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Abstract
Although humans are well capable of precise time measurement, their duration judgments are nevertheless susceptible to
temporal context. Previous research on temporal bisection has shown that duration comparisons are influenced by both stimulus
spacing and ensemble statistics. However, theories proposed to account for bisection performance lack a plausible justification of
how the effects of stimulus spacing and ensemble statistics are actually combined in temporal judgments. To explain the various
contextual effects in temporal bisection, we develop a unified ensemble-distribution account (EDA), which assumes that the
mean and variance of the duration set serve as a reference, rather than the short and long standards, in duration comparison. To
validate this account, we conducted three experiments that varied the stimulus spacing (Experiment 1), the frequency of the
probed durations (Experiment 2), and the variability of the probed durations (Experiment 3). The results revealed significant
shifts of the bisection point in Experiments 1 and 2, and a change of the sensitivity of temporal judgments in Experiment 3—
which were all well predicted by EDA. In fact, comparison of EDA to the extant prior accounts showed that using ensemble
statistics can parsimoniously explain various stimulus set-related factors (e.g., spacing, frequency, variance) that influence
temporal judgments.
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We as humans have the ability to perceive the passage of time
relatively accurately. Our sense of time allows us to adapt to
and interact with a dynamic external world. As has been sug-
gested in classical ‘internal-clock’ models (Gibbon, Church,
& Meck, 1984; Treisman, 1963), our ability to time
(experienced) events in the external world is based on an in-
ternal timer. Although there is no physical timer in our brain,
behavioral studies have shown the internal-clock model can
explain many empirical findings and predict the key feature of
time perception: the scalar property (i.e., the Weber scaling).
However, more and more evidence shows that, even though
we are well capable of time measurement, we are still prone to
biases in our timing that depend on both internal states (e.g.,
mental load, attention, emotional state) and external contexts
(Allman & Meck, 2012; Allman, Teki, Griffiths, & Meck,
2014; Pronin, 2013).

One prominent contextual bias in time perception, which
has been puzzling for more than a century and half, is the
central-tendency effect: Duration judgments are assimilated
to the center of the sample durations. Thus, for example, when
asked to reproduce a series of time intervals, participants judge
long durations as being shorter and short durations as being
longer than they actually are. This was first, and accidentally,
discovered by Karl von Vierordt (Lejeune & Wearden, 2009;
von Vierordt, 1868), who misused the “method of average
error” that Fechner had devised by implementing randomiza-
tion instead of repeated measures (Glasauer & Shi, 2018). The
central-tendency effect is one classical example showing that
the ensemble mean derived from long-term memory of sam-
pled stimuli strongly influences perceptual judgments. Recent
studies have suggested that ensemble statistics can be rapidly
computed from a set of variant objects or a sequence of events
(Alvarez, 2011; Ariely, 2001; Chen, Zhou, Müller, & Shi,
2018; Whitney & Yamanashi Leib, 2018). For example, we
can quickly estimate the average size of apples in a basket, or
the average tempo of a piece of music. It has been suggested
that the use of ensemble statistics is beneficial by enhancing
the reliability of sensory estimates (Alvarez, 2011). With re-
gard to the central-tendency bias, this has been confirmed by
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Bayesian modeling: In duration judgments, for instance, the
central-tendency bias is well predicted by optimal integration
of the sample distribution and the sensory input (Jazayeri &
Shadlen, 2010; Raviv, Ahissar, & Loewenstein, 2012; Shi &
Burr, 2016; Shi, Church, & Meck, 2013).

While influences of ensemble statistics on time perception
have been demonstrated mainly in studies of duration repro-
duction or temporal averaging (Acerbi, Wolpert, &
Vijayakumar, 2012; Burr, Della Rocca, & Morrone, 2013;
Chen et al., 2018; Ren et al., 2020; Zimmermann &
Cicchini, 2020), duration context plays a critical role in dura-
tion comparison (Fründ, Wichmann, & Macke, 2014; Rhodes
& Di Luca, 2016; Zimmermann & Cicchini, 2020), such as in
the temporal-bisection task. In a typical temporal-bisection
task, participants are given one short and one long duration
as standards and they are asked to judge whether a given
duration is closer to the short or the long standard (Allan &
Gibbon, 1991; Raslear, 1985). Initially, researchers thought
only the short and long standards matter in the temporal-
bisection task, given that the task is to compare a sample
duration to the both standards. However, it turned out that
the sample durations themselves matter significantly
(Brown, McCormack, Smith, & Stewart, 2005; Penney,
Brown, & Wong, 2014; Wearden & Ferrara, 1995). For ex-
ample, Wearden and Ferrara (1995) found that with the same
short and long standards, a logarithmically spaced duration
set, as compared with a linearly spaced set, had a lower bisec-
tion point (the time point that is subjectively equally distant to
the short and long standard)—an effect that has been referred
to as “spacing effect.” The main account for the spacing effect
holds that the temporal-bisection task does not really involve
comparing a sample duration to the short and long standards,
but rather to a reference pointM somewhere near the geomet-
ric or the arithmetic mean of the two standards (Wearden &
Ferrara, 1995). Brown et al. (2005) subsequently found that
using one reference point is not sufficient to explain the con-
textual bias. Rather, other factors, in particular the rank of the
duration in the sampled set, do also matter—that is, the same
duration in two different sets (with the same short and long
standards) led to different bisection points when the order
(percentile) of the duration in the two sets was different.
Drawing on range frequency theory (RFT; Parducci, 1963)
to combine the two factors of the relative range and the
order of the sampled durations, Brown et al. (2005) proposed
that the subjective judgment of a given time interval change is
based on the weighted average of its range position (i.e., how
far it is from the short and long standards) and its rank order in
the distribution. Although temporal RFT (TRFT; Brown et al.,
2005) successfully captures the biases in the temporal-
bisection task, it still lacks a plausible theoretical explanation
of how we actually process ranks and allocate weights to the
relative range position and the relative rank. This approach
would require observers to store individual durations and their

relative orders in the set, which becomes extremely difficult, if
not impossible, when the set size increases, and even worse
when the same duration may be perceived differently across
trials.

