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A B S T R A C T   

The coefficient of variation (CV), also known as relative standard deviation, has been used to measure the 
constancy of the Weber fraction, a key signature of efficient neural coding in time perception. It has long been 
debated whether or not duration judgments follow Weber’s law, with arguments based on examinations of the 
CV. However, what has been largely ignored in this debate is that the observed CVs may be modulated by 
temporal context and decision uncertainty, thus questioning conclusions based on this measure. Here, we used a 
temporal reproduction paradigm to examine the variation of the CV with two types of temporal context: full- 
range mixed vs. sub-range blocked intervals, separately for intervals presented in the visual and auditory mo-
dalities. We found a strong contextual modulation of both interval-duration reproductions and the observed CVs. 
We then applied a two-stage Bayesian model to predict those variations. Without assuming a violation of the 
constancy of the Weber fraction, our model successfully predicted the central-tendency effect and the variation in 
the CV. Our findings and modeling results indicate that both the accuracy and precision of our timing behavior 
are highly dependent on the temporal context and decision uncertainty. And, critically, they advise caution with 
using variations of the CV to reject the constancy of the Weber fraction of duration estimation.   

1. Introduction 

Maintaining both high accuracy and precision of timing perfor-
mance, particularly in the range of milliseconds to seconds, is funda-
mental to our basic functioning and survival (Buhusi & Meck, 2005; 
Meck, 1983). Most timing theories explicitly incorporate Weber scaling 
in their models (Church et al., 1994): the standard deviation of interval 
estimation is proportional to the absolute time interval – a characteristic 
also referred to as the scalar property. For example, the information- 
processing model of “scalar timing theory” (STT) (Gibbon et al., 1984; 
Gibbon & Church, 1990) adopts the framework of the classical internal- 
clock model (Treisman, 1963), which assumes a pacemaker- 
accumulator that linearly records timed durations. In the STT, the sca-
lar property arises mainly from the variability in the memory trans-
formation of the accumulated ticks (Gibbon, 1991). The scalar property 
has been confirmed in many animal studies (Gibbon et al., 1997) and in 
human time perception (Wearden & Lejeune, 2008), and recently has 
been shown to be an emergent property in artificial perceptron neurons 
(Buhusi & Oprisan, 2013). 

One way of testing the scalar property is to use the estimated 

standard deviation (SD) and mean (M) from each duration timed to 
construct a coefficient of variance (CV=SD/M). The scalar property re-
quires the CV to be constant across the tested range of time samples. 
Reviewing studies of human timing, Wearden and Lejeune (2008) found 
that many studies, varying from time reproduction to verbal estimation, 
confirmed the scalar property. However, violations of the scalar prop-
erty have been observed when the durations timed were ultrashort or 
with tasks varying in difficulty or with extensive training (Bizo et al., 
2006; Grondin & Killeen, 2009; Matthews & Grondin, 2012). For 
example, when the range of to-be-estimated durations was rather broad 
(from 68 ms to 16 min), the observed CVs decreased as duration 
increased (Lewis & Miall, 2009). Also, it is known that the variability is 
higher for very short durations (<100 ms) relative to long durations, due 
to the sensory limits and temporal summation (Scharnowski et al., 
2007). Violations of the scalar property manifest mainly in a change of 
the CV across different time ranges, where the CV is determined by two 
parameters, SD and M. Since both parameters are susceptible to bias in 
certain contexts, errors may creep in the estimation of the CV. For 
example, the range of to-be-tested durations can heavily influence 
duration estimation, which is known as the central-tendency effect 
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(Bausenhart et al., 2014; Gu et al., 2016; Gu & Meck, 2011; Jazayeri & 
Shadlen, 2010; Lejeune & Wearden, 2009; Shi, Church, & Meck, 2013): 
short durations are often overestimated and long durations under-
estimated. Thus, the mean estimate for the short/long durations would 
be larger/smaller than expected, resulting in the variation of the CV 
across different durations. Similarly, sensory limits in the short-range 
and decision noise, in general, could affect the observed SDs. As a 
consequence, the variation of the CVs may well be attributable to 
context modulation and/or noise perturbation, rather than reflect true 
violations of the scalar property. 

Accordingly, the present study aimed to investigate whether the 
variation of the CV could be explained solely by contextual modulation 
and sensory and decision noise, without resorting to “violations” of the 
scalar property. We adopted the duration-reproduction paradigm, which 
has been used in previous studies for demonstrating violations of the 
scalar property (e.g., Lewis & Miall, 2009). We hypothesized that a large 
range of test durations would impact the variation of the CV more than a 
small range, given that the central-tendency effect would be stronger for 
extreme durations. As the central-tendency effect can be predicted 
quantitatively by the Bayesian inference framework (Jazayeri & Shad-
len, 2010; Petzschner et al., 2015; Shi & Burr, 2016; Shi, Church, & 
Meck, 2013), we also modeled the reproduced duration using Bayesian 
models. Importantly, we incorporated the scalar property in the model, 
that is: we assume there is no violation of the scalar property. If the 
model with the scalar property can predict the variation of the CV, 
relying on the variation of the CV alone would be insufficient to falsify 
the scalar property. 

In more detail, we asked participants to reproduce the same physical 
intervals presented under two different conditions. In the whole-range 
(“mixed”) condition, intervals from 300 ms to 16 s were randomly 
intermixed, while in the other, sub-range (“blocked”) conditions, in-
tervals were separately tested within sub-second, second, and supra- 
second (sub-)ranges. In addition, we tested reproduction in both the 
auditory and visual modalities, given that subjective durations are 
known to differ between visual and auditory signals (Ganzenmüller 
et al., 2012; Matthews & Meck, 2014; Shi, Ganzenmüller, & Müller, 
2013; Wearden, 2006; Wearden et al., 1998): temporal precision is 
higher for the auditory system. Finding essentially similar result patterns 
would strengthen the generalizability of any conclusions. We hypothe-
sized that the CV would show greater variation in the “mixed”, whole- 
range versus the “blocked”, sub-range conditions, and in vision as 
compared to audition. And we expected the Bayesian model with the 
scalar property would predict those variations in CVs. 

