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In order to evaluate transfer learning models for Natural Language Processing on a common ground, numerous
general domain (sets of) benchmark data sets have been established throughout the last couple of years. Pri-
marily, the proposed tasks are classification (binary, multi-class), regression or language generation. However,
no benchmark data set for (extreme) multi-label classification relying on full-text inputs has been proposed in
the area of social science survey research to this date. This constitutes an important gap, as a common data set
for algorithm development in this field could lead to more reproducible, sustainable research. Thus, we pro-
vide a transparent and fully reproducible preparation of the 2008 American National Election Study (ANES)
data set, which can be used for benchmark comparisons of different NLP models on the task of multi-label
classification. In contrast to other data sets, our data set comprises full-text inputs instead of bag-of-words rep-
resentations or similar. Furthermore, we provide baseline performances of simple logistic regression models
as well as performance values for recently established transfer learning architectures, namely BERT (Devlin

et al., 2018), RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019).

1 INTRODUCTION

The quasi-standard method in machine learning to de-
termine the performance of a newly proposed method
is to evaluate it on benchmark data sets. The same ap-
plies for the evaluation of pre-trained language mod-
els frequently utilized for transfer learning in Natural
Language Processing (NLP). Collections of bench-
mark data sets for different natural language under-
standing (NLU) tasks (Rajpurkar et al., 2016; Lai
et al., 2017; Wang et al., 2018) have gained mas-
sive popularity among researchers in this field. These
benchmark collections stand out mainly due to two as-
pects: They are extremely well documented with re-
spect to their creation and they are fixed with respect
to the train-test split and the applied evaluation met-
rics. Furthermore they provide public leaderboards!,
where the results of submitted models are displayed
in a unified fashion. For the majority of the pro-
posed benchmark data sets the task is either a binary
or a multi-class classification task (cf. data sets from

4 https://orcid.org/0000-0003-2154-5774
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Wang et al. (2018)). In the context of social science
survey research, however, to our knowledge no exist-
ing (extreme) multi-label data sets (Lewis et al., 2004;
Mencia and Fiirnkranz, 2008) have been used for per-
formance evaluation by any of the current state-of-
the-art (SOTA) transfer learning models. These, and
other (tabular) multi-label data sets can e.g. be found
in repositories like MULAN.

In the social sciences, especially in survey re-
search, definitive standards for raw data formatting of
open-ended survey questions have not yet been estab-
lished to our knowledge. This is not to say that there
exist no current standards for handling and organiz-
ing survey research data in general (Inter-University
Consortium For Political And Social Research (IC-
SPR), 2012; CESSDA Training Team, 2020) or the
metadata describing the primary data (Vardigan et al.,
2008; Hoyle et al., 2016). Yet, for open-ended sur-
vey questions and their coding?, these standards have
not been well established, apart from descriptions of
best practices by some authors (Ziill, 2016; Lupia,

>The process of manually assigning survey responses to
pre-defined sets of labels (codes) is known as coding.
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2018b,a).

Our data set preparation represents a novelty since
it combines an interesting use-case (multi-label clas-
sification) for NLP models in Social Sciences with a
fully reproducible pre-processing resulting in full-text
strings as inputs. Note that this combination is not
yet included in the benchmark collections mentioned
above’. Thus, in the spirit of the growing overall
need for standardized data sets and for reproducibil-
ity, we provide a description (cf. Sec. 2), an overview
on previous use of this data set (cf. Sec. 3) and a
thoroughly described pre-processing (cf. Sec. 4.1)
of the ANES 2008 data, which enables its usage for
benchmark comparisons for multi-label classification.
Baseline performance values for a simple machine
learning model as well as for more recently proposed
transfer learning architectures are provided in Sec. 5.

2 THE ”AMERICAN NATIONAL
ELECTION STUDIES” SURVEY

The American Election Studies (ANES) provide
high-quality data for political and social science re-
search by conducting surveys on political participa-
tion, public opinion and voting behavior since 1948.
To fulfill this commitment, ANES conducts a series
of biennial election studies which cover these topics,
sometimes extended by surveys on special-interest
topics and expanded methodological instrumentation.