One possible alternative, and straightforward, account
might be that instead of storing individual durations to calcu-
late their orders, observers use ensemble statistics from a
longer-term memory of the sampled durations (Cicchini,
Arrighi, Cecchetti, Giusti, & Burr, 2012) to estimate the M-
reference (i.e., bisection point) in the bisection task.
Remembering individual items is difficult, whereas
representing ensemble statistics is quick and intuitive
(Alvarez, 2011; Ariely, 2001). Use of ensemble representa-
tions has been shown for various types of features, such as the
average speed of moving objects (Watamaniuk & Duchon,
1992), the average size of objects (Marchant, Simons, & de
Fockert, 2013), and the average emotional (facial) expression
of a crowd of people (Haberman &Whitney, 2009). Given the
limited capacity of attention and memory, we have to con-
sciously identify and remember the plethora of objects and
events we continually encounter, ensemble representations
provide us with a ready means to bolster our perceptual expe-
rience (for reviews, see Cohen, Dennett, & Kanwisher, 2016;
Whitney &Yamanashi Leib, 2018). In the temporal domain, it
has been shown that people can learn ensemble statistics of
time intervals up to the third central moment (i.e., mean, var-
iance, and skewness) and use these statistics in their decision-
making (Acerbi et al., 2012). Thus, in the temporal-bisection
task, observers likely compare a perceived duration to the
ensemble representation of the sampled distribution, rather
than storing (and adjusting) individual ranks for later compar-
ison. That is, acquiring the ensemble statistics of the test in-
tervals, observers make bisection judgments according to the
location of a given test interval within the learnt distribution.
We refer to this as the ensemble-distribution account (EDA).

One strong difference of EDA to previous proposals (e.g.,
the spacing account) is that EDA takes the shape of the distri-
bution into account in making bisection decisions.
Accordingly, EDA would predict a shift of the bisection point
when the shape of the distribution changes while the spacing
of the probe durations remains the same. In addition, EDA
would predict the variance of the ensemble statistics to influ-
ence the difficulty of temporal judgment (measured by the
slope of the psychometric curve). On these grounds, we con-
ducted three experiments to test the predictions of the
ensemble-distribution account. Specifically, Experiment 1
was designed to examine for the shift of the bisection point
in sets with positively skewed (PS) versus negatively skewed
(NS) spacing. In this regard, EDA makes the same prediction
as, and so would be indistinguishable from, the spacing and
TRFT accounts. Experiment 2 further examined the bisection
task with equally spaced durations under two skewed
frequency-distribution sets (see Fig. 1 for details): ascending
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frequency (AF) and descending frequency (DF). Given that
the two sets have different ensemble means, we expected
EDA to be able to predict, and account for, the difference in
bisection points between the two conditions. Finally,
Experiment 3 manipulated the variability of the sample distri-
butions while keeping the mean of the distributions the same,
by introducing a U-shaped and an inverted T-shaped set, with
the former having a greater variance than the latter. According
to EDA, the variance would influence the difficulty of the
bisection (reflected in the JND), rather than the bisection point
(reflected in the PSE). Additionally, we applied hierarchical
Bayesian modeling to the behavioral data according to various
assumptions of how temporal bisection may be performed.
The aim of the model fitting and comparison was to look at
the data patterns obtained in the three experiments with re-
spect to the manipulations of stimulus spacing, distribution
means, and variances, so as to identify the best possible ac-
count of how the ensemble context modulates performance of
the bisection task.

Methods

Participants

Forty-five university students with normal hearing took part in
three experiments (15 each in Experiments 1, 2, and 3; 25

females; mean age: 25.5 years). The sample size was deter-
mined based on the prior study of Penney et al. (2014).
Although they did not report effect sizes, we calculated ηg=
0.27 based on their report of a one-way analysis of variance
(ANOVA) test for the auditory condition. With α = .05, 1 − β
= .85, and a within-subject (repeated-measures) ANOVA de-
sign, the sample size required for replicating this effect is nine
observers. Taking a conservative approach, we opted for a
sample size of 15 participants. All participants gave written
consent according to the institutional guidelines prior to their
participation and were paid 9 euro per hour for their service.
The study protocol was approved by the LMU Faculty of
Pedagogics & Psychology Ethics Board. All participants were
naïve as to the purpose of the study.

Stimuli and apparatus

The experiments were conducted in a sound-reduced and
moderately lit test room. Stimuli were generated by
Psychtoolbox-3 (Kleiner, Brainard, & Pelli, 2007) based on
MATLAB R2014a (The MathWorks, Inc., Natick, MA).
Auditory stimuli were generated by PsychPortAudio on a
HP ProDesk computer and presented through the loud-
speakers. Participants gave their responses by pressing the left
or right arrow keys on the keyboard. Experimental instruction
and feedback information were presented on a CRT monitor.
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Fig. 1 Sample distributions used in Experiments 1, 2, and 3. a Two
spacing conditions used in Experiment 1: In the positively skewed
session (PS), the intervals are spaced logarithmically between 400 and
1,600 ms, with a mean of 888 ms and a standard deviation (SD) of 401
ms; in the negatively skewed session (NS), the intervals follow a mirrored
logarithmic spacing, with a mean of 1,112 ms and an SD of 401 ms. b
Two sample-frequency conditions for the seven equally spaced intervals
(400, 600, 800, 1000, 1200, 1400, 1600 ms) used in Experiment 2: The

descending frequency (DF) session has an (arithmetic) mean of 800 ms
and an SD of 347 ms; the ascending frequency (AF) session has the mean
of 1,200 ms and an SD of 347 ms. c Two types of sample-frequency
conditions for the eight equally spaced intervals (400, 550, 700, 850,
1000, 1150, 1300, 1450 ms) used in Experiment 3: The U-shaped session
has a mean of 925 ms and an SD of 491 ms; the inverted T-shaped session
has a mean of 925 ms and an SD of 175 ms
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Procedure

