
LUDWIG-MAXIMILIANS-UNIVERSITY MUNICH

Department of Statistics

Master’s Thesis

Influence of Preprocessing on Deep
Learning Models

Joshua Wagner

Completion period: 24.09.2020 - 24.03.2021

Supervisors: Dr. Roman Hornung

Maximilian Mandl

mailto:

Abstract

Deep learning models continue to gain popularity in various domains due to the increase

in available data. The models are usually compared on their prediction performance af-

ter extensive hyperparameter tuning. An often unrecognised factor for the increase or

decrease in performance of these models is the preprocessing of the data. This thesis

proposes an extensive comparison study of various different preprocessing methods and

their influence on model performance on the example of time-series data. Two time-

series datasets are analysed with varying preprocessing methods and their influence on

classification and forecasting performance of 12 different models. The experimental re-

sults for classification indicate a low variability of convolutional neural networks through

preprocessing while maintaining high classification accuracy. The results also indicate

that tree based machine learning models are more robust to data preprocessing variations

than support vector or nearest neighbour classifiers. The addition of bi-directionality to a

recurrent neural network has also been observed to decrease the variability due to prepro-

cessing while improving performance. The forecasting experiments confirm the stability

of CNNs with regard to preprocessing.

Contents

1 Introduction 1

2 Related Publications 4

3 Methodology 6
3.1 Models . 6

3.1.1 Traditional statistical models . 6

3.1.2 Machine learning models . 8

3.1.3 Neural Network . 11

3.1.4 CNNs . 13

3.1.5 RNNs . 15

3.1.6 Additional layers . 18

3.2 Preprocessing Methods . 19

3.2.1 Feature Extraction . 19

3.2.2 Fourier Transformation . 21

3.2.3 Continuous Wavelet Transformation 23

3.2.4 Discrete Wavelet Transformation 25

3.2.5 Discrete Wavelet Preprocessing 27

4 Datasets 29
4.1 UCI-HAR dataset . 29

4.2 M4 competition dataset . 29

5 Experimental Results 31
5.1 Classification . 31

5.1.1 CWT image models . 35

5.1.2 Time-series models . 36

5.1.3 Feature models . 37

5.2 Forecasting . 39

6 Conclusion 43

Bibliography 45

A Appendix Methodology 52
A.1 LSTM-CNN architecture . 52

I

A.2 Continuous Wavelets . 52

A.3 Discrete Wavelets . 53

B Appendix Experiments 56
B.1 CWT results . 59

B.2 Multiresolution TS . 61

B.3 Feature models . 63

C Electronic Annex 65

II

LIST OF FIGURES LIST OF FIGURES

List of Figures

3.1 Time-unfolded single-shot rnn . 15

3.2 LSTM cuircuit . 16

3.3 GRU cuircuit . 17

3.4 Example signal with its Fast Fourier Transform 22

3.5 Frequency and time resolution tradeoff 22

3.6 Spectrogramm of an example signal . 23

3.7 Example step of the discrete wavelet transform 27

3.8 Example multiresolution decomposition with a discrete wavelet transform 28

5.1 Model accuracy aggregated over all preprocessing variations. 33

5.2 Aggregated accuracy of all models per denoising wavelet. 34

5.3 Model accuracy aggregated per major preprocessing. 35

A.1 Architecture of the LSTM-CNN model from Karim et al. (2018) used for

the multiresolution classification. Dropout is quite aggressive with 0.8

dropout rate. 52

A.2 Example approximations of the scaling and wavelet functions of a Coiflet-

4 wavelet used in this thesis. 53

A.3 Example approximations of the scaling and wavelet functions of a

Daubechies-4 wavelet used in this thesis. 53

A.4 Example approximations of the scaling and wavelet functions of a discrete

approximation of a Meyer wavelet used in this thesis. 54

A.5 Example approximations of the scaling and wavelet functions of a

Symlets-4 wavelet used in this thesis. 54

A.6 Example approximations of the scaling and wavelet functions of a Haar

wavelet used in this thesis. 55

B.1 Confusion matrix of the best performing model/preprocessing combination 57

B.2 Confusion matrix of the worst performing CNN model with CWT prepro-

cessing . 58

B.3 CWT results aggregated by denoising wavelet 59

B.4 Aggregated results for CWT scaleogram as major preprocessing split by

chosen CWT wavelet and maximal scale for the CWT. 59

B.5 Aggregated results for the multiresolution classification models grouped

by model and aggregated over all preprocessing steps. 61

III

LIST OF TABLES LIST OF TABLES

List of Tables

5.1 Denoising and models . 33

5.2 Aggregated CNN results per CWT wavelet and maximum scale of the

CWT. 35

5.3 Median accuracy and interquartile distance of models using time-series

for classification . 37

5.4 Median accuracy and interquartile distance of the classification models

using features . 38

5.5 Classification accuracy of the models on the test set with the original fea-

tures from Reyes-Ortiz et al. (2016) and Anguita et al. (2013). 38

5.6 Results of the forecasting models aggregated over all preprocessing vari-

ations. 40

5.7 Median RMSE and sMAPE and their respective IQD over model and pre-

processing combination. Results are sorted by ascending median RMSE. . 41

5.8 Noisy forecasting results . 42

A.1 Continuous wavelets . 52

B.1 Classification results grouped by model 56

B.2 Classification results grouped by preprocessing 56

B.3 Aggregated accuracy over all models per denoising wavelet for the clas-

sification task. 57

B.4 Median accuracy of the CNN models using the scaleogram images from

CWT as input. 60

B.5 Median accuracy of Multiresolution results grouped by model and

wavelet used in the multiresolution splitting. Aggregated over all denois-

ing variations. 62

B.6 Aggregated results of classification models using feature inputs, grouped

by model and preprocessing . 64

IV

1 INTRODUCTION

1 Introduction

The first step in most statistical analyses and applications is the preprocessing of data.

This is necessitated by the fact that "raw" datasets are often not directly usable. This

preprocessing includes many different choices a researcher can make. These choices can

influence the performance of a deep learning model. For example faulty or noisy training

data can impact the classification accuracy of Convolutional Neural Networks(CNN)

(Yim and Sohn, 2017). Generally they include data cleaning, normalization, trans-

formation, feature extraction and selection and data-type specific preprocessing steps

(Kotsiantis et al., 2006). These methods can have a distinct impact on the generalization

of a deep or machine learning model.

The first step, data cleaning, can vary from dataset to dataset. Some generally used

steps are the treatment of missing values and the cleaning of noise in the data. There exist

a multitude of algorithms for missing value treatment which can be loosely categorized

into two fields: Maximum Likelihood Imputation and Machine Learning Based Methods

(García et al., 2015). A method to mitigate noise can be instance selection which attempts

to maintain or improve the generalization performance of the models while shrinking the

sample size. A number of algorithms can be chosen for instance selection and typically

depend on the selected model for the analysis and the dataset itself (Grochowski and

Jankowski (2004) and Jankowski and Grochowski (2004)). A further cleaning step that

reduces noise in the data is outlier detection which has a number of algorithms to choose

from (Aggarwal and Yu (2001) and Hodge and Austin (2004)). These first and the

following preprocessing steps are applicable to most data types but can vary depending

on the data. Feature extraction can depend more on previous knowledge about the

domain of the data than insights from generally applicable algorithms. Feature selection

on the other hand does have some more generally applicable algorithms from which a

researcher can choose (Saeys et al. (2007) and Chandrashekar and Sahin (2014)). These

few general preprocessing steps already come with many researcher degrees of freedom

since most steps have many different algorithms and hyperparameters to choose from

as could be seen in the previous paragraph. The freedom of choice persists for other

data domains where deep learning models are frequently used, e.g. for images, text or

time-series.

Deep learning models like convolutional neural networks are commonly used for

image classification. As with other data types, the images need preprocessing. While

scaling of images is done to minimize the computational cost, other steps are again

1

1 INTRODUCTION

optional. Two common further preprocessing steps for images are noise reduction in

the training data and transformation of training data. Both methods are used to increase

the performance of the model. Noise reduction produces sharper, clearer images which

are easier to categorize for the model (Yim and Sohn, 2017), while transformation

improves the ability of the model to generalize on new data (Tabik et al., 2017).

These preprocessing steps come with different researcher degrees of freedom as many

algorithms exist for both methods. For example centering, elastic deformation, transla-

tion, rotation, a combination of these, etc. can be chosen for the transformation of images.

The common choice for text analysis or Natural Language Processing (NLP) are deep

learning models. These models cannot directly use text which necessitates the prepro-

cessing into a number based representation. A traditional choice for this preprocessing

were count-based distributional models. These are more and more replaced by neural

network based word embedding models. The embedding models themselves contain

many hyperparameters, some predefined or implicit, others can be freely tuned to specific

problems. These hyperparameters can account for much of the performance gains of

word embedding algorithms and consequently for the subsequent analysis model (Levy

et al., 2015). Other preprocessing steps, e.g. lemmatizing, lower-casing etc., can further

impact the model performance and are generally under-represented steps in publications

(Camacho-Collados and Pilehvar, 2017).

A wide variety of preprocessing exist for time-series analysis which in turn enable

models to analyse the data in various ways. Common choices for preprocessing would

be deseasonalization of seasonal trends in the data or a log-transformation of the

data (Ahmed et al., 2010). Another option would be the sliding window size for the

transformation of a continuous time series into a discrete series (Naduvil-Vadukootu

et al., 2017). Other approaches like multiresolution analysis and denoising are also usable

for time-series data and further introduced in this thesis. Data after these preprocessing

steps retains the form of a time-series and can be analysed with various different

models. For example, the analysis could use a recurrent neural network with different

cells, a convolutional neural network adapted to 1-dimensional data or other machine

learning models. A different preprocessing approach can be used for classification of

less common time-series data, e.g. human activity data with acceleration signals. The

preprocessing involves a transformation into an image which can be done with a number

of different algorithms. These include raw plots of the time-series, a multichannel image

in which x-,y- and z-coordinates of the acceleration data are taken as colour channel

2

1 INTRODUCTION

data, a spectrogram through short-time Fourier transformations or a scaleogram with a

continuous wavelet-transform (Zheng et al. (2018) and Madine et al. (2019)). These are

just some preprocessing steps which enable different models for time-series prediction

and classification. This thesis further focuses on the impact of preprocessing methods for

deep learning models on the example of time-series data.

The next chapter contains an overview of other publications which study the influence

of preprocessing on deep learning models. The third chapter explains the methods used

in this thesis while the fourth chapter introduces the datasets which were used for the

experiments. The fifth chapter contains the results and lastly a conclusion is drawn in the

sixth chapter.

3

2 RELATED PUBLICATIONS

2 Related Publications

In comparison to the vast number of publications about deep learning models and

their applications, few investigate the influence of pre-processing on the performance.

Publications that do often examine only one type of data which can be attributed to

the differences in preprocessing that exist for the different data types that deep learning

models can handle, e.g. images, text and time-series data.

Chandrashekar and Sahin (2014) examine the influence of feature selection on

machine and deep learning models on the example of the classification performance of

a Support Vector Machine (SVM) and a Radial Basis Function Network (RBFN) with

seven time-series datasets and two different selection methods. The results show that

feature selection methods almost always improve the performance of the models.

Ahmed et al. (2010) compare eight different machine and deep learning models on

their prediction performance for time-series with three differently preprocessed input

variables. They do not investigate the influence of the preprocessing to the entire dataset

as it was out of scope for their publication. The results show that the influence of

preprocessing on the performance varies by preprocessing and model.

Liu et al. (2013) experiment with different models to predict wind speed. While they

use Discrete Wavelet and Discrete Wavelet-Packet Decomposition to predict based on

stable sub-series of the input time-series and show that decomposed models achieve

better performance, they do not examine the influence of the decomposition depth or

other preprocessing methods. The results show that models trained on the wavelet packet

decomposition perform better than their counterparts without.

Naduvil-Vadukootu et al. (2017) compare different machine and deep learning models for

regression and classification on time-series data and examine the influence that balancing

and stratification of a dataset can have on the classification performance. They do not

further analyse the influence of other preprocessing steps. They show that stratification

and balancing of the data both have positive impact on the performance of the models.

The performance increase varies for each model.

Zheng et al. (2018) examine the impact that a transformation from numerical time-series

into an image can have on classification performance for Human Activity Recognition

(HAR). They process the time-series into four different images: raw plots of the

time-series, multichannel images where the colour channels correspond to the x-,y-

and z-axis, a spectrogram which represents the frequency features of the signal as the

magnitude squared of the short-time Fourier transform (STFT), and a combination of a

spectrogram and shallow features. They also investigate the influence of the length of

4

2 RELATED PUBLICATIONS

segment into which a HAR time-series is preprocessed, but do not investigate further

into other preprocessing methods. Their results show that the transformation of Human

activity data into images can yield performance increases in comparison to machine

learning models trained with features.

Evrendilek (2014) compare the prediction performance of three different deep learning

models with four different preprocessing decisions: no denoising, denoising through

discrete wavelet transformation(DWT) with either Coiflet, Daubechies and Symmlet

wavelets families as bases. They do not examine other preprocessing methods. The

results in the publication indicate that wavelet denoising with optimized parameters can

increase the performance of deep learning models.

Schlüter and Deuschle (2010) examine the influence of wavelet based preprocessing

on the performance of different models for time-series prediction. Their publication

compares classical statistical models, like ARMA/ARIMA, with different wavelet based

preprocessing steps. Their variation in preprocessing include three different wavelet

families: Haar, Daubechies and Morlet. Their publication is limited to traditional

statistical models and does not further examine the influence on newer models. Their

results indicate that the performance of the models can be increased with wavelet based

preprocessing. The decision if wavelet denoising or multiresolution analysis is the

preferable preprocessing depends on characteristics of the data.