2. Method 

2.1. Participants 

A total of 52 volunteers (13 participants for each experimental ses-
sion), aged 21–33 years (27 females), were recruited from the subject 
pool of LMU Munich Psychology Department. This number was based on 
the sample sizes in previous duration-reproduction studies (Cicchini 
et al., 2012; Jazayeri & Shadlen, 2010; Lewis & Miall, 2009), which 
ranged from 5 to 14 participants. Our participants had all normal or 
corrected-to-normal vision, normal hearing, and no somatosensory dis-
orders. Participants provided written informed consent in accordance 
with the Declaration of Helsinki prior to the experiment and received 9 
Euro/h for their participation. 

2.2. Apparatus and stimuli 

The study was conducted in a dimly lit, sound-attenuated laboratory 
cabin. Visual stimuli were displayed on a 21-inch CRT monitor with a 
refresh rate of 100 Hz and a resolution of 800 × 600 pixels. In visual 
sessions, targets were grey squares (8◦ × 8◦ of visual angle), with two 
levels of luminance: grey (17.5 cd/m2) and white (42.7 cd/m2), 

presented on a black screen background (1.60 cd/m2). In Experiments 3 
and 4 (auditory sessions), a natural water-flow sound (60 dB, measured 
at the sound source) was chosen for auditory presentation. Compared to 
simple sine waves, the water-flow sound potentially reduces fatigue and 
discomfort during longer stimulus presentations (e.g., 16 s). Auditory 
stimuli were delivered via two loudspeakers placed on both sides of the 
computer screen (with a separation of 40 cm). The experimental pre-
sentations were generated in Matlab (version 2015a) and with the 
Psychtoolbox-3 toolbox. 

2.3. Experimental procedure 

We adopted a between-subject design considering two experimental 
factors: Temporal Context (“Mix” versus “Block(ed)”) and Modality 
(“Vision” vs. “Audition”). Accordingly, four separate sessions were 
conducted with separate groups of participants, hereafter referred to as: 
“Vis/Mix”, “Vis/Block(ed)”, “Aud/Mix”, “Aud/Block(ed)”. We 
employed a temporal reproduction task (Lewis & Miall, 2009), in which 
participants first received a stimulus (a white square or a sound) for a 
given duration, and then were asked to reproduce that duration by 
pressing a response key for as long as they had perceived the duration. 

2.3.1. The visual sessions (“Vis./Mix” and “Vis./Block(ed)”) 
Each trial started with the word prompt “Presentation” shown for 

300 ms, indicating the initial presentation of the experiment. This cue 
was followed by a grey square presented at the center of the display, to 
which participants were instructed to press the left arrow key with the 
left index finger when they were ready to start the presentation. Pressing 
of the key triggered a color change of the square from grey to white. 
Participants had been told that the duration of the white square was the 
“target duration” that they had to remember and to reproduce. The 
duration of the white square was selected from nine intervals (separated 
equally on the logarithmic scale): 0.30, 0.49, 0.81, 1.33, 2.19, 3.60, 
5.92, 9.73, and 16.00 s. At the end of the interval, the color of the square 
changed (automatically) back to the initial grey, upon which partici-
pants had to release the left arrow key. That is, participants were 
required to hold the key throughout the presentation of the white square 
and only release it at the end of its duration, signaled by its reversion to a 
grey square. We kept this production procedure the same as the previous 
study (Lewis & Miall, 2009) for the purpose of cross-study comparison. 
The reproduction phase was separated from the target presentation by a 
250-ms blank screen, upon which the word “Reproduction” appeared at 
the screen center for 300 ms. Immediately after this verbal signal, a grey 
square appeared, prompting participants to start reproducing the given 
target duration by pressing the right arrow key with their right index 
finger; participants proceeded to the reproduction at their own pace. 
Their keypress, again, triggered the change of the square’s color from 
grey to white. Participants were instructed to keep pressing the key for 
as long as they had perceived the target duration. The key release trig-
gered a color change back to grey. The next trial started following a 
random blank interval varying from 500 to 1000 ms. 

The same procedure was applied to both visual sessions, the only 
difference being the exposure to different temporal contexts. In the 
“Vis./Mix” condition, nine intervals were randomly mixed within each 
block, whereas in the “Vis./Block(ed)” condition, they were divided into 
three sub-groups according to their temporal range: the “Short” (0.30, 
0.49, 0.81 s), “Intermediate” (1.33, 2.19, 3.60 s), and “Long” groups 
(5.92, 9.73, 16.00 s). Each experimental session consisted of 15 blocks of 
18 trials each. 

2.3.2. The auditory sessions (“Aud./Mix” and “Aud./Block(ed)”) 
The same paradigm was adopted for auditory sessions, in which 

auditory excerpts of a natural water-flow sound were used for duration 
presentation. On each trial, after the visual cues “Presentation” and, 
respectively, “Reproduction” (indicating the initiation of the respective 
trial phase) for 300 ms, a fixation cross was presented in the center of the 
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display until the end of the phase. In the presentation phase, participants 
were asked to press the left arrow key with the left index finger when 
they were ready to start the trial. Pressing of the key triggered the water- 
flow sound for a given duration. Again, participants were required to 
hold down the key throughout the presentation of the water-flow sound 
and only release it once the sound stopped. In the reproduction phase, 
participants were instructed to self-initiate reproduction by pressing the 
right arrow key with the right index finger, which triggered the water- 
flow sound. Participants were instructed to keep pressing the key for 
as long as they had perceived the target duration. 

Participants underwent three blocks of training (9 trials per block) 
prior to performing the experiment proper, which took some 10–15 min 
to complete. During training, participants’ reproduction errors that 
exceeded 50% of the sample duration were followed by a “warning” 
message, “Too Short” or “Too Long”, respectively. Participants were told 
to perform the task avoiding any form of counting. No feedback was 
given during the formal experiment. To avoid contamination of different 
temporal contexts, each participant took part in only one experiment in 
this study, which lasted about 1.5 h. Participants were free to take a 
break between blocks when needed to prevent loss of concentration and 
alertness. 