We adopted the bisection task in all three experiments.
Participants were familiarized with the task in two practice
blocks prior to the main experiment (56 trials per block in
Experiments 1 and 2; 72 trials per block in Experiment 3).
The practice blocks involved the same procedure as the ex-
periments proper, except that (i) all test intervals were uni-
formly distributed (i.e., equally frequent), whereas the two
distributions compared and contrasted in the formal
Experiments 2 and 3 were nonuniform; and (ii) response feed-
back, referenced to the average of the short and long standards
(see next paragraph), was provided on each trial, whereas no
feedback was given in the formal experiments. Note that in
Experiment 1, the intervals presented during practice had the
skew inherited from the duration spacing in the formal exper-
iment (see subsection Experiment 1, below, for details), but
the feedback reference was the same for all practice trials.
Thus, if there were any effects of the training conditions in
the practice blocks—in particular, assimilation of the PSE to
the (common) feedback reference or sharpening of the psy-
chometric curve—they would be the same for the two condi-
tions that we manipulated in the experiment proper and so
work against finding the predicted differential effects between
the two conditions in the formal experiment. Thus, any differ-
ential effects we observe are unlikely confounded by practice
effects.

A trial started with a visual fixation marker and a brief
beep (20 ms, 1000 Hz, 60 dB), followed by a blank display
of 500 ms, prompting participants to get ready for a new
trial. Next, a white-noise stimulus (60 dB) was presented
for a given durat ion, randomly selec ted from a
predetermined set, ranging from 400 to 1,600 ms (seven
test intervals in Experiments 1 and 2, eight intervals in
Exper iment 3 ; see nex t pa ragraph for de ta i l s ) .
Immediately following the offset of the white-noise stimu-
lus, a display with a question mark (“?”) was shown,
prompting participants to indicate whether the duration of
the stimulus was closer to the short standard or the long
standard by pressing the left or the right arrow key, respec-
tively. In the practice block, participants received feedback
after their responses (i.e., either “The presented interval
was close to the short standard” or, respectively, “The pre-
sented interval was close to the long standard,” depending
on whether the interval was shorter or longer than the av-
erage of the short and long standards). When the test inter-
val coincided with the mean of the short and long standards
(1,000 ms in Experiment 2), a random feedback (50% “The
presented interval was close to the short standard” and 50%
“The presented interval was close to the long standard”)
was given. In the formal experiment, participants received
no feedback regarding their responses. After a blank inter-
val of 900 to 1,100 ms, the next trial began.

Experiment 1

For better comparison, the sets of intervals introduced in
Experiment 1 were similar to the set used in the (Penney
et al., 2014) study, in which logarithmic spacing of durations
between the short and long standards was applied. As depicted
in Fig. 1a, the seven durations used in the positively skewed
(PS) session were 400, 504, 636, 800, 1008, 1270, and 1600
ms, and in the negative skewed (NS) session 400, 730, 992,
1200, 1366, 1496, and 1600 ms. Each duration was repeated
48 times in the session (i.e., the durations were distributed
uniformly), and the seven durations were presented randomly
intermixed within each session. Each participant completed
two sessions, each consisting of six blocks of 56 trials. The
order of sessions was counterbalanced (as well as possible)
across participants.

Experiment 2

Two types of sample-frequency distributions were tested in
separate sessions: a descending sample frequency (DF) and
an ascending sample frequency (AF), as depicted in Fig. 1b. In
the AF session, the sample frequencies were (1/28, 2/28, 3/28,
4/28, 5/28, 6/28, 7/28) for the intervals (400, 600, 800, 1000,
1200, 1400, 1600 ms); the DF session, the sample frequencies
were reversed. There were six blocks of 56 trials in each
session.

Experiment 3

Eight intervals between 400 and 1,450 ms (400, 550, 700,
850, 1000, 1150, 1300, and 1450 ms) were used in
Experiment 3. Two types of sample frequencies were imple-
mented: A U-shaped distribution and an inverted T-shaped
distribution (see Fig. 1c). In the U-shaped sampling session,
the presentation frequencies of durations (400, 550, 700, 850,
1000, 1150, 1300, and 1450 ms) were (30/72, 2/72, 2/72,
2/72, 2/72, 2/72, 2/72, 30/72), respectively; in the inverted
T-shaped sampling session, the frequencies were (2/72, 2/72,
2/72, 30/72, 30/72, 2/72, 2/72, 2/72) for the same durations.
The two types of sample distributions have the same arithmet-
ic mean, but they differ in their variability. There were four
blocks of 72 trials in each session. The order of the test inter-
vals was randomized within each session, and the order of the
sessions was counterbalanced (as well as possible) across
participants.

Statistical analysis

R package quickpsy (Linares & López-Moliner, 2016) was
used to fit psychometric functions and calculate the points of
subjective equality (PSE, here the bisection point) and the just
noticeable differences (JNDs). We used the cumulative

1204 Atten Percept Psychophys (2021) 83:1201–1214



Gaussian function as the psychometric function and the stan-
dard deviation of the estimated function as the JND (i.e., the
difference between the thresholds at 50% and 75%). All sta-
tistical tests were conducted using repeated-measures
ANOVAs—with additional Bayes-factor analyses to comply
with the more stringent criteria required for acceptance of the
null hypothesis (Kass & Raftery, 1995; Rouder, Speckman,
Sun, Morey, & Iverson, 2009).