The additions of this thesis in respect to the above is the comparison of multiple differ-

ent deep learning models with machine learning and traditional statistical models. This

thesis also contributes the explicit analysis of the variability of the models due to pre-

processing. The preprocessing variations in this thesis are also more varied as in the

above mentioned publication although they do build upon them. The preprocessing vari-

ations include as first step denoising with 12 different choices: no denoising, median

filter denoising and wavelet based denoising with five different wavelets and two differ-

ent thresholds. The further preprocessing methods include scaleograms from continuous

wavelet transformation with three different wavelets and two maximum scales, multireso-

lution analysis with six different variations and feature extraction with six variations. The

models are also more extensive as in the above seen publications as they include twelve

different models: five deep learning models, five machine learning and two traditional

statistical models.

5

3 METHODOLOGY

3 Methodology

Various different models and preprocessing methods are used in the analysis of the impact

of preprocessing on the performance of Deep Learning models. Some of these models and

preprocessing methods are used in domains outside of time-series data. Others are spe-

cialized for time-series analysis, e.g. an autoregressive integrated moving-average model.

The next sub-sections therefore introduce the various different models and preprocessing

methods that are used in the experiments.

3.1 Models

Multiple different deep learning models are used for time-series classification and re-

gression. Additional models are used to compare the results and variability of the deep

learning models for the classification and regression task. The additional models include

two traditional statistical models: the multinomial regression for time-series classification

and a seasonal autoregressive integrated moving-average model for the forecasting task

which are introduced in Sub-Section 3.1.1. The various different machine learning mod-

els and their compositions are introduced in Sub-Section 3.1.2. Sub-Sections 3.1.3, 3.1.4

and 3.1.5 contain the architecture of the deep learning models. Sub-Section 3.1.6 contains

two additional layers that are used in the deep learning models. Most of these models have

multiple existing variations in the literature. The performance of deep learning models can

also vary depending on their specific architecture. The following sub-sections therefore

only include the architecture of the models that is used in this thesis. All hyperparameters

are default values if not specifically declared in this thesis.

3.1.1 Traditional statistical models

The main focus of this thesis is the assessment of the influence of different preprocessing

methods on various deep leaning models. Two traditional statistical models are used to

generate a baseline measurement for the two different prediction tasks. Multinomial re-

gression is chosen as the traditional model for the classification task and an autoregressive

integrated moving-average model for the regression.

Multinomial Regression is used for categorical target variables. The multinomial re-

gression is a direct generalization of the logistic regression to more than two categories.

The probability for a category Yi ∈ Y1, . . . ,YK−1 is given as

P(Yi|X ;β) =
exp(β (i)X)

1+∑
K−1
j=1 exp(β (j)X)

(1)

6

3 METHODOLOGY 3.1 Models

and

P(YK|X ;β) =
1

1+∑
K−1
j=1 exp(β (j)X)

(2)

where β (i) is the parameter vector corresponding to the i− th target category, K the refer-

ence category and X the vector of covariates (Böhning, 1992). The multinomial regression

in this thesis uses the version provided in the python library scikit-learn (Pedregosa et al.,

2011) which additionally regularizes the model with L2. This changes the optimization

problem of β from

β̂ = argmax
β

`(β) (3)

to

β̂ = argmax
β

`(β)−αl2R(β) (4)

where R(β) = ||β ||22 is the sum of squared coefficients, αl2 the parameter that specifies

the strength of the regularization and `(·) is the multinomial log-likelihood (Ng, 2004).

ARIMA models are used for time-series data where past values of a variable are used

to predict future values. The acronym stands for Auto-Regressive Integrated Moving-

Average which are the parts that make up the model.

An auto-regressive model predicts future values yt through

yt = c+ εt +
p

∑
i=1

aiyt−i, (5)

a combination of a constant c, an error term εt and p weighted past values yt−p, . . . ,yt−1.

A moving-average model predicts future values yt through a combination of a constant,

an error term and a weighted moving-average of q past error terms with

yt = c+ εt +
q

∑
j=1

b jεt− j (6)

where εt ∼ N(0,σ2) and i.i.d..

A combination of both models is called an Auto-Regressive Moving-Average model.

The ARMA model uses the condition that the time-series is stationary, e.g. that the mean

and variance of the time-series do not vary over time (Boshnakov, 2011). A continuous

up- or down-ward trend in data can be rectified through differencing the series, e.g.

Zt = Yt −Yt−1 or Zt = (1− L)Yt where L is the lag operator. A difference operation in

an ARMA model is denoted through the addition of the parameter d which indicates the

level of differencing. The resulting ARIMA model is written as arima(p,d,q).

7

3.1 Models 3 METHODOLOGY

Real-world data can also include seasonality, e.g. monthly time-series data has a

seasonal periodicity of s = 12 months. ARIMA models that also include additional sea-

sonality correction are written as arima(p,d,q)(P,D,Q)s. P,D and Q are variations of the

lower-case parameters but additionally use information about the seasonal periodicity s.

D = 1 indicates a seasonal difference, e.g. Zt = Yt −Yt−12 for monthly data with s = 12.

P = 1 means that Yt is lagged once, as with p, but with seasonal periodicity, e.g. Yt−12 for

s = 12. Q is likewise the seasonal counter-part to q and indicates the seasonal-lag of the

error term components (Dagum, 1980, p. 8). The correct values for the parameters can be

found through various different tests. This can be time consuming for the forecasting of a

large number of time-series. Therefore automatic estimation of these parameters through

the auto-arima function of the python package pmdarima (Smith et al., 17) is used. This

methodology is also used in the baseline computation in the M4 competition (Makridakis

et al., 2020) whose dataset is used for the forecasting comparison.

3.1.2 Machine learning models

Machine learning models use a data driven approach. Machine learning models, in con-

trast to the before seen traditional statistical models, thus come with less strict assump-

tions about the data and can generalize better. All machine learning models in this thesis

use the implementation from the python library scikit-learn (Pedregosa et al., 2011). One

such model is the k-nearest neighbours classifier which is introduced in the next para-

graph.

K-Neighbours Classifier is a machine learning model that does not train in the conven-

tional sense (Keller et al., 1985). Labelled training data is used to classify new data to one

of the categories existing in the training data. This is achieved by majority voting with

the k nearest data points of the training data to the new data point (Cover and Hart, 1967).

The computation of distance to a data point is dependent on the distance metric used.

The k nearest neighbour classifiers used in this thesis all use the Chebyshev distance de-

fined as DChebyshev(xtrain,xnew) = max
i
(|xtraini,xnewi|) where xtrain and xnew are data points

from the training data or a new dataset respectively and where i denotes the feature i of x

with which the distance is calculated. The choice of the number of neighbours k can also

influence the performance of the model.

Decision Trees are as the name implies a tree-like structure of decisions which split

the data into two parts at each step. The splitting points are commonly called nodes.

At each node the data is split along one of the features of x which maximises a given

8

3 METHODOLOGY 3.1 Models

metric. Common choices for the metric are the information gain and the Gini-impurity.

The decision trees used in this thesis all use the Gini-impurity which is defined for a node

as G(p) = 1−∑
J
i p2

i where pi is the fraction of data points in the node with class i of the J

classes (Coppersmith et al., 1999). Trees with this metric further split the data until either

a pre-defined maximum tree depth is reached or the data in a node consists only of one

class.

Random Forest models are an ensemble of multiple decision trees. The decision trees

use bootstrapped samples of the training data for each tree. Each tree predicts a class

for a given input x. The class which was predicted by the most trees is chosen as output

(Breiman, 2001). This methodology counteracts the over-fitting that can occur when only

a single decision tree is used.

Support Vector Machines separate data with two classes with a maximal margin be-

tween the decision boundary and the data. The support vectors are composed of data

points that lie within the margin. The separation of data is sometimes easier to accom-

plish in a different dimensionality. Therefore a projection φ of the data x into a different

dimensionality is used. For data vectors xi ∈Rp, i = 1, . . . ,n and y ∈ {1,−1}n the support

vector machine tries to find parameters w ∈ Rp and b ∈ R such that yi(w>φ(xi)+b) = 1

for most data. While allowing some data points to be miss-classified one can write this as

a primal problem (Bishop, 2006, pg. 332)

min
w,b,ζ

1
2

w>w+Cdist

n

∑
i=1

ζi

subject to yi(w>φ(xi)+b)≥ 1−ζi,

ζi ≥ 0, i = 1, . . . ,n

where ζi is the distance of a miss-classified data point from the correct margin boundary

and Cdist is the strength with which these distances are penalized. This is called a soft

margin as it allows data points to be miss-classified as is the case when the distribution of

the two classes overlap. Primal problems are often rewritten as dual problems as they are

easier solved through quadratic programming. The dual problem is given as

min
αi

n

∑
i=1

n

∑
j=1

αiα jyiy jk(xi,x j)

subject to 0≤ αi ≤Cdist
n

∑
i=1

αiyi = 0

9

3.1 Models 3 METHODOLOGY

where k(xi,x j) is a kernel that projects the data into a higher dimensional space and de-

fined as k(xi,x j) = φ(xi)
>φ(x j) (Bishop, 2006, pg. 333). The kernel used in this thesis

is the radial basis function and defined as exp(−ν‖x− x′‖2) where ν = 1
#features·σ2(x) (Pe-

dregosa et al., 2011). For a more detailed introduction to support vector machines and

their application in regression see Bishop (2006, pg. 326-345). The above described two-

class classification can be extended to multiple classes through the training of multiple

two-class SVMs for each combination of classes as is the case in the implementation in

the scikit-learn library.

Gradient Boosting Trees are additive models which predict yi for an input xi with ŷi =

FM(xi) = ∑
M
m=1 hm(xi) where hm is a decision tree of a fixed size and M is the number of

boosting steps to take. Gradient boosting trees are computed iteratively where the next

ensemble of trees is calculated by Fm(x) = Fm−1(x)+hm(x). The new tree hm is fitted to

minimize a sum of costs

hm = argmin
h

Cm = argmin
h

n

∑
i=1

C(yi,Fm−1(xi)+hm(xi)) (7)

where C(yi,Fm−1(xi)) denotes a cost function. This is done by fitting the weak learner hm

to the pseudo-residuals

rim =−[∂C(yi,F(xi))

∂F(xi)
]F(x)=Fm−1(x) (8)

for i = 1, . . . ,n which is the negative gradient evaluated at F(x) = Fm−1(x) (Friedman,

2001). The update can make large leaps in the direction of the negative gradient for large

gradient values. This is called an exploding gradient which leads updates to overshoot

the optimal value of ŷi. A step size ρ can be calculated to regulate this problem for each

boosting step m. The computation of a step-size ρm for the boosting approach is in some

cases non-trivial. The optimization of a step-size and a weak learner without gradients

in {βm,am} = argmin
β ,a

∑
N
i=1C(yi,Fm−1(xi)+βh(xi;a) is difficult and thus replaced by the

gradient approach (Friedman, 2001). It can be obtained for any differentiable loss through

line-search when it holds that

am = argmin
a,β

N

∑
i=1

[rim−βh(xi;a)]2 (9)

with

ρm = argmin
ρ

N

∑
i=1

L(yi,Fm−1(xi)+ρh(xi;am). (10)

This approach replaces the optimization with regard to the gradient with the closely cor-

related constrained h(x;am). This results in the updated prediction Fm(x) = Fm−1(x)+

10

3 METHODOLOGY 3.1 Models

ρmh(x;am) (Friedman, 2001). The optimization in the direction of the negative gradient

is called gradient descent and is further introduced in the next sub-section.

3.1.3 Neural Network

The following sub-sections all contain models that are commonly known as deep learning

models. They differ in their architecture but are all based on the neural network model

introduced in this sub-section. Deep learning models vary from the machine learning

and statistical models in the previous sub-sections in that they are fitted multiple times

on the same dataset. The models are adjusted with each fit to improve their predictive

capabilities.

The easiest neural network(NN) is a so-called multilayer perceptron. It consists of

at least three layers: the input, output and one or multiple hidden layers. The case with

one hidden layer is considered in the following. Each layer is made out of the so-called

neurons. Each neuron contains a non-linear activation function. Various different non-

linear functions can be chosen for this activation function. A historically common choice

is the sigmoid function defined as σ(x) = 1
1+exp(−x) . For a vectorized notation the sigmoid

σ : Rm→Rm is defined for a vector z ∈Rm in a component-wise manner (σ(z))i = σ(zi)

(Higham and Higham, 2019). Each neuron also contains a bias bi which is added to the

weighted input combination of the outputs from the previous layer. Therefore the output

of neuron i is defined as

σ(∑
j

wi ja j +bi) (11)

where a j is the output of neuron j from the previous layer weighted with wi j and neuron

i specific bias bi. The vectorized notation for a layer is then given as

σ(Wa+b) (12)

where W is the weight matrix, a the input vector and b the bias vector. As each layer

takes the output of the previous layer as input we can define the output of a three layer

multilayer perceptron as

F(x) = σ(W [3]
σ(W [2]x+b[2])+b[3]) (13)

where W [3],W [2] are the weight matrices of layer 2 and 3 respectively and b[2],b[3] are the

corresponding bias vectors. The first layer is the so-called input layer and simply returns

the input x to every neuron in the next layer. How well the output F(x) predicts the actual

target variable y can be measured through a cost or loss function as in Sub-Section 3.1.2.

