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Chapter 1

Introduction

Surgeons use preoperative planning to investigate the interior of the patient with a focus
on the surgical procedure itself, e.g. the details of a broken vertebrae and how to fixate
it. For those plannings a preoperative obtained CT-scan is used to observe the patient in
3D space [7][26][11][19].

Also, in the advent of fluoroscopy guided procedures images obtained during surgery
support the surgeon’s navigation while there is no clear view on the scene. As an example
one could imagine spine surgery where a vertebrae is fixated using screws. In that case
the screw has very limited range of motion to not hurt adjacent organs, the spinal cord
or other nerves. Further, the surgeon’s view is occluded by tissue as the spine cannot be
uncovered for a 360◦ view. Therefore, surgeons use fluoroscopy images to obtain real time
feedback where the screw is going while drilling and being able to adjust [14].

The C-arm, a mobile fluoroscopy machine, is popular for such fluoroscopy guided
procedures as it provides a wide range of motion and takes up little space in the operation
room (OR). It is placed around the operation table in the form of a C, where it gets it’s
name from. See Figure 1.1 for illustration.

Figure 1.1: Ceiling suspended C-arm ranging around the operation table with many de-
grees of freedom; Model: Toshiba Infinix-I Sky + [18].
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CHAPTER 1. INTRODUCTION

Those machines are set up in an iterative manner where a scout shot is taken from the
patient on the operation table and the machine is then further adjusted. To reduce setup
time in the OR I propose automating this in the following manner: first, the optimal
view during the surgery is selected by the surgeon doing the preoperative planning on
the CT-volume, specified by a six dimensional vector for rotation and translation. Also,
based on the already existing CT-volume, a data set of digitally reconstructed radiographs
(DDR) is computed in many different settings. Those images facilitate training data for
a Convolutional Neural Network (CNN) which is trained to regress the six dimensional
position vector a shot was taken from. Second, while the patient was placed on the
operation table a C-arm is brought into position for taking a first orientation shot. Third,
based on this shot the machine then locates itself w.r.t. the patient and calculates the
needed movement to obtain the desired position. This is based on the first step which
can be completely done in prior to the surgery. The proposed pipeline is illustrated in
Figure 1.2.

This would reduce setup time in the OR by moving the computational steps to a non-
time critical phase before the operation. A self calibrating C-arm would save work for
the nurses and the surgeon which can then focus on more important tasks or be less time
pressured. In addition the radiation exposure of both staff and patients would be reduced
as well due to less shots taken to find the desired view.

This work covers step 1 including automatically generating a data set size of DRRs
from a CT-volume consisting of high-resolution images and highly-accurate labels, building
a model to regress the six dimensional position vector as well as analyzing the model’s
performance on a separated test set of DRRs, obtained from the same source CT-volume.
The whole pipeline can be run automatically in sequence by providing a CT-volume and
desired sampling ranges for the observation positions.

It was not possible to test this setup in a clinical case to inspect the model’s ability to
generalize on real fluoroscopy images. This is due the fact that I did not have access to
an operation nor clinical data of needed extent.

Figure 1.2: Overview of the proposed pipeline. In this work the first step is covered.
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Chapter 2

Digitally Reconstructed
Radiographs

Digitally reconstructed radiographs (DRR) are simulated radiographs computed as per-
spective projections of a three dimensional volume onto a two dimensional plane [7]. Usu-
ally the 3D volume is provided as a CT-scan. The synthetic generation of realistic X-ray
images is important for medical 3D to 2D registration, which is used e.g. for surgery
planning, inter-operative therapy guidance, patient placement for radiography planning
and treatment verification and many other treatments requiring visual observation [7].

The use of DRRs can be motivated with a use case from radiotherapy. In cancer
therapy the patient is exposed to a very high dose of radiation which has to hit the target
to be effective but also must not hit healthy tissue to prevent damage. To locate the
target, a pre-treatment CT-scan is used for Radiography Treatment Planning (RTP). This
includes decisions regarding patient placement on the treatment table, radiation intensity
as well as other technical details. As the setup depends on the patient’s position relative
to the emitter and is defined using a pre-obtained CT-scan, efficient positioning is of great
interest. For prostate cancer treatment, for example, 35 daily fractions are necessary [26],
making the patient positioning a task of high frequency. A popular solution to reduce
setup time uses Portal Imaging which is often used in combination with immobilization
techniques like foam beds. Films on the beam-exit side of the patient enable verification
of positioning by comparing the obtained portal image with a reference, see Figure 2.1.
Thus, positioning errors can be detected and quantified. The detection however, is done
manually by visual inspection making it time consuming and inaccurate. Electric Portal
Imaging Devices allow immediate generation of such films and produce digital images.
Therefore, an automated comparison would be obvious [26]. Using DRR techniques, the
expected Portal Image can be generated during the RTP and be easily compared to the
obtained image, as both are digital and of same size.

Adding to those treatments, computer vision applications are becoming popular in
the medical field due to their performance improvement in the last decade [30][31]. The
mainly supervised algorithms require vast amounts of sample data consisting of observa-
tions paired with highly accurate labels. In the field of histopathology or mammography,
X-ray images showing the tumor are annotated with a region of interest (ROI) indicating
the tumorous tissue [28]. An algorithm, e.g. similar to the Convolutional Neural Network
(CNN) presented in section 3.2, can then learn the characteristics of such tissue.

This contains two difficulties as an X-ray is taken by visual adjustment of the object or
the emitting/receiving sources and the needed accuracy in labels is therefore not obtained.
In the case of DRRs the annotation and further processing can be either performed in the
CT-volume or during the configuration of the DRR algorithm [31]. Increasing the label’s
accuracy and reducing the burden of labeling each image individually or tracking the
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CHAPTER 2. DIGITALLY RECONSTRUCTED RADIOGRAPHS

Figure 2.1: Setup of a Electrical Portal Imaging Device beneath the treatment couch
capturing the patient’s position for visual displacement analysis [26]. While patients can
be immobilized using e.g. foam beds a displacement analysis and correction prior to
treatment is necessary to assure effectiveness of the treatment.

machine’s configurations. Second, exposing a human to radiation for a frequency needed
for a decent machine learning test set is negligent. While a single X-ray image poses
acceptable radiation exposure compared to its diagnostical value, constructing even a
small data-set-size of scans would put the patient under great exposure. Assuming one
could label the obtained images accurately and a data set of 1000 images is desired, which
is at the far lower end of data set sizes in that category, the exposure on a human would
be equivalent to the amount a human is exposed to in roughly 27 years of background
radiation, according to [17] listed in Table 2.1.

1000 ∗ 10d

365d p. year
= 27.4 years

Clearly, establishing such a data set in vivo is not possible and also not feasible to use
in clinical environments like RTP or others listed above due to its construction complexity.

Capturing a data set posthumously would drop the risk for a living object but would
still pose risk to impure labels as well as limit the data set to a dead body ruling out the
usage of such data in clinical treatments as the one discussed above or the one proposed
in this work. This leads to the use of DRRs.

There are many different methods to generate DRRs but in all cases the generation
is still the most time and computational intensive job for an application including DRRs.
The basic principle relies on ray-casting techniques were the attenuation of a beam at
the detector pixel is calculated by sampling and averaging the intensity values along the
ray passing from source to pixel, see Figure 2.2. The intensity per sample is computed by
trilinear interpolation of the eight closest voxels to the sampled point. This algorithm runs
in O(n3) while n is the largest number of either DRR width, height or number of samples
per pixel. Several optimizations come with the cost of lower quality of the resulting DRR
or are based on impractical hardware specifications [7].
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Examination Radiation dose (mSv)
Time to accumulate comparable
radiation with background dose

CT: Head 2.0 8 mo
CT: Chest 7.0 2 y
CT: Abdomen & Pelvis 10.0 3 y
X-ray: Chest 0.1 10 d
X-ray: Lumbar spine 0.7 3 mo
X-ray: Abdomen 1.2 5 mo
Mammography 0.7 3 mo

Table 2.1: Comparing radiation doses from medical imaging to background radiation a
human is exposed to on average as an subset from what’s presented in [17].