Results

Spacing effect in distributions with different
ensemble means (Experiment 1)

The psychometric functions, depicting the relation between
the proportion of “long” responses and the test durations, are
illustrated in Fig 2a. By visual inspection, participants made
more “long” responses in the PS session. This was confirmed
by an analysis of the PSEs: As depicted in Fig 2b, the mean
PSEs (±standard error, SE) for the PS and NS sessions were
842 (±38) ms and 934 (±40) ms, respectively. A repeated-
measures ANOVA revealed this effect of the spacing condi-
tion to be significant, F(1, 14) = 21.141, p < .001, ηg= .0943,
BF = 47.4. Thus, Experiment 1, which used the similar stim-
ulus settings and procedure as Penney et al. (2014), replicated
their spacing effect, as expected (Brown et al., 2005; Penney
et al., 2014).

As shown in Fig. 2c, the mean JNDs (±SE) were 116.8
(±9.7) ms for the PS and 134.1 (±9.4) ms for the NS distribu-
tion. A repeated-measures ANOVA revealed the difference to

be significant, F(1, 14) = 5.755, p = .031, ηg = 0.059, BF =
2.10. The larger JND in the NS versus the PS condition is
likely attributable toWeber scaling in the perceived durations.
Subjective time is known to roughly followWeber’s law (i.e.,
it exhibits the scalar property), with longer durations showing
larger variability of the subjective estimates than shorter dura-
tions (Gibbon, 1977; Wearden & Lejeune, 2008). As there
were more longer durations in the NS session than in the PS
session (see Figure 1a), the uncertainty in the NS session was
likely higher, giving rise to the increased JNDs relative to the
PS session.

Shifts in BPs are associated with ensemble mean but
not with spacing information (Experiment 2)

In Experiment 2, distributions of descending frequency (DF)
and ascending frequency (AF) were generated for the same set
of durations with equal spacing (step of 200 ms). The arith-
metic mean was 800 ms in the DF condition, versus 1200 ms
in the AF condition. Figure 3a depicts the average psychomet-
ric curves for the two (DF and AF) conditions, showing a
marked shift in the location of the bisection points: the mean
PSE (±SE) was 997±45 ms for the AF condition and 821
±37 ms for the DF condition (see Fig. 3b). This difference
was significant, repeated-measures ANOVA on the PSEs:
F(1, 14) = 26.83 p < .001, ηg = .263, BF = 222.0. That is,
compared with the AF condition, the DF condition was asso-
ciated with an increased probability of “long” responses, the
latter consisting of relatively more short intervals and thus
having a relatively shorter arithmetic mean of the stimulus
set (which serves as a reference for the bisection). According
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Fig. 2 Results of Experiment 1. a Bisection functions (proportions of
“long” responses plotted against the comparison durations, and fitted
psychometric curves) averaged across 15 participants for the two,
positively (PS) and negatively skewed (NS), stimulus-spacing conditions.
b Boxplots of PSE of the duration judgments for the PS and NS sessions
(***p < .001). The dots depict individual PSEs estimated from individual

participants. Lower and upper tips of the vertical lines correspond to
minimum andmaximum values, the box represents the interquartile range
(between 25% and 75%), and the horizontal line represents the median. c
Boxplots of JND of the duration judgments for the PS and NS sessions
(*p < .05). The dots depict individual JNDs of individual participants
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to EDA, temporal bisection essentially involves a comparison
of a given duration to the estimate of the ensemble mean.
Thus, compared with the AF set, the relatively shorter ensem-
ble mean in the DF set would lead to more “long” responses.

As shown in Fig. 3c, the mean JNDs were 108 (±22.7) ms
for the DF condition and 138.8 (±28) ms for the AF condition,
with the difference being significant (repeated-measures
ANOVA): F(1, 14) = 15.38, p < .01, ηg = .027, BF = 17.82.
Similar to Experiment 1, the frequency distribution with more
long durations (here, the AF session) had a larger JND than
the distribution with more short durations. Again, this was
likely due to unequal Weber scaling in the two sets: the un-
certainty induced by the long durations was more prominent
in the AF (as compared with the DF) session, further pointing
to the influence of ensemble statistics in duration comparison.

Sensitivity of temporal judgment is driven by
ensemble variance (Experiment 3)

Experiment 3 was designed to examine whether performance
on the temporal-bisection task would be affected by the vari-
ance of the contextual stimulus set. Accordingly, the distribu-
tions of the stimulus set (both with equal spacing of the inter-
val durations) had the same mean, but they differed in their
variance. Figure 4a depicts the psychometric functions aver-
aged across 15 participants for each stimulus set condition: U-
shaped and inverted T-shaped frequency distribution.
Consistent with the prediction of EDA, the two psychometric
curves cross each other at the 50% threshold, while having
different slopes. As depicted in Figure 4b, the mean PSEs
(±SE) were comparable: 863 (±31.5) ms and 864 (±26.5) ms
for the U-shaped and inverted T-shaped distributions,

respectively (repeated-measures ANOVA): F(1, 14) = 0.001,
p = .97, ηg= .000026, BF = 0.331, with the BF value providing
strong evidence in favor of the null hypothesis). The absence
of a difference in the PSEs between the U-shaped and inverted
T-shaped distributions in this experiment, combined with
findings from Experiments 1 and 2, suggests that the shift in
PSEs was driven mainly by the ensemble mean, not the en-
semble variance.

