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A CONTINUOUS-WAVE ULTRAVIOLET LASER MICROBEAM AND 
ITS USE FOR STUDIES IN SOMATIC CELL GENETICS 

by 

C. Zorn, C. Cremer § T. Cremer 
I n s t i t u t fUr Humangenetik, Universität Freiburg 

West Germany 

The long-term aim of our experiments i s to i n v e s t i g a t e whether i t i s possible to produce c e l l 
clones of mammalian c e l l s w i t h l i m i t e d damage t o a small p a r t of the genetic m a t e r i a l . Our approach 
involves m i c r o - i r r a d i a t i o n of one chromosome of a c e l l during mitosis and growing t h i s c e l l up to a 
clone, which then can be i n v e s t i g a t e d f o r the e f f e c t s caused by the absence of a part of the genetic 
m a t e r i a l . From a comparison of c e l l s w i t h a small deficiency i n the genetic mat e r i a l and normal 
c e l l s , one should learn something on f u n c t i o n and r e g u l a t i o n of those genes i n which these c e l l s 
d i f f e r . 

I n t e r e s t i n g questions, f o r example, are whether a c u l t u r e d c e l l can do without some part of 
the genetic information and whether the second copy of each i n f o r m a t i o n , i n a d i p l o i d c e l l present 
on the homologue chromosome, w i l l compensate f o r the defect. I t has o f t e n been suggested t h a t the 
heterochromatin i s an i n a c t i v e part of the genetic m a t e r i a l , so one wants t o know whether a c e l l 
can r e a l l y do without i t . I f an enzyme i s known t o be coded on a c e r t a i n chromosome - an increasing 
amount of such inf o r m a t i o n i s now provided by the c e l l h y b r i d i s a t i o n technique - one might be 
i n t e r e s t e d i n a more exact l o c a t i o n of the corresponding gene locus on t h i s chromosome. For an 
experimental approach t o a l l these questions, the d e v i a t i o n from the normal genome should be l i m i t e d 
t o a definable p a r t of the genome, pr e f e r a b l y to a s i n g l e chromosome i n an otherwise normal karyo­
type. 

There are n a t u r a l sources of c e l l s w i t h small defects or loss of s i n g l e chromosomes, but they 
are rather l i m i t e d , mainly because most of these abnormalities are not compatible w i t h the develop­
ment of an e n t i r e organism. A c e l l i n t i s s u e c u l t u r e apparently t o l e r a t e s a much greater loss of 
genetic m a t e r i a l . Most chromosomal abnormalities found, f o r example, i n spontaneous human abortus 
material involve an excess of chromosomes ( t r i s o m i e s , t r i p l o i d i e s and t e t r a p l o i d i e s ) or the 
absence of an X-chromosome, while s t r u c t u r a l abnormalities of autosomes and autosomal monosomies 
are very r a r e . 1 Tumour c e l l s are another n a t u r a l source w i t h a l t e r a t i o n s of the karyotype. But 
these a l t e r a t i o n s are o f t e n unstable and involve several chromosomes. 

Therefore, we are i n t e r e s t e d i n producing c e l l populations wi t h small s t r u c t u r a l abnormalities 
of s i n g l e chromosomes and p a r t i a l and t o t a l monosomies. 

To produce such abnormalities, we set up a iaser-UV-microbeam. Laser l i g h t can be almost 
completely focused on a spot, the diameter of which i s mainly l i m i t e d by d i f f r a c t i o n at the 
aperture of the focusing lens. A small i r r a d i a t i o n area and high power density are e a s i l y 
obtainable. We use coherent UV l i g h t w i t h a wavelength of 257 nm, which i s i n the absorption 
maximum of DNA. In t h i s way, the disadvantages of p h o t o s e n s i t i z i n g agents which have been often 
applied when working w i t h v i s i b l e laser l i g h t , 2 ' 3 can be avoided. On the other hand, UV l i g h t 
i s absorbed not only by the DNA of the chromosomes, but also by RNA, proteins and t h e i r precursors. 
So f i r s t of a l l , we had t o c l e a r up whether these side e f f e c t s could be t o l e r a t e d by the c e l l s . 
The answer t o the question whether a c e l l can grow t o a clone a f t e r m i c r o i r r a d i a t i o n w i t h UV 
energies' s u f f i c i e n t t o produce damage t o the DNA i s a fundamental one f o r the approach. 