Figure 2.2: Ray-casting, a traditional way to generate digitally reconstructed radiographs,
simulates the radiographic imaging system by setting the pixel value in the 2D output to
the attenuation value of a ray passing from source through object to detector. While in real
applications the attenuation is determined by tissue, bone and air in the scanned object
it is approximated by sampling voxel intensities along the ray’s path though the object
[7]. In the above figure the 3D volume represents the CT-volume. Many applications use
fixed values for the attenuation called Hounsfield Units (HU).
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CHAPTER 2. DIGITALLY RECONSTRUCTED RADIOGRAPHS

2.1 Deep Digitally Reconstructed Radiographs

The now presented framework is intended to overcome the mentioned obstacles in the
usage of DRRs as well as to include machine learning compatibility. Mathias Unberath et
al. focussed on efficiency as well as scalability of their framework [31]. Further, machine
learning was used to overcome expensive computations to estimate stochastic artifacts as
noise and scatter.

Secondly, machine learning algorithms fit on regular DRRs do not generalize well to
clinical data as they do not capture a natural X-ray’s image formation [31]. In their
work, a generalization of models trained on DeepDRRs is shown. This lead to further
consideration of the framework for this work.

According to Mathias Unberath et al. DRR algorithms can be grouped into analytical
and stochastic algorithms. While the typical ray-tracing algorithm is an analytical one,
algorithms using stochastic methods as e.g. Monte Carlo (MC) simulations are classified
as stochastic algorithms. Ray-tracing algorithms are considerably efficient, compared to
stochastic ones, but they often only consider one material’s attenuation for the whole
body and therefore fail to model specific artifacts as beam-hardening [31], where the edges
of an object appear brighter than the center. Also, due to their nature, they’re not
capable of modelling statistical artifacts as noise or scatter which result from deflected
photons hitting the receptor at random positions. In contrast, MC approaches model
photon-matter interaction individually per photon using material decomposition as the
interaction probability is material dependent [31]. The material decomposition is done
with thresholding by the above mentioned Hounsfield Units (HU). While those DRRs are
a lot more realistic, they also require far longer to generate. When using 1010 photons,
a simulated image can take 4 hours to generate in an accelerated MC simulation on a
graphical processing unit [2]. This is not plausible for a machine learning data set.

The Deep Digitally Reconstructed Radiograph framework consists of a four-step pipeline
segmenting the volume into three materials M = air, soft tissue, bone, calculating the at-
tenuation values at the receptor as well as estimating scatter and noise in the image. A
schematic overview is shown in Figure 2.3.

Figure 2.3: Overview of the DeepDRR pipeline including intermediate outputs. Especially
on the steps of segmentation, scatter estimation and noise generation the authors hope to
achieve more realistic while efficient outputs using machine learning [31].

For the first step the authors have adapted and trained a Convolutional Neural Network

6



2.1. DEEP DIGITALLY RECONSTRUCTED RADIOGRAPHS

on whole-body CT-scans for material decomposition. The output yields a material map
M(x) assigning a material to a point x in 3D space. The same effect can be achieved
using thresholding on the HU while this is not guaranteed to work well on volumes with
little discrepancy. While air ([−1000]HU) and soft tissue ([200, 300] HU) are good to
differentiate, the same does not hold for soft tissue and bone ([−150, 300]HU) [31] as they
have a non-empty intersection of ranges. Also, both materials have different attenuation
characteristics. A work around to still use thresholding would be to search for good
thresholding values prior to segmenting with a visualization tool such as 3DSlicer [6].

Based on the segmentation, the contribution of each material to the total attenuation
at position u of the detector is computed by defining the position of u with the projection
matrix P ∈ R3×4.

p(u) =

∫
p(E, u)dE (2.1)

=

∫
p0(E)exp

(∑
m∈M

δ(m,M(x)))(
µ

ρ
)m(E)

∫
ρ(x)dlu

)
dE (2.2)

In the equation describing the attenuation density (2.2) p0(E) is the X-ray spectral
density depending on the energy, δ(·) the Kronecker delta comparing the current material
being summed over to the one observed at the current position, µ

ρm
(E) the material and

energy dependent linear attenuation coefficient, ρ(x) the material density and lu the 3D
ray connecting the source and the detector pixel u and is determined by the projection
matrix P . The result p(u) is used as input to the scatter estimation done with another
CNN [31].

The third step in the pipeline is scatter estimation. Described above, this is a feature
of stochastic algorithms and usually done using MC simulations. Maier et al. however,
have shown that a CNNs outperform conventional methods for scatter estimation while
retaining a low computational expense [4]. Therefore, the scatter estimation is done using
a CNN of ten layers while the first layers generate scatter estimates and the following
ensure smoothness [31]. The training data was provided by MC simulations with some
augmentations. Again, the output of this step is shown in Figure 2.3.

To finalize the DRR, a combination of uncorrelated quantum noise due to photon
statistics and correlated electronic readout noise is added. For the first one a Poisson-
noise model is used while the latter is modelled with additive Gaussian noise [31].

With minor changes to it, the discussed framework was used to generate the data for
this work. A first sample of the generated images is shown in Figure 2.4 depicting the
pelvic area on an anterior-posterior (AP) shot.
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CHAPTER 2. DIGITALLY RECONSTRUCTED RADIOGRAPHS

Figure 2.4: Example of a generated DRR using DeepDRR during data preparation for
this work. The resulting image was generated with minor changes to the architecture and
functionality of the described DeepDRR framework. All changes can be observed in the
GitLab repository accompanying this work.
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Chapter 3

Convolutional Neural Networks

Predicting the orientation the X-ray was taken from was approached with a Convolutional
Neural Network (CNN), an architecture specialized on working on grid data. To under-
stand CNNs the more basic model, the Multilayer Perceptron (MLP), has to be discussed.
By doing so, the architectural differences and task-specific advances of a CNN are better
understood.

A fundamental building block, as the name suggests, is the Perceptron. The Perceptron
was initially defined as an algorithm in 1957 by Frank Rosenblatt to be implemented into
hardware at the United States Office of Naval Research [23]. The algorithm was intended
for image recognition and inspired by the human brain, but is nevertheless far away from
the biological principle. The first hardware implemented Perceptron algorithm was the
Mark 1, using a grid of 20 by 20 photocells randomly connected to the neurons. The
weights were implemented mechanically as well as in form of potentiometers and the
weight updates were carried out by electric motors. A topological overview of Mark 1 is
given in Figure 3.1.

The Perceptron as discussed here and implemented today in software is a binary clas-
sifier learning a threshold function by building a linear function through addition of the
dot product of the inputs x and weights w with a bias value. The linear combination
is then compared to a threshold value. In case the threshold is exceeded, the unit fires.
The weights and biases are usually learned by the model via iteratively comparing the
computed output with a ground truth and adjusting the parameters accordingly. The
threshold value can either be treated as hyperparameter, by defining it prior to training,
or adjusting it by the training algorithm as the other value as well.

fθ(x) =

{
1, w′ ∗ x+ b > θ,

0, otherwise

The Perceptron algorithm as a combination of many threshold functions was not as
powerful as it was hoped by its designer Frank Rosenblatt and others at the Naval Research
center. It was only able learn linearly separable patterns. A few years later Marvin Minsky
and Seymour Papert proved the algorithm’s inability to even compute the XOR function
[20]. This was then achieved by adding another layer of units of the threshold function.
This will be discussed in the following section 3.1. The addition of more layers also
provided the name of the architecture: Multilayer Perceptron.

In todays research, the Perceptron is often referred to as just the single unit comput-
ing the threshold function mimicking a biological neuron. To prevent confusion on the
nomination, a single unit of computation will be referred to as unit in the following.

Although the way a unit computes its output was initially inspired by neuroscience it
is now heavily influenced by mathematics and engineering to achieve statistical general-
ization.

9



CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.1: Topology of the Perceptron Algorithm implemented in hardware using a 20
by 20 array of photocells which are randomly connected to the artificial neurons [12].

3.1 The Multilayer Perceptron

The Multilayer Perceptron (MLP) derived from the single layer Perceptron algorithm as
discussed above. It has to be understood as an algorithm, stacking together nonlinear
functions in units. Those units are themselves grouped into layers. One layer receives
the input from its predecessor or is itself the input layer, piping the input data into the
algorithm. The layers following the input layer are called hidden layers as the user does
not interact with those directly as the computations are not returned but piped to the
next layer. The last layer is called output layer accordingly. A layer can be seen as a
vector-to-vector function and its units as vector-to-scalar functions [9].