2.4. Bayesian modeling 

Here, we propose a two-stage Bayesian Estimator to model perfor-
mance in the temporal reproduction task. Fig. 1 illustrates the compu-
tation processes of the model; the computational steps are as follows. 

2.4.1. Stage I: duration coding 
Following classical psychophysics (Fechner, 1860), we assume the 

internal duration coding inherits the scalar property from Weber’s law: 
the just noticeable difference is proportional to the absolute magnitude. 
Accordingly, we introduced a logarithmic transformation of a given 
sample interval D to the internally measured time: 

S = log(D)+ ϵ, (1)  

where D is the sample duration on the linear scale and S the internal 
representation of measured duration on the logarithmic scale. The 

random variable ϵ represents normally distributed internal- 
measurement noise. 

Because sensory input is noisy, duration estimates can be improved 
by taking into account the prior probability of encountering a particular 
duration. In general, when an ideal observer follows Bayesian integra-
tion for the perceived duration, where both the prior and the likelihood 
are independent Gaussians, the optimal internal estimate μXi for a given 
interval is essentially a weighted sum of the interval measure Si and the 
mean of the (biased) prior (Cicchini et al., 2012; Jazayeri & Shadlen, 
2010; Petzschner et al., 2015; Shi, Church, & Meck, 2013): 

μXi
=

(
1 − ωp

)
Si +ωp

(
μp +Δ1

)
, (2)  

and its variance is 

σ2
Xi
=

σ2
s σ2

p

σ2
p + σ2

s
, (3)  

where the weight ωp =
1/σ2

p
1/σ2

p+1/σ2
s 

is proportional to the inverse of the sum 

of the variances; σs
2 is the variance of the sensory measurement, which is 

constant in log-scale representation for a given modality for each 
participant (i.e., the scalar property on the linear scale); and σp

2 is the 
variance of the prior. Additionally, we consider a shift term (Δ1) to 
incorporate a general bias on the mean of the prior distribution. 

2.4.2. Stage II: duration reproduction 
Duration estimates are transformed back to a linear scale; accord-

ingly, the variance σXi
2 is transformed into the variance of a log-normal 

distribution: 

σ2
X̂ i

=

⃒
⃒
⃒eσ2

Xi − 1
⃒
⃒
⃒e2μXi +σ2

Xi . (4) 

In modeling this phase, we also take into account an additional 
source of variability resulting from the response uncertainty, which has 
been considered in previous studies (Bizo et al., 2006; Getty, 1975). We 
assume this duration-independent variability σr remains the same across 
all tested durations for a given participant, which forms the variance: 

σi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

X̂ i
+ σ2

r

√
. (5) 

Fig. 1. Two-stage Bayesian-Estimator model for temporal duration reproduction. In the first, “presentation” phase, physical time is encoded through a logarithmic 
transformation, according to Weber-Fechner’s law. The sensory input is then integrated with the prior, which is developed based on the past sample durations 
encountered. Both the prior and sensory likelihood are assumed to be independent Gaussians. A normally distributed decision noise, which is independent of the 
sensory magnitudes, contributes to the “reproduction” in the second stage. 
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We also assume that an additional bias may be introduced at the 
reproduction stage. Thus, the reproduced duration is: 

Ri = e
μXi +Δ2+σ2

Xi

/
2

(6)  

where Δ2 is the reproduction stage bias. And the observed CVi of each 
interval can be calculated as: 

CVi =
σi

Ri
. (7) 

In total this model has five parameters: the standard deviations of the 
sensory noise and the prior (σs and σp), the two shift terms (Δ1 and Δ2) 
and the stimulus-independent response uncertainty (σr). For fitting the 
data from the mixed conditions the model had only these five parame-
ters. However, for the blocked conditions, we expected there to be 
contextual influences based on the range of durations within a block 
(Teghtsoonian & Teghtsoonian, 1978). In order to explore which pa-
rameters would be influenced the most by this context, we compared 
models with each parameter fixed to the same value in each block to 
models where the parameters could differ between the “short”, “me-
dium” and “long” duration blocks (see Appendix A for details). Thus, in 
total 32 models were compared. The model fitting was performed in two 
steps: first, the model predictions for the logarithmic scale mean μXi as a 
function of the log-transformed sample intervals (log(D)) was fitted, 
assuming a normally distributed likelihood with a constant mean (this 
was effectively fitting a straight line, in the mixed condition, or three 
line segments, in the blocked condition). This provided the starting 
values of the σs and σp parameters for the full model fit, which was a 
maximum likelihood fit to the distribution of reproduced durations, 
assuming that these were normally distributed with the mean given by 
Eq. (6) and the standard deviation given by Eq. (5) (assuming a normal 
distribution was an approximation, used in order to simplify the calcu-
lations, since the model actually predicted that the distribution should 
be the convolution of a normal and a log-normal distribution). The op-
timizations for the maximum likelihood fitting were performed using 
the “optim” function in R with the “L-BFGS_B” algorithm. If an optimi-
zation failed to converge it was attempted again after adding small 
random numbers to the starting values, and this was repeated until it 
converged. 

3. Results 

To exclude duration reproductions likely reflecting lapses of atten-
tion or accidental responses, we adopted an outlier criterion based on 
the interquartile range (IQR): for each participant, at each given 

duration, reproduced durations exceeding three times the IQR were 
omitted from further analysis. In addition, one participant from the 
“Vis/Block” condition and two from the “Aud/Mix” condition were 
excluded, due to their outliers exceeding 20% of the total trials. 