Apparatus 

A coherent UV beam i s generated from a frequency-doubled argon-ion laser beam and focused on 
the t a r g e t by a microscope lens. 1* Figure 1 shows the basic design. A continuous-wave argon-ion 
laser beam with a wavelength of 514.5 nm (from a Coherent Radiation model Β 52-A (1)) i s trans-
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m i t t e d through an ammonium dihydrogenphos-
phate c r y s t a l (Coherent Radiation model 
440 ( 2 ) ) . Frequency doubling occurs and 
coherent UV l i g h t w i t h a wavelength of 
257.3 nm i s emitted. A prism (3) sepa­
rates the UV beam from the remainder of 
the green beam. A beam s p l i t t e r (5) 
d i v e r t s a small f r a c t i o n of the UV l i g h t 
t o a detector system (6) f o r UV power 
monitoring. The duration of i r r a d i a t i o n 
i s c o n t r o l l e d by a photographic shutter 
( 7 ) . At a s e l e c t i n g m i r r o r ( 8 ) , the UV 
beam i s jo i n e d w i t h the red beam of a 
low power He-Ne laser (2 mW) and the two 
beams are aligned c o l l i n e a r l y . The 
red beam can then be used as a p i l o t 
l i g h t i n the i r r a d i a t i o n microscope 
(12 - 19). A m i r r o r (11) r e f l e c t s both 
beams t o the i r r a d i a t i o n microscope, 
which i s located i n an adj o i n i n g room 
where c e l l c u l t u r e work can be performed. 

The o p t i c a l arrangement i n the 
microscope i s s i m i l a r t o t h a t used i n a 
fluorescence i n c i d e n t l i g h t microscope 
--UV beam and p i l o t beam pass through a 
di s p e r s i n g lens (12) ( t o b r i n g the focus 
i n t o the object plane (14) of the micro­
scope) , are r e f l e c t e d by a s e l e c t i n g 
m i r r o r (13) and focused on the ta r g e t by 
n i f i c a t i o n (Zeiss U l t r a f l u a r lOOx). The 
(15a) t o measure the power in c i d e n t i n t o 

Fig. 1. Diagram of laser-uv-microbeam:* 1) argon-ion-
laser; 2) UV generator; 3) separating prism; 4) mirrors; 
5) beam s p l i t t e r ; 6) UV detector; 7) shutter; 8) s e l e c t ­
ing mirror; 9) He-Ne laser; 10) shutter; 11) adjustable 
mirror; 12) dispersing lens; 13) selecting UV mirror 
(Balzers); 14) object plane; 15) microscope objective; 
15a) photodiode; 16) ocular system; 17) TV system; 
18) camera system; 19) illumination system. 

a quartz microscope o b j e c t i v e (15) of high aperture and mag-
obj e c t i v e (15) can be replaced by a c a l i b r a t e d photodiode 
the aperture of the o b j e c t i v e . 

Simultaneously, the obj e c t i v e serves f o r observation of the c e l l s by an ocular or a t e l e v i s i o n 
system e i t h e r by phase contrast ( U l t r a f l u a r 100/0.85 Glyc Ph) or normal transmittance l i g h t i l l u m i n a ­
t i o n ( U l t r a f l u a r 100/0.85 Glyc, or U l t r a f l u a r 100/1.25 Glyc). Continuous observation i s made possible 
by means of the selecting mirror (13) t h a t r e f l e c t s 80% of the UV l i g h t (257 nm) used f o r i r r a d i a t i o n 
and transmits 90% of the v i s i b l e l i g h t f o r observation i n the region from approximately 450 nm to 750 
nm. This m i r r o r was developed by Balzers AG/Liechtenstein (Dr. H. Pulker and Dr. E. R i t t e r ) . 