11

3.1 Models 3 METHODOLOGY

A quadratic cost function for an input of size N can be defined as

Cost(F(x)) =
1
N

N

∑
i=1

1
2
‖y(x{i})−F(x{i})‖2

2. (14)

The goal of minimizing the cost involves the optimization of the weights and biases of the

model. The optimization of all weights and biases is done through the gradient descent

method mentioned in Sub-Section 3.1.2. The gradient of the cost function is given as

∇Cost(F(x)) where the derivative with respect to the r-th parameter of F(x) is given by

(∇Cost(F(x)))r =
∂Cost(F(x))

∂F(x)r
. (15)

Let p denote the vector of parameters of F(x) which should be optimized. The updated

parameters denoted by p+∆p with a small perturbation ∆p decrease the cost function

when ∆p = −∇Cost(p). A step-size η similar to ρm in Sub-Section 3.1.2 is chosen to

limit the update of p to small values and results in p→ p−η∇Cost(p) (Higham and

Higham, 2019). The calculation of Cost(p) for the entirety of xN can be computationally

infeasible for dataset where N is large. The update is therefore approximated through

a small sample {x{ki}}m
i=1 of size m << N from the entire dataset with (Higham and

Higham, 2019)

p→ p−η
1
m

m

∑
i=1

∇Cx{ki}(p). (16)

N
m updates are called one epoch and represent one training cycle over the entire dataset.

Deep learning models are usually trained over multiple epochs. The samples can be

chosen with replacement or K samples of size m can be chosen without replacement if

N = Km. This is called stochastic gradient descent as the gradient of the entire dataset is

approximated through the sample. The parameter η which is also called the learning rate

of the model is commonly replaced by more advanced schemas which vary the learning

rate throughout the training, e.g. AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba,

2017), etc..

The specific calculation of the partial derivatives of the gradient is done through a

method called back propagation. For a neural network with L layers the cost function can

be written as C = 1
2‖y−a[L]‖2

2 where a[L] is the output of the layer L. The output a[l] for

l = 2, . . . ,L is the non-linear transformation of the weighted input z[l] and is defined as

a[l] = σ(z[l]). The weighted input z[l] is defined as z[l] =W [l]a[l−1]+b[l] where a[l−1] is the

output of the previous layer. The vector of partial derivatives δ [l] with respect to the j-th

neuron at layer l is defined by

δ
[l] =

∂C

∂ z[l]j

(17)

12

3 METHODOLOGY 3.1 Models

for 1≤ j≤ nl and 2≤ l ≤ L where nl is the number of neurons at layer l. The component-

wise multiplication of two vectors, denoted by �, in the following definitions is defined

by (x� y)i = xiyi. The computation of the partial derivatives of hidden layers is possible

through the application of the chain rule and is defined as:

δ
[L] = σ

′
(z[L])� (aL− y),

δ
[l] = σ

′
(z[l])� (W [l+1])>δ

[l+1]) for 2≤ l ≤ L−1,

∂C

∂b[l]j

= δ
[l]
j for 2≤ l ≤ L,

∂C

∂w[l]
jk

= δ
[l]
j a[l−1]

k for 2≤ l ≤ L.

where 1 ≤ j ≤ nl , 1 ≤ k ≤ nl−1 and σ
′
() is the derivative of the non-linear activation

function σ . For proof of the definitions above see Higham and Higham (2019, pg. 11-13).

The definitions in this sub-section describe the so-called dense layer used in a multilayer

perceptron. The name of the dense layer is given by the fact that every single neuron is

connected to every neuron of the previous layer which can result in a large number of

weights. The following sub-sections introduce further deep learning models that employ

more complicated specialized layers in addition to dense layers.

3.1.4 Convolutional neural networks

A convolutional neural network(CNN) (Le Cun et al., 1989) is a specialized neural

network. It uses the specialized convolutional and pooling layers in addition to the dense

layer seen in Sub-Section 3.1.3. This allows for better performance of the model on data

types like images.

The structure of convolutional layers can be described with a number of filters, also

called kernels. For a 2-dimensional input a filter is convolved over the entire input and

produces an output which is often referred to as feature map. The convolution for a 2-

dimensional input of size 3×3 and a filter with size 2×2 can be defined as
I11 I12 I13

I21 I22 I23

I31 I32 I33

∗
[

w11 w12

w21 w22

]
=

[
s11 s12

s21 s22

]
(18)

where ∗ is the convolution operation, I denotes the input, w denotes the weights of the

filter and the matrix s is the output. The results si j of the convolution are calculated as

13

3.1 Models 3 METHODOLOGY

weighted sum of parts of the input where

s11 = I11 ·w11 + I12 ·w12 + I21 ·w21 + I22 ·w22,

s12 = I12 ·w11 + I13 ·w12 + I22 ·w21 + I23 ·w22,

s21 = I21 ·w11 + I22 ·w12 + I31 ·w21 + I32 ·w22,

s22 = I22 ·w11 + I23 ·w12 + I32 ·w21 + I33 ·w22.

(19)

A non-linear activation function as seen in Sub-Section 3.1.3 is then applied to each

output si j. The output of a convolution is smaller than the input if no padding is used as

only so-called valid convolutions are performed which need an input for each weight.

Padding pads the edges of an input with a chosen value and allows the centre of the

filter to overlap the outermost values of the input. It also allows the output of a filter

to keep the dimensionality of the input and therefore allows for repeated application of

convolutional layers (Yamashita et al., 2018). The Equation 18 uses a stride size of 1

which is the distance between two applications of the kernel. Larger stride sizes allow

for downsampling of the feature maps. As can be seen in Equation 19 the weights of the

filter are shared between convolutions with different parts of the input. This reduces the

number of weights that have to be stored. Convolution is therefore more efficient than the

dense matrix multiplication used in dense layers in regards to the memory requirements

(Goodfellow et al., 2016). A third dimension of an input, e.g. different colour channels

of an image, changes the filters to three dimensional objects. The calculation is similar to

Equation 19 and produces again output values si j regardless of the depth of the input. The

convolutional layer therefore collapses the third dimension of the input. Multiple filters

are usually used and the outputs stacked along the last dimension. The convolutional

layer therefore replaces the depth of the last dimension with the number of filters used.

The second layer that differentiates convolutional neural networks from standard

neural network is the pooling layer. A pooling layer also has filter size, stride and

padding as parameters but does not have any learnable parameters (Yamashita et al.,

2018). Max pooling (Zhou and Chellappa, 1988) for example returns simply the

largest value in the filter. A max pooling layer would compute the output s11 as

s11 = max({I11, I12, I13, I21, I22}). Common choices for stride and filter size are such that

the repeated applications of the filter do not overlap(Yamashita et al., 2018). Different

from convolution, pooling preserves the depth of the input feature map.

Convolutional neural networks can be applied to any grid-like data structure. This also

applies for sequential data as they can be seen as a 1-dimensional grid (Goodfellow et al.,

14

3 METHODOLOGY 3.1 Models

2016). A specialized neural network for sequential data is the recurrent neural network

which is introduced in the next sub-section.

3.1.5 Recurrent Neural Networks

Analysing sequential data like signals or time-series requires an influence of past values

on future vales. A neural network architecture which is specialized for these temporal

connections is the recurrent neural network(RNN). A recurrent network uses a hidden

internal state h̃ that is updated with each new input xt at time-step t. It can generally be

defined as h̃(t) = f (h̃(t−1),x(t);θ) where f is some transformation of the input x(t) with

the past value h̃(t−1) and some additional parameters θ . The parameters grouped under

θ include weights W for past hidden states, a bias term b and weights U for the input.

An update to the hidden state can then be defined following the definition of a layer in

Sub-Section 3.1.3 with h̃(t) = σ(b+Wh(t−1)+Ux(t)) although the sigmoid function σ is

usually replaced by tanh as non-linear activation function. Tanh is a sigmoidal function

defined between −1 and 1 (Goodfellow et al., 2016). An unfolded recurrent neural net-

work that makes a prediction only at the end of the input series can be seen in Figure 3.1.

h̃(0) h̃(1) . . . h̃(t−1) h̃(t)

x(1) x(...) x(t−1) x(t)

o(t)

L(t)

y(t)

W W W W

U U U U

V

Figure 3.1: A time-unfolded RNN which predicts only once the entire input sequence

is processed. Such models are used for time-series classification or so-called single-shot

predicition. o denotes a dense layer which transforms the last internal state into an output.

Such a model is called a single-shot prediction model as it predicts the entire output

only once at the end of the input sequence. Other types of recurrent neural networks and

more information about the specific computations such as back propagation through time

can be found in Goodfellow et al. (2016) or Graves (2012).

15

3.1 Models 3 METHODOLOGY

A simple extension of a recurrent network is the bi-directional recurrent neural

network. This model uses a second recurrent layer which analyses the input in the reverse

temporal direction. This allows for long-term dependencies in the data to be easier

captured than through a normal recurrent neural network. A recurrent neural network

struggles with long-term dependencies as is shown in Bengio et al. (1994). Some types of

data and recurrent network architecture do not allow for the use of a bi-directional layer.

For example financial data with a recurrent network which predicts at every time-step t

could not efficiently use bi-directionality. The use of different hidden units allows for the

modelling of long-term dependencies without bi-directionality in the layer.

A popular replacement for the hidden unit is the long-short term-memory unit denoted

by LSTM in the following. A LSTM unit replaces the relatively simple recurrent unit with

a more complicated update schema composed of a forget gate f (t)i , an input gate i(t), a cell

state s(t) and a output gate qi(t) in addition to the previous hidden state h̃(t−1) as can be

seen in Figure 3.2. The forget gate is defined as

s(t−1) �

f (t)

+

�

i(t)

h̃(t−1)

x(t)

+

σ

s(t)

tanh

� h̃(t)

q(t)

Figure 3.2: A LSTM unit visualized with its components. Hidden states are marked in

red, input in green, gates in blue, internal states in orange and operations are transparent.

f (t) = σ(b f +U f x(t)+Wf h̃(t−1)) (20)

where b f ,U f ,Wf are respectively biases, input and recurrent weights of the forget gate.

The internal state s(t) is updated with

s(t) = f (t)� s(t−1)+ i(t)�σ(b+Ux(t)+Wh̃(t−1)) (21)

16

3 METHODOLOGY 3.1 Models

where � denotes the element-wise multiplication and b,U,W are the biases, input and

recurrent weights respectively. The computation of the input gate i(t) is done in the same

manner as the forget gate but with its own bias and weights bi,Ui,Wi as

i(t) = σ(bi +Uix(t)+Wih̃(t−1)). (22)

The output of the LSTM cell is calculated as

h̃(t) = q(t)� tanh(s(t)) (23)

where the output gate q(t) is composed as (Goodfellow et al., 2016, pg. 406)

q(t) = σ(bq +Uqx(t)+Wqh̃(t−1)). (24)

h̃(t−1) �

(1− ·)

u(t)

ˆ̃
h(t)

r(t)

x(t)

+ h̃(t)

�

Figure 3.3: GRU circuit: hidden states in red, input in green, gates in blue and operations

are transparent.

An alternative to the LSTM is a gated recurrent unit or GRU. It is composed of a reset

gate r(t) and an update gate u(t). The update gate simultaneously controls the forgetting

factor and the decision to update the hidden state as can be seen in Figure 3.3. A new

hidden state in a GRU is calculated as

h̃(t) = (1−u(t))� h̃(t−1)+u(t)� ˆ̃h(t) (25)

where

u(t) = σ(bu +Uux(t)+Wuh̃(t−1)) (26)

17

3.1 Models 3 METHODOLOGY

is the update gate and

ˆ̃h(t) = tanh(b+Ux(t)+W (r(t)� h̃(t−1))) (27)

is the temporary hidden state where

r(t) = σ(br +Wrx(t)+Urh̃(t−1)) (28)

is the reset gate (Chung et al., 2014). The reset gate can reset the hidden state if it is

close to 0 and effectively remove any influence from past values on the hidden state. The

previous definition of a GRU can be done without biases as in Chung et al. (2014) or with

biases as in Goodfellow et al. (2016).

A combination of the LSTM and CNN architecture as described in Karim et al. (2018)

for time-series classification is also used in this thesis. The model gives the same input to

a single layer recurrent neural network with LSTM units and to a 3-layered CNN model.

The outputs of both models are then concatenated and used as input for a single dense

layer which returns the predicted class. The model also uses two additional sub-layers: a

dropout layer and batch normalization. The full model architecture can be seen in Figure

A.1 of the appendix.

3.1.6 Additional layers

Deep neural networks can overfit on the training data which increases their generalization

error. Multiple additions to a neural network can be made to counteract this. Two of these

additions are the batch normalization and the dropout layers which are introduced in the

following paragraphs.

Batch Normalization is a method to regularize the outputs of a layer. The distribution

of each layers input changes over time with training as the underlying parameters of pre-

vious layers change (Ioffe and Szegedy, 2015). This slows training down as it requires

careful initialization of parameters and low training rates. Ioffe and Szegedy (2015) in-

troduce the batch normalization (BN) layer to resolve this. The batch normalization is a

normalization of the input to the next layer during a minibatch stochastic gradient descent

update. The batch normalization is formally defined for a value xi of Batch B with m

values x1,...,m as (Ioffe and Szegedy, 2015)

BN(xi) = κ · (xi−µB√
σ2

B + ε

)+β

18

3 METHODOLOGY 3.2 Preprocessing Methods

where κ and β are optimizable parameters, ε is a small constant value for numerical sta-

bility, µB is the mean of the minibatch values and σ2
B is the variance of the minibatch

values. This stabilizes and regularizes the inputs of the layers and allows for higher learn-

ing rates (Ioffe and Szegedy, 2015). For inference on validation and testing datasets the

running-means and variances during training are stored and used for normalization during

inference (Ioffe and Szegedy, 2015).

Dropout layers are used to counteract the problem of overfitting (Hinton et al., 2012).

A dropout layer randomly sets inputs to the following layer to 0 with a choosable rate

during training. The sum over all inputs is unchanged as the inputs not set to 0 are scaled

by 1
(1−rate) . The publication by Hinton et al. (2012) introduces dropout with a frequency

of 0.5 although much more aggressive dropout rates can be used, e.g. the LSTM-CNN

mixed model from Karim et al. (2018) uses a dropout rate of 0.8 for its RNN component.

3.2 Preprocessing Methods

The models are trained with various different data preprocessing methods. The possible

preprocessing methods vary depending on the task and can influence the performance of

different models. The preprocessing methods also enable the use of different models, e.g.

a two-dimensional convolutional neural network can be trained with scaleogram images

from a continuous wavelet transform.