Given a network with a single unit per layer with n such layers, the algorithm’s compu-
tation is described by the functions f (1), f (2), . . . , f (n). As the last function uses the out-
put of its direct predecessor as input, just as every other function’s input is the preceding
function’s output the complete computation can be described by chaining the functions
together yielding f(x) = f (n)(. . . (f (2)(f (1)(x))) . . . ). This notation hints an important
property, the density of a MLP. Density describes the property of connecting all units
of a preceding layer to all units of the current layer while those units in turn are again
connected to all units in the following layer. Such layers are often referred as dense layers
or fully connected layers. Using the same notation on an architecture with more than
one unit per dense layer, such a chained representation becomes to complex. Instead the
topology is depicted as an acyclic graph connecting each unit with its input and output
units through edges, Figure 3.2. Depicting the topology in such manner is responsible for
the network attribute in the name of the algorithm class.

The acyclic graph characteristic implies the network only has forward connections.
This is called a feed-forward architecture. Feedback connections in contrast would allow
to include the output of a previous computation for the current or future computations.
Those connections are common in architectures like the Recurrent Neural Network but
are out of scope for this work.

Just as a linear model, a MLP tries to approximate a function y = f∗(x) by elaborating

10



3.1. THE MULTILAYER PERCEPTRON

Figure 3.2: Topology of a model with an input layer and three dense layers forming a
MLP [1]. The middle layers are called hidden as not directly observed by the user.

the best set of parameters θ which lead to a function ŷ = f(x; θ) best describing the actual
data. It is important to note here that it’s usually not the aim to interpolate the data
points exactly as this would reduce the model’s ability to generalize on new data. Just as
it is with linear models.

To elaborate more on the advances of the MLP it shall be compared to a linear model.
Linear models are in general nice to work with as they can be fit efficiently and are well
interpretable by its parameters. However, the pure linear model is, by definition, limited to
linear relationships in the data. To overcome this limitation, variables can be transformed
by some function φ and the model then uses φ(x) instead of x. In this case φ can as well
be a nonlinear function as φ(x) is included linearly into the model. This motivates the
question how to find a proper function φ. Ian Goodfellow et al. [9] propose three main
strategies to do so:

1. One could use a generic infinit dimensional φ that provides enough dimensions to
map each data point into a se perate dimension, as it e.g. is the approach for
clustering with Support Vector Machines. However, such a mapping will work well
on training data but the model will most likely fail to generalize on new data as it
overfitted the data.

2. Manually engineer φ, which is still popular for many algorithms. However, to do
so the user must have deep domain knowledge to decide on feasible transformations
and advanced mathematical and statistical knowledge.

3. Lastly, defining φ could be transferred to the model as it is the case for training
Neural Networks. Given a function f with y = f(x; θ, w) = φ(x; θ)′w, the model
uses the parameters θ to learn the function φ while w is then used to map φθ(x) to
y. An optimization algorithm is used to minimize the function’s deviation from its
target. With this approach it’s possible to either search a very broad function space
(as in item 1) or to incorporate human experience to narrow down the function space
by defining a general function family (as in item 2). Ultimately, the practitioner does
not have to define the exact function but a broader function family.

11



CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

In the same way as the linear model, the MLP achieves its nonlinearity by applying
a nonlinear functions to the input. Similar as a model of the generalized linear model
family applies a response function to the linear predictor, a unit in the MLP applies a
nonlinear function to the linear combination of weights, inputs and biases. This nonlinear
function is called the activation function and can differ per layer (and even per unit)
and transformation to achieve. A common activation function is the rectified linear unit
(ReLU) [9].

The output of one unit is then computed by the chain of functions h = g(w′x + b)
while g is a nonlinear activation function as fReLU .

To adjust the model’s parameters, the prediction is compared to ground truth data in
the supervised case. The deviation between both is valued with an error or loss function
which shall be minimized to find the optimal set of parameters θ. A basic loss function
can most often be derived from Maximum Likelihood Estimation as the model can be
seen to approximate a distribution p(y|x, θ) based on the input data, the primary variable
derived from. This approach is clarified in Theorem 3.1.1, as a multi-class derivation of
the Binary Cross-Entropy (BCE) loss is used later in section 3.4.

Example 3.1.1. Suppose a model is fitted on a classification task with binary output z ∈
{0, 1}. The output hereby follows a Bernoulli distribution p(y|π), such that the distribution
is defined by:

p(y|π) =

n∏
i

πyii ∗ (1− πi)1−yi

To estimate the parameter π using Maximum Likelihood Estimation the Likelihood
function L(π|y, x) is maximized w.r.t. the parameter π. To do so the Likelihood of the
distribution is converted to a log-Likelihood l(π|y, x) due to monotonial and calculational
properties of the log.

L(π|y, x) =

n∏
i

pπ(y|xi)yi(1− pπ(y|xi))1−yi

l(π|y, x) = log(L(π|y, x))

=
n∑
i

yi log(pπ(y|xi)) + (1− yi) log(1− pπ(y|xi))

As loss functions are usually minimized instead of maximized, simply l(π|y, x) is con-
verted to −l(π|y, x) which is exactly the definition of the Binary Cross-Entropy loss func-
tion

BCE(y|x, π) = −
n∑
i

yi log(pπ(y|xi)) + (1− yi) log(1− pπ(y|xi))

3.1.1 Properties of the ReLU activation function

As mentioned above, the ReLU function is the most popular activation function, as of
2017 [22], used in several network architectures such as the MLP or CNN. The latter is
the reason it is discussed in more detail here. While the name is used interchangeably, the
function is called the rectifier while the unit utelizing this function as its activation is the
rectified linear unit.

The rectified linear unit’s domain is the complete set of real numbers while the range
is limited to the positive real numbers, including 0, depicted in Figure 3.3.

fReLU (x) = x+ = max(0, x), x ∈ R
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Figure 3.3: Illustration of the ReLU function with x ∈ [−10, 10]

The rectifier function is a biological feasible activation function in the field of compu-
tational neuroscience and performs well in machine learning environments. This is due
to some of its properties such as sparsity, leading to linear separability, better gradient
propagation and efficient computation [8].

Glorot et al. [8] show in their paper on deep sparse rectifier networks that the usage
of the rectifier function leads to real zero activation probability of units instead of a
very close to zero probability. A sparse representation has the advantage of describing
information with less information as initially provided. Meaning redundancy has been
removed by the model or better features have been created. This accompanies one of the
claimed objectives of deep learning algorithms by Yoshua Bengio to simplify and reveal
the factors for variations in data [3]. Also, as mentioned earlier in elaborating the function
φ to transform a linear model’s input, the information is represented in a higher space
leading to better separability with less nonlinear methods [8]. However, sparsity has to
comply with model performance as too much sparsity limits the model’s capabilities. In
addition, starting with a uniform initialization of weights on a symmetric interval 50% of
the unit’s outputs are 0 already. A further increase in sparsity can be achieved by the use
of sparsity-induced regularization [8], which will not be covered.

A model’s weights are usually updated using backpropagation which calculates the
gradient of the error function w.r.t. its weights [9]. The name indicates the direction
the algorithm takes to compute the gradients by starting with the weights of the output
layer and ending at the input layer. By doing so the problem of vanishing gradients can
arise, meaning a gradient becomes too small to change the according weight. This results
in a saturated state of the model where it does not learn anymore. Especially in deep
networks with many layers this poses a challenge [13]. The first derivative for the ReLU
function is always either 0 or 1, depending on the input. Therefore, it does not saturate
in contrast to e.g. the Sigmoid activation function, another common activation function,
and the gradient does not vanish. Figure 3.4 gives a visual comparison of both functions
and their derivative. Especially in the zoomed-in version in Figure b it can be observed
how the derivatives of the Sigmoid function converge to 0 fast at both ends.

Remark 3.1.2. The Sigmoid activation function is defined as

σ(x) =
1

1 + exp−x
, x ∈ R

with a first order derivative of

σ′(x) = σ(x) ∗ (1− σ(x))

13
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Clearly, the max(·)) function is computationally more efficient as most other activation
functions and especially the Sigmoid function as the exponential function does not have
to be computed.

(a) Depicting the function’s ranges and first
order derivatives

(b) Depicting the Sigmoid function and with
derivative vs. ReLU derivative

Figure 3.4: Comparing domain and range of the Sigmoid and ReLU function with the first
derivative

Even though the fitting process is different, training a MLP includes making design
decisions similar to those for a linear model where one has to chose an optimizer (e.g.
ordinary least squares vs. gradient descent), a cost function (e.g. the mean squared error)
and the form of the output units which influences the model definition (binary, discrete
or continuous - classification vs. regression).