Two d i f f e r e n t procedures have been used f o r aiming the UV beam on the c e l l s : 

1) The area chosen f o r i r r a d i a t i o n i s brought under the focus of the red p i l o t beam 
by means of the f i n e adjustable microscope stage. UV i r r a d i a t i o n then occurs at 
the marked region. 

2) The UV focus was observed by fluorescence and adjusted by means of the dispersing 
lens (12) under a cross h a i r i n the ocular. The cross h a i r then marks the i r r a d i a ­
t i o n s i t e i n the c e l l . 

Spot Size and UV power 

The apparatus parameters t h a t are most important f o r our experiments are the i r r a d i a t i o n spot 
s i z e , i.e., the e f f e c t i v e diameter of the focus, and the i r r a d i a t i o n power delivered i n t o t h i s focus. 
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The smallest e f f e c t i v e spot size was deter­
mined by three procedures: 

1) I r r a d i a t i o n on the l i n e s of an object 
micrometer produce a fluorescent spot. 
Figure 2 shows such an experiment. The 
distance between two l i n e s i s 10 ym; the 
fluorescent spot has a diameter of approx­
imately 0.4 urn. 

2) In stained c e l l preparations, bleaching 
was induced by UV i r r a d i a t i o n . The 
r e s u l t i n g spot diameters were approxi­
mately 0.5 ym. 

3. In unstained organelles of l i v i n g c e l l s , 
lesions were produced t h a t were imme­
d i a t e l y v i s i b l e as darkening spots i n 
phase contrast (Fig. 3). The diameter 
of these darkening spots was approxi­
mately 0.5 ym. A spot diameter of 
less than 1 ym can be reproduced e a s i l y 
i n r o u t i n e experiments. 

Fig. 2. Producing of a fluorescent spot i n the 
object plane by laser-UV-microirradiation. The 
objective i s a Zeiss Ultrafluar 100/1.25 Glyc, 
and the specimen a Zeiss quartz object micro­
meter, on which the fluorescing spot i s produced. 
The distance between two l i n e s matches 10 y m . 4 

By means of a c a l i b r a t e d spectroradiometer 
system, we measured a maximum UV power of 1 mW 
immediately a f t e r the ADP-crystal, the e x c i t i n g 
power being 1.4 W of green laser l i g h t . Due t o 
losses i n mirrors and lenses, the i r r a d i a t i o n power i n the focus i s reduced to a value of 10 yW t o 
100 yW, depending on the aiming system and the o b j e c t i v e , e t c . , used. To determine the actual 
power i n the focus, an image of the focus was formed on the d i f f u s o r disc of the spectroradiometer 
system by means of a second U l t r a f l u a r o b j e c t i v e t h a t was o p t i c a l l y connected t o the focusing objec 
t i v e by gl y c e r i n e immersion. The data given f o r the i r r a d i a t i o n experiments are corrected f o r 
absorption i n the mat e r i a l between o b j e c t i v e and c e l l t a r g e t . 

