapy with phenytoin (PHT), primidone (PRM), carbamazepine (CBZ) or valproate sodium (VPA)

<table>
<thead>
<tr>
<th></th>
<th>PHT</th>
<th>PRM</th>
<th>CBZ</th>
<th>VPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=53</td>
<td>n=81</td>
<td>n=53</td>
<td>n=32</td>
</tr>
<tr>
<td>Median nerve, MCV</td>
<td>57.5±4.2</td>
<td>56.1±4.2</td>
<td>54.9±4.3</td>
<td>56.7±3.9</td>
</tr>
<tr>
<td>Median nerve, SCV</td>
<td>62.7±4.5</td>
<td>62.2±4.4</td>
<td>60.7±6.0</td>
<td>61.9±4.7</td>
</tr>
<tr>
<td>Peroneal nerve, MCV</td>
<td>50.0±3.8</td>
<td>50.0±3.9</td>
<td>49.3±4.5</td>
<td>49.5±3.5</td>
</tr>
</tbody>
</table>

Discussion

The results of our study indicate, that long term therapy with antiepileptic drugs causes a lowering of NCV's. The influence of medication is confirmed by the negative correlations found between NCV's and mean daily dose a well as total amount of anticonvulsants taken by the epileptics. In accordance with the results of Geraldini et al. (12) and Taylor et al. (23) the males showed no correlations with duration of therapy, whereas the females of our study did so. The correlations between medication and MCV of peroneal nerve were more pronounced than those with NCV's of median nerve; so, the MCV of peroneal nerve seems to be the most sensitive in our study. The frequency of 19% of patients with at least one diminished NCV is in accordance with the incidence described by Lovelace and Horwitz (16) and Swift et al. (22). Swift et al. also found lowering of MCV of peroneal nerve as the most frequent sign of nerve involvement (22). As own investigations have shown, most cases with slowing of NCV’s are only subclinical neuropathies with neither subjective complaints nor pathological reflex status (15). Concerning type of drugs, in former studies especially phenytoin has been thought to cause lowering of NCV’s (“hydantoin neuropathy”); but patients with chronic intake of antiepileptic drugs mostly have a combination therapy with at least 2 drugs (20). The influence of the other anticonvulsants on NCV is not clear, regarding the literature: Results concerning the possible role of carbamazepine are controversial (3, 4, 17, 21, 22, 24, 25); in patients under monotherapy with barbiturates an influence has been suggested, but only 6 patients were examined (21). Comparing the patients under monotherapy we found no significant differences in the MCV of peroneal nerve and SCV of median nerve; but MCV of median nerve was lower in the patients under carbamazepine compared to those under phenytoin and valproate sodium. It is of interest, that Danner et al. in their prospective study also found lower NCV of median nerve under treatment with carbamazepine compared to phenytoin (3). All in all, the results of our study
suggest, that 1. under long term antiepileptic treatment mean NCV is lowered and that 2. phenytoin in long term therapy has no specific influence on NCV compared to other antiepileptic drugs. This is also confirmed by the results of Geraldini et al. (12). Therefore we propose to change the term “hydantoin neuropathy” into “anticonvulsant neuropathy” or “neuropathy induced by antiepileptic drugs”.

References

Address reprint requests to: Priv.-Doz. Dr. K.-H. Krause
Friedrich-Bauwer-Institut
Ziemssenstr. 1a
D-6000 München, F.R.G.