In contrast, as can be seen from Fig. 4c, there was a marked
difference in the JNDs between the two conditions, with mean
JNDs of 111.75 (±11) ms for the U-shaped and 86.37 (±8) ms
for the inverted T-shaped distribution. A repeated-measures
ANOVA revealed the difference to be significant: F(1, 14) =
9.171, p < .01, ηg= .117, BF = 5.96.

Following the prediction of EDA, we expected a signifi-
cantly steeper slope (i.e., a smaller JND) with the inverted T-
shaped, as compared with the U-shaped, frequency distribu-
tion, given that the variance was smaller in the former than in
the latter. In addition to the variance of the set, the Weber
scaling of the longest duration may also contribute to the large
variance in the U-shape condition, similar to the differences in
JNDs that we observed in Experiments 1 and 2.

Modeling

To compare different models of the temporal-bisection task,
we applied Bayesian hierarchical modeling (Lee &
Wagenmakers, 2014) to our behavioral data, with correspon-
dent assumptions about how the task is performed. The frame-
work of the hierarchical model is illustrated in Fig. 5. For a
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Fig. 3 Results of Experiment 2. a Bisection functions (proportions of
“long” responses plotted against the comparison durations, and fitted
psychometric curves) averaged across 15 participants for the two,
descending-frequency (DF) and ascending-frequency (AF), duration-
distributions conditions. b Boxplots of PSE of the duration judgments
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PSEs estimated from individual participants. c Boxplot of JND of the
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given duration X ið Þ
j in condition i, we assume the bisection

response follows the binomial distribution for the probability

of the “long” response p ið Þ
j . The probability p ið Þ

j is determined

by the ratio comparison of probe duration X ið Þ
j and the bisec-

tion point X ið Þ
BP according to the following psychometric rela-

tion:

log
p ið Þ
j

1−p ið Þ
j

¼ α ið Þ þ β ið Þ X ið Þ
j =X

ið Þ
BP−1

� �
; ð1Þ

where α(i) and β(i)are two psychometric parameters. The left
side of the equation is the decision variable expressed in the
log-likelihood of the two alternative (“Long” vs. “Short”) re-
sponses, while the right side assumes the comparison is based
on the ratio Xj/XBP. The ratio comparison on a linear scale is
equivalent to the subtraction comparison on the internal log-
scaled representation, which conforms to Weber scaling (i.e.,
the scalar property). The assumption of a logarithmic scale for

internal duration representation is common in theories and
models of duration judgments (Petzschner, Glasauer, &
Stephan, 2015; Ren, Müller, & Shi, 2020; Roach, McGraw,
Whitaker, & Heron, 2017; Wearden, 1991). The equation im-
plies that the decision variable is a linear function of the ratio
comparison. The coefficient β(i) reflects both the sensitivity of
the ratio comparison and a potential central-tendency bias
(which makes the slope of the psychometric function
shallower) for individual participants, in a given condition i.
In Bayesian hierarchical models, the parameters α(i) and β(i)

are assumed to follow Gaussian distributions with the respec-
tive hyperparameters (μα, σα) and (μβ, σβ). In addition, EDA
assumes that the distribution of decision sensitivity β(i) is
Gaussian with a mean proportional to the reciprocal of the
relative spread of the test durations, that is: N(k · μ/σX, σβ),
where μ and σX are the mean and, respectively, the standard
deviation of the test durations, and k is a scaling factor. In
other words, narrower sample distributions would enhance
the sensitivity of the bisection task. It should be noted that,

Fig. 5 The framework of the hierarchical model. a A psychometric function with bisection point XBP. b Schematic illustration of the hierarchical model
of temporal duration judgments (see text for details)
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as implemented, our EDA model uses the veridical spread of
the sampled duration σX, disregarding the subjective Weber

scaling in the perceived ensemble variability σ
0
X ; but the

framework can be easily extended to the subjective scale.
The main difference among the various models, ranging

from the simple bisection model to EDA, is how the critical

reference X ið Þ
BP (reference M in Wearden & Ferrara, 1995) is

used in the bisection task (see Table 1). The simple bisection
model assumes the comparison is made either between the
ratios XS/X and X/XL or between probe X and the arithmetic-
mean duration (XL + XS)/2; that is, essentially the comparison
is made to either the geometric mean (GM) or the arithmetic
mean (AM) of the standard durations. From their meta-
analysis of 148 experiments, Kopec and Brody (2010) con-
cluded that it remains controversial whether the bisection
point is close to the GM or AM. The bisection point is influ-
enced by a number of factors, including the short-long spread
(i.e., the Long/Short ratio) and the probe context. The spacing
account, for example, assumes the comparison reference is the
arithmetic mean of the whole probe durations, each of which
is equally frequent by design (Penney & Cheng, 2018). The
TRFT account (Brown et al., 2005; Penney et al., 2014), on
the other hand, assumes that, rather than being veridical, sub-
jective duration is an average of two components—namely,
the relative position of a sampled duration in-between the
short and long standards and the ordinal position of the dura-
tion within the sample durations. The proportion of “long”
responses to a sampled duration is then based on a comparison
between its calculated relative position and the short and long
standards. Accordingly, the estimated temporal bisection

point X ið Þ
BP lies roughly between the mean of the sample dis-

tribution and the arithmetic mean of the short and long stan-
dards. We simulate this using the ensemble-mean model, that

is: X ið Þ
BP is the mean (either the GM or the AM) of the sampled

distribution. Given that the mean of the sample distribution is
not a fixed parameter known to participants, but rather up-
dated dynamically over the course of the trials, we further

propose that the bisection reference (X ið Þ
BP ) is also a variable

that fluctuates from trial to trial, while being centered around
the geometric or the arithmetic mean of the sampled distribu-
tion. We refer to this as the two-stage ensemble-mean model
(see Table 1). The EDA model goes one step further, by in-
corporating the variance of the distribution into bisection
decisions—that is, the slope of the psychometric function
(β) is inversely related to the relative spread of the ensemble
distribution (σX/μ; see Table 1). EDA predicts that increasing
the variability of the test durations would decrease the bisec-
tion sensitivity when the mean of the test range is fixed.
Moreover, given that EDA (see Equation 1) conforms to
Weber scaling (Jozefowiez, Polack, Machado, & Miller,
2014; Kopec & Brody, 2010; Wearden & Lejeune, 2008), β
would remain unchanged when the ratio of the mean and
standard deviation of the test durations is kept constant.