Fitting a MLP will be demonstrated in a later part of this work.

3.2 Convolutional Neural Networks

Similar to the MLP, the Convolutional Neural Network is a feed-forward network building
up on layers with connected units to make a prediction. Especially in the lower layers both
architectures are quite similar. In contrast to the MLP the CNN utilizes the mathematical
operation of convolutions to carve out features presented in the data. This is done instead
of regular matrix multiplications. Those convolutions are usually used in blocks combined
with an activation function, called detector stage, introducing nonlinearity, followed by the
pooling operation. As an example the first two blocks of the VGG16 and the dense layers
following the convolutional blocks are depicted in Listing 3.1. The single components will
be explained in the following.

1 Model: "vgg16"

2 _________________________________________________________________

3 Layer (type) Output Shape Param #

4 =================================================================

5 input_1 (InputLayer) [(None , 224, 224, 3)] 0

6 _________________________________________________________________

7 block1_conv1 (Conv2D) (None , 224, 224, 64) 1792

8 _________________________________________________________________

9 block1_conv2 (Conv2D) (None , 224, 224, 64) 36928

10 _________________________________________________________________

11 block1_pool (MaxPooling2D) (None , 112, 112, 64) 0

12 _________________________________________________________________

13 block2_conv1 (Conv2D) (None , 112, 112, 128) 73856

14 _________________________________________________________________

15 block2_conv2 (Conv2D) (None , 112, 112, 128) 147584

16 _________________________________________________________________

14
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17 block2_pool (MaxPooling2D) (None , 56, 56, 128) 0

18

19 ...

20 _________________________________________________________________

21 flatten (Flatten) (None , 25088) 0

22 _________________________________________________________________

23 fc1 (Dense) (None , 4096) 102764544

24 _________________________________________________________________

25 fc2 (Dense) (None , 4096) 16781312

26 _________________________________________________________________

27 predictions (Dense) (None , 1000) 4097000

28 =================================================================

29 Total params: 138 ,357 ,544

30 Trainable params: 138 ,357 ,544

31 Non -trainable params: 0

32 _________________________________________________________________

Listing 3.1: Excerpt of VGG16 model summary [29]

Convolutional networks perform very well on grid-like structures and are used for
time-series analysis and, most prominently, for image recognition tasks [9]. The latter is
intuitive as images do have a grid structure described by their width, height and depth.
Also, that is the reason this architecture was used to analyze the generated radiographs
described in chapter 2. A performance based comparison is presented at the end of this
chapter.

3.2.1 Convolution Operation

The convolution in mathematical terms is an operation on two functions, describing the
change of the first one over time or in space when it is modified by the second one. By
its definition it can also be explained as a weighted average where the second function
weights the value of the first function while increasing towards the time of measurement
t.

Definition 3.2.1. Given two functions f, g on the same domain. The convolution of both
functions until a time t is given by

(f ∗ g)(t) =

∫
f(τ)g(t− τ)dτ

In the case of machine learning and especially CNNs the convolution is a discrete
operation and can be expressed as a summation over time t. Also, the first argument,
the first function, is referred to as the input to the convolution and the second argument
as the kernel. The resulting function is called the feature map [9]. In the case of image
recognition, the convolution is a operation over two or more axis - at least the width and
height of the image. Defining an image as proper continuous function is out of scope for
this work.

In image recognition applications of 2D convolutions the kernel or window slides over
the input - the input image on the first layer or outputs of deeper layers - and computes
the feature map by summing over the Hadamard product of the window and a same size
submatrix of the image as depicted in Figure 3.5. Adjusting the kernel values is part of
the model fitting process while there are as well predefined kernels for different kind of
features. In general, kernels in the higher layers at the beginning of the network are used
to detect low-level features such as edges of different styles. The deeper the convolutional
layer, the higher-level or more abstract feature it detects [27]. Visualization of such layers
will be carried out in the latter part of the chapter.

The convolution operation incorporates 2 important advantages over a simple MLP
for image analysis. While an MLP utilizes dense layers as described in section 3.1 a CNN
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Figure 3.5: Convolution operation visually explained by sliding a 3 kernel over a 5×5 image
with valid-padding producing a 3×3 feature map [33]. The resulting value is calculated by
summing of the Hadamard product of the highlighted matrices: −1∗4+1∗1+2∗1 = −1.

uses sparse connectivity meaning the output units are not fully connected with the input
units [9]. By making the kernel a matrix of size smaller than the input a reduction in size
is achieved. Besides setting the kernel size the stride size, the amount of pixels to move
on per step, can be adjusted to decrease or increase the output size as well. A stride size
of 1 means the kernel is moved column by column in the lateral direction and row by row
in the vertical direction once the width of the input is reached. This produces a feature
map of almost the same size as the input except for cutting of the outermost rows and
columns. In comparison a stride size of 2 results in a feature map of half the width and
half the height. This is due to computing a new value every second input pixel as depicted
in Figure 3.6. Another factor describing the output size is the padding. In Figure 3.5
a valid-padding was used leading to a reduction of the output size. This is due to the
fact that the 3 × 3 computes one output for the first 9 inputs which is in the middle of
the kernel grid. If a padding, like a frame of zeros, would be added around the input,
the kernel would compute the first output at the position of the top-left most input of
the original input resulting in an output of same size. Therefore, this padding is called
same-padding. An example is illustrated in Figure 3.7.

The sparse connectivity leads to fewer parameters to store and less computations to
execute. This increases both the statistical and computational efficiency. While an image
usually has thousands of pixels and the input and output have m and n parameters,
respectively. This leads to a runtime of O(m×n). If the number of connections an output
may have is limited to a number k << m the sparsely connected approach has a runtime
of O(k×n). In many applications it is possible to obtain good performance while keeping
k several orders of magnitude smaller than m [9].

With a MLP, each element of a layer’s weight matrix W is used exactly once to compute
the layer’s output. In a CNN the kernel is sled over the complete input. Therefore, the
weights of that operation are shared across many input values. In the literature this
property is described as tied weights, as the weight value applied on one input is tied to
the weight value applied on another input value [9]. This reduces the computational cost
in a CNN further as the model does not have to learn a different set of parameters per
input. This characteristic is motivated by the fact that similar edges need to be detected
across the whole input. Tied weights means sharing a filter to detect similar artifacts.
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(a) stride size 1 resulting in 13 × 13 output
units

(b) stride size 2 resulting in 7 × 7 output
units

Figure 3.6: Comparing the resulting output units of a 3×3 kernel run over a 15×15 input
with stride size 1 vs. stride size 2. In the figures above the grid represents the 2D input
grid. The x shall represent an output unit resulting from the convolution operation of the
neighbor units and itself. The - represents a unit that is not relayed to the feature map.
The latter having less than half of the output units of the first convolution.

3.2.2 Pooling Operation

The third component to a convolutional layer, as described above, is the pooling function.
The input to the pooling function are the outputs of the activation function run on the
output of the convolution operation. In Figure 3.9 the convolutional layer is illustrated as
a block of the three operations, convolutional, activation and pooling.

By taking in a matrix of activation values the pooling function computes a summary
statistic of that matrix. By doing so the dimensionality given is reduced to one value per
inputs of the pooling kernel size. The pooling kernel is, in contrast to the convolutional
kernel a window that is sled over the input to define the input region for the pooling
function.

Common pooling functions are maximum pooling, average pooling and deviations of
those. Maximum pooling is just the max(·) function applied on the input matrix. Average
pooling is, as the name suggests, the average function applied on the matrix. Especially
average pooling is often altered to use different averaging function for a weighted average,
as indicated in Definition 3.2.3 by substituting g(·) with some function of the input. The
input’s weight can, for instance, be based on the input’s distance to the kernel’s center.

Definition 3.2.2. Maximum pooling

f(X) = max(X), X ∈ Rn×m

Definition 3.2.3. Average pooling

f(X) =
1

k

k∑
xi ∗ g(xi), X ∈ Rn×m, g(·) ∈ R and k = m ∗ n

Finally, pooling also leads to translational invariance w.r.t. the input. Meaning, when
the input is slightly translated, e.g. rotated, the pooling function will still be able to
detect the object, the filter would have detected without translation. One can think of
this as a convolutional kernel detecting an edge in the input. This leads to high activation
values which are then summarized by the pooling operation. In case the same input is
rotated slightly, the activation function will return high values at slightly different outputs,
which will then again be summarized by the pooling function. This feature is visualized
in Figure 3.10.
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Figure 3.7: Example of a 3 × 3 kernel sliding over a 5 × 5 input with stride 1 and same-
padding generating a same size output of 5× 5 [25].