3.2.1 Feature Extraction

Some models can make use of temporal dependencies in time-series data. It is also a

necessity for time-series forecasting which uses past observations of the target variable

yt ,yt−1, . . . for the prediction of future values yt+1,yt+2, These dependencies can

prove difficult for models and even unnecessary for classification tasks. Time-series

classification tasks like Human Activity Recognition(HAR) instead commonly make

use of feature extraction or mapping (Anguita et al. (2013), Yang et al. (2008) and

Khan et al. (2010)). These feature mappings allow the efficient use of new models, e.g.

the multinomial regression. Which feature mappings are used is an arbitrary decision

made by the researcher. They are usually based on already existing literature in the

specific research field. The features in use for classification of time-series in this thesis

are based on either the time-series itself (Anguita et al., 2013) or on a discrete wavelet

transformation(DWT) (Mörchen, 2003). The feature calculations use the python package

tsfresh (Christ et al., 2018) or a combination of base python and the package PyWavelets

19

3.2 Preprocessing Methods 3 METHODOLOGY

(Lee et al., 2019).

The features mappings used on the raw time series are the mean(x), median(x),

standard deviation std(x), variance var(x), minimum min(x), maximum max(x), 0.25-

Quantile q0.25(x), 0.75-Quantile, the number of peaks in an interval, the mean absolute

change

meanAbsChange(x) =
1
n ∑

i=1,...,n−1
|xi+1− xi| (29)

and the absolute energy

E = ∑
i=1,...,n

x2
i . (30)

More complex features include the sample entropy

SampEn(x) =−log(
A
B
) (31)

with A calculated as

A = d[xm+1(i),xm+1(j)]< r (32)

and

B = d[xm(i),xm(j)]< r (33)

where m = 2, r = 0.2 · std(x), xm(i) = {xi,xi+1, . . . ,xi+m−1} and d[xm(i),xm(j)] denotes

the Chebyshev distance

DChebyshev(xm,xm+1) = maxi(|xmi,xm+1i|). (34)

Another complex feature are the autoregressive coefficients ϕi of a series

xt = ϕ0 +
k

∑
i=1

ϕiXt−i + εt (35)

with k ∈ {1, . . . ,10} (Christ et al., 2018). The last two feature mappings in use are the

Skew, the third standardized moment µ̃3, and the Kurtosis, the fourth standardized mo-

ment µ̃4, of the Fourier Transformation F (see the next Section 3.2.2) of the time-series

x (Anguita et al., 2013).

Another variation of feature mapping uses the coefficient series from Discrete

Wavelet Transformation (see Section 3.2.4) (Mörchen, 2003). The feature mappings for

the coefficient series include various quantiles qk with k ∈ {0.05,0.25,0.5,0.75,0.95},
the mean, standard deviation and variance of a coefficient series. They also include the

number of zero and mean crossings (Eyben et al., 2010). Lastly the entropy as seen in the

20

3 METHODOLOGY 3.2 Preprocessing Methods

previous paragraph was calculated for the coefficients (AlSharabi et al., 2016).

The Fourier and wavelet transformation both yield representations of the signal in the

frequency domain. Features calculated on this representation of the signal yield infor-

mation about the underlying frequencies of the model. This can be beneficial if different

classes in classification tasks vary in their underlying frequencies.

3.2.2 Fourier Transformation

Feature extraction for time-series data can use various methods as seen in the previous

Sub-Section. The standard features (Khan et al. (2010) and Yang et al. (2008)) for HAR

only provide information about the time-series itself. Newer features as in Anguita et al.

(2013) make use of the Fourier transformation to extract information about the frequency

components of a time-series.

The Fourier transform has different variants in use. The original continuous transform

is for a function of time f (t) given as

f̂ (ω) =
∫

∞

−∞

f (t) · exp(−i2πtω)dt (36)

for a frequency ω . The more commonly used discrete Fourier transform (DFT) for a dis-

crete sequence of numbers {xn} = x0,x1, . . . ,xN−1 transformed into a complex sequence

of numbers {Xk}= X0,X1, . . . ,XN−1 can be defined as

Xk =
N−1

∑
n=0

xm · exp(−2πi
kn
N
) (37)

which is also the definition used for the implementation in the python library numpy

(Harris et al., 2020) which is used in this thesis. The discrete Fourier transformation is

especially popular due to the development of the fast Fourier transform (FFT) by Cooley

and Tukey (1965). It reduces the computational complexity of the DFT from O(N2)

to O(N log(N)) and makes it one of the most popular algorithms in signal processing. A

drawback of the Fourier transformation is that frequencies are extracted at a global level as

can be seen in Figure 3.4. This limits its use for signals with time varying frequencies. The

Fourier transform in Figure 3.4 correctly extracts the frequencies of the two sinus waves

that are part of the signal. The switch from x(t) = sin(2 ·π ·10∗t) to x(t) = sin(2 ·π ·50∗t)

at t = 0.5s in the signal can not be inferred which limits its use in real world applications.

A Fourier-related approach to extract changes of frequency over time is the Short-

time Fourier transform (STFT). The STFT breaks a signal into equally sized windows

21

3.2 Preprocessing Methods 3 METHODOLOGY

Figure 3.4: A signal with a 10 and 50 Hz sinus curve sampled at 1000 Hz, switching at

0.5s, and its corresponding FFT.

and returns the Fourier transform for each. The main drawback is the equal size of time

windows which limits the result to having a high resolution in either time or frequency as

illustrated in Figure 3.5.

Figure 3.5: The frequency/time resolution trade-off of the STFT. Narrow window size as

in the left part of the image result in good time resolution at the cost of poor frequency

resolution. The inverse is true for the right part of the image.

Example Short-time Fourier transformations of the signal in the left part of Figure

3.4 can be seen in Figure 3.6. It can bee observed from Figure 3.6 that a small window

size in time accurately depicts the change of the signal from 10 Hz to a 50 Hz at 0.5s.

The trade-off between frequency and time resolution is also visible as the frequencies

cannot be clearly inferred. The STFT with a window size of 1s extracts the frequencies

more clearly as it is comparable to a standard Fourier transformation. The frequencies

are accurately captured at 10 and 50 Hz although their position in the composite signal is

22

3 METHODOLOGY 3.2 Preprocessing Methods

Figure 3.6: Spectrogramm of the short-time fourier transform of the signal seen in 3.4,

with window sizes ∈ [0.1,0.5,1] seconds. The uncertainty principle is visible as low

window size has a high time resolution but bad frequency resolution while large window

size has good frequency resolution but bad time resolution.

no longer as clearly visible as in the STFT with a small window size.

Transformations with variably sized windows allow for good resolution in both time

and frequency domains. One such transformation is the wavelet transform which is intro-

duced in the next sub-sections.

3.2.3 Continuous Wavelet Transformation

In context to the Fourier analysis the wavelet transformation is a relatively recent solu-

tion of the time- and frequency resolution trade-off. The wavelet transformation uses a

fully scalable modulated window which is shifted along the signal and at each position

the spectrum is calculated (Valens, 1999). The continuous wavelet transform(CWT) is

formally written as

γ(s,τ) =
∫

f (t)ψ∗s,τ(t)dt (38)

where ∗ denotes the complex conjugation and γ(s,τ) are the wavelet coefficients. The

function f (t) is decomposed into a set of wavelets ψs,τ(t) with the new dimensions scale

s and translation τ . The wavelets are a scaled and translated version of the mother wavelet

ψ with

ψs,τ(t) =
1√
s
ψ(

t− τ

s
). (39)

23

3.2 Preprocessing Methods 3 METHODOLOGY

A wavelet has some base properties, namely the square of ψ(·) integrates to unity∫
∞

−∞

ψ
2(t)dt = 1 (40)

and the average value of the wavelet in the time domain is zero∫
∞

−∞

ψ(t)dt = 0 (41)

(Percival and Walden, 2000). The function ψ(t) must therefore have a wave form.

Wavelets must also satisfy the admissibility condition∫ |Ψ(w)|2
|w| dw <+∞ (42)

with Ψ(w) being the Fourier transform of ψ(t). This allows the reconstruction of a func-

tion from its continuous wavelet transform with the inverse wavelet transform

f (t) =
∫ ∫

γ(s,τ)ψs,τ(t)dτds. (43)

It also implies that the the Fourier transform of ψ(t) vanishes at the zero frequency∣∣Ψ(w)|2
∣∣
w=0 = 0. (44)

The time-bandwidth product of a wavelet transform is the square of the input signal

as can be seen from the previous paragraph which is not a desirable property for practical

application. Therefore regularity conditions are imposed on the wavelet functions to make

it decrease quickly with decreasing scale s (Valens, 1999). One such regularity condition

for wavelets are the vanishing moments. The wavelet transform can be expanded into the

Taylor series until order n with

γ(s,0) =
1√
s
[f (0)M0s+

f 1(0)
1!

M1s2+
f 2(0)

2!
M2s3+ · · ·+ f n(0)

n!
Mnsn+1+O(sn+2)] (45)

at t = 0,τ = 0 with moments of a wavelet as

Mp =
∫

t p
ψ(t)dt (46)

and f p as the pth derivative of f and O(n+1) as the rest of the expansion.

24

3 METHODOLOGY 3.2 Preprocessing Methods

The continuous wavelet transform is highly redundant through the continuous shifting

of a continuously scalable function and therefore computationally expensive. The coeffi-

cients of the continuous wavelet transform can be used to generate a so-called scaleogram

which is a 2-dimensional representation of the 1-dimensional signal. A method to allevi-

ate this redundancy and reduce the computational cost is the use of discrete wavelets and

their corresponding discrete wavelet transform which will be introduced in the next sub-

section. The different continuous wavelets used in this thesis can be found in Appendix

A.2.

3.2.4 Discrete Wavelet Transformation

The discrete wavelets use a modified version of the representation of mother wavelets

ψ j,k(t) =
1

s j
0

ψ(
t− kτ0s j

0

s j
0

) (47)

where j and k are integers and s0 > 1 is a fixed dilation step and τ0 depends on this. Usual

choices are s0 = 2 and τ0 = 1 to achieve dyadic sampling of the frequency and time axis

(Daubechies, 1992). The discrete wavelets are also made orthogonal to their own dilations

and translations by choices of the mother wavelet with

∫
ψ j,k(t)ψ∗m,n(t)dt =

1 if j = m and k = n

0 otherwise.
(48)

A signal can then be reconstructed by summing the orthogonal wavelet basis functions

ψ j,k weighted by the wavelet transform coefficients γ(j,k) with (Valens, 1999)

f (t) = ∑
j,k

γ(j,k)ψ j,k(t). (49)

Though the previous paragraph defines the discrete wavelets, the wavelet transforma-

tion itself is still continuous. The translation k is bounded by the length or duration of

the signal. The scale parameter j though has no lower bound. As every stretch in the

time domain by a factor of 2 halves its frequency bandwidth, one would need an infinite

number of wavelets to cover the entire frequency spectrum (Valens, 1999). A solution in

the form of a low-pass filter was introduced by Mallat (1989) with the so-called scaling

function

ϕ(t) = ∑
j,k

γ(j,k)ψ j,k(t), (50)

25

3.2 Preprocessing Methods 3 METHODOLOGY

here decomposed into its wavelet components. This scaling function covers the entire

spectrum otherwise covered by an infinite number of wavelets up to the scale j. The

scaling function has an admissibility condition similar to the one seen in the previous

sub-section with
∫

ϕ(t)dt = 1 which shows that the 0th moment cannot vanish.

A signal can be analysed through an iterated filter bank which is done since the mid-

1970’s (Blu, 1993). This filter bank splits the signal with a high- and a low-pass filter. The

same can be achieved with a wavelet transform as a high-pass and a scaling function as a

low-pass filter at each scale j. The scaling function can then be split again with a high-

and a low-pass filter for scale j+1. This is expressed in the multiresolution or two-scale

relation formulation (Sidney Burrus et al., 1998) with

ϕ(2 jt) = ∑
k

h j+1(k)ϕ(2 j+1t− k) (51)

where h j+1 is a weighting factor that forms a low-pass filter. Wavelets can then be ex-

pressed as translated scaling functions at the next scale with

ψ(2 jt) = ∑
k

g j+1(k)ϕ(2 j+1t− k) (52)

where the weighting factors g j+1 form a high-pass filter. The original function f (t) can

then be expressed with dilated and translated scaling functions at scale j with

f (t) = ∑
k

λ j(k)ϕ(2 jt− k) (53)

where λ j are the scaling coefficients. Additional wavelets have to be added for scale j−1

in order to keep the same level of detail. f (t) can then be written as

f (t) = ∑
k

λ j−1(k)ϕ(2 j−1t− k)+∑
k

γ j−1(k)ψ(2 j−1t− k). (54)

The coefficients λ j−1(k) and γ j−1(k) can be found with the inner products of f (t) and ϕ j,k

or ψ j,k respectively. Replacing ϕ j,k and ψ j,k with their representation through weighted

scaling functions and some additional manipulation results in (Sidney Burrus et al., 1998)

λ j−1(k) = ∑
m

h(m−2k)λ j(m); (55)

γ j−1(k) = ∑
m

g(m−2k)λ j(m). (56)

This equation also defines the property of sub-sampling through the step-size of 2 in the

variable k. Figure 3.7 shows this as one step of an iterated filter bank.

26

3 METHODOLOGY 3.2 Preprocessing Methods

Figure 3.7: One step of an iterated filter bank from scale j to j−1. λ j is split with scaling

filter h(k) and wavelet filter g(k). Sub-sampling denoted through ↓ 2. Fig. 5 from Valens

(1999)

These coefficients are used in different preprocessing methods introduced in the next

sub-section. The different discrete wavelets used in this thesis and examples of them can

be found in Appendix A.3.