3.1. Mean reproduction errors and CV 

We measured the Relative Reproduction Error (RRE) by calculating the 
difference between the actual response (Ri) and the sample duration (Di), 
normalized by the sample duration (RRE = Ri − Di

Di
). This metric provides a 

measure of the degree of the estimation bias, which is comparable across 
different durations. Fig. 2 shows both the mean RRE (colored dots) and 
the model fitting (colored lines) for Experiments 1 to 4, separately for 
the auditory and visual reproductions. By visual inspection, the RREs 
exhibit different patterns with respect to the modality of interval pre-
sentation. The mean reproductions show larger biases for the visual 
presentation as compared to the auditory presentation. In addition, the 
mean RREs show overestimations for both the “short” and “intermedi-
ate” blocks (the first six durations ranging from 300 to 811 ms) but 
underestimation for the “long” blocks, evidencing a clear central- 
tendency effect. Moreover, the central-tendency effects likely occurred 
within the test range - a grand central-tendency effect for the “Mixed” 
conditions, and three separate effects for the “Blocked” conditions. To 
confirm the differences in RREs among conditions, we further run 
ANOVAs on the mean absolute RREs, which only revealed a main effect 
of Modality, F(1,45) = 9.10, p < .01, ηp

2 = 0.17, BFincl = 13.01. The main 
effect of Condition (“Blocked” vs. “Mixed”), F(1,45) = 1.67, p = .20, ηp

2 

= 0.04, BFincl = 1.01, and the interaction between Modality and Con-
dition, F(1,45) = 1.40, p = .24, ηp

2 = 0.03, BFincl = 0.33, were non- 
significant, indicative of the main difference in RREs being that be-
tween audition and vision. 

The mean CVs are plotted in Fig. 3A as a function of the sample in-
terval, separately for experimental conditions. Similar to mean re-
productions, the CVs, too, were influenced by Temporal Context and 
Modality. Under the “Vis/Mix” condition, the CVs appeared to largely 
decrease as the sample duration increased, which is consistent with 
previous reports (Lewis & Miall, 2009). In addition, higher precision of 
temporal estimation in the auditory modality was evidenced by smaller 
CV values under both (“Mix(ed)” and “Block(ed)”) Context conditions. 
To quantify the variations of CVs across time, for each participant, we 
fitted the decreasing trend (hereafter referred to as “CV slopes”) using 
simple linear regression: CV = a + b ⋅ log(Duration). The reason for 
using the linear regression instead of more complex forms of curve 
fitting was two-fold: (i) we aimed to test whether the CV remained 
constant across the four experimental conditions; (ii) and the results 
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would be comparable to previous reports (e.g., Lewis & Miall, 2009). 
Note, though, this analysis does not include the possible “jumps” that the 
Blocked conditions introduced (see Fig. 3, abrupt changes of the CV 
across the blocked ranges). We will return to this issue in the next 
subsection “Model predictions”, which provides more specific psycho-
logical grounded model predictions and explanations. The mean CV 
slopes for four experimental conditions are depicted in Fig. 3B. 

The estimated slopes were then submitted to an ANOVA with the 
(between-subject) factors of Modality (Vision vs. Audition) and Tem-
poral context (“Mixed” vs. “Blocked”), which revealed both main effects 
to be significant: Modality, F(1,45) = 6.84, p = .01, ηp

2 = 0.13, BFincl =

3.72; Context, F(1,45) = 7.36, p < .01, ηp
2 = 0.14, BFincl = 5.26; the 

interaction was non-significant: F(1,45) = 2.74, p = .11, ηp
2 = 0.06, BFincl 

= 0.96. Thus, the variation in the CVs is mainly influenced by the two 
factors: the decrease was larger with visual than with auditory intervals 
and larger for whole-range mixed versus sub-range blocked interval 
durations. Notably, however, the CV slope was largest in the “Vis/Mix” 
condition. Testing the CV slopes against the null-hypothesis of constant 
CVs across the range of sample durations (i.e., CV slope = 0) for each 
experiment revealed there to be a significant (decreasing) trend only in 
the “Vis/Mix” condition, with a slope of − 0.03 from the simple linear 
regression with logarithmically scaled durations, t(12) = 4.50, p < .001. 
For the other three conditions, by contrast, the (numerically decreasing) 
slopes did not differ reliably from 0. In the next subsection, we look into 
these modulations of the modality and temporal context from the 
perspective of cognitive and computational models. 

3.2. Model predictions 

The proposed Bayesian-Estimator model for predicting reproduction 
durations and the CVs has five free parameters: the variance of the prior 
(σp

2), the deviation of the mean of the prior from the physical mean (Δ1), 
the variance of the likelihood (σs

2), the reproduction stage bias (Δ2), and 
the variance of the decision noise (σr

2). The Bayesian observer model 
described above yields a prediction that minimizes the expected loss 
associated with the coefficient of variation and erroneous estimates in 
duration reproduction. The model comparison revealed that the best 
model (in terms of the Bayesian Information Criterion, BIC) allowed the 
reproduction bias (shift term) Δ2 and the standard deviation of the prior 
σp, but not any of the other three parameters, to differ among blocks in 
the “Blocked” conditions. That is, these parameters differ from the 
“Mixed” conditions in that separate σp and Δ2 parameters were used for 
“short”, “medium” and “long” duration blocks, resulting in nine pa-
rameters in total. The predicted reproduction errors of the best model 
are shown as lines (dashed lines for Mix(ed) and solid lines for “Block 
(ed)” conditions) in Fig. 2, and the model-predicted CVs as curves in 

Fig. 3A. And the estimates of the model parameters for the four exper-
imental conditions are summarized in Table 1. 