3.3 Training a Neural Network

Crucial to the model’s performance is its ability to minimize the deviation between pre-
dictions and the ground truth. Therefore, the model has to adjust its parameters to some
set θ which brings ŷ = f(x; θ) possibly close to y. As mentioned in section 3.1 the basic
building block to update the model’s parameters is the backpropagation algorithm [16].
It ”repeatedly adjusts the weight on connections in the network to minimize the measure
of the difference between the actual output vector of the network and the desired output
vector given the current input” [21] through updating the parameter’s value by the error
function’s derivative w.r.t. the parameter, weighted by a learning rate. By definition, a
function’s gradient points in the direction of the steepest increase in value. In the case of
an error function the goal is to change the parameters to decrease the error. Therefore,
steps in the opposite direction are taken. The repeated calculation of the gradient uses
the chain rule.

Definition 3.3.1 (Backpropagation algorithm). Given a cost function J(θ), repeatedly
update the model’s parameter by the cost function’s derivative w.r.t. that parameter. The
amount the parameter’s value is updated by the gradient is controlled by the learning rate
ε. The gradient w.r.t. the parameter is calculated using the chain rule.

wit+1 ← wit − εt ∗
∂J

∂wi

∂J

∂wi
← ∂J

al
∗ ∂a

l

zl
∗ · · · ∗ ∂z

i

wi

Where wi is the weight in the ith layer to be updated and al the last output unit resulting
in the output vector.

The learning rate is a crucial hyperparameter to tweak as it controls the effect a
gradient has on the update. In extrem cases the update can learn nothing as the update
is either too small or too high and the update therefore misses the optimal value by
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(a) outbound connections (b) inbound connections

Figure 3.8: Illustrating the concept of sparse connectivity by highlighting the outbound
connections of a unit a and highlighting the inbound connections of a unit b. Each in
contrast to the MLP case [9].

jumping over it. However, a larger learning rate is sometimes desired to not get stuck in
local minima in the beginning and to explore the value space more rapidly. As soon as the
algorithm is close to a local minimum the learning rate shall decrease to explore the values
in more detail. This is achieved by decaying the learning rate by either a function or a
constant factor over the training period [10][16]. Time based decay, for example, alters the
learning rate based on the iteration step and on the current learning rate. In the following
εi is the learning rate for step t and η the learning rate decay parameter.

εt+1 =
εt

1 + ηt

Instead of following a gradient for a complete training data set the update can be sped
up by computing the gradient for minibatches, i.e. smaller samples of the training data.
This approach is called Stochastic Gradient Descent (SGD) and is the basic optimization
algorithm for calculating the update [9]. This approach is based on the unbiased gradient
estimate obtained as average gradient from an i.i.d. minibatch of size m. The update is
computed by the gradient estimate ĝ, given a sample of m training examples (x(i), y(i)):

ĝ ← 1

m
∇θ
∑
i

L(f(x(i); θ), y(i))

θt+1 ← θt − εt ∗ ĝ

In the above case the likelihood function is used as cost function which shall be opti-
mized as a cost function can easily be derived from the likelihood as in Example 3.1.1.

The work presented in chapter 4 uses the Adam optimizer instead of SGD which is
a special from of the SGD algorithm. It uses the computed gradients during backpropa-
gation, historical values as well as the first and second moment estimates of the gradient
[15]. The update is computed by

θt+1 ← θt − εt ∗
m̂t√
v̂t + α

where m̂i, v̂i are the first and second moment estimates of the gradient and α a standard-
ization constant.
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Figure 3.9: Coupling the operations of convolution, activation function and pooling to-
gether builds the convolutional layer or block. With such a representation [9] a CNN is
constructed of several complex blocks. Such a block is not restricted to one convolution
operation or pooling. Indeed, it is common to use several convolution operations in one
block as shown in the VGG example Listing 3.1.

3.4 Clothing Classification Example

In the following example the before described CNN architecture will be used to classify
clothings in 28×28 single channel images from 10 categories. The Fashion-MNIST data set
is composed of 70.000 clothing samples (60k train, 10k test) from Zalando and is inspired
by the MNIST data set which facilitates same size images of handwritten digits for fast
model exploration [34]. A visualization of the convolutional layers and a direct comparison
between a MLP and a CNN on the same task are presented.

The convolutional network uses a similar architectural approach as the before men-
tioned VGG16 and is built up in blocks of convolutional operations paired with the ReLU
activation function and followed by a maximum pooling operation. In the second column
of Listing 3.2 the output dimensions are noted. For the first two layers the same-padding
was used which results in the preserved sizes. The third number in the tuple indicates the
number of kernels (filters) in those layers, i.e. the first layer runs 32 filters on an input of
28× 28 and outputs the same dimension. For the maximum pooling a kernel of size 2× 2
was chosen, resulting in halfing the width and height or quartering of the output. At the
end of the model one flatten and two dense layers were added. The earlier is necessary
to reduce the dimension from 2D to 1D by stacking the values to one vector. The latter
two reduce the size further until only 10 units are left, corresponding to the 10 categories
to predict. Besides for the last layer only ReLU activation functions were used. The last
layer uses the softmax function which outputs the class probabilities over the possible
output categories, i.e. returning a vector z with z ∈ [0, 1]10,

∑
i zi = 1.

Definition 3.4.1. Softmax activation function σ : RK → RK where K ∈ N

σ(z)i =
exp zi∑K exp zj

,∀i ∈ 1, . . . ,K, (z1, . . . , zk) ∈ RK
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Figure 3.10: The above figure shows the initial output from the detector stage entering
the pooling operation. Below, the detector’s output is shifted a little to the right due to
translation of the image but still, the pooling result is very similar [9].

Of the 60k training images the model was trained on 50k images and 10k images were
used as validation set during training. A validation set is useful to monitor the training
performance and stop in case of overfitting or convergence. This is known as early stopping.
A total of 10 epochs were run as depicted in Figure 3.12a.

When run on the test set the model achieves a loss of 0.27 and an accuracy of 0.92
which is a little below the training results. As the model has not seen the test images
before, this is normal and still a good result. A visual evaluation of the model is presented
in Figure 3.13.

1 _________________________________________________________________

2 Layer (type) Output Shape Param #

3 =================================================================

4 conv2d_25 (Conv2D) (None , 28, 28, 32) 320

5 _________________________________________________________________

6 conv2d_26 (Conv2D) (None , 28, 28, 32) 9248

7 _________________________________________________________________

8 max_pooling2d_10 (MaxPooling (None , 14, 14, 32) 0

9 _________________________________________________________________

10 conv2d_27 (Conv2D) (None , 12, 12, 64) 18496

11 _________________________________________________________________

12 conv2d_28 (Conv2D) (None , 12, 12, 64) 36928

13 _________________________________________________________________

14 max_pooling2d_11 (MaxPooling (None , 6, 6, 64) 0

15 _________________________________________________________________

16 conv2d_29 (Conv2D) (None , 4, 4, 64) 36928

17 _________________________________________________________________

18 flatten_4 (Flatten) (None , 1024) 0

19 _________________________________________________________________

20 dense_8 (Dense) (None , 64) 65600

21 _________________________________________________________________
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Figure 3.11: 48 random samples from the Fashion-MNIST data set. The images belong
to one of 10 clothing categories and are each of size 28× 28 with one channel.

22 dense_9 (Dense) (None , 10) 650

23 =================================================================

24 Total params: 168 ,170

25 Trainable params: 168 ,170

26 Non -trainable params: 0

27 _________________________________________________________________

Listing 3.2: Example CNN architecture

The third column in Listing 3.2 states the parameter count in that layer, which has
been discussed several times above when explaining the efficiency of CNNs on grid shaped
data. The parameter count in a CNN results from the kernel k dimensions, channels c of
the input and the number of kernels nkernels to use in a layer

#parameters = (heightk ∗ widthk ∗ c+ 1) ∗ nkernels

while the extra 1 is added for the bias. In the next layer the number of output channels of
the preceding layer is used as input channels. For the second layer this would be 32 and
results in (3 ∗ 3 ∗ 32 + 1) ∗ 32 = 9248.