The 28™ ANES time series study in 2008 (The
American National Election Studies, 2015) has been
supplemented by a coding project for open-ended re-
sponses (Krosnick et al., 2012) to various pre- and
post-election questions. The topics ranged from rea-
sons to vote for a presidential candidate, perceived
reasons why a candidate won or lost the 2008 election,
across the most important problems for the country
and the electorate, over to (dis)likes of the competing
political figures and parties among the respondents.

Like in all previous ANES studies conducted
in years of presidential elections, respondents were
interviewed in pre-election interviews and then re-
interviewed in the two months following the election
(post-election interviews), hence there was a varying
number of respondents.

3Despite these benchmark collections do include data
sets with text input, all inputs are provided as bag-of-words
representations or similar, but not as full-text verbatims.

Survey Responses

3 RELATED WORK

Card and Smith (2015) already investigated machine
learning methods for automated coding of the ANES
2008 data. Namely, they evaluated (regularized) lo-
gistic regression models as well as recurrent neu-
ral network architectures, including long short-term
memory (LSTM) units (Hochreiter and Schmidhuber,
1997). As a result, they find that recurrent neural
network based methods are not generally able to out-
perform the more “traditional” natural language pro-
cessing methods, like logistic regression models com-
bined with uni-/bigrams or additional features. An in-
teresting conclusion they draw from their analysis is
that this might be due to the limited amount of train-
ing data available for this multi-label classification
task at hand. Since this is a problem statement explic-
itly addressed by recent transfer learning approaches,
we are curious to find out whether pre-trained archi-
tectures like BERT & Co. are able to perform better
on this task. Roberts et al. (2014) work on the ANES
2008 data by applying a structural topic model as a
fully unsupervised approach for automated coding,
which is a highly interesting strategy for previously
unlabeled data sets. But since our goal is to evaluate
the ability of transfer learning models (which rely on
labeled data) for multi-label classification, we do not
make use of this methodology.

4 MATERIALS AND METHODS

4.1 Preparation of the ANES Data

The data from the Open Ended Coding Project* con-
sists of a main file in *.xls - format which combines
all verbatims> from the targeted respondents collected
on the individual questions in separate spreadsheets.
The codes assigned to these verbatims are stored sep-
arately in so-called codes-files.

Analogously to the work of Card and Smith
(2015), we only use the answers to the open-ended
questions unrelated to occupation/industry of the re-
spondents. The topics of the questions defining the
different data sets are displayed in Tab. 1. As some
of the questions share the same code sets, they can be
grouped into ten individual data sets comprising all of
the questions on the topics mentioned in Sec. 2. With
this, we follow the data preparation strategy of Card

4Publicly available under: ANES time series study and
the Open Ended Coding Project

3 Answers to the open-ended survey questions are re-
ferred to as verbatims
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and Smith (2015), to keep our later results roughly
comparable to their model benchmarks.

Until now, there seems to be no broadly accepted data
format or structure in the social sciences regarding
the storage and publication of codes assigned to indi-
vidual responses to open-ended questions in surveys.
Data sets seem to be structured matrix-like ad-hoc to
fit an individual survey’s needs.

Besides the obvious structural requirements,
namely that the codes assigned to each response have
to be identifiable using a particular variable (here this
is provided via an ”ID”, alternatively designated as
”caselD”’) and that there is a limited amount of vari-
ables which can be used for storing the code values for
a single response, the internals of such data sets seem
to be highly idiomatic. Another aspect which partially
varies between different surveys are the codes being
used for indicating that a value is missing. This in
turn leads to the problem that these data sets as such
are hardly usable for standard machine learning pur-
poses without extensive preprocessing which has to
reflect the individual survey’s logic.

In the particular case of the ANES 2008, one has
to turn to the so-called ’coding report” accompanying
each response-codes data set to identify the columns
which contain the codes for a specific question and
to understand their meaning. The pre-defined codes
for each question have been manually assigned to the
individual responses by professional human coders.
The coding procedure has been developed after a thor-
ough review of the ANES open-ended coding meth-
ods and a subsequent conference in December 2008°
which suggested best practices.

As the sets of predefined codes belonging to indi-
vidual questions cannot be used for machine learning
purposes as such, we have to transform them into a
useful format. In order to generate usable data sets
from the files distributed by the Open Ended Cod-
ing Project, we exploit the notion of representing the
codes, which have been assigned to each textual ob-
servation, by a binary vector.