Based on those assumptions, we fitted the above five
models to our data and estimated the corresponding psycho-
metric functions, PSEs, and JNDs for each participant. We

applied the AM and GM as X ið Þ
BP in all models. The simple

bisection model and the spacing model lowered the PSE with
the GM relative to the AM, while both the two-stage

Table 1 Models and model assumptions about the comparison reference XBP and decision sensitivity (slope)

Models Reference XBP Decision sensitivity β

Simple bisection model AM: XBP = (Xs + XL)/2

GM: XBP ¼ ffiffiffiffiffiffi
X s

p
XL

N/A

Spacing model AM: XBP ¼ 1
n∑X j N/A

GM: XBP ¼ ffiffiffiffiffiffiffiffiffiffi
ΠX j

n
p

Ensemble-mean model AM: XBP ¼ 1
Σ f j

∑ f j X j constant*

GM: XBP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π X j

� � f jΣfj
q

Two-stage ensemble-mean model AM: XBP∼N(μ, σ), μ ¼ 1
Σ f j

∑ f j X j constant

GM: XBP∼N(μ, σ), μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π X j

� � f jΣfj
q

Ensemble-distribution account (EDA) AM: XBP∼N(μ, σ), μ ¼ 1
Σ f j

∑ f j X j β ∼N(k · μ/σX, σβ)

GM: XBP∼N(μ, σ), μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π X j

� � f jΣfj
q

Note. * TRFT model (Brown et al., 2005; Penney et al., 2014) used the percentile to approximate the subjective magnitude, and then applied ratio
comparison between the perceivedmagnitude to the short and long standards, which implicitly incorporates some degree of variance of the distribution in
the bisection decision. N/A denotes not applicable
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ensemble-mean model and the EDAmodel yielded very close
predictions with both the GM and the AM (the relative mean
difference between the two predictions of the PSEs
PSEGM−PSEAMj j

PSEobs
was less than 2%), owing to the trial-by-trial

variation rendering the small difference between the GM and
AM of little effect in the hierarchical model. Overall, EDA
outperformed all other models (see below), whether incorpo-
rating the AM or GM variant. Given this, here, we consider
only themodels with the AM. To visually compare the various
models with regard to their respective predictions of the PSEs
and JNDs, we plotted their mean predictions with individual
estimates in Fig. 6. The spacing model and the ensemble-
mean model made the same prediction for the spacing manip-
ulation in Experiment 1 (PS vs. NS), given that the sampled
durations were weighted equally (shown overlapped in the left
panel of Fig. 6). Both, however, underestimated the PSE and
JND in the PS condition (more short durations), and
overestimated the PSE and JND in the NS condition (more
long durations). This suggests that the bisection point (BP)
was assimilated to the mean of the skewed distribution,

though only partially. By contrast, the two-stage ensemble-
mean model and the EDA model provided a very close pre-
diction to the observed PSEs in Experiment 1. In addition, the
EDA model (but not the two-stage ensemble-mean model)
predicted the mean JNDs. The main difference between the
two-stage ensemble-mean (and EDA) model(s) and the
ensemble-mean model is that the former assumes random
trial-to-trial fluctuations of the ensemble mean, thus potential-
ly incorporating a partial range effect in the decision (i.e.,
assimilation to the arithmetic mean). The ensemble means
were more extreme in the DF and AF conditions in
Experiment 2 as compared with those in Experiment 1, devi-
ating greatly from the observed PSEs (see the middle panel in
Fig. 6). This suggests that the mean of the distribution was not
the sole factor determining the bisection judgments. Again, by
having the reference (i.e., bisection point) vary across trials,
both the two-stage ensemble-mean model and the EDAmodel
well predict the observed PSEs. Incorporating the variance of
the distribution in the bisection decision, the EDA model was
able to predict the JNDs across all six different sets, indicating
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Fig. 6 Observed PSEs and JNDs and mean predictions from the models
compared. PSE–JND pairs from individuals are plotted in gray dots, and
their means are shown in large dark dots. The mean predictions of PSE–
JND pairs and their PSEs from the five models are marked with colored
error bars. Note that the predictions of the spacing model and the
ensemble-mean model were the same (overlapped in the figure) for the

PS and NS sets (the left panel), given that the sampled durations were
equally weighted. Due to the equal spacing in the DF, AF, U-shaped, and
IT-shaped sets, the bisection and the spacing models made the same
predictions (overlapped in the figure). The predictions from the EDA
model came the closest to the mean of the observed PSE–JND pairs
across all six sets
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that the second moment of the ensemble statistics (i.e., vari-
ance) does influence performance of the bisection task.