3.2.5 Discrete Wavelet Preprocessing

The previous sub-section shows how a signal x(t) can be iteratively decomposed

into scaling and wavelet coefficients λ and γ with scale j. The scaling and wavelet

coefficients are also commonly called approximation cA and detail cD coefficients. The

approximation generated with the low-pass filter h(t) of the discrete wavelet transform

contains the general lower-frequency trend of a signal. The detail coefficients contain

the high-frequency components generated through the high-pass filter g(t). These

coefficients are generally reported with their respective decomposition level up to the

maximal decomposition m for signal x(t) as can be seen in Figure 3.8. These output

coefficients of the discrete wavelet transform are used differently depending on the data

preprocessing method used.

One such preprocessing method is the so-called multiresolution analysis of a sig-

nal. Multiresolution analysis predicts the coefficients cAm,cDm, . . . ,cD1 of a discrete

wavelet transform DWT (·) of the target time series x(t + 1), . . . ,x(t + p) directly based

on the corresponding coefficients of the DWT (·) of the input time-series x(t) where

x(t) = (x1, . . . ,xt). The coefficients of the target series are then inverted to yield a forecast

(Conejo et al., 2005). The multiresolution analysis allows simultaneous prediction of

high- and low-frequency parts of the signal through different models. An example would

be a signal consisting of a low frequency trend and a high frequency oscillation which are

both important for the prediction of the signal. This can be computationally expensive as

each coefficient needs a new model. Renaud et al. (2005) only predict specific wavelet

27

3.2 Preprocessing Methods 3 METHODOLOGY

Figure 3.8: Multiresolution decomposition through DWT of a signal x(t) in blue at de-

composition level 2 with colour coded output coefficients. Generated output detail coeffi-

cients are marked green while the approximation coefficients are marked in orange. Sub-

or down-sampling by a factor of 2 is marked with circles.

coefficients and invert with other coefficients set to zero. This is efficient as only one

model has to be used but increases the forecasting error as parts of the original signal are

lost. The multiresolution analysis that is used in this thesis uses all coefficients up to the

chosen level based on Conejo et al. (2005).

Another preprocessing method based on the discrete wavelet transformation is the

wavelet de-noising. It uses discrete wavelet decomposition to filter out high-frequency

noise in a signal. This approach is based on the assumption that x(t) is generated through

a lower-frequency function f (t) and additional white noise ε(t) ∼ N(0,σ2),σ > 0, e.g.

x(t) = f (t)+ ε(t). The noise component is represented in each coefficient while the in-

formation about f (t) is present only in a few coefficients (Nason et al., 2000). Therefore

small coefficients only contain information about the noise in the signal. Consequently

setting all coefficients below a threshold ι to zero and the following inversion of the mod-

ified wavelet coefficients yields a de-noised signal x̂(t). Different thresholding functions

exist, though all de-noising in this thesis uses soft thresholding from Donoho and John-

stone (1994) defined as WT ′= sgn(WT)(|WT |−ι)1|WT |>ι where sgn denotes the signum

function and WT the matrix of wavelet coefficients.

28

4 DATASETS

4 Datasets

Two datasets were used, one each for time-series classification and prediction. Both are

publicly available at the websites of UCI and M4 respectively.

4.1 UCI-HAR dataset

The time-series classification experiment uses the Smartphone Based Human Activity

Recognition(SBHAR) dataset from UCI. Version one of the dataset was released by An-

guita et al. (2013) and contains tri-axial linear acceleration and angular velocity data. The

data comes from a set of experiments with 30 volunteers wearing a hip-mounted smart-

phone. The participants freely performed a sequence of six different Activities of Daily

Life(ADL), which were walking, walking upstairs, walking downstairs, standing, sitting

and laying down. The experiment was done twice by each participant. The time-series

data was filtered with a median filter and a 3rd order low-pass Butter-worth filter. The

signals were then sampled in fixed-width sliding windows of 2.56sec and 50% overlap

which corresponds, at an initial sampling rate of 50Hz, to signal length of 128 time-steps.

The first version of the dataset only provides the preprocessed data and extracted features

from the sliding windows. The classification comparisons in this thesis use version 2.1

which was released by Reyes-Ortiz et al. (2016). This new version contains the data from

version 1.0 and expands it with new transitional labels stand-to-sit, sit-to-stand, sit-to-lie,

lie-to-sit, stand-to-lie and lie-to-stand. The transitional labels only account for a small

part of the dataset as they were not the main focus of the study and therefore less time

was spent in transition.

4.2 M4 competition dataset

The M4 competition dataset (Makridakis et al., 2020) was initially compiled for the fourth

competition in the M-Series. The dataset contains 100000 time-series split by their time

interval of collection, e.g. weekly, monthly etc.. The dataset was generated by a random

selection of these 100000 time-series from a database called ForeDeCk from the National

Technical University of Athens that contains 900000 time-series(Makridakis et al., 2020).

The database is built from diverse and publicly accessible data sources. It contains time-

series from domains with a focus on business forecasting applications such as industries,

services, tourism, imports and exports, demographics, education, labor and wage, govern-

ment, households, bonds, stocks, insurances, loans, real estate, transportation, and natural

resources and environment (Spiliotis et al., 2020). The time-series were anonymized and

all features that could be used to identify the time-series were removed such as the time

29

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://mofc.unic.ac.cy/the-dataset/

4.2 M4 competition dataset 4 DATASETS

frame when the series was collected. The dataset contains information from what domain

the time-series were collected. The additional information is used to stratify the split into

train, validation and test data. This allows the split data to each contain the same pro-

portions of data from the different domains. The time-series prediction experiments in

this thesis use the subset of monthly data for two reasons. The first is the volume of data

available as the monthly subset contains with 48000 time-series nearly half of the entire

M4 dataset. The second is that the monthly data is the most balanced subset in regard

to their original domain with about 10000 time-series each from Micro, Industry, Macro

and Finance domains. About 5700 time-series are from the Demographic domain and 277

are categorized as Other. The prediction task in this thesis uses the forecasting horizon

from the M4 competition for monthly data which is a long-term forecasting horizon of 12

months.

30

5 EXPERIMENTAL RESULTS

5 Experimental Results

The models described in Section 3 are used to classify the time-series data from the hu-

man activity dataset and forecast the time-series from the M4 competition. The models

are trained with various different preprocessing combinations which influence the perfor-

mance of the models. The variability of the models over the preprocessings is measured

as well as the average performance. Machine and deep learning models vary in their

hyperparameters which are often tuned specifically to one dataset or task. These tuned

hyperparameters can heavily influence the performance of models. As such the models

in the experiments use the default hyperparameters wherever possible and the same seed

for the initial weights for the deep learning models. Machine learning models with split-

ting or randomized feature selection like the decision tree use the same random seed for

reproducibility. The deep learning models were each trained for 20 epochs and use the

same architecture when possible, e.g. the CNN for images uses a two-dimensional convo-

lutional layer while the CNN for time-series data uses an one-dimensional convolutional

layer. The results therefore only apply to the models with the same hyperparameters as

other choices could change the influence of the preprocessing.

5.1 Classification

The classification experiments use the Human Activity Recognition dataset introduced

in Section 4. The raw acceleration and gyroscopic data is 3 dimensional and the

acceleration data is further split into body and gravitational motion after denoising. Each

of the 9 signals is then further preprocessed with one of three preprocessing methods:

scaleogram from a continuous wavelet transformation, multiresolution analysis or feature

extraction. Due to the overlapping nature of sequences the data is split based on the

physical experiment from which they were obtained. This ensures that no data is shared

between the training and test set. The first 41 experiments are used as training data, the

next 10 experiments are validation data and the last 10 experiments are used as test data.

The deep learning models evaluate the prediction accuracy during each epoch on the

validation data. The weights of the model are saved to a file if the prediction accuracy

on the validation data surpasses the previous epochs. This is a so-called best model

checkpoint. This ensures that variability during training is mitigated as the deep learning

models are trained for only 20 epochs. It also is a proxy measure for generalization and

performance on the test set and minimizes the risk of overfitting on the training data. The

machine learning models do not use the validation data as checkpoint and therefore are

trained with an union of training and validation data.

31

5.1 Classification 5 EXPERIMENTAL RESULTS

The task of classifying time-series data enables non-reversible transformations. These

transformations are in the following denoted as major preprocessings as they fundamen-

tally change the data and enable different models, e.g. a 2-dimensional convolutional

neural network for images created through CWT or feature extraction for multinomial

regression. A minor preprocessing is the denoising of the time-series which has 12 vari-

ations. 10 of those are DWT thresholding (Sub-Section 3.2.5), 1 variation is the median

filter which is also used in Anguita et al. (2013) and the last variation is the lack of any

denoising. The wavelet denoising variations use two different thresholds ι ∈ {0.2,0.3}
and the wavelets families ψ ∈ {Haar, Daubechies-4, D.-Mey., Symlets-4, Coiflets-4}.
The level of the DWT for denoising is set to the maximum possible level for each

time-series.

The major preprocessing transformations enable different models for time-series

classification. The analysis of a scaleogram as a result of continuous wavelet transform

uses a convolutional neural network based on Zheng et al. (2018). The second major

preprocessing uses multiresolution analysis. The baseline performance for models using

time varying inputs is also analysed. For this the models are trained with the denoised

time-series input. The multiresolution approach uses discrete wavelet transformation

whose coefficients are then concatenated for ease of computation. The last major

preprocessing is the feature extraction. This method allows a wider range of models to be

employed that were not usable on the raw time-series data or the image representation.

The deep learning models that are used for classification include a 2-dimensional con-

volutional neural network(CNN) which uses two convolutional layer each followed by a

max. pooling layer and finally two dense layers and an 1-dimensional CNN which uses

the same architecture only with the corresponding 1-dim. layers. They also include a

neural network(NN) composed of three dense layers, a recurrent neural network(RNN)

which uses a single recurrent layer with gated recurrent units(GRU) followed by two

dense layers, a second version of the RNN with bi-directionality in the recurrent layer

and a recurrent-/convolutional neural network mixed model(LSTM-CNN) from Karim

et al. (2018) whose architecture can be found in Figure A.1 in the appendix. The mixed

model uses long-short term memory units (LSTM) in the recurrent part of the model fol-

lowed by a dropout layer with a high dropout rate of 0.8. The convolutional part of the

mixed model contains three convolutional blocks followed by a global average pooling

layer. The convolutional blocks each contain a convolutional layer and a batch normaliza-

32

5 EXPERIMENTAL RESULTS 5.1 Classification

tion layer followed by an activation layer. The machine learning models include a support

vector classifier(SVC), a decision tree classifier(DTC), a random forest classifier(RFC),

a gradient boosting classifier(GBC) and a k-neighbours classifier(KNC). The statistical

baseline model for classification is the multinomial regression(multinom. Reg.). A list of

models per major preprocessing method can be found in Table 5.1.

Major Preprocessing Models

CWT images CNN

Multiresolution time NN, RNN, CNN, Bi-RNN, LSTM-CNN

Feature extraction NN, SVC, RFC, DTC, KNC, GBC, NN(sklearn), multinom. Reg.

Table 5.1: Table of the models and for which major preprocessing they were used.

The major preprocessings again come with their own variability. For example the

choice of wavelet in the continuous or the discrete wavelet transformation. The addition

of models trained with the original features from Reyes-Ortiz et al. (2016) increases

the number of total models trained to 1016. The results are therefore not presented for

each variation of a model but aggregated by their various preprocessings as can be seen

in Figure 5.1, Figure 5.3 or Figure 5.2. The metric used to compare the models is the

median classification accuracy on the test set and variability is measured through the

interquartile distance(IQD) of the model performance over various preprocessings.

0.0 0.2 0.4 0.6 0.8 1.0
Test Accuracy

CNN

Bi-RNN

LSTM-CNN

NN

RNN

DTC

GBC

KNC

multinom. Reg.

Sklearn NN

RFC

SVC

M
od

el

Figure 5.1: Model accuracy aggregated over all preprocessing variations.

As can be seen in Figure 5.1, the model performance varies strongly based on the

33

5.1 Classification 5 EXPERIMENTAL RESULTS

preprocessings. The outliers in the figure necessitate the use of robust aggregation mea-

sures such as the median instead of mean and interquartile distance instead of variance.

The sklearn based neural network is the model with the greatest variability in accuracy.

This is attributed to the wide performance range from epoch to epoch. The sklearn im-

plementation does not allow for passing of validation data and only for the definition of

the fraction of training data that is to be used as validation data. The overlapping nature

of the sequences does not allow for this randomised splitting. Therefore the more robust

neural network with a checkpoint using the Keras (Chollet et al., 2015) python library is

also included for feature models.

0.0 0.2 0.4 0.6 0.8 1.0
Test Accuracy

Coiflets-4

Daubechies-4

D.-Mey.

Haar

Median

none

Symlets-4

D
en

oi
si

ng
 w

av
el

et

Figure 5.2: Aggregated accuracy of all models per denoising wavelet.

All major preprocessings use denoising as first step in the preprocessing pipeline. The

original features use a median filter as mentioned in Section 4 but are excluded from the

following analysis due to their lack of variability. From Figure 5.2 it can be seen that the

median filter and no filtering have the highest median accuracy over all models and major

preprocessings. The interquartile distance is also the lowest for these preprocessings as

can be seen in Table B.3 in the appendix. This shows that the relatively easy median

filter outperforms the shown wavelet denoising approaches for soft thresholds with 0.2

and 0.3. It is also observable that the median results only decrease from 0.920732 to

0.917429 accuracy if no denoising is done and even outperforms the wavelet denoising

approaches. This indicates that bad denoising actually decreases performance for human

activity recognition compared to no denoising.

From Figure 5.3 it can be seen that the models the with least variability use either

the features from Reyes-Ortiz et al. (2016) or the scaleogram images from the CWT. A

34

5 EXPERIMENTAL RESULTS 5.1 Classification

0.0 0.2 0.4 0.6 0.8 1.0
Test Accuracy

CWT

Multiresolution

Feature Extraction

org. Feat. Ext.