As described previously by various authors
(Tsoumakas and Katakis, 2007; Gibaja and Ventura,
2015; Herrera et al., 2016), multi-label problems
can be formalized by proposing an output space L =
Ly,Ly,..,L, of g labels (g > 1), which allows us to de-
scribe each observation in the data as (x,Y) where
x = (x1,..,X7) € X is a d-dimensional instance which
has a set of labels associated ¥ € L. In this paper, we
understand the codes assigned to each response in the
data as the labels encountered in a multi-label learn-
ing problem, just as Card and Smith (2015) did pre-

The ANES Conference on Optimal Coding of Open-
Ended Survey Data took place in Dec. 2018

868

viously. In order to transform the numeric codes as-
signed to the responses into multi-hot encodings, we
exploit the cardinality of the code set associated with
each question. This helps us to represent the labels
associated to each observation by a g-dimensional bi-
nary vector y = (y1,..,y4) = {0,1}¢ where each ele-
ment is 1 if the respective label was assigned to the
response and O otherwise.

To map the numeric codes to binary label vec-
tor elements one-to-one, we sourced the total size
of each code set from the codes-documents enclosed
with each data set. Using this information, we de-
fined the length of the binary mapping vectors to be
identical to the cardinality of the code sets. To gener-
ate multi-hot encoded label vectors for each response
contained in the data sets, we designed a mapping dic-
tionary for each code set defining which code from
the current set belongs to which element in the binary
vector generated for a particular response. To finally
obtain the binary label vectors from the set of nu-
meric codes associated to each observation, we trans-
formed all data sets using a custom function which
can be fed a mapping dictionary and the raw data
row-by-row. The function then returns the binary la-
bel vectors of length g for each observation, where
each vector element is 1 if the code mapped to this el-
ement was assigned to the response and 0 otherwise.
For the latter application of machine learning meth-
ods we split the data into train and test set (90/10) us-
ing an iterative stratification method for balancing the
label distributions (Sechidis et al., 2011; Szymanski
and Kajdanowicz, 2017a) implemented in the novel
scikit-multilearn library for Python (Szymanski
and Kajdanowicz, 2017b). This represents an inno-
vation, as such stratification has not been previously
used by Card and Smith (2015). The resulting data
splits are publicly available.”

4.2 Model Architectures

Simple Baseline. As a simple baseline we use a
logistic regression classifier (without regularization)
for one vs. rest classification per label and thus ob-
tain a varying number of single models per label
set. Verbatim-level averaged fasttext-vectors (Bo-
janowski et al., 2017) are used as input and one-
hot vectors per label as targets. We use nltk (Bird
et al.,, 2009) for a mild preprocessing of the raw
verbatims, dropping punctuation, interviewer annota-
tion and lowercasing. Then, we fit the model using
the scikit-learn implementation (Pedregosa et al.,

"Code, data sets and leaderboard available at https://
github.com/mxl1i417/co_benchmark.
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Table 1: Overview of the prepared data sets of ANES 2008, which our analysis will be based on, and their respective topics.
Additional details and descriptive statistics about the data sets can be found in Appendix 7.1.

ID Topic Question ID n #labels
1 General Election T5,T6 238 34
2 Primary Election T2, T3 288 29
3 Party (Dis-)Likes Clb, C1d, C2b, C2d 4393 33
4 Person (Dis-)Likes A8b, A8d, A%, A9d 4672 34
5 Terrorists S1 2100 26
6 Important Issues Q3al, Q3a2, Q3b1, Q3b2 8399 72
7 Office Recognition Question: Gordon Brown J3c 2096 9
8 Office Recognition Question: Dick Cheney J3b 2094 11
9 Office Recognition Question: Nancy Pelosi J3a 2094 14
10 Office Recognition Question: John Roberts J3d 2092 9

2011) in conjunction with gensim (Radim Rehurek,
2010) for including the fasttext-vectors.