I r r a d i a t i o n Experiments 

I r r a d i a t i o n of Interphase Cells 

Our f i r s t i r r a d i a t i o n experiments were intended to provide some information on whether the 
laser-UV-microbeam i s able t o cause damage t o the DNA of mammalian c e l l s without k i l l i n g them or 
preventing f u r t h e r p r o l i f e r a t i o n because of side e f f e c t s caused by absorption i n the cytoplasm. 
For t h i s purpose, we seeded c e l l s of a l i n e of the Chinese hamster (V79-122D1) from a s i n g l e c e l l 
suspension i n t o p e t r i dishes containing small pieces of cover-glass. On these pieces, s i n g l e c e l l s 
s e t t l e d down and formed clones. When the clones had reached a size of 4 t o 12 c e l l s , cover-glass 
pieces containing one colony were chosen and t r a n s f e r r e d i n t o an i r r a d i a t i o n chamber. Then a l l 
c e l l s of a clone were i r r a d i a t e d e i t h e r i n the nucleus or i n the cytoplasm w i t h an UV spot of 
approximately 0.5 ym diameter. Control clones were sham-irradiated. A f t e r i r r a d i a t i o n , the cover-
s l i p s were placed back i n t o p e t r i dishes w i t h fresh medium (Eagle's MEM containing nonessential 
amino acids and 15% f o e t a l c a l f serum) and growth of the clones was determined by c e l l counting 
i n an i n v e r t e d microscope. So f a r , 16 clones were i r r a d i a t e d i n the cytoplasm, 29 clones i n the 
nucleus, and 52 clone served as c o n t r o l s . 

205 



c) d) 
Fig. 3. Laser-UV-microirradiation of an unstained l i v i n g Chinese 
hamster c e l l : a) prior to irradiation; b)-d) subsequent micro-
irradiation of nucleolus. The lesions are v i s i b l e as dark spots; 
time between irradiations is 2 minutes. Phase contrast, objective 
ultrafluar 100/0.85 Glyc Ph. (used for irradiation and observation). 
Magnification 3 300x.^ 

Figures 4 to 6 show some c h a r a c t e r i s t i c fates of these clones. P l o t t e d i s the c e l l number of one 
colony i n logarithmic scale against time a f t e r i r r a d i a t i o n i n hours. Controls showed exponential 
growth. Cells i r r a d i a t e d w i t h 5 ergs i n the nucleus (Fig. 4a) died. I r r a d i a t i o n i n the cytoplasm 
wit h the same energy caused the death of some c e l l s . But a f t e r a lag phase i n growth of 20 to 30 
hours, the remainder divided w i t h a growth r a t e s i m i l a r to th a t of the c o n t r o l s . Cells cytoplasmic-
i r r a d i a t e d w i t h 1.4 ergs (Fig. 4b) showed only a lag phase and normal growth afterwards - no c e l l 
death occurred - whereas, a l l c e l l s n u c l e a r - i r r a d i a t e d died. 
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(a) (b) 

Fig. 4. Application of UV energies between 1.4 and 5 ergs. a) ·: irradiation 
of the nucleus (5 ergs); o: irradiation of the cytoplasm (5 ergs); Δ : unirradiated 
control group. b) ·: irradiation of the nucleus (1.4 ergs); o: irradiation of the 
cytoplasm (2.2 ergs); Δ ; unirradiated control group. 

Abscissa: time after irradiation (hours). Ordinate: c e l l number in logarithmic 
scale. Growth curves of Chinese hamster c e l l s (V-79-122D1) irradiated either in 
the cytoplasm (c) or in the nucleus (n). The s i z e of the irradiated area was 
approximately 0.3 p m 2 . + : is time at which a l l c e l l s of an irradiated group 
were c l a s s i f i e d as dead by light microscopic examination. 

I r r a d i a t i o n w i t h lower energies (Fig. 5a, b) showed no e f f e c t at a l l on the growth curve when 
only the cytoplasm was i r r a d i a t e d . But n u c l e a r - i r r a d i a t e d groups e i t h e r died o f f or showed a growth 
r a t e obviously decreased when compared t o the c o n t r o l s . We t h i n k t h a t the d i f f e r e n t fates of the 
two clones n u c l e a r - i r r a d i a t e d w i t h 0.2 ergs (Fig. 5a) might be caused by a s l i g h t l y heterogeneous 
UV s e n s i t i v i t y of d i f f e r e n t clones of the heteronuclear c e l l l i n e , since the same r e s u l t was found 
i n three s i m i l a r experiments. 