In our model framework, we first adopted two parameters (σp and Δ1) 
to account for the variability and shift in the prior distribution. The best 
model showed that the shifts of the prior Δ1 did not differ significantly 
from 0 in any of the four conditions (one-sample t-test compared to 0: p 
= .71, BF10 = 0.29 in the “Vis/Mix” condition; p = .84, BF10 = 0.33 in the 
“Aud/Mix” condition; p = .92, BF10 = 0.29 in the “Aud/Mix” condition; 
p = .10, BF10 = 0.84 in the “Aud/Block” condition). Moreover, the 
variability parameter σp was not significantly different between the vi-
sual and auditory modalities in the “Mixed” condition (two-sample t- 
test: p = .81, BF10 = 0.38). A further 2 × 3 mixed ANOVA with the 
between-subject factor (“Modality”) and the within-subject factor (i.e., 
the Temporal Range) for the “Blocked” conditions also failed to reveal 
any significant difference in σp between vision and audition, F(1,23) =
0.04, p = .85, ηp

2 = 0.002, BFincl = 0.36, or Modality × Temporal Range 
interaction F(1.53,35.26) = 0.64, p = .49, ηp

2 = 0.03, BFincl = 0.28. Only 
the main effect of the Temporal Range turned out significant, F 
(1.53,35.26) = 4.09, p = .04, ηp

2 = 0.15, BFincl = 2.80 (degree of freedoms 
adjusted by Greenhouse-Geisser sphericity correction, same for the other 
tests): the variability σp decreased as the duration range of the “Blocked” 
condition increased. The Bayes factors associated with the modality 
differences can be interpreted in terms of strong evidence of “no dif-
ference” in Δ1 and σp between the auditory and visual modalities, 
arguing in favor of an amodal/supramodal representation of the prior. 
Interestingly, in the “Mixed” conditions, the weight ωp was higher with 
visual than with auditory interval presentation (Welch Two Sample t- 
test: p = .01, BF10 = 4.28), which is consistent with literature that 
audition has general higher temporal resolution than vision. However, 
the weights were not different in the “Blocked” conditions (all ps ≥ .1, 
BFincl < 0.74), in part likely due to the block-wise variation of the 
temporal ranges. 

Second, we assumed no violation of the scalar property (i.e., Weber’s 
law) during the sensory measurement. In line with this, a 2 × 2 mixed 
ANOVA on σs with the factors Modality (Vision, Auditory) and Condition 
(“Mixed”, “Block”) revealed no significant effects (Modality: F(1,45) =
0.10, p = .76, ηp

2 = 0.002, BFincl = 0.29; Condition: F(1,45) = 0.94, p =
.04, ηp

2 = 0.02, BFincl = 0.42; interaction, F(1,45) = 0.28, p = .60, ηp
2 =

0.01, BFincl = 0.40). One key ingredient for capturing the variation of the 
CV is the noise parameter σr, which plays a bigger role with the short as 
compared to the long durations (see Eq. (5) in the Bayesian Modeling 
section). As shown in Table 1, the mean σr is larger for the visual mo-
dality relative to the auditory modality, and it is the largest in the “Vis/ 
Mix” condition. A further 2 × 2 ANOVA with Modality (Vision, Audi-
tory) and Condition (“Mixed”, “Block”) as between-subject factors 
revealed the main effect of Modality to be significant, F(1,45) = 11.39, 
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B Fig. 3. (A) Mean CVs (dots and crosses) as a 
function of the sample duration, separately 
for the auditory (left panel) and visual (right 
panel) sessions. The black dots represent re-
productions from “Mixed” conditions and 
grey crosses from “Blocked” conditions. The 
dashed lines represent the model predictions 
for the “Mixed” condition and solid lines for 
the “Blocked” conditions. (B) Mean CV slopes 
as a linear function of logarithmic duration 
in four experimental conditions. Error bars 
indicate one standard error. The slope was 
obtained by estimating parameter b of the 
linear function CV = a + blog(Duration).   
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p < .01, ηp
2 = 0.20, BFincl = 16.04, while there was no overall difference 

between the “Mixed” and “Blocked” conditions, F(1,45) = 1.72, p = .20, 
ηp

2 = 0.04, BFincl = 0.58. The Modality × Condition interaction was 
significant, F(1,45) = 5.20, p = .03, ηp

2 = 0.10, BFincl = 1.43. The 
interaction was attributable mainly to the “Mix(ed)” conditions, with σr 
being significantly larger for the visual (“Vis/Mix”) than for the auditory 
modality (“Aud/Mix”), t(22) = 3, p < .01. This pattern suggests that a 
relatively high uncertainty (i.e., lager σr) is associated with the visual 
modality in general, independently of the presented durations: high 
uncertainty (e.g., in the “Vis/Mix” condition) introduces a large 
duration-independent noise term in the reproduction. 

More interestingly, in the “Blocked” conditions, the shift in the 
reproduction Δ2 (i.e., reproduction bias) appears to decrease as the 
range of durations increases. A 3 × 2 mixed ANOVA on Δ2 with the 
factors Modality (Vision, Auditory) and Temporal Range (“Small”, “In-
termediate”, “Large”) revealed a main effect on the within-subject factor 
Temporal Range, F(1.07,24.57) = 6.98, p = .01, ηp

2 = 0.23, BFincl =

19.53, but no interaction, F(1.07,24.57) = 0.43, p = .53, ηp
2 = 0.02, BFincl 

= 0.24, or main effect of Modality, F(1,23) = 1.32, p = .26, ηp
2 = 0.05, 

BFincl = 0.72. This captures the “jumps” in the reproduction errors and 
the CVs in the “Blocked” conditions. The jumps of the CVs, captured by 
Δ2, is likely attributable to the sequential (Cicchini et al., 2018; Fischer 
& Whitney, 2014), block-by-block variation of the range of durations. A 
short-range block was most likely preceded by the long- and 
intermediate-range block, and vice versa. Thus, the tendency of the 
reproduction was partially carried over across blocks. Interestingly, the 
best model suggests that the across-block carry-over effect arises in the 
second stage of the reproduction, rather than the first stage of the 
duration encoding. 

To visualize the goodness of the fit of the best model for individual 
data, we plotted the predicted RREs versus the observed RREs in Fig. 4. 
As can be seen, the predicted individual RREs lie mostly on the diagonal 
line. A correlation analysis revealed high correlations across all four 
experimental conditions (r2 ≥ .77). This was also true for the repro-
duction variability, measured by the standard deviation of the repro-
duction (r2 ≥ .88, see Appendix B for the plot). In summary, the 
prediction of the best model is in good agreement with the empirical 
data we observed. 

Table 1 
Model parameters of the Bayesian predictions.  