To obtain a better picture of the model predictions at the
level of individual observers, we plotted the prediction errors
(predicted vs. observed values) in PSEs versus JNDs in Fig. 7.
Each point represents the errors in PSE and JND estimation,
per individual participant, derived from a specific model of the
five models compared. As can be seen from Fig. 7, the scatter
points of the EDA model are centered nearer to the origin of
the XY coordinates compared with the points of the other
models, indicating that the PSEs and JNDs predicted by
EDA come closest to the mean of the observed values, across
all three experiments. This observation is supported by mea-
sures of the Euclidean distances of the model predictions from
the observed PSE-JND pairs: The mean distances were 68.4,
68.1, 75.2, 16.7, 11.9 ms for the simple bisection, spacing,
ensemble mean, two-stage, and EDA models, respectively.
Formal corroboration of the superiority of EDA is provided
by “goodness-of-fit” measures of the predicted psychometric
curves using the Watanabe–Akaike information criterion
(WAIC). The WAIC is a measure of the quality of a hierar-
chical model, which takes into account the goodness of fit, as
measured by the likelihood, while also penalizingmodels with

more free parameters (Vehtari, Gelman, & Gabry, 2017).
Lower WAIC values indicate better model performance. The
meanWAICs for the predicted “long” responses across all test
durations were 77.2, 92.7, 104.6, 76.7, and 72.1 for the simple
bisection, spacing, ensemble mean, two-stage, and EDA
models, respectively. That is, across all conditions, the EDA
model provides the best fit for both the PSEs and the JNDs,
evidenced by the fact that the WAIC for the EDA model was
the smallest in all cases.

General discussion

In the present study, we tested six different duration sets, with
set properties varying in stimulus spacing, set mean, and set
variance in three experiments, to investigate whether
temporal-bisection judgments would be best explained by
our ensemble-distribution account (EDA). Experiment 1 dem-
onstrated that the skewness of unequal spacing significantly
shifted the bisection point, confirming previous findings
(Brown et al., 2005; Penney et al., 2014; Wearden &
Ferrara, 1995). Given that the short and long standards were
identical in the two (positively skewed (PS) and negatively
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Fig. 7 Scatterplot of prediction errors in the PSEs and JNDs derived from
the five models for individual observers across the six duration sets
presented in Experiments 1–3 (see Fig. 1). Perfect predictions are located

at the center (0, 0). The average prediction errors of the six conditions of
the EDA model were the smallest
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skewed (NS)) sets, the finding of differential PSEs between
the PS and NS conditions argues against the simple bisection
account, irrespective of whether it assumes the arithmetic or
the geometric mean of the standards as reference. Experiment
2 further demonstrated that the frequencies of the sampled
durations greatly impacted the bisection point, even when
the probe durations were equally spaced in the ascending-
frequency (AF) and descending-frequency (DF) sets. The
spacing account fails to predict this effect. Experiment 3 kept
the spacing of the durations and the mean of the sets the same
for the U-shaped and inverted T-shaped sets, but varied their
variances (larger variance for the U-shaped set). The results
revealed the variance of the set to influence the sensitivity of
temporal bisection, reflected in differential JNDs (despite the
equivalent set means). While previous accounts failed to pre-
dict the PSEs and JNDs in one set or another, the EDA model
successfully accounted for the shifts of the PSEs and JNDs in
all six sets examined. The results of model-fitting analyses
also showed the EDA model to provide the best account of
the data.

Temporal bisection and related accounts

The temporal-bisection task was first developed in research
on animal timing (Gibbon, 1977; Gibbon et al., 1984) and
later adapted to studies on human timing (Allan & Gibbon,
1991; Wearden, 1991). The focus of the initial studies on
temporal bisection was on how humans and other animals
make interval comparisons (rather than on context-
dependent manipulations of the bisection point).
Accordingly, the early work implicitly assumed that the
interval comparison in temporal bisection depends only
on the probe stimulus (t) and the short (S) and long (L)
standards (e.g., Allan & Gibbon, 1991). Later studies,
however, revealed that temporal bisection is sensitive to
the probe context. Logarithmic versus linear spacing of
the probe durations often resulted in different bisection
points, even though the short and long standards remained
the same (Brown et al., 2005; Penney et al., 2014). This
raised the question as to the temporal reference to which
observers actually compared a given probe duration. Using
various spacing manipulations to probe for shifts of bisec-
tion points, Wearden and Ferrara (1995) suggested that
observers likely compare the probe duration t to a reference
M, rather than with S and L, where M lies somewhere in-
between the geometric and arithmetic mean of the S and L.
While this M-reference proposal could qualitatively ex-
plain the shifts of the bisection points, it falls short of
quantitatively predicting the influence of the sampled dis-
tribution. Subsequently, Brown et al. (2005) developed the
TRFT model based on the ‘range frequency theory’, argu-
ing that the subjective measure of a given probe duration
(t′) is influenced by its temporal position within the sample

range and its percentile in the distribution. The TRFT mod-
el still considers temporal-bisection judgments to involve a
ratio comparison between S/t′ and t′/L, where S and L are
veridical. It should be noted that the TRFT model assumes
that observers can retrieve the ordinal (rank) position of the
probe duration (i.e., percentile), which logically requires a
representation of the full ordered sequence of the dura-
tions. Building up such a representation would be very
memory-intensive and thus quite unlikely with a large set
of durations. By contrast, Wearden and Ferrara’s (1995)
M-reference model only requires an estimation of M across
all trials, which is computationally less intensive. Here, we
adopted the M-reference approach to compare various
models, assuming that temporal-bisection judgments are
made by comparing the probe t to a bisection point XBP,
with the XBP being context sensitive. The model compari-
son revealed that the best fit is provided by the EDA ac-
count, which assumes that the bisection point is derived
from the ensemble mean with trial-to-trial random varia-
tion. Given that the ensemble statistics are not known prior
to the experiment, but rather updated dynamically from
trial to trial, EDA, as well as the two-stage ensemble-mean
model, can capture the dynamic adaptation of the bisection
point, making them outperform the other models.