Pr
ep

ro
ce

ss
in

g

Figure 5.3: Model accuracy aggregated per major preprocessing.

closer look at which motions, e.g. different types of walking, differentiate the good and

bad performing models can be found in Figures B.1 and B.2 in the appendix. A more

detailed look at the results for each major preprocessing is given in the next sub-sections.

The median and interquartile distance for Figure 5.1 and 5.3 is given in Tables B.1 and

B.2 in the appendix respectively.

5.1.1 CWT image models

As can be observed from Figure 5.3 or the corresponding Table B.2, the convolutional

neural network models using the image representation from a continuous wavelet

transformation have a high median accuracy of 0.9123 with an interquartile distance of

0.0215. From Table 5.2 it can be seen that the median of the CNNs using the scaleogram

CWT wavelet Max. CWT Scale Median accuracy Interquartile distance

Mexican Hat 64 0.914888 0.019817

Morlet 128 0.914634 0.021977

Gaussian-2 64 0.914126 0.021596

Gaussian-2 128 0.912348 0.011179

Morlet 64 0.909807 0.024009

Mexican Hat 128 0.907774 0.027439

Table 5.2: Aggregated CNN results per CWT wavelet and maximum scale of the CWT.

of the signals is stable with regard to the wavelet and maximum scale chosen for the

35

5.1 Classification 5 EXPERIMENTAL RESULTS

continuous wavelet transformation.

What does seem to have a higher influence is the choice of denoising method as can be

seen in Figure B.3 in the appendix. The trend seen in Figure 5.2 is also present for CNN

models where the median performance of the models decreases with discrete wavelet de-

noising compared to no denoising at all. The wavelet denoising has a high amount of

variability from hyperparameters. The choice of the mother wavelet and the thresholding

of the coefficients would require an extensive hyperparameter search or knowledge about

the properties of the signal. The denoising without hyperparameters like median filter-

ing could therefore be an approach that not only decreases the number of parameters that

would need tuning but also decreases the variability of model performance as can be seen

in Figure B.3 and Table B.4 in the appendix. From the performance of the CNN models

can be followed that this approach could be an adequate replacement for the traditionally

used feature based approach. Another factor is the relatively low number of hyperparam-

eters of the CWT, wavelet family and maximum scale, compared to the feature extraction

preprocessing. The results for the time-series models in the next sub-section confirm the

observed low variability of the CNN models seen in this sub-section.

5.1.2 Time-series models

Another possible major preprocessing method for time-series classification is the use of

coefficients from a discrete wavelet transformation. The baseline performance of the

models is analysed with the time-series data and its denoising variations. This comes

with distinctly less computational cost in the preprocessing compared to the scaleogram

image variant. This is because of the redundancy in the continuous wavelet transformation

which is used to generate the scaleogram images. For example, uncompressed arrays of

the data preprocessed with CWT and a maximum scale of 128 need ∼ 6GB of space.

The same data preprocessed with multiresolution analysis only needs ∼ 50MB of space.

The direct use of the signals also allows the use of various other models in addition to

a CNN with 1-dimensional convolutional layers which can be seen in Table 5.3. The 1-

dimensional CNN has a comparable median accuracy while using data that can be stored

with a fraction of space necessary for CWT.

From Table 5.3 and its corresponding boxplot in Figure B.5 in the appendix can be

observed that the CNN is the model that is the least influenced by the preprocessing meth-

ods. It is also the model that has the best median accuracy followed by the LSTM-CNN

mixed model from Karim et al. (2018). It can also be observed that the addition of sim-

ple bidirectionality to the RNN model improves its accuracy by ∼ 0.12 and additionally

36

5 EXPERIMENTAL RESULTS 5.1 Classification

Model Median Accuracy Interquartile distance

CNN 0.913872 0.016514

LSTM-CNN 0.911839 0.028201

NN 0.906250 0.040777

Bi-RNN 0.890244 0.025661

RNN 0.776931 0.129954

Table 5.3: Median accuracy of the models using the raw time-series or a DWT coefficient

representation. Results are aggregated over all preprocessing variations. The correspond-

ing boxplot can be seen in Figure B.5 in the appendix.

lowers its variability due to preprocessing. The results aggregated by model and multires-

olution variation can be seen in Table B.5 in the appendix. The use of raw signals requires

less preprocessing than CWT transformation or the popular feature based approach seen

in the next sub-section.

5.1.3 Feature models

The use of features is a preprocessing step often used in human activity recognition (see

Anguita et al. (2013), Khan et al. (2010) and Yang et al. (2008)). A downside is that

features beyond standard measures, like quantiles, mean and variance, often need domain

knowledge, e.g. signal magnitude area for HAR which is computed as the normalized

integral of an accelerometer. The use of features based on the wavelet transformation is

similar to Fourier transformation as they both contain information about the frequencies

present in the signal and has been widely used for time-series classification (see Farooq

and Datta (2003), Xu et al. (2009) and Chen and Shen (2017)). The choice of the wavelet

for the transformation is a hyperparameter that further introduces variability. The results

for the models seen in Table 5.4 and are aggregated over all denoising variations and the

different wavelets chosen for the wavelet based features.

From the results in Table 5.4 it can be observed that tree based ensemble machine

learning models produce stabler results than the neural network model. It is also ob-

servable that the traditional statistical model, the multinomial regression, outperforms all

other feature based models in the median accuracy while maintaining comparable stabil-

ity as can be seen from its low interquartile distance. The model first used to analyse this

dataset, the support vector classifier, in Anguita et al. (2013) is more susceptible to pre-

processing than other, tree based, machine learning models or the stable implementation

of the neural network. The results grouped by model and feature base are found in Table

37

5.1 Classification 5 EXPERIMENTAL RESULTS

Model Median Accuracy Interquartile distance

multinom. Reg. 0.904726 0.025152

GBC 0.896087 0.021087

RFC 0.893801 0.021214

NN 0.877541 0.043826

DTC 0.832063 0.028201

SVC 0.802337 0.137703

KNC 0.608232 0.137322

Sklearn NN 0.188008 0.190549

Table 5.4: Aggregated results of the models using features as input. Results are grouped

by model and aggregated over denoising variations and feature bases. Feature bases con-

tain features from the signals themselves or from the DWT coefficients.

B.6 in the appendix. The performance of the models using the original features for the

dataset published with Reyes-Ortiz et al. (2016) can be seen in Table 5.5.

Model Accuracy

multinom. Reg. 0.970573

SVC 0.960426

RFC 0.956367

NN 0.955860

Sklearn NN 0.952816

GBC 0.947742

DTC 0.909691

KNC 0.781329

Table 5.5: Classification accuracy of the models on the test set with the original features

from Reyes-Ortiz et al. (2016) and Anguita et al. (2013).

Observable from Table 5.5 is that the SVC reproduces the accuracy of 0.96 or 96%

from Anguita et al. (2013) and outperforms the other machine and deep learning models.

Also observable is the fact that the multinomial regression again achieves the highest clas-

sification accuracy. This and the low interquartile distance used to measure susceptibility

to preprocessings might make it a preferable alternative to the machine and deep learning

models. Table 5.5 also shows that features build with domain knowledge outperform the

other approaches.

38

5 EXPERIMENTAL RESULTS 5.2 Forecasting

5.2 Forecasting

The forecasting task uses the monthly data of the M4 competition dataset. The model

performance is evaluated on the test set, which is 10% of the data, using the average

root mean squared error(RMSE) and average symmetric mean absolute percentage er-

ror(sMAPE). The RMSE of the test set is defined as

RMSE(ŷ) =
1
N
·

N

∑
i=1

√
∑

T
t=1(yit− ŷit)2

T
(57)

where ŷ are the predictions for the test set with dimensionality N×T and ŷit is one such

prediction. The RMSE is also the metric used to monitor the deep learning models and

closely related to the mean squared error which is used as loss for both machine and

deep learning models. Therefore a second metric is used to measure the predictions, the

sMAPE. The sMAPE is also used as evaluation metric for the M4 competition (Makri-

dakis et al., 2020). The sMAPE is an accuracy measure based on relative errors and

defined as

sMAPE(ŷ) =
1
N

N

∑
i=1

1
T

T

∑
t=1

|yit− ŷit | ·200
|yit |+ |ŷit |

(58)

where the 200 is used to generate percentage values and the theoretical best value is 0.

The preprocessing methods used for the forecasting include DWT denoising and

multiresolution analysis based on the DWT coefficients. The wavelet based denoising

reduces DWT coefficients to zero or shrinks them depending on the threshold. This alters

the coefficients and therefore also the time-series if the transformation is inverted. The

inverse of this alteration of the time-series cannot be applied during inference. As such it

increases the forecasting bias as the model is trained to predict an altered version of the

time-series. The method is based on the assumption that the time-series is made up of a

"true" time-series and additional noise. The model is then able to predict this "true" time-

series instead without the interference of the noise (Alrumaih and Al-Fawzan, 2002). As

seen in the classification the hyperparameters are the choice of wavelet and the threshold

for a soft-thresholding approach. The multiresolution analysis is a reversible method

in which the DWT coefficients of the target series are directly forecast using the DWT

coefficients from the input series. The inverse DWT is then applied to the coefficients

which generates the prediction for the target series and allows evaluation. This method

uses a single model for each of the coefficients, e.g. the coefficients cA2,cD2 and cD1

for a DWT with two levels. The hyperparameters for the multiresolution analysis are the

level for the DWT and the wavelet families. Both DWT denoising and multiresolution

analysis use the wavelet families ψ ∈ {Haar, Daubechies-4, Symlets-4, Coiflets-4} based

39

5.2 Forecasting 5 EXPERIMENTAL RESULTS

on Li and Tam (2017), Sugiartawan et al. (2017), Yan and Ouyang (2018) and Mishra

et al. (2020).

The models are based on either the baseline deep learning models used in the M4

competition or by Mishra et al. (2020). The models include 3 machine learning models,

a decision tree regression(DTR), a random forest regression(RFR) and a support vec-

tor regression(SVR). The machine learning models all use the implementation from the

scikit-learn python library. A drawback of the implementation is that the SVR in the

scikit-learn library is unable to predict multiple outputs. Therefore the additional multi-

outputregressor function is used to fit a SVR for each target value which are then jointly

optimized. The deep learning models include a neural network(NN) with two dense lay-

ers and a convolutional neural network(CNN) with two convolutional layers followed by

a single max. pooling and dense layer. A recurrent neural network(RNN) is also used

which uses a single recurrent layer with LSTM units, a dropout layer with a dropout rate

of 0.5 and a single dense layer. A performance baseline model is the ARIMA for which

the best parameters for each time-series are chosen with an auto-arima from the python

library pmdarima. The median results and variability over the different preprocessings

can be seen in Table 5.6.

Model Median RMSE RMSE IQD Median sMAPE sMAPE IQD

RFR 1243.303247 132.461305 12.454857 2.221169

NN 1282.674080 17.549973 13.675153 0.255513

CNN 1308.555314 65.310822 13.786279 0.815363

DTR 1815.114725 366.056599 17.738360 4.563733

SVR 2382.547132 91.167948 23.192106 2.067885

RNN 5785.171263 192.790315 123.795911 21.483789

Table 5.6: Results of the forecasting models aggregated over all preprocessing variations.

From Table 5.6 it can be seen that the model with the lowest median RMSE and

sMAPE is the random forest model. Although it is better performing in both metrics

than all other models, it has more variability than the neural network or the convolutional

neural network. The interquartile distance of the NN and CNN suggest that they

are both less dependent on the preprocessing than the random forest. The tree based

machine learning models again outperform the support vector model as was also the

case in the classification task. The very high metric scores of the RNN in Table 5.6 are

attributed to slower convergence than other deep learning models across all preprocessing

40

5 EXPERIMENTAL RESULTS 5.2 Forecasting

variations. A much higher number of epochs would possibly allow the RNN to improve

to comparable levels to the other deep learning models.

The median performance and variability per model and major preprocessing combina-

tion can be seen in Table 5.7. It is observable from the results in the table that the random

forest regression, the convolutional neural network and the neural network model all per-

form better with the multiresolution analysis as preprocessing. The wavelet denoising

preprocessing method increases the median RMSE and sMAPE of these three models.

It also increases their variability as can be seen by the increase in the interquartile dis-

tance. It is also observable from Table 5.7 that this positive influence of multiresolution

analysis on the performance and variability reverses for the support vector regression and

the recurrent neural network. The SVR and denoising combination also has the lowest

variability of all models.

Model Maj. Prep. median RMSE RMSE IQD median sMAPE sMAPE IQD

RFR Multiresolution 1232.994632 5.680089 12.275056 0.196409

CNN Multiresolution 1264.508698 51.112332 13.277548 0.775055

NN Multiresolution 1277.785375 7.858523 13.457280 0.095140

Denoising 1290.280206 28.727466 13.680545 0.209592

CNN Denoising 1309.762281 62.754894 14.108509 1.374528

RFR Denoising 1335.539991 160.672735 13.985533 2.608262

DTR Multiresolution 1793.179541 56.986714 17.403203 0.366574

Denoising 2150.641037 585.026244 21.322216 5.515836

SVR Denoising 2377.796901 4.151135 23.114970 0.088712

Multiresolution 2536.244707 129.432358 26.415080 2.487325

RNN Denoising 5780.957460 101.213565 123.368875 9.688638

Multiresolution 6008.797750 205.553907 150.318774 28.505949

Table 5.7: Median RMSE and sMAPE and their respective IQD over model and prepro-

cessing combination. Results are sorted by ascending median RMSE.

Table 5.8 contains the baseline results for each model and the additional baseline for

the ARIMA model. The baseline results were calculated using the raw data as input.