One can see from the p l o t s that the s e n s i t i v i t y of the cytoplasm and the nucleus t o long term 
e f f e c t s such as c e l l death and lower growth r a t e brought about by a UV spot of approximately 0.5 ym 
diameter d i f f e r s by an order of magnitude. The absorption of UV l i g h t (λ = 260 nm) i n these c e l l 
compartments, however, does not d i f f e r by more than a f a c t o r of two. 5 Therefore, the d i f f e r e n t 
s e n s i t i v i t y cannot be i n t e r p r e t e d by a d i f f e r e n t absorption. 

Figure 6 shows another e f f e c t of nuclear i r r a d i a t i o n . Pycnotic c e l l s appeared not only among 
the i r r a d i a t e d c e l l s but also i n l a t e r generations. From 24 apparently healthy c e l l s , counted 76 
hours a f t e r i r r a d i a t i o n , 12 became pycnotic and showed no f u r t h e r d i v i s i o n . This number i s la r g e r 
than the number of 8 i r r a d i a t e d c e l l s - clear evidence t h a t at least some of these c e l l s stem from 
a daughter generation. Such delayed l e t h a l e f f e c t s have also been found by Puck and Marcus a f t e r 
x-ray i r r a d i a t i o n 6 . They a t t r i b u t e them to induced genetic defects. This f i t s w e l l w i t h the f a c t 
t h a t we saw no such e f f e c t s a f t e r cytoplasmic i r r a d i a t i o n . 
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Fig. 5. Application of 0.2 ergs UV energy. a) *: irradiation of the nuclei of 
a group I ; o: irradiation of the nuclei of a group I I ; Δ : control group, b) », 
o: irradiation of the cytoplasm; Δ : control group. Group I died a f t e r 40 hours, 
while group II showed a markedly decreased growth rate compared with the controls. 
Cytoplasmic irradiated c e l l s had a growth rate not recognizibly different from 
the controls. 

1j * 
Fig. 6. Nuclear irradiation with UV energies between 0.07 and 0.7 ergs, a) o: 
irradiation with 0.1 ergs; Δ , Α : controls. 76 and 127 hours a f t e r irradiation, 
c e l l s with pycnotic nuclei appeared. These c e l l s were excluded from the plotted 
cell number, b) o: irradiation with 0.07 ergs; o: irradiation with 0.3 ergs; 
θ: irradiation with 0.7 ergs; Δ.- control. 
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Using i r r a d i a t i o n energies up to a few ergs, we d i d not observe an e f f e c t i n an i r r a d i a t e d p a r t 
of a c e l l immediately a f t e r i r r a d i a t i o n . Only when much higher energies (10 2 to 10 3 ergs) were 
de l i v e r e d t o the nucleus, a dark spot could be observed at the i r r a d i a t i o n s i t e ( F ig. 3). 

Fig. 7. Metaphase of a diploid 
fibroblast of Chinese hamster. 

I r r a d i a t i o n Of Cells In Mitosis 

Observation and i r r a d i a t i o n of chromosomes are complicated 
by the f a c t t h a t c e l l s i n mitosis normally round up. Hösli 
found t h a t such rounded c e l l s can be s l i g h t l y pressed and so 
f l a t t e n e d r e v e r s i b l y 7 . One can see the chromosomes f a r b e t t e r 
then. 

Figure 7 shows a d i p l o i d f i b r o b l a s t of the Chinese ham­
s t e r , f l a t t e n e d i n metaphase. Because we have t o use quartz 
o p t i c s , the o p t i c a l q u a l i t y under i r r a d i a t i o n conditions i s 
worse, but even then, s i n g l e chromosomes can be d i s t i n g u i s h e d . 

A f t e r i r r a d i a t i o n with up to 1 erg, delivered t o chromo­
somes i n metaphase and anaphase, c e l l s were usu a l l y able t o 
complete m i t o s i s and form n u c l e i . A darkening at the 
i r r a d i a t e d s i t e of a chromosome could be observed i n phase 
contrast only when higher energies (10 2 t o 10 3 ergs) were 
used. M i t o s i s was stopped i n every case a f t e r a p p l i c a t i o n of such a high energy. 