Parameters Vision Audition 

Mix(ed) Block(ed) Mix(ed) Block(ed) 

Short Intermediate Long Short Intermediate Long 

ωp 0.26 ± 0.17 0.22 ± 0.18 0.24 ± 0.15 0.35 ± 0.14 0.12 ± 0.07 0.19 ± 0.23 0.20 ± 0.13 0.21 ± 0.16 
σp 0.73 ± 0.70 1.42 ± 1.27 0.95 ± 0.98 0.58 ± 0.70 0.68 ± 0.23 1.38 ± 1.19 0.80 ± 0.80 0.94 ± 0.97 
Δ1 0.01 ± 0.15 0.18 ± 3.58 − 0.02 ± 0.15 − 2.20 ± 4.76 
σs 0.34 ± 0.14 0.39 ± 0.41 0.24 ± 0.09 0.41 ± 0.67 
σr 0.28 ± 0.23 0.13 ± 0.11 0.05 ± 0.06 0.09 ± 0.09 
Δ2 0.04 ± 0.16 0.32 ± 0.71 − 0.06 ± 0.83 − 0.17 ± 0.77 0.00 ± 0.15 0.98 ± 2.27 0.49 ± 0.97 0.17 ± 1.00  

Vis/Block Aud/Block

Vis/Mix Aud/Mix

−100% −50% 0% 50% 100% 150% −100% −50% 0% 50% 100% 150%

−100%

−50%

0%

50%

100%

150%

−100%

−50%

0%

50%

100%

150%

RRE

Pr
ed

ic
te

d 
R

R
E

Fig. 4. Predicted Relative Reproduction Errors (RREs) vs. the observed RREs for each observer in all conditions (grey dots), with the mean (±SE) model prediction 
for each combination of the test durations and the experimental conditions against the corresponding, observed mean (±SE) RREs. The diagonal line shows the ideal 
model fit (where the predicted RREs match the observed RREs). 
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4. Discussion 

It has been long debated in the literature whether or not the scalar 
property is violated in duration perception. The “golden” method for 
testing for violations of the scalar property has been to use the coeffi-
cient of variation (CV), which is defined by the observed standard de-
viation over the observed mean. Yet, little consideration has been given 
to the fact that the two parameters may be influenced by the experi-
mental context. The present study was designed to examine for such 
influences by using a duration-reproduction task, asking participants to 
reproduce a duration selected from a wide range of intervals (from 300 
ms to 16 s) in two types of temporal context: a full-range mixed and sub- 
range blocked condition, and from both the visual and auditory mo-
dalities. We observed the classical central-tendency effect in all four 
conditions, as well as the variation of the CVs. Importantly, without 
assuming violation of the scalar property, our two-stage Bayesian model 
successfully predicted the central-tendency effect and the decrease of 
the CVs along the timeline. Thus, our findings suggest that the observed 
CV is not strictly tied to the internal scalar property; and using the CV 
alone to reject the scalar property is not warranted by the behavioral 
findings, given that both contextual modulation and decision uncer-
tainty play critical roles in time estimation. 

4.1. Variation of CVs in behavioral studies 

To fully evaluate the goodness of human timing performance, one 
has to consider both aspects of temporal judgments: the mean estimate 
and its precision. While the relation between these two should exhibit 
the scalar property characteristic, there are findings at variance with this 
(Meck et al., 1984; Wearden, 1992; Wearden et al., 1997). Some of the 
reported violations – such as a larger estimation bias with ultrashort 
intervals or lower precision with more difficult tasks (Lejeune & Wear-
den, 2006; Wearden & Lejeune, 2008) – can be easily accommodated by 
adding additional constraints (e.g., sensory limits). However, when it 
comes to systematic violations of scalar timing, such as the continuous 
decrease of the CVs across a very wide duration range from 68 ms to 16 
min (Lewis & Miall, 2009), the roles played by context factors (in 
particular, temporal context and presentation modality) must be taken 
into consideration. Unfortunately, though, context modulation has been 
largely neglected in the debate of the variation of CVs; and instead, re-
searchers attempted to tweak parameters of their respective timing 
models. For instance, Gibbon (1991) argued that the variation of the CV 
arises when the Poisson variance of the pacemaker and the ratio com-
parison between the current and remembered durations are allowed to 
change across durations. Memory-trace models, such as the “multiple 
time scales” (MTS) model (Staddon & Higa, 1999), argue that the scalar 
property is closely related to Jost’s logarithmic law of memory forget-
ting (Ebbinghaus, 1885; Jost, 1897; White, 2001). Slightly tweaking the 
forgetting slope would predict the observed decreasing CV (Staddon & 
Higa, 1999). However, even with the adjusted parameters, these models 
cannot explain why different CVs may be observed for the same physical 
duration depending on different contexts (in the present study: e.g., for 
the same visual duration in the full-range vs. the short sub-range con-
dition). In the current study, we first replicated previous findings (Lewis 
& Miall, 2009), demonstrating a similar decreasing trend of the CVs as 
duration increased in the visual full-range condition; we then expanded 
the investigation to two different types of temporal context and two 
modalities. We observed a reduction of the systematic violation when 
the sample durations were presented in blocked sub-ranges and when 
the temporal intervals were delivered via the (higher-precision) audi-
tory modality. These results confirm that both the accuracy and preci-
sion of timing performance are dependent on the context factors. 

4.2. Bayesian integration with contexts 

According to Bayesian theory, perception emerges from the 

probabilistic inference. The fundamental problem encountered by the 
brain is to cope with uncertainty from the environment. To minimize 
uncertainty, the brain needs to make maximal use of the available in-
formation, such as knowledge about previously experienced events and 
the present sensory inputs. The uncertainty can be optimally reduced (to 
a minimum) when this information is integrated according to its reli-
ability (Ernst & Di Luca, 2011; Taubert et al., 2016). The Bayesian- 
Estimator model proposed in the current study makes two adjustments 
in evaluating the sources of uncertainty arising from both stages of the 
task (duration production and reproduction), according to different 
temporal contexts: First, based on the fact that subjective duration can 
differ between different modalities (e.g., Wearden et al., 1998) and 
temporal context, we assume that the prior itself can be biased. Thus, we 
implemented a parameter, Δ1, to capture this feature. Second, we 
consider additional biases (Δ2) that might occur during the reproduction 
in Stage II, in particular, carry-over of the response tendency from 
previous into the current trial blocks. Third, we assume time repro-
duction is corrupted by some duration-independence uncertainty factor, 
which is captured by the parameter σr. This uncertainty is relatively 
small and can be neglected when durations are at the super-second level. 
However, with durations in the sub-second range, this factor has to be 
taken into account in the model. 