ARIMA results are averaged over the test set and one model is fit for each of the time

series. From Table 5.8 it can be seen that the ARIMA model outperforms the machine and

deep learning models in the absolute error measure while having a much higher relative

41

5.2 Forecasting 5 EXPERIMENTAL RESULTS

Model RMSE sMAPE

ARIMA 738.736224 77.078693

RFR 1243.303247 12.143546

NN 1276.111456 13.675154

CNN 1278.732336 13.506073

DTR 1806.965950 16.816696

SVR 2377.796901 23.091703

RNN 5683.342951 114.045341

Table 5.8: Results of the various forecasting models using the raw data as input. The

ARIMA baseline performs better for the absolute error measure and worse for the relative

error measure.

error. This indicates that the ARIMA model fails to predict low values in the time-series

for which the relative error is more sensitive. It is also observable that the performance

trend visible in Table 5.7 is repeated for forecasts using the raw data as input.

42

6 CONCLUSION

6 Conclusion

In this thesis, the variability of different deep and machine learning models due to pre-

processing is investigated on two different time-series tasks. The classification data is

preprocessed with denoising and either a continuous wavelet transformation, a multireso-

lution analysis or feature extraction. These preprocessings each come with variability and

influence models in different ways. The results show that convolutional neural networks

are the model with the least variability due to preprocessing and therefore the most stable

of the analysed models. The classification results show that tree based ensemble machine

learning models, like the random forest or gradient boosting model, are less influenced

by preprocessing variations than the simple decision tree, a k-nearest neighbour classi-

fier or a support vector classifier. Also observable from the results is that the addition

of simple bidirectionality to the recurrent neural network lowered the variability due to

preprocessing while also increasing the median classification accuracy. The results based

on the raw signals showed that a simple transformation in the frequency domain with a

discrete wavelet transformation can improve the classification accuracy while lowering

the variability. The results for the feature based approach show that features based on the

discrete wavelet transformation coefficients are preferable to features based on the signals

themselves if those features were constructed without domain knowledge. The wavelet

based features are also more robust with regards to any prior denoising of the data. The

results of the classification preprocessing variations also show that the best performance

is achieved with carefully chosen domain based features. Future work would further in-

vestigate the multiresolution approach as it comes with lower computational cost and is

applicable to a wide range of time-series without prior domain knowledge.

The forecasting results show that while the random forest model achieves better

median results, it is also more susceptible to preprocessing variations than a convolutional

neural network or neural network.

The results in this thesis indicate that no denoising is better for human activity recogni-

tion tasks than too strong denoising. The results indicate that the parameterless approach

of median denoising is a good alternative. It is also less dependent on the data as the

wavelet denoising. The wavelet denoising also introduces multiple new hyperparameters

which would need tuning for a new dataset and increase the general variability of the

method. The further direction of this work would either be the study of the preprocessing

methods on other datasets or further variations in preprocessing that were not explored in

this thesis, e.g. restriction of the input signals to either acceleration or angular velocity

signals. Future work would also apply the preprocessing methods to other datasets as

43

6 CONCLUSION

the denoising variability might be caused by the nature of the human activity recognition

data. The results can vary for the same model and preprocessing due to variability during

model training. Further work would also minimize this variability with cross-validation.

44

REFERENCES REFERENCES

Bibliography

References

Aggarwal, C. C. and Yu, P. S. (2001). Outlier detection for high dimensional data. In

Proceedings of the 2001 ACM SIGMOD international conference on Management of

data, pages 37–46.

Ahmed, N. K., Atiya, A. F., Gayar, N. E., and El-Shishiny, H. (2010). An empirical com-

parison of machine learning models for time series forecasting. Econometric Reviews,

29(5-6):594–621.

Alrumaih, R. M. and Al-Fawzan, M. A. (2002). Time series forecasting using wavelet

denoising an application to saudi stock index. Journal of King Saud University - Engi-

neering Sciences, 14(2):221–233.

AlSharabi, K., Ibrahim, S., Djemal, R., and Alsuwailem, A. (2016). A dwt-entropy-ann

based architecture for epilepsy diagnosis using eeg signals. In 2016 2nd international

conference on advanced technologies for signal and image processing (ATSIP), pages

288–291. IEEE.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013). A public

domain dataset for human activity recognition using smartphones. In Esann, volume 3,

page 3.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

Bishop, C. M. (2006). Pattern recognition and machine learning. Information science

and statistics. Springer, New York, NY. Softcover published in 2016.

Blu, T. (1993). Iterated filter banks with rational rate changes connection with discrete

wavelet transforms. IEEE Transactions on Signal Processing, 41(12):3232–3244.

Böhning, D. (1992). Multinomial logistic regression algorithm. Annals of the institute of

Statistical Mathematics, 44(1):197–200.

Boshnakov, G. N. (2011). On first and second order stationarity of random coefficient

models. Linear Algebra and its Applications, 434(2):415–423.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

45

REFERENCES REFERENCES

Camacho-Collados, J. and Pilehvar, M. T. (2017). On the role of text preprocessing in

neural network architectures: An evaluation study on text categorization and sentiment

analysis. arXiv preprint arXiv:1707.01780.

Chandrashekar, G. and Sahin, F. (2014). A survey on feature selection methods. Comput-

ers & Electrical Engineering, 40(1):16–28.

Chen, Y. and Shen, C. (2017). Performance analysis of smartphone-sensor behavior for

human activity recognition. IEEE Access, 5:3095–3110.

Chollet, F. et al. (2015). Keras. https://keras.io.

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W. (2018). Time series feature

extraction on basis of scalable hypothesis tests (tsfresh–a python package). Neurocom-

puting, 307:72–77.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling.

Conejo, A. J., Plazas, M. A., Espinola, R., and Molina, A. B. (2005). Day-ahead electric-

ity price forecasting using the wavelet transform and arima models. IEEE transactions

on power systems, 20(2):1035–1042.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of

complex fourier series. Mathematics of computation, 19(90):297–301.

Coppersmith, D., Hong, S. J., and Hosking, J. R. (1999). Partitioning nominal attributes

in decision trees. Data Mining and Knowledge Discovery, 3(2):197–217.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13(1):21–27.

Dagum, E. B. (1980). The X-II-ARIMA seasonal adjustment method. Statistics Canada,

Seasonal Adjustment and Time Series Staff.

Daubechies, I. (1992). Ten lectures on wavelets. SIAM.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81(3):425–455.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research, 12(7).

46

https://keras.io

REFERENCES REFERENCES

Evrendilek, F. (2014). Modeling net ecosystem carbon dioxide exchange using temporal

neural networks after wavelet denoising. Geographical Analysis, 46(1):37–52.

Eyben, F., Wöllmer, M., and Schuller, B. (2010). Opensmile: the munich versatile and

fast open-source audio feature extractor. In Proceedings of the 18th ACM international

conference on Multimedia, pages 1459–1462.

Farooq, O. and Datta, S. (2003). Phoneme recognition using wavelet based features.

Information Sciences, 150(1-2):5–15.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.

The Annals of Statistics, 29(5):1189–1232.

García, S., Luengo, J., and Herrera, F. (2015). Data preprocessing in data mining.

Springer.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:

//www.deeplearningbook.org.

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks, vol-

ume 385. Springer Science & Business Media.

Grochowski, M. and Jankowski, N. (2004). Comparison of instance selection algorithms

ii. results and comments. In International Conference on Artificial Intelligence and Soft

Computing, pages 580–585. Springer.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Courna-

peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,

van Kerkwijk, M. H., Brett, M., Haldane, A., del R’ıo, J. F., Wiebe, M., Peterson, P.,

G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,

and Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825):357–

362.

Higham, C. F. and Higham, D. J. (2019). Deep learning: An introduction for applied

mathematicians. SIAM Review, 61(4):860–891.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

(2012). Improving neural networks by preventing co-adaptation of feature detectors.

Hodge, V. and Austin, J. (2004). A survey of outlier detection methodologies. Artificial

intelligence review, 22(2):85–126.

47

http://www.deeplearningbook.org
http://www.deeplearningbook.org

REFERENCES REFERENCES

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift.

Jankowski, N. and Grochowski, M. (2004). Comparison of instances seletion algorithms

i. algorithms survey. In International conference on artificial intelligence and soft com-

puting, pages 598–603. Springer.

Karim, F., Majumdar, S., Darabi, H., and Chen, S. (2018). Lstm fully convolutional

networks for time series classification. IEEE Access, 6:1662–1669.

Keller, J. M., Gray, M. R., and Givens, J. A. (1985). A fuzzy k-nearest neighbor algo-

rithm. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(4):580–585.

Khan, A. M., Lee, Y.-K., Lee, S.-Y., and Kim, T.-S. (2010). Human activity recognition

via an accelerometer-enabled-smartphone using kernel discriminant analysis. In 2010

5th international conference on future information technology, pages 1–6. IEEE.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006). Data preprocessing for super-

vised leaning. International Journal of Computer Science, 1(2):111–117.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and

Jackel, L. D. (1989). Handwritten digit recognition with a back-propagation network.

In Proceedings of the 2nd International Conference on Neural Information Processing

Systems, pages 396–404.

Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., and O’Leary, A. (2019). Py-

wavelets: A python package for wavelet analysis. Journal of Open Source Software,

4(36):1237.

Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distributional similarity with

lessons learned from word embeddings. Transactions of the Association for Computa-

tional Linguistics, 3:211–225.

Li, Z. and Tam, V. (2017). Combining the real-time wavelet denoising and long-short-

term-memory neural network for predicting stock indexes. In 2017 IEEE Symposium

Series on Computational Intelligence (SSCI), pages 1–8. IEEE.

Liu, H., Tian, H.-q., Pan, D.-f., and Li, Y.-f. (2013). Forecasting models for wind speed

using wavelet, wavelet packet, time series and artificial neural networks. Applied En-

ergy, 107:191–208.

48

REFERENCES REFERENCES

Madine, M., Battah, A., Khan, A., and Werghi, N. (2019). Detecting drivers smartphone:

A learned features approach using aggregated scalogram images. In 2019 IEEE/ACS

16th International Conference on Computer Systems and Applications (AICCSA),

pages 1–5. IEEE.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2020). The m4 competition:

100,000 time series and 61 forecasting methods. International Journal of Forecast-

ing, 36(1):54–74. M4 Competition.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet

representation. IEEE transactions on pattern analysis and machine intelligence,

11(7):674–693.

Mishra, S., Bordin, C., Taharaguchi, K., and Palu, I. (2020). Comparison of deep learning

models for multivariate prediction of time series wind power generation and tempera-

ture. Energy Reports, 6:273–286. Technologies and Materials for Renewable Energy,

Environment and Sustainability.

Mörchen, F. (2003). Time series feature extraction for data mining using dwt and dft.

Naduvil-Vadukootu, S., Angryk, R. A., and Riley, P. (2017). Evaluating preprocessing

strategies for time series prediction using deep learning architectures. In The Thirtieth

International Flairs Conference.

Nason, G. P., Von Sachs, R., and Kroisandt, G. (2000). Wavelet processes and adaptive es-

timation of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 62(2):271–292.

Ng, A. Y. (2004). Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In

Proceedings of the twenty-first international conference on Machine learning, page 78.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12:2825–2830.

Percival, D. B. and Walden, A. T. (2000). Wavelet methods for time series analysis,

volume 4. Cambridge university press.

Renaud, O., Starck, J.-L., and Murtagh, F. (2005). Wavelet-based combined signal fil-

tering and prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 35(6):1241–1251.

49

REFERENCES REFERENCES

Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., and Anguita, D. (2016). Transition-

aware human activity recognition using smartphones. Neurocomputing, 171:754–767.

Richman, J. S. and Moorman, J. R. (2000). Physiological time-series analysis using ap-

proximate entropy and sample entropy. American Journal of Physiology-Heart and

Circulatory Physiology.

Saeys, Y., Inza, I., and Larrañaga, P. (2007). A review of feature selection techniques in

bioinformatics. bioinformatics, 23(19):2507–2517.

Schlüter, S. and Deuschle, C. (2010). Using wavelets for time series forecasting: Does it

pay off? Technical report, IWQW Discussion Papers.

Sidney Burrus, C., Gopinath, R. A., and Guo, H. (1998). Introduction to wavelets and

wavelet transforms. A Primer; Prentice Hall: Upper Saddle River, NJ, USA.

Smith, T. G. et al. (2017–). pmdarima: Arima estimators for Python. [Online; accessed

20.02.2021].

Spiliotis, E., Kouloumos, A., Assimakopoulos, V., and Makridakis, S. (2020). Are fore-

casting competitions data representative of the reality? International Journal of Fore-

casting, 36(1):37–53. M4 Competition.

Sugiartawan, P., Pulungan, R., and Sari, A. K. (2017). Prediction by a hybrid of wavelet

transform and long-short-term-memory neural network. International Journal of Ad-

vanced Computer Science and Applications, 8(2):326–332.

Tabik, S., Peralta, D., Herrera-Poyatos, A., and Herrera, F. (2017). A snapshot of image

pre-processing for convolutional neural networks: case study of mnist. International

Journal of Computational Intelligence Systems, 10(1):555–568.

Valens, C. (1999). A really friendly guide to wavelets. [Online; accessed 20.02.2021].

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace,

Scotts Valley, CA.

Xu, Q., Zhou, H., Wang, Y., and Huang, J. (2009). Fuzzy support vector machine for clas-

sification of eeg signals using wavelet-based features. Medical engineering & physics,

31(7):858–865.

Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K. (2018). Convolutional neural

networks: an overview and application in radiology. Insights into imaging, 9(4):611–

629.

50

REFERENCES REFERENCES

Yan, H. and Ouyang, H. (2018). Financial time series prediction based on deep learning.

Wireless Personal Communications, 102(2):683–700.

Yang, J.-Y., Wang, J.-S., and Chen, Y.-P. (2008). Using acceleration measurements for

activity recognition: An effective learning algorithm for constructing neural classifiers.

Pattern recognition letters, 29(16):2213–2220.