In some cases, c e l l s that were i r r a d i a t e d during metaphase or early anaphase showed a separation 
of a small cell-segment near t o the i r r a d i a t e d area. This e f f e c t was found already when r e l a t i v e l y 
low energies were applied, e s p e c i a l l y a f t e r m i c r o i r r a d i a t i o n of metaphases at several s i t e s . 

Figure 8 shows an example. A c e l l i r r a d i a t e d 
during metaphase on four s i t e s (4 χ 1CT1* ergs each) 
showed an a t y p i c a l arrangement of i t s chromosomes 
some minutes a f t e r i r r a d i a t i o n w i t h i n four clumps 
( a ) , then formed two daughter c e l l s and two extr a 
segments (b) . Later on, both c e l l s and one segment 
formed one c e l l w i t h f i v e m i cronuclei, leaving 
outside one segment w i t h one micronucleus ( c ) . We 
suppose t h a t the abnormal chromosome d i s t r i b u t i o n 
may be due t o an e f f e c t of the UV l i g h t on the 
spindle apparatus. Perhaps m i t o t i c nondisjunction 
can so be induced by UV m i c r o i r r a d i a t i o n . 

Conclusions 

From our experiments, we draw two conclusions. 
The f i r s t i s a r e l a t i v e one. The great d i f f e r e n c e 
i n the UV spot s e n s i t i v i t y of cytoplasm and nucleus 
makes i t very reasonable t o assume that our approach 
i s not l i m i t e d by the consequences of absorption i n 
the cytoplasm. I t i s d i f f i c u l t t o draw c e r t a i n con­
clusions on the absolute energy used i n the i r r a d i ­
a t i o n experiments. Measurement of an i r r a d i a t i o n 
density at the i r r a d i a t i o n s i t e , and e s p e c i a l l y 
determination of the energy absorbed at a c e l l t a r ­
get, i s object of many sources of systematic e r r o r s . 
Therefore, a comparison w i t h data given i n the 
l i t e r a t u r e must be performed w i t h caution. By use 
of an e l e c t r o n microscope, Moreno found DNA lesions 
a f t e r nuclear i r r a d i a t i o n of KB-cells w i t h an 

(a) 

(b.) 

(c) 

Fig. 8. Formation of micronuclei following 
UV microirradiation i n metaphase at four 
s i t e s . See text for details. 
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i r r a d i a t i o n density of o . l ergs/ pm2 (λ = 275 nm). 8 According to our measurements of absolute UV-
power, areas of n u c l e i could be i r r a d i a t e d w i t h these i r r a d i a t i o n d e n s i t i e s without a l l the c e l l s 
loosing the a b i l i t y to d i v i d e and form colonies. So i t seems reasonable t o assume t h a t DNA lesions 
were produced i n these experiments, e s p e c i a l l y since l e t h a l segregation i n daughter generations of 
nuclear i r r a d i a t e d c e l l s was observed. But, d i r e c t evidence i s necessary to confirm t h i s . 

Summary 

A laser-UV-microbeam (λ = 257 nm) i s described t h a t allows i r r a d i a t i o n of organelles of tissue 
c u l t u r e c e l l s t h a t can be seen i n phase contrast microscopy w i t h a focus of 0.5 pm diameter and an 
UV power of 100 ergs/second. The coherent UV l i g h t i s produced by frequency doubling the 514.5 nm 
l i n e of continuous-wave argon-ion la s e r , and i t i s focused by a quartz microscope o b j e c t i v e . A 
comparison of e f f e c t s a f t e r i r r a d i a t i o n of nucleus and cytoplasm i n interphase c e l l s of Chinese 
hamster (V79-122D1) and i r r a d i a t i o n experiments on chromosomes give some i n d i c a t i o n t h a t DNA lesions 
caused by m i c r o i r r a d i a t i o n and f u r t h e r growth are compatible. M i c r o i r r a d i a t i o n of c e l l s i n meta-
phase indicates t h a t chromosomal nondisjunction can be induced. 

This work was supported by the Deutsche Forschungsgemeinschaft (SFB46) . 
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