The assumption that the bisection point is sensitive to con-
text does not rule out that subjective measures of individual
probe durations themselves are modulated by the context. In
fact, perceived durations are known to be subject to the
central-tendency effect (Lejeune & Wearden, 2009; Shi
et al., 2013). However, the central-tendency effect only assim-
ilates individual durations toward the ensemble mean, which
could degrade the sensitivity of the bisection task (given that
the subjective distance to the mean is shortened), while leav-
ing the bisection point unaffected. In other words, the bisec-
tion point is insensitive to the central-tendency effect. Given
this and for the purpose of simplicity, we did not explicitly
incorporate the central-tendency effect in our modeling
(though it was an implicit factor influencing the general free
parameter β; see the modeling section and Equation 1).

One strong prediction deriving from EDA, which sets it
apart from the other accounts, is that the variability of the
sampled distribution influences the sensitivity of bisection
judgments, as corroborated empirically in Experiment 3. The
duration set with the inverted T-shaped distribution had a low-
er variability compared with the U-shaped set, which led to the
psychometric curve becoming steeper. The reason is that the
ensemble representation of the inverted T-shaped distribution
would be narrower than that of the U-shaped distribution,
given that ensemble perception incorporates the external sta-
tistics. As a result, any probe durations that deviate from the
ensemble mean would be more likely judged as short or long
in the inverted T-shaped set than in the U-shaped set.
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Ensemble perception for temporal sequences

It should be noted that, while previous research on ensemble
perception has primarily focused on summary statistics of the
immediately, or simultaneously, available information, such as
the average size of a set of objects (Alvarez, 2011; Whitney &
Yamanashi Leib, 2018), the ensemble perception we refer to here
concerns the statistical summary representation that is acquired
through trial history. Real-world sensory inputs relevant to our
behavioral goals do not always occur all at once, and we are often
exposed to changing characteristics of goal-relevant objects. For
instance, linguistic research has shown that both infants and adults
make use of statistical computations for deciding which series of
sounds establishes a word within a nonstop flow of spoken
sounds (Newport & Aslin, 2000; Saffran, 2001). In particular,
people are able to track the regularities in a series, or “group,”
of sound elements, which render the predictiveness of one sound
element onto another. For language acquisition and the learning
of new languages, such probability-based computations provide
important rhythmic temporal information (i.e., acoustic features
such as duration and frequency of speech elements and summary
statistics of sequences of speech sounds and silent intervals) for
parsing the sequential sounds in speech. Andmore recently, Chen
et al. (2018) showed that humans automatically derive the mean
interval from a sequence of auditory beeps, which then cross-
modally influences, or “patterns”, visual apparent motion. The
present findings add to this evidence by demonstrating that tem-
poral ensemble perception developed through trial history pro-
vides the “reference” for duration comparison.

One might ask why we need ensemble perception in the first
place, when temporal tasks, such as bisection, can be accom-
plished with greater precision without the influence of ensemble
statistics. To answer this question, we need to consider the fun-
damental roles of ensemble perception. The environment we live
in does not comprise random objects and events, but rather has
structure and regularity (Cohen et al., 2016). We are continually
confronted with abundant information that is beyond our pro-
cessing capacity. Accordingly, evolutionary pressures pushed
us to utilize regularity—that is, ensemble-statistical—informa-
tion to overcome the capacity limit (Ariely, 2001; Whitney &
Yamanashi Leib, 2018). As a result, deriving such ensemble
statistics became “intuitive” and automatic. In many situations,
using intuitive ensemble perception can help us recover unattend-
ed events, spot outliers, or make predictions. For example, when
listening to background music while working, one can rapidly
spot a change in rhythm even if one’s focus is not on music. Yet,
in some instances, implicitly using ensemble statisticswould give
rise to unintended biases, such as the PSE/JND shifts we report
here. It should be noted that in the bisection task, observers are
actually explicitly told to compare the probe duration to the short
(S) and long (L) standard. The reason why participants use the
ensemble distribution as the reference, rather than S and L, is
likely owing to the fact that S and L contribute to the ensemble

distribution in the same way as the other durations (Wearden &
Ferrara, 1995).

The role of variability in ensemble perception

Previous research on ensemble perception has largely focused
on demonstrating humans’ ability to accurately estimate mean
values from an array of objects or sensory features (Whitney
& Yamanashi Leib, 2018). However, the variability of the
sampled stimuli provides useful information about the range,
stimulus spacing, and exceptional cases in the data set—
hence, the variance statistic is a key component in ensemble
perception. Although processing mean information eases the
limitations of our perceptual experience by summarizing mul-
tiple items or features to an exemplar component (Alvarez,
2011), detecting similarities or, respectively, deviations
among items is not solely based on the mean information,
but may also benefit from complementary measures of stim-
ulus range and variance (Haberman, Lee, & Whitney, 2015;
Michael, de Gardelle, & Summerfield, 2014; Solomon, 2010).
Thus, for example, ensemble variance has been suggested to
be useful for identifying potential outliers or deviations in a
crowd (Whitney & Yamanashi Leib, 2018). The results of the
present study show that variance information is also exploited
in temporal judgments: In temporal bisection, the variance of
the sample distribution provides useful information for dis-
cerning the location of a probe duration relative to the ensem-
ble mean, thus enhancing temporal sensitivity (as evidenced
by the steepness of the psychometric curve).

Conclusion

The ensemble context is an important determinant in time per-
ception. The present paper reported three experiments in which
we manipulated the distribution of auditory duration sets to
determine factors that influence temporal-bisection perfor-
mance. The results revealed the mean and variance of the stim-
ulus set to be critical factors, producing shifts of the bisection
point and, respectively, changes of the slope of the bisection
curves. These findings demonstrate that the human timing
mechanism involves an ensemble averaging process which
works similarly to other perceptual properties in the visual
and auditory domains. Moreover, we proposed an ensemble-
distribution account that explains in which way subjective
judgments of time intervals vary according to the distribution
summary statistics of the set mean and variance values.
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