In total the CNN uses 168.170 parameters. Parameters can be frozen to not change over
the training process. Those would appear in the last line as non-trainable parameters. Note
how fast the parameter count increased in comparison to most other statistical methods.

Also, w.r.t. the MLP shown later, it is possible to build up many abstraction layers
with that number of parameters. In the case of the MLP this depth will not be reached. It
has to be mentioned that the maximum depth of a model was not in scope of this example
but an artifact.
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(a) CNN training evaluation (b) MLP training evaluation

Figure 3.12: Training processes of the CNN and MLP trained for 10 epochs on batches of
size 64. A clear trend of increasing accuracy and decreasing loss is seen. The final values
of training accuracy and training loss are 0.96 and 0.09 for the CNN and 0.91, 0.23 for
the MLP, respectively. By observing the close connection between training and validation
accuracy no overfitting took place.

3.4.1 Visualization of Convolutional Layers

As convolutional networks are often referred as opaque due to their shear amount of
parameters and therefore, little transparency. To still get a feeling for what happens
inside a CNN the filters per layer as well as their feature maps can be visualized by
plotting those values. Still, filters are just weights arranged in a grid.

The first layer has a number of 32 filters, each of dimension 3 × 3. Those filters are
visualized in Figure 3.14. By observing the gradients per filter, one can examine the
feature this filter extracts. Taking the filter at position (row: 2, column: 8), the values in
the first column are large while those in columns 2 and 3 are smaller (darker). This filter
extracts a vertical edge as the values along that vertical axis in the input are high on the
foreground and low on the background as all images have a black background.

In the first layer, visualizing all filters is possible as there are only a few. This is not
possible when reaching further into the model. In the current example the next layer has
32 ∗ 32 = 1024 filters as there are 32 output channels by the first layer and the second
layer implements 32 filters itself. As mentioned above, the feature map of each layer
incorporates the output of the convolutional operation. Therefore, applying the filters of
a layer on an image will return the model’s perception (detected features) of that input
as the filters were applied. This way the model’s perception can be analyzed further into
the model and is more meaningful than the linear filters alone.

To do so, the output of the specific layer has to be visualized. Figure 3.15 is from
the Fashion MNIST data set and included in the test set as well. This image was run
through the network and the first layer’s output is shown in Figure 3.16. As this is the
first layer, more detailed features shall be detected. This is the case as the most detected
features are edges. Also, the feature maps are arranged according to the filters displayed
in Figure 3.14. Filter (3, 8) was identified to detect right edges in the input. This is indeed
the case when observing feature map (3, 8) where the right edge is highlighted. Again,
highlighted regions are the representation of higher values indicating activation.

3.4.2 Comparison of MLP and CNN on image analysis

Finally, the initially introduced MLP shall be compared to the CNN in this example.
Recall, that the MLP heavily utilizes densely connected layers. Even though the images
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Figure 3.13: 64 predictions of the trained CNN on the test set. The color coding of the
x-labels shows whether the prediction was correct. Note that predictions are coupled with
a high confidence of the model for both correct and incorrect predictions.

of 28 × 28 pixels are very small compared to those taken by todays cameras, this causes
the model to start with a large number of parameters. As the MLP expects a 1D input
the image has to be flattened resulting in 28 ∗ 28 = 784 pixels which results in the same
size first layer as there needs to be one unit per input pixel. Imagine applying the MLP
to an image of the input size of the VGG16 with 224 ∗ 244 = 50.176 [29], which won the
ImageNet competition [24] in 2014. For the default MLP the parameter count per layer
is simply calculated as a product of inputs and units per layer:

#parameters = ninput ∗ nunits

The MLP was defined accordingly with an input layer suiting for all 784 pixels, followed
by 4 dense layers extracting necessary information from the pixels, see Listing 3.3. For
the MLP the same training, validation and testing data was used as for the CNN above.
Within 10 epochs of training, the MLP reached a training accuracy of 0.91 and a training
loss of 0.23, see Figure 3.12b. While the accuracy is fairly close, the loss is clearly higher
compared to the CNN.
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Figure 3.14: Visualization of the 32 filters from the first layer in Listing 3.2. The coloring
indicates low values for darker squares and higher values for lighter squares.

Figure 3.15: Sample image from the Fashion MNIST data set [34] displaying a dress.
Actually, this dress was included in the test set (Figure 3.13, first row third image) and
predicted correct with a confidence of 100%.

Also, the CNN is better capable of generalizing to new data. On the test data the
MLP only achieves a test accuracy of 0.88 and yields a loss of 0.34 in contrast to 0.92 and
0.27 for the CNN, respectively. The MLP was used to predict on the same data as the
CNN before in Figure 3.13. Without a quantitative analysis it is observed that the MLP
is not as confident on predictions. On the correct predictions, the MLP is less confident
but also seems to be more wrong on the incorrectly classified images.

Comparing the total parameter count of the MLP with 242.762 to that of the CNN
with 168.170, the MLP is roughly 145% the CNN’s size. Note, the MLP is also shallow
compared to the CNN with 5 vs. 10 layers. While the performance results are not far
apart, the MLP is larger than the CNN and this difference in size will increase with the
input size ranking MLP impractical for real-life images. Making the case to prefer a CNN
architecture when working with grid-structured data as done in chapter 4.

1 _________________________________________________________________

2 Layer (type) Output Shape Param #

3 =================================================================

4 flatten_8 (Flatten) (None , 784) 0

5 _________________________________________________________________

6 dense_20 (Dense) (None , 256) 200960

7 _________________________________________________________________

8 dense_21 (Dense) (None , 128) 32896
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CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.16: Visualization of the 32 resulting feature maps when run on the sample image
in Figure 3.14. The first layer observes details as edges. This is obvious on the white parts
of the image which indicate an activation as those represent higher values compared to
lower dark ones.

9 _________________________________________________________________

10 dense_22 (Dense) (None , 64) 8256

11 _________________________________________________________________

12 dense_23 (Dense) (None , 10) 650

13 =================================================================

14 Total params: 242 ,762

15 Trainable params: 242 ,762

16 Non -trainable params: 0

17 _________________________________________________________________

Listing 3.3: Example MLP architecture

Finally, Jiuxiang Gu et al. have written a comprehensive summary of good practices
and improvements on Convolutional Networks including a discussion on different kinds of
ReLU activation functions, convolutions, pooling functions regularization and optimization
in their work Recent Advances in Convolutional Neural Networks [10]. The interested
reader shall also be referred to their work.
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Chapter 4

Pipeline Implementation

The proposed workflow consists of three steps where the surgeon (1) first defines a desired
view on the patient using the preoperative CT-scan, then, (2) during surgery preparation,
the fluoroscopy machine locates itself by analyzing an X-ray image from the current per-
spective on the patient and then (3) moves into the desired postion. To implement this
workflow a model capable of localizing the fluoroscopy machine from a X-ray image is key.
Besides, the model has to be trained with available, high-accuracy data. Step two further
involves human workforce and feeding the model from step one with an X-ray image. Step
three concludes the workflow by an algorithm computing the movement to reach from the
current position to the desired position. A schematic overview of the proposed pipeline is
given in Figure 1.2. This work covers discussion and implementation of the first step.

For position encoding a six dimensional vector was chosen describing rotation in degrees
and translation in millimeters. Problems of uniqueness introduced by this notation, like
gimbal lock, where taken into account during implementation. Gimbal lock describes the
loss of one degree of freedom in a three gimbal rotation system when two gimbal-axes are
in a parallel state, see Figure 4.1. Also, the parameter settings do not include a close to
360◦ rotation which mitigates the problem in accounting for degrees with a close projection
but great numerical distance, e.g. 1◦ vs. 359◦ which are both close to a true 360◦ rotation
but have errors of 359◦ vs. 1◦.

The problem to solve in step one therefore, is defining a function to map an image
of certain size to a six dimensional vector describing the orientation the image was taken
from. Figure 4.2 gives an idea of the setup where the fluoroscopy machine is depicted as
the gray angel bar, which is static, and the patient is moved w.r.t. to the machine.

Problem Definition. Given an X-ray image I, a model f shall be able to detect
the patient’s orientation of which the image was taken, encoded in six degrees of
freedom in rotation and translation. As the fluoroscopy machine is static the patient
is moved.

f : I 7→ (θ, φ, ρ, tx, ty, tz), I ∈ R480×620×1

To approach the problem a CNN, described in section 3.2, will be fit on synthetic
X-ray images generated using a modified version of the DeepDRR framework, discussed in
section 2.1. In the following the image generation and model definition will be discussed
thoroughly followed by the model’s performance analysis.