Among 32 models we compared, the best model assumes the vari-
ability of the prior (σp) and the reproduction bias (Δ2) is influenced by 
the temporal context (i.e., three separate, narrow sub-ranges in the 
blocked conditions, as compared to one broader range in the full-range 
mixed condition). Varying the σp allows the model to capture the un-
certainty of the “Blocked” temporal context, while the reproduction bias 
(Δ2) captures the jumps between blocks. For example, the mean repro-
duction from both the “Short” and “Intermediate” duration blocks 
exhibited overall overestimations under “Block(ed)” conditions (see 
Fig. 2). It is possible that these overall overestimations were introduced 
by the preceding blocks, most likely the “longer” block. This kind of 
carry-over effect has been found in perceptual judgments, such as serial 
dependence (Fischer & Whitney, 2014; S. Glasauer & Shi, 2018; Stefan 
Glasauer, 2019), as well as in temporal reproduction (Wiener et al., 
2014). For example, examining the influence of observers’ previous 
“long” responses on current bisection performance (regardless of later 
duration presented), Wiener et al. (2014) found a strong tendency for 
observers to carry over responding “long”, thus dissociating response 
carry-over from perceptual bias in the bisection task. Also, this response 
carry-over was more marked for the visual as compared to the auditory 
modality. In our “Blocked” conditions, we found a similar reproduction 
carry-over effect captured by the reproduction bias (Δ2), which was 
largest for the “short” range, and smallest for the “long” range. Inter-
estingly, the estimated values of the Δ1 parameter in the “Mixed” con-
ditions (“Vix/Mix” and “Aud/Mix”) were close to unbiased (i.e., 0), with 
little variability across participants, whereas the estimates varied greatly 
across individuals in the “Blocked” conditions (the standard error was 
almost tenfold for the “Blocked” as compared to the “Mixed” condi-
tions). This suggests that participants could establish a relatively unbi-
ased prior given a stable temporal context (the durations were randomly 
sampled from one distribution), while the priors may change dramati-
cally when the environment changes (witness the large variation with 
the blockwise presentation). Our model thus incorporates this volatility 
change in determining the perceptual bias and the response carry-over 
effect in temporal reproduction. 

The duration-independent variability that we introduced in the 
model – parameter σr – was assumed to be independent of duration 
magnitude. Without assuming any violation of the scalar property, this 
key parameter captures the variation of the CV, which is consistent with 
the variation of CVs reported in the literature (Lewis & Miall, 2009). In 
our model, we considered two sources of variability: the scalar property 
(the square root of which should linearly increase with the mean) and σr. 
The estimates of σr from our model agree with the behavioral observa-
tions of the CVs: across the four conditions, the estimated value of σr was 
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largest in the “Vis/Mix” condition (see Table 1), indicative of the largest 
contribution of decision uncertainty to the variance of reproductions in 
this condition. Importantly, while we have referred to σr as decision 
uncertainty, our key prediction of larger CVs for the shortest duration is 
not dependent on whether σr solely reflects the variance introduced 
during the decision of when to stop the reproduction or whether there 
are also contributions from earlier processes, such as “sensory-onset” 
variance. Rather, our key prediction only requires that σr is independent 
of duration magnitude. 

4.3. Modality difference and the central tendency 

Cicchini et al. (2012) demonstrated a robust audiovisual difference 
in duration reproduction: participants’ responses to visual stimuli ten-
ded to gravitate toward the mean of the sample durations (the central- 
tendency effect) but remained veridical with auditory stimuli (the 
latter was the case even though participants differed widely in the level 
of musical expertise). In the current study, we showed that a central- 
tendency effect in duration reproduction exists in both presentation 
modalities, though it is more pronounced in vision than in audition, 
indicated by the relative RREs - thus confirming the audition-vision 
difference in time judgments (Cicchini et al., 2012). 

Interestingly, though, according to our best model, the prior repre-
sentation of the range of the test durations does not differ much between 
the audition and vision: there was no significant difference in the two 
parameters representing the prior knowledge – that is, σp (variance of 
the prior distribution) and Δ1 (the shift term of the prior) – between the 
visual and auditory modalities. This suggests that the internal presen-
tation of the temporal context is amodal, consistent with previous 
findings (Zhang & Zhou, 2017). Our Bayesian model provides a frame-
work of where the modality difference may arise in each phase of the 
production-reproduction task. In the production phase, when the dura-
tion is transferred to short-term memory, the representation of the 
temporal context (prior knowledge) appears to be little influenced by 
the presentation modality. Accordingly, the prior knowledge represen-
tation appears largely modality-independent. At the same time, the 
reproduction carry-over bias Δ2 did show a decreasing trend across the 
range of the “Blocked” conditions, reflecting block-wise bias. 

4.4. Variation of the CV and sub-second timing 

In a meta-analysis of animal studies Gibbon et al. (1997) discerned 
two “jumps” in the CVs at approximately 0.1 and 1.5 s, which they took 
to suggest that there might be different timing mechanisms for different 
time ranges. Moreover, the CV has been reported to be particularly large 
for durations below 100 ms (see a review, Wearden & Lejeune, 2008), 
for which duration judgments also exhibit a large overestimation (Chen 
et al., 2016). The large CV for ultrashort visual durations has been 
argued to be influenced by temporal summation (Gorea, 2015; Schar-
nowski et al., 2007), that is: below 100 ms, perceived duration depends 
heavily on light intensity. This would be associated with rather high 
uncertainty in the estimation of short visual time intervals. In our study, 
the overall reproduction error for the 300-ms interval reached 102%. 
However, the “jumps” in our study were observed only in the “Blocked” 
(and not the “Mixed”) conditions, reflecting a carry-over effect induced 
by the block-wise variation of the duration ranges. 