Transfer Learning Architectures. As represen-
tatives for the class of transfer learning models
we use existing cased® implementations of BERT-
base (Devlin et al.,, 2018), RoBERTa-base (Liu
et al.,, 2019) and XLNet-base (Yang et al., 2019)
via simpletransformers, which is based on the
transformers module (Wolf et al., 2019). The ba-
sic structure of the models is complemented by a
multilabel-classification head”. The used loss func-
tion is BCEWithLogitsLoss from pytorch per node
in order to account for the multi-label structure of the
targets. We do not intend to perform excessive tuning
of hyperparameters, but rather want to evaluate the
performance of these models when used “out-of-the-
box” for a much more difficult task than the common
ones. This approach is also largely in line with re-
cent works extending BERT to multi-label problems
(Lee and Hsiang, 2019; Chang et al., 2019). All mod-
els were fine-tuned on the data sets for three epochs
with a maximum sequence length of 128 tokens and a
batch size of eight sequences. (Peak) learning rate for
fine-tuning was set to 2e-05 for every model.

4.3 Evaluation Metrics

Generally, metrics commonly used for the evalua-
tion of machine learning methods in binary or multi-
class classification tasks cannot be used for multi-
label learning without some further considerations
(Tsoumakas and Katakis, 2007). This is mainly due
to the fact that the performance of a given classifier
should be evaluated over all labels and the partial cor-
rectness of a prediction must be taken into account.

8Since RoBERTa only exists in a cased version, we had
to choose the other models analogously.

°For implementation details of this head see https:/
github.com/ThilinaRajapakse/simpletransformers

Thus, we here utilize a set of multi-label evaluation
metrics reported in overview articles by different au-
thors (Tsoumakas and Katakis, 2007; Sorower, 2010;
Gibaja and Ventura, 2014, 2015; Herrera et al., 2016)
to assess various aspects of the performance of the
classifiers we investigate.

For the following, we resume the previous nota-
tion. Let us assume that we have a multi-label test
set T = (x;,Y;)|1 <i <n with n instances and different
label sets Y;, representing the ground truth, at our dis-
posal. Further, let P; be the set of predicted labels for
a given observation.

First, we will report the widely known F; score,
which is the harmonic mean of Precision and Recall

Fi=2. prec'is.ion-recall . 0
precision+recall
We report the micro- and macro-averaged versions of
this score, as the F score is a binary evaluation mea-
sure and one needs to choose an averaging approach
in the multi-label case. By doing so, different perfor-
mance aspects can be investigated (Gibaja and Ven-
tura, 2015). Micro-averaging mainly tends to summa-
rize the classifier performance on the most common
categories, whereas macro-averaging tends to report
performance on the rare categories of the test set. Val-
ues towards 1 are better, the minimum value is 0.

Additionally, we also report the sample-based F;
score as this is also the central metric Card and Smith
(2015) use and report in their paper!'®. This version of
the F1 score can be formally described as:

sample _ l N 2|YlnPl|

N = Y| +|P

(cf. Gibaja and Ventura (2014)) where N is the total
number of samples in the test set.

Second, we report the subset accuracy, often also

referred to as exact match ratio. It computes the frac-
tion of instances in the data for which the predicted

F, @

19Note that they did not use the same notation, but essen-
tially used the same metric described in a vectorized form.
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Table 2: Model performances (measured as micro- and macro-averaged Fi-scores) for all considered architectures. Results are

displayed separately for each data set with the best performance per data set in bold. We report

to the results reported by Card and Smith (2015).

Fmr ¢ to ensure comparability

| Dataset-ID 't 2 3 4 5 6 1 8 9 10 |

n 238 288 4393 4672 2100 8399 2096 2094 2094 2092

#labels 3 029 33 34 26 72 9 11 14 9
Baseline 044 051 057 054 068 088 092 095 090 091
H BERT 000 0.02 044 035 041 079 094 095 091 093
5_ RoBERTa 0.00 000 056 055 057 085 095 097 093 094
K XLNet 0.00 000 054 058 055 086 096 098 091 092
Card and Smith (2015) || 0.55 0.67 071 071 081 086 094 096 093 0.96
. Baseline 040 048 053 051 061 084 08 093 085 090
5 BERT 0.00 003 051 044 046 079 094 095 091 093
& RoBERTa 0.00 000 0.60 060 0.62 085 096 097 094 095
XLNet 0.00 000 059 061 061 085 096 097 090 093
. Baseline 023 029 033 034 047 046 062 051 056 0.71
BERT 000 001 011 016 012 009 047 040 039 0.58
RS RoBERTa 000 000 018 026 021 014 051 051 044 0.58
XLNet 0.00 000 020 027 021 016 058 053 043 066

labels exactly match their corresponding true labels.
This is a very harsh metric, as it does not distin-
guish between partially and completely incorrect pre-
dictions. It is defined as:

1 N
subset accuracy = 7 Y L(P=Y;) (3)
i=1

Next, we report the Label Ranking Average Precision
(LRAP). This metric computes the fraction of labels
ranked above a certain label A € ¥; which belong to
Y;, averaged across all observations (Gibaja and Ven-
tura, 2015). For this, a function f: X xY — R is gen-
erated by a label-ranking algorithm which orders all
possible labels for a given instance x; by their rele-
vance (Gibaja and Ventura, 2014). If a given label
A’ €Y; is ranked higher than a another label A € ¥;, then
F(xi,A') > f(x;,A) must hold. In the following we
consider £, to be a function which returns the ranking
for a given label A, generated by the used ranking al-
gorithm. Here, the higher the obtained metric results
are, the better. The best achievable value is 1. LRAP
is defined as (Gibaja and Ventura, 2014):

[N "eYi|f <
LRAP= —Y — Z M 4)
NI Vil i
The LRAP favors classifiers which can rank the rel-

evant labels associated with each observation higher
than the irrelevant ones.

S RESULTS

We report all of the above mentioned metrics for the
baseline model as well as for the three mentioned pre-
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trained architectures on the test set. The results will be
structured as follows: In Tab. 2 we report macro- and
micro-averaged Fj scores, additionally the sample-
based F; scores (cf. Card and Smith 2015) will be
reported as well. Tab. 3 shows the label ranking aver-
age precision LRAP and the subset accuracy.

Considering the F"“"" ' scores from Tab. 2, it
becomes clear that all used models can hardly out-
perform the previous best results. Note that the best
model from Card and Smith (2015) on almost all data
sets has been a thoroughly tuned logistic regression
model with a battery of different features. Overall,
the best logistic regression model has outperformed
even much more advanced architectures in 7 out of 10
cases, establishing that this kind of model can handle
multi-label text classification problems surprisingly
well. In line with this, we observe that our baseline
can beat the transfer learning architectures on 5 out of
10 data sets. Only RoOBERTa and XLNet can beat the
previous best results on two data sets by a small mar-
gin. On all other data sets the previously set bench-
mark results remain largely unchallenged.

When focussing on the F{’”"'"’ measure, we
can see that the more advanced models, especially
RoBERTa and XLNet, outperform the baseline as
soon as the data set size gets bigger, even if they
sometimes demonstrate only a slightly better perfor-
mance. BERT still performs relatively poorly, and
even gets beaten by the baseline on five out of ten
data sets. RoBERTa also shows only slightly better
performance than the baseline on the data set 5 con-
taining the question on terrorism and the data set 6 on
Important Issues. On the remaining data sets, how-
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Table 3: Model performances (measured as LRAP and subset accuracy) for all considered architectures. Results are displayed

separately for each data set with the best performance per data set in bold.

| |DatsetID| 1 2 3 4 5 6 7 8 9 10 |

o | Baseline | 059 0.65 070 070 075 093 095 098 092 095
S| BERT /009 010 041 032 040 071 094 095 090 093
S | RoBERTa || 0.09 0.09 051 049 055 079 095 097 093 0.94

XLNet [ 0.09 0.09 049 052 053 080 095 097 090 092
S| Baseline [ 0.00 010 020 0.7 035 070 080 089 076 0.80
S| BERT || 000 000 016 008 020 041 089 090 081 0.87
2| ROBERTa || 0.00 0.00 022 020 032 054 091 094 087 0.89
S| XLNet | 000 000 022 022 031 058 092 094 080 0.87

ever, it can clearly outperform the baseline. XLNet
also mostly outperforms the baseline, with the ex-
ception of the data set concerning terrorism. On the
very small and thus very challenging data sets 1 and 2
which contain questions on the General and Primary
Election outcomes, the baseline model still is the best.

Finally, when considering the F""® score, we
observe that the baseline model is the single best
model across almost all data sets. Only for data set 8§,
the larger ROBERTa and XLNet can match or outper-
form it. While this might be quite surprising, it proves
again that a binary relevance approach with a logistic
regression as a base learner can be a quite competitive
model — which is exactly the same finding Card and
Smith (2015) have reported.