4.1 Generating Digitally Reconstructed Radiographs

A large data set of highly accurate synthetic radiographs is needed for developing the
model. To create the data set, digitally reconstructed radiographs are generated from
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CHAPTER 4. PIPELINE IMPLEMENTATION

Figure 4.1: Illustration of the gimbal lock problem on an airplane. The three rotations
available are pitch (gree), roll (blue) and yaw (magenta). In case of aligning the axis for
pitch and yaw the plane looses one degree of freedom in movement as rolling and yawning
apply the same change to the airplane [5].

different perspectives as this ensures the accuracy needed in the labels. The framework
to generate the images is described in section 2.1. Using the framework, the object of
which the synthetic radiograph shall be computed for can be transformed by specifying a
rotation around each axis as well as a translation in each of the three directions.

To specify each variable a notion of the anatomical coordinate system is needed. In
which the value ranges are specified by the directions on a human with the human’s center
usually encoded as the value 0. A common system, and the one used here is abbreviated
as LPS for Left, Posterior, Superior. In such a system the values increase from right
to left, anterior to posterior and from inferior to superior. Also, those directions lead
to abbreviations of special X-ray shots. An X-ray image taken e.g. along the anterior-
posterior axis is called AP-shot.

As input the framework requires a CT-volume which was taken from the Visible Hu-
man Project’s [32] website, offering such data. It resulted from a selection process regard-
ing different available scans which where evaluated w.r.t. their label’s completeness. A
CT-volume is usually built up of several DICOM images depicting the slices along the
inferior-superior axis, see Figure 4.3. Besides relevant meta information like the used co-
ordinate system - usually LPS - the DICOM images include metrics on how many slices
are contained in the current volume, at which position the current slice is located w.r.t.
the other slices and the thickness of one slice. Those attributes are needed to reconstruct
the CT-scan as a volume as shown in Figure 4.4. Especially, the attribute SliceThick-
ness is important for the DRR framework as it specifies the spacing between the slices.
In the case of the above mentioned CT-volume neither SliceLocation nor SliceThickness
were present and had to be interpolated. As the file names hinted an ordering, this was
used to reconstruct the location of each slice. The thickness was interpolated by using an
estimation of the scanned body size divided by the available slices. The reconstructions
in Figure 4.4 hint a nearly correct interpolation.
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4.1. GENERATING DIGITALLY RECONSTRUCTED RADIOGRAPHS

Figure 4.2: Illustrating the setup in which a function f shall predict the rotation and
translation applied to a patient on the here illustrated treatment couch. The figure illus-
trates the three translational axis and one rotational axis. The rotation here indicated
spins around the RL-axis of the patient in a LPS anatomical coordinate system. Note,
the used notation in this figure does not comply with the notation used in this work.

4.1.1 Data Generator

Besides a few smaller adaptions to the framework, an important improvement was added
by implementing a Data Generator class which facilitates the automatic generation of the
data set while offering a possibility to parallelize the same to decrease the computation
duration. A second useful addition was the Parameter Visualizer class offering an interface
to create a DRR based on the model’s predictions. This is useful as the input image can
be compared to the image the model says it has seen, i.e. the image according to the
parameters predicted by the model.

Concerning the Data Generator, the range of attributes the DRR shall have need to
be specified. Further, either the ranges are specified directly or are computed based on
a lower and upper bound per parameter from which an uniform sample is drawn with a
defined step size. Listing 4.1 shows the class’ constructor signature. In prior to generation
the file configurations as the cartesian product of all possible settings are saved to then be
pulled by the DRR generator. Also, the CT-volume is only loaded once and the according
projections are calculated per configuration. In total, this enables a parallelization of the
generation process as the configurations can be split onto different workers. Also, the
methods in Data Generator are structured in a way to minimized reading and writing to
disk.

1 def __init__(self , complete_segmentation: bool = True ,

2 angle_step: int = 5, translation_step: int = 5,

3 phi_range: Tuple[int , int] = (0, 180),

4 theta_range: Tuple[int , int] = (0, 180),

5 rho_range: Tuple[int , int] = (0, 0),

6 origin_x_range: Tuple[int , int] = (0, 0),

7 origin_y_range: Tuple[int , int] = (0, 0),
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Figure 4.3: Sample slice contained in the used CT-volume.

8 origin_z_range: Tuple[int , int] = (0, 0),

9 cartesian_prod: bool = True , camera: Camera = None ,

10 ct_volume_path: str = None ,

11 save_to_dir: str = ’./ generated_data ’,

12 random_pick: bool = True , sample_size: int = None ,

13 spectrum=SPECTRUM120KV_AL43 , scatter: bool = False ,

14 photon_count: int = 100000):

At this point one is referred to the accommodating GitLab repository including more
documentation on the modifications and an usage example.

4.1.2 Projection Parameters

The six dimensional orientation vector is encoded as in the problem definition above. The
parameter’s effects are listed in Table 4.1. The value ranges as well as the step size for
sampling are also included in that table. To limit the computation time and still include a
wide variety of views, a trade-off was made to restrict the configuration to a frontal view
covering the sides to an angle of 45◦ each as well as covering the top and bottom to an
angle of 60◦ each. The view from both minimal angle values is depicted in Figure 4.5.

In total a number of 69300 images were generated as the result of the setting’s cartesian
product. A Google Cloud VM with a Nvidia P4 GPU was used and ran for roughly 5
days. Note, that this setup was deployed as a minimum viable product and therefore did
not focus on speed. Based on the metric of DRR generation used in Data Generator,
processes could easily be parallelized. As the GPU’s RAM was only utilized to 25% and
the GPU ran idle for short periods of time parallelization should be considered. Another
possibility would be to deploy the setup in a cluster using e.g. Docker images and initialize
the Data Generator with different ranges in the first place. As the machines do not have
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(a) segmented air (b) segmented soft tissue (c) segmented bone

Figure 4.4: Figures showing the used CT-volume segmented using thresholding showing
the three materials, air, soft tissue and bone. Note the anatomical axis are depicted in
the images as well indicating the view point. In 4.4a an superior-inferior view is shown,
i.e. observing the lungs as well as the air in them.

Parameter Range Step size Effect

φ [45, 135] 10◦ rotation around IS-axis in degrees (roll)
θ [60, 120] 10◦ rotation around RL-axis in degrees (pitch)
ρ [0] - rotation around AP-axis in degrees (yaw)
tx [−80, 80] 20mm translation on the RL-axis in millimeters
ty [−100, 100] 20mm translation on the AP-axis in millimeters
tz [−60, 120] 20mm translation on the IS-axis in millimeters

Table 4.1: Listing the parameters with their effect and the values used to generate the
DRRs.

to communicate, latency is not a problem and the efficiency will scale linearly.

#Images = #rangeφ + #rangetheta + #rangeρ + #rangetx + #rangety + #rangetz

=
90 + 10

10
∗ 60 + 10

10
∗ 160 + 20

20
∗ 200 + 20

20
∗ 180 + 20

20
= 69300

The resulting DRRs use 16bit encoding for their colors and are saved in .tiff format.
The very detailed color encoding is responsible for a large file size of roughly 5MB per
image. Also, the pixel values are in the thousands and therefore show very little deviation
making them hard to observe for humans. To tackle both problems the images were down
sampled to a 8bit encoding using a custom script for batch processing the generated files
as well as log-scaling and normalizing the images to the common [0, 255] range per pixel
to increase human visibility.

Note, while segmentation was tried with CNNs and implemented in the DeepDRR
segmentation, using thresholding worked a lot better. This is most probably due to the
litte training data used for fitting the segmentation network. Therefore, the network was
not capable to generalize on other CT-volumes. The segmentation results are depicted in
Figure 4.6.

4.2 Model definition

Finally, the model was constructed similar to those shown in section 3.4 implementing
a block structure of convolutional operations, ReLU activations and maximum pooling
operations. Following the convolutional block one flatten and three dense layers reduced
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(a) φ = 45◦, θ = 90◦, ρ = 0◦

tx = 0mm, ty = 0mm, tz = 120mm
(b) φ = 95◦, θ = 60◦, ρ = 0◦

tx = 0mm, ty = 0mm, tz = 120mm

Figure 4.5: Figures depicting the two most extreme rotation configurations of φ and θ
with a view of the pelvic area. While the one angle is set to the range’s minimum the
other angle is set to either 90◦ or 95◦ which is to mitigate problems as gimbal lock.