Of note, we replicated the previous report of the CV changing 
continuously along the timeline, rather than exhibiting abrupt jumps 
(Lewis & Miall, 2009). The continuous change of the CV is likely driven 
by a “hidden” (not directly observable) factor that had not been revealed 
in early studies. According to our model, which does capture the 
continuous decrease of the CV, this pattern arises because, while the 
sensory uncertainty scales with sample duration according to the scalar 

property, the decision uncertainty itself is independent of the length of 
the to-be-judged duration. As a result, the contribution of the decision 
uncertainty to the total uncertainty increases the CV more for short 
durations compared to longer durations. 

It should be noted that the variation of CV does not solely depend on 
the temporal context and non-decision noise. It has been reported that 
extensive learning can enhance temporal discrimination, indicated by a 
decrease of the Weber fraction (i.e., CV) over the course of the training 
(Karmarkar & Buonomano, 2003; Matthews & Grondin, 2012). In fact, 
perceptual learning can boost perceptual discrimination, generally, and 
not just in the time domain (e.g., Schwartz et al., 2002; Shams & Seitz, 
2008). There is evidence indicating that perceptual learning involves a 
re-tuning of decision templates over the course of training (Li et al., 
2004). Interestingly, though, there have been several reports that the 
enhanced discrimination brought about by learning is rather target- 
specific. For instance, Karmarkar and Buonomano (2003) showed that 
training on a 100- or 200-ms interval did enhance the temporal 
discrimination of the respective (target) interval, without generalizing 
to untrained intervals. Similarly, in animal temporal-reproduction 
study, Bizo et al. (2006) found a U-shaped Weber fraction which they 
attributed to different rates of reinforcement training: a high rate of 
reinforcement for intermediate durations, relative to extremely short or 
long durations, led to enhance temporal discrimination (evidenced by a 
reduced Weber fraction) for the intermediate range of durations. From 
the perspective of the optimal model framework, perceptual or rein-
forcement learning of particular durations would reduce the variability 
of sensory measure σs for the learned durations, which may lead to 
unequal measurement uncertainty σs in the logarithmic timeline. This 
kind of ‘real’ violation in the scalar property can also be reflected in 
other models we compared (see Appendix A: Model comparison) 
without assuming the constancy of σs. However, in the present study, the 
best model doesn’t need this additional variation assumption. 

In summary, the subjective time is susceptible to various contextual 
modulations, as is the coefficient of variation (CV). In light of the present 
results, the “golden” method to test for violation of the scalar property 
has to be reconsidered: we successfully modeled the observed variation 
of the CV without assuming any violations of the scalar property. Both 
the temporal context and decision uncertainty are contributing to the 
variation of the CV, with the latter (decision uncertainty) playing a 
critical role in accounting for the large CV for sub-second durations. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.actpsy.2021.103263. 
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Appendix A. Model comparison 

In the blocked conditions, we expected that there might be some influence of the different temporal contexts in the “short”, “medium”, and “long” 
duration blocks. In order to investigate what form of influence temporal context would take, we performed a model comparison in which, for each of 
the five model parameters, we used either a single value of the parameter for all blocks or different values for the “short”, “medium”, and “long” 
blocks. The five parameters we compared in this way were: the standard deviation of the sensory measurement σs, the standard deviation of the prior 
σp, the two shift parameters Δ1 and Δ2, as well as the standard deviation related to response uncertainty. Combinatorially, these five factors yielded in a 
total of 25 = 32 different possible models. We fitted each of these models to the data of individual participants and evaluated them in terms of the 
average Bayesian Information Criterion (BIC) across participants. Table A1 lists the parameters that took on different values for the “short”, “medium”, 
and “long” duration blocks for the five models with the lowest BIC values (averaged across participants). The best model allowed the reproduction bias 
Δ2 and the standard deviation of the prior σp, but not the other three parameters, to differ among blocks.  

Table A1 
The five models with the lowest BIC.  

Separate σs Separate σp Separate Δ1 Separate σr Separate Δ2 BIC 

No Yes No No Yes 490 
Yes No No No Yes 492 
No Yes No No No 494 
Yes Yes No No No 495 
Yes No Yes No No 497  

In addition to finding the best model (with the lowest BIC), we further evaluated for each parameter whether the model performed better with or 
without the property of allowing that parameter to vary among blocks, by comparing the BIC of the best models with that property to the BIC of the 
best model without it (ΔBICmin in Table A2) as well as the difference in average BIC across all models with the property and those without it (ΔBICmean 
in Table A2).  

Table A2 
For each factor, this table presents the difference in average BIC 
across all models with each property and those without it 
(ΔBICmean), as well as the difference in BIC of the best model (with 
the lowest BIC) with a property and the best model without it 
(ΔBICmin). Negative values support models with the property over 
models without it.   

ΔBICmean ΔBICmin 

Separate σs  − 4.8  2.0 
Separate σp  − 6.2  − 2.0 
Separate Δ1  − 2.8  6.3 
Separate σr  5.5  6.4 
Separate Δ2  − 5.4  − 3.7  

This analysis supported models with a different reproduction bias parameter in different blocks and a separate σp parameter in each block. For the 
σr parameter, the analysis supported models with a single parameter across blocks. For σs and Δ1, the results were ambiguous: models with a single σs 
parameter and a single Δ1 parameter were supported in terms of ΔBICmin (since these were properties of the best model); in terms of ΔBICmean, by 
contrast, models in which these parameters could differ between blocks performed better. 

Appendix B 

To identify how well the model predicts the variability of the duration reproduction at the individual-participant level, we plotted the predicted 
standard deviations (SDs) of the duration reproduction from the best model vs. the observed reproduction variability (SDs) in Fig. S1, separately for 
the four experimental conditions. A correlation analysis revealed the predicted and observed SDs to be highly correlated (r2 = .924, .879, .956, .95 for 
the “Vis/Mix”, “Aud/Mix”, “Vis/Block”, “Aud/Block” conditions respectively), indicating that the model prediction is in good agreement with the 
observed data. 
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