Regarding LRAP (cf. Tab. 3), RoBERTa and XL-
Net can partially match the baseline model especially
on the last four data sets, which have a small label set
and are reasonably large. But XLNet and RoBERTa
also hardly outperform the baseline on all remaining
data sets, which makes the baseline model a powerful
ranking algorithm. BERT, however, cannot beat the
baseline at any of the data sets. For the strict measure
subset accuracy the baseline is not a strictly superior
competitor, as it outperforms the more advanced mod-
els only on 3 out of 10 data sets. This is also why it
is important to compare several evaluation metrics in
multi-label classification, as each metric focuses dif-
ferent performance characteristics (Nam, 2019). Un-
fortunately, Card and Smith (2015) have not provided

any results beyond the F,"*"" ' metric.

After these comparisons we conclude that con-
cerning data sets 1 and 2, which contain 238
and 288 observations respectively, BERT, RoBERTa
and XLNet cannot obtain any results above zero.
Additionally, these models outperform the base-
line only marginally on the data sets regarding the
Party (Dis)Likes, Person (Dis)Likes and the Office-
Recognition-Question for Dick Cheney. Nonetheless,
they can outperform the baseline as soon as the data

sets get larger and the label sets remain relatively
small.

6 DISCUSSION

Transfer learning has, in this specific use case, not
turned out to be a strong alternative compared to pre-
vious research. BERT, RoBERTa and XL Net can not
generally outperform previous best results obtained
on the same data. Additionally, we observed just like
the previous authors that a binary relevance approach
with logistic regression can be a strong competitor,
sometimes even outperforming advanced models. On
small data sets, however, no model achieved good re-
sults with respect to the subset accuracy, our harshest
metric. This is most certainly due to the size, as the
data does not contain much information for automated
classifiers to learn from. In this case, relying on hand-
coding by humans might still be a good option.

Our findings are somewhat contrary to previously
reported results, where BERT was used quite suc-
cessfully in multi-label classification (Adhikari et al.,
2019; Chang et al., 2019; Lee and Hsiang, 2019), even
yielding new SOTA results. The data sets these au-
thors have used to train their models, however, were
much larger than the ones we can utilize here. As
noted previously, we try to generate a benchmark re-
garding the usability of these models in the context of
scarce data, which is common in the social sciences.
In the light of the good performance of the baseline
model, the bigger models also might not be the best
choice if computational efficiency is the goal. As so-
cial scientists typically do not have unlimited com-
puting power at their disposal, a model which can be
trained to obtain reasonable levels of, for example,
subset accuracy, in a short amount of time might be
especially interesting for future research. Addition-
ally, this model also can handle smaller data sets sig-
nificantly better and does not break down on bigger
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ones. This might be an indicator to look at smaller,
more problem-specific algorithms like feature-based
transfer learning to advance the research on automatic
coding in the future.

7 CONCLUSION

In this work, we provided an extension to the collec-
tion of commonly used benchmark data sets used for
evaluation transfer learning models for NLP. The full-
text data set encompasses a different task than most of
the others and thus widens the opportunities for care-
fully evaluating pre-trained models on a different kind
of challenge. Furthermore we propose a unified pre-
processing of the data set going along with a fixed
train-test split enabling a valid comparison against our
baselines. We evaluated the performance of state-of-
the-art transfer learning models on the ANES 2008
data set and compared them to a simple baseline
model. Our comparison illustrates that, despite the
extremely good performances of those models on bi-
nary, multi-class and previous multi-label classifica-
tion tasks, there is still a lot of room for improvement
concerning the performance on challenging multi-
label classification tasks on small to mid-sized data
sets.
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APPENDIX

7.1 Pre-processed Data Set

Table 4: Multi-label descriptive statistics for our data prepa-
ration approach.

Max.

Av,
20.26

1
1
2
1
8
1
5
1
’;

Min.

Powerset/  Observations per Label
Examples

-Powerset Size

Label
ensity
085
076
069
070
075
032
153
109
098
149

Cardinality
2
2
2
2
1
2
1
1
1
1

—_—

Avg. Words/
Verbatim

Word count
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1D
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