(a) bone (b) soft tissue (c) air

Figure 4.6: Resulting DRRs using manual segmentation as the segmentation using the
CNN did not work well. Note, bone and soft tissue do overlap as described in section 2.1
as the pelvic bone structure is visible in the soft tissue segmentation.

the dimensionality to a 6D output vector matching the desired prediction dimension. The
last layer used a linear activation function. The full model is listed in Listing 4.2 as those
in section 3.4.

1 _________________________________________________________________

2 Layer (type) Output Shape Param #

3 =================================================================

4 conv2d (Conv2D) (None , 222, 222, 32) 896

5 _________________________________________________________________

6 max_pooling2d (MaxPooling2D) (None , 111, 111, 32) 0

7 _________________________________________________________________

8 conv2d_1 (Conv2D) (None , 109, 109, 64) 18496

9 _________________________________________________________________

10 max_pooling2d_1 (MaxPooling2 (None , 54, 54, 64) 0

11 _________________________________________________________________

12 conv2d_2 (Conv2D) (None , 52, 52, 64) 36928

13 _________________________________________________________________

14 max_pooling2d_2 (MaxPooling2 (None , 26, 26, 64) 0

15 _________________________________________________________________

16 conv2d_3 (Conv2D) (None , 24, 24, 64) 36928

17 _________________________________________________________________

18 flatten (Flatten) (None , 36864) 0

19 _________________________________________________________________

20 dense (Dense) (None , 256) 9437440

21 _________________________________________________________________
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22 dense_1 (Dense) (None , 64) 16448

23 _________________________________________________________________

24 dense_2 (Dense) (None , 6) 390

25 =================================================================

26 Total params: 9 ,547,526

27 Trainable params: 9 ,547,526

28 Non -trainable params: 0

29 _________________________________________________________________

Listing 4.2: Architecture of the basic prediction model

To train the model, a dedicated training-pipeline was implemented building a generator
to prepare the training, validation and testing data, including preprocessing, as batches.
This results in one stream of data and single loading. Preprocessing included shuffling,
standardizing the labels as well as the pixel values and resizing the image as a whole to
224 × 224. The parameters for standardization were saved to scale the predictions back
to their original scale. Besides positive learning effects the parameter transformation also
enabled the use of a standard deviation measure for both rotation and translation. Batch
preparation is limited to solely run on the CPU, reserving the GPU for training.

The batches are loaded into memory just before they’re needed to spare GPU-memory
space. Also, pre-fetching was used to pre-load four batches to minimize GPU idling be-
tween the last backward and the next forward propagation. In total the model was trained,
validated and tested on a 0.7, 0.15, 0.15 split with a batch size of 256 images. Therefore,
an epoch needed 190 steps for the training and 41 steps for the validation set.

The mean squared error (MSE) was used as a loss metric to optimize. As the labels
were standardized one metric could be used for both. The MSE was chosen as a fast to
compute and robust loss function as it uses the squared deviation. Also, the absolute error
could have been used.

MSE(y, ŷ) =
1

n
∗ (y − ŷ)′(y − ŷ)

To optimize the loss function the Adam optimizer with a learning rate of 0.001 which
was lowered by 5 ∗ 10−6 per step was used. Starting with a greater learning rate makes
sense as a faster exploration resulted in a fast decay of the loss function, see Figure 4.7a.

Figure 4.7a hints a fast adoption of the model to the data while it seams as the per-
formance converges after the 15th epoch. Evaluating the training losses issue a minimum
training loss of 0.00082 which is reached in epoch 24. The minimum loss on the validation
data is reached in epoch 19 with an MSE of 0.0011. The minimum training and valida-
tion loss therefore differ by 0.00028. However, the validation loss in epoch 24, where the
training loss in minimal is at 0.0014 and therefore marginally larger than at its minimum.

Figure 4.8 shows four sample predictions mainly from the pelvic area as it possesses
the most interesting structure. The predictions are each rounded to the nearest integer
as micrometer or decimal degrees do not add any information but the model’s trend
is observable. While most deviations are in the range of a few units predictions of ty
(translation on the AP-axis) are greater than those on tx, tz. The absolute average
deviations on the test set per image are 3.5◦ for rotations and 22.24mm for translations,
and depicted in Figure 4.9. Although the absolute deviation is of great magnitude the test
set has 10395 samples and the values were transformed back to their initial scale. Finally,
the model reaches a loss of 0.00158 on the test set which is only 0.00018 greater than on
the validation set and 0.00046 greater than the loss on the training set.
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(a) Training evaluation of the proposed CNN on 70% of the data and validating it on 15%. The
similar training and validation loss curves indicate a good training without overfitting the data.
Minimum training loss at 0.00082; minimum validation loss at 0.0011.

(b) As the MSE declines rapidly the scale needs to be reduced for a more detailed view on the
model’s performance. The first losses below 0.1 are in epoch 4. Therefore a restriction to the
MSE of [.00, .01] is reasonable. The training curves are clearly not as smooth as in Figure 4.7a.
Therefore, the training could run for more than 25 epochs while further decreasing the learning
rate.

Figure 4.7: Training evaluation of the proposed CNN on the generated DRRs.
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4.2. MODEL DEFINITION

(a) ŷ : [96, 91, 0, −24, 76, 75]
y : [100, 95, 0, −20, 80, 80]

(b) ŷ : [89, 65, 0, 78, 22, 108]
y : [90, 65, 0, 80, 20, 120]

(c) ŷ : [109, 74, 0, 59, 68, 33]
y : [110, 75, 0, 60, 60, 40]

(d) ŷ : [119, 94, 0, 33, −58, −63]
y : [120, 95, 0, 40, −60, −60]

Figure 4.8: The predictions where computed on samples in the test set. As mentioned
earlier the deviations in translations are larger which is quantified in Figure 4.9. Note, the
predictions were rounded to the nearest integer as this still indicates the model’s tendency
but spares unneeded accuracy as a result on the micrometer scale is not interpretable.
Loss on complete test data: 0.00158.
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Figure 4.9: As suggested above, the absolute deviation in translational variables is greater
as in rotational variables. Deviations are computed on all batches in the test set with 256
images each. Note, the largest deviation is in direction ty, which is translation along the
AP-axis and therefore in viewing direction. Also note, even though the values are high,
for tx and tz the average absolute deviation is ∼ 6.0mm. Lastly, as the translations have
one degree of freedom more than the rotations, this is an expected behavior.
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Chapter 5

Conclusion

In this work I proposed a three step pipeline to decrease preparation time for fluoroscopy
guided surgery by automating the fluoroscopy machine’s setup. The pipeline starts with
obtaining training data in form of digitally reconstructed radiographs from an already
existing CT-scan, used for preoperative planning. Then, fitting a CNN on this data to
regress the six dimensional position vector a X-ray image was taken from, which can be
done completely in prior to the surgery. This is followed by positioning the fluoroscopy
machine above the patient in the operation room and taking a scout shot. From this image
the model regresses its current position. Finally, the machine then calculates the path to
travel to reach the desired position w.r.t. the patient.

The results in this work shown that a training data set of DRRs can be generated in
roughly five days on a Tesla P4 GPU (mono-process). The developed framework supports
parallelizing the DRR’s computation as this would speed up the generation time drastically
but was not used for time benchmarking. In the second part it was shown that a model
indeed can be fitted on the training images to regress the position vector with a MSE
loss of 0.00082 on training data and 0.00158 on the final test set. As the scale, prior
to standardization, for translation is in millimeters and that for rotation in degrees, the
reached MSE shows a very good ability of learning and generalization of the model. To
further decrease training time and probably increase generalization, transfer learning could
be utilized when retraining a model on a new patient.

The next steps to evaluate and improve this pipeline are to test the model’s accuracy on
clinical data. Meaning, there’s a CT-scan provided for fitting a model coupled with several
real X-ray images of the same object with highly accurate orientation information and to
implement calculation of movement from the current (regressed) postion, to the desired
position. Further, a model’s generalization from digitally reconstructed radiographs to
real fluoroscopy images poses difficulty, as [31] mentioned. Therefore, achieving good
performance on clinical data is an iterative process including adapting the generation of
the training data. Finally, for better comparability of models, an error statistic as the pixel
wise difference should be established instead of using the mean squared error to capture
the actual deviation.
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