Yim, J. and Sohn, K.-A. (2017). Enhancing the performance of convolutional neural

networks on quality degraded datasets. In 2017 International Conference on Digital

Image Computing: Techniques and Applications (DICTA), pages 1–8. IEEE.

Zheng, X., Wang, M., and Ordieres-Meré, J. (2018). Comparison of data preprocessing

approaches for applying deep learning to human activity recognition in the context of

industry 4.0. Sensors, 18(7):2146.

Zhou, Y.-T. and Chellappa, R. (1988). Computation of optical flow using a neural net-

work. In ICNN, pages 71–78.

51

A APPENDIX METHODOLOGY

A Appendix Methodology

A.1 LSTM-CNN architecture

The model introduced in Karim et al. (2018) contains as mentioned in Sub-Section 3.1.5

the additional batch norm and dropout layers. The full model architecture can be seen in

Figure A.1.

In
p
u
t
L
ay
er

1D
C
on

vo
lu
ti
on

al
L
ay
er

B
a
tc
h
n
or
m
al
iz
a
ti
on

R
el
u
ac
ti
va
ti
on

1D
C
on

vo
lu
ti
on

al
L
ay
er

B
at
ch

n
or
m
al
iz
at
io
n

R
el
u
ac
ti
va
ti
on

1D
C
o
n
vo
lu
ti
on

al
L
ay
er

B
at
ch

n
or
m
al
iz
at
io
n

R
el
u
a
ct
iv
at
io
n

G
lo
b
al

A
ve
ra
ge

P
o
ol
in
g
L
ay
er

R
ec
u
rr
en
t
L
ay
er

D
ro
p
ou

t

C
on

ca
te
n
at
io
n

D
en
se

L
ay
er

Figure A.1: Architecture of the LSTM-CNN model from Karim et al. (2018) used for the

multiresolution classification. Dropout is quite aggressive with 0.8 dropout rate.

A.2 Continuous Wavelets

Continuous wavelet Notation

Mexican Hat Wavelet ψ(t) = 2√
3 4√π

exp−
t2
2
(
1− t2)

Morlet Wavelet ψ(t) = exp−
t2
2 cos(5t)

Gaussian Derivative Wavelets ψ(t) =Cp exp−t2

Table A.1: Continuous wavelets used in this thesis. Cp in the Gaussian Derivative

Wavelets is the order dependent normalization constant and is given as ‖ f (p)‖2 = 1 where

f (p) is the pth order derivative of f , here p = 2.

52

A APPENDIX METHODOLOGY A.3 Discrete Wavelets

A.3 Discrete Wavelets

0 10 20
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Scaling Function

0 10 20
x

1.0

0.5

0.0

0.5

Wavelet Function

Example approximations of a Coiflets-4 wavelet

Figure A.2: Example approximations of the scaling and wavelet functions of a Coiflet-4

wavelet used in this thesis.

0 2 4 6
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Scaling Function

0 2 4 6
x

1.0

0.5

0.0

0.5

1.0

Wavelet Function

Example approximations of a Daubechies-4 wavelet

Figure A.3: Example approximations of the scaling and wavelet functions of a

Daubechies-4 wavelet used in this thesis.

53

A.3 Discrete Wavelets A APPENDIX METHODOLOGY

0 20 40 60
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Scaling Function

0 20 40 60
x

1.0

0.5

0.0

0.5

Wavelet Function

Example approximations of a D.-Mey. wavelet

Figure A.4: Example approximations of the scaling and wavelet functions of a discrete

approximation of a Meyer wavelet used in this thesis.

0 2 4 6
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Scaling Function

0 2 4 6
x

1.5

1.0

0.5

0.0

0.5

1.0

Wavelet Function

Example approximations of a Symlets-4 wavelet

Figure A.5: Example approximations of the scaling and wavelet functions of a Symlets-4

wavelet used in this thesis.

54

A APPENDIX METHODOLOGY A.3 Discrete Wavelets

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0
Scaling Function

0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Wavelet Function

Example approximations of a Haar wavelet

Figure A.6: Example approximations of the scaling and wavelet functions of a Haar

wavelet used in this thesis.

55

B APPENDIX EXPERIMENTS

B Appendix Experiments

Model Median accuracy Interquartile distance

CNN 0.913364 0.018801

LSTM-CNN 0.911839 0.028201

multinom. Reg. 0.905996 0.025915

GBC 0.896341 0.021341

RFC 0.893801 0.023882

Bi-RNN 0.890244 0.025661

NN 0.889736 0.042175

DTC 0.832317 0.028963

SVC 0.803862 0.138211

RNN 0.776931 0.129954

KNC 0.611280 0.145833

Sklearn NN 0.188008 0.193598

Table B.1: Median accuracy and interquartile distance of the models used for classifica-

tion aggregated by model.

Results are aggregated over all preprocessing variations that the model was used for.

Major Preprocessing Median accuracy Interquartile distance

original Features 0.954338 0.019153

CWT 0.912348 0.021596

Multiresolution 0.900406 0.044588

Feature Extraction 0.858740 0.239964

Table B.2: Median accuracy and interquartile distance of the models used for classifica-

tion aggregated by major preprocessing.

Results are aggregated over all models used for a major preprocessing.

Observable from Figure B.1 is that the main positions are accurately predicted, es-

pecially the distinction between walking. The main hurdle for further classification im-

provements is the distinction between sitting and standing. Worse models struggle with

the distinction between the different types of walking as can be seen in Figure B.2.

56

B APPENDIX EXPERIMENTS

DWT denoising wavelet Median accuracy Interquartile distance

Median 0.920732 0.071138

none 0.917429 0.059832

Coiflets-4 0.891514 0.088161

Daubechies-4 0.886179 0.110010

Symlets-4 0.885671 0.105564

D.-Mey. 0.883892 0.120681

Haar 0.874238 0.128176

Table B.3: Aggregated accuracy over all models per denoising wavelet for the classifica-

tion task.

W
AL

KI
NG

W
AL

KI
NG

 U
PS

TA
IR

S
W

AL
KI

NG
 D

OW
NS

TA
IR

S
SI

TT
IN

G
ST

AN
DI

NG
LA

YI
NG

ST
AN

D
TO

 S
IT

SI
T

TO
 S

TA
ND

SI
T

TO
 L

IE
LI

E
TO

 S
IT

ST
AN

D
TO

 L
IE

LI
E

TO
 S

TA
ND

WALKING
WALKING UPSTAIRS

WALKING DOWNSTAIRS
SITTING

STANDING
LAYING

STAND TO SIT
SIT TO STAND

SIT TO LIE
LIE TO SIT

STAND TO LIE
LIE TO STAND

288 0 0 0 0 0 0 0 0 0 0 0
0 271 0 0 0 0 0 0 0 0 0 0
0 0 250 0 0 0 0 0 0 0 0 0
0 0 0 328 19 0 2 0 0 0 0 0
0 0 0 22 348 0 0 0 0 0 0 0
0 0 0 0 0 373 0 0 0 0 0 0
0 0 0 0 0 0 11 0 0 0 1 0
0 0 0 1 0 0 0 5 0 0 0 0
0 0 0 1 0 0 2 0 13 0 5 0
0 0 0 0 0 0 0 0 0 9 0 1
0 0 0 0 0 0 0 0 2 0 9 0
0 0 0 0 0 0 0 0 0 2 0 8 0

100

200

300

Figure B.1: Confusion matrix for the multinomial regression with the original features.

The best performing model which can accurately differentiate the types of walking. Main

improvement is the distinction between sitting and standing. The influence of accurately

classified transitions is minimal due to the relatively short time spans in which they are

performed. Accuracy = 0.970573.

57

B APPENDIX EXPERIMENTS

W
AL

KI
NG

W
AL

KI
NG

 U
PS

TA
IR

S
W

AL
KI

NG
 D

OW
NS

TA
IR

S
SI

TT
IN

G
ST

AN
DI

NG
LA

YI
NG

ST
AN

D
TO

 S
IT

SI
T

TO
 S

TA
ND

SI
T

TO
 L

IE
LI

E
TO

 S
IT

ST
AN

D
TO

 L
IE

LI
E

TO
 S

TA
ND

WALKING
WALKING UPSTAIRS

WALKING DOWNSTAIRS
SITTING

STANDING
LAYING

STAND TO SIT
SIT TO STAND

SIT TO LIE
LIE TO SIT

STAND TO LIE
LIE TO STAND

272 11 4 0 1 0 0 0 0 0 0 0
19 233 7 1 2 0 2 0 0 0 6 0
7 12 227 0 0 0 0 0 0 0 4 0
0 0 0 310 38 0 0 0 1 0 0 0
3 0 0 70 297 0 0 0 0 0 0 0
0 0 0 0 0 344 0 0 29 0 0 0
0 3 0 0 1 0 7 0 0 0 0 0
0 0 0 0 0 0 0 4 0 1 0 0
1 1 1 0 0 2 2 1 9 0 4 0
0 1 0 0 0 0 0 0 0 2 0 7
0 2 0 0 0 0 1 0 1 0 7 0
0 0 0 0 0 0 0 0 1 1 0 8 0

50
100
150
200
250
300

Figure B.2: Confusion matrix for the worst CNN model with CWT as major prepro-

cessing. Preprocessing parameters are: Denoising wavelet = Haar, Threshold = 0.3, Con-

tinuous wavelet = Mexican Hat, Max. Scale for the CWT = 128. Observable is the

miss-classification of different walking distinctions. Accuracy = 0.873984.

58

B APPENDIX EXPERIMENTS B.1 CWT results

B.1 CWT results

Coif
let

s-4

Dau
be

ch
ies

-4

D.-M
ey

.
Haa

r

Med
ian no

ne

Sym
let

s-4

Denoising Wavelet

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

CWT Wavelet
Gaussian-2
Mexican Hat
Morlet

Figure B.3: Aggregated results for CWT scaleogram as major preprocessing split by

denoising method and CWT wavelet. A notable observation is the performance of the

CNN without denoising or median denoising.

Gaussian-2 Mexican Hat Morlet
CWT Wavelet

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

Max. CWT Scale
128
64

Figure B.4: Aggregated results for CWT scaleogram as major preprocessing split by

chosen CWT wavelet and maximal scale for the CWT.

59

B.1 CWT results B APPENDIX EXPERIMENTS

CWT wavelet DWT denoising wavelet Median accuracy Interquartile distance

Morlet none 0.944106 0.010163

Mexican Hat none 0.940549 0.001016

Morlet Median 0.939024 0.006098

Gaussian-2 Median 0.935467 0.010163

none 0.930640 0.018547

Mexican Hat Median 0.929878 0.005589

Morlet Coiflets-4 0.918953 0.008257

Gaussian-2 Daubechies-4 0.917937 0.010798

Mexican Hat Coiflets-4 0.913872 0.014482

Gaussian-2 Symlets-4 0.912602 0.018674

D.-Mey. 0.912348 0.006098

Morlet Daubechies-4 0.912094 0.010163

Gaussian-2 Coiflets-4 0.912093 0.033028

Mexican Hat D.-Mey. 0.910315 0.013720

Symlets-4 0.910061 0.007495

Morlet D.-Mey. 0.909807 0.002922

Mexican Hat Daubechies-4 0.908537 0.019817

Gaussian-2 Haar 0.904980 0.008384

Morlet Haar 0.899136 0.017022

Symlets-4 0.895071 0.008130

Mexican Hat Haar 0.883892 0.012068

Table B.4: Median accuracy of the CNN models using the scaleogram images from CWT

as input.

60

B APPENDIX EXPERIMENTS B.2 Multiresolution TS

B.2 Multiresolution TS

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Test Accuracy

Bi-RNN

CNN

LSTM-CNN

NN

RNN

M
od

el

Figure B.5: Aggregated results for the multiresolution classification models grouped by

model and aggregated over all preprocessing steps.

61

B.2 Multiresolution TS B APPENDIX EXPERIMENTS

Model Multires. wavelet Median accuracy Interquartile distance

CNN Haar 0.923781 0.007495

NN Haar 0.923018 0.011179

LSTM-CNN none 0.922764 0.018674

NN Daubechies-4 0.917429 0.015117

CNN Daubechies-4 0.916667 0.011433

LSTM-CNN D.-Mey. 0.916413 0.022485

CNN Symlets-4 0.915396 0.009909

NN Symlets-4 0.914888 0.026042

LSTM-CNN Haar 0.914380 0.035061

CNN D.-Mey. 0.914126 0.021850

LSTM-CNN Coiflets-4 0.910569 0.027185

CNN Coiflets-4 0.908283 0.014863

LSTM-CNN Daubechies-4 0.905742 0.036077

CNN none 0.904472 0.015879

Bi-RNN D.-Mey. 0.897612 0.016641

Haar 0.895325 0.015752

LSTM-CNN Symlets-4 0.892530 0.035315

Bi-RNN Symlets-4 0.890752 0.017149

Coiflets-4 0.890244 0.014101

NN Coiflets-4 0.888719 0.026169

D.-Mey. 0.887957 0.021087

RNN none 0.886687 0.033028

Bi-RNN Daubechies-4 0.880843 0.021850

NN none 0.878557 0.033791

Bi-RNN none 0.871697 0.016768

RNN Haar 0.833841 0.035442

Daubechies-4 0.767530 0.032012

D.-Mey. 0.765244 0.034553

Coiflets-4 0.739583 0.022358

Symlets-4 0.697917 0.074441

Table B.5: Median accuracy of Multiresolution results grouped by model and wavelet

used in the multiresolution splitting. Aggregated over all denoising variations.

62

B APPENDIX EXPERIMENTS B.3 Feature models

B.3 Feature models

Model DWT wavelet Median Accuracy Interquartile distance

multinom. Reg. Haar 0.914888 0.011941

Daubechies-4 0.910823 0.014863

Symlets-4 0.908791 0.012322

RFC Haar 0.908537 0.012322

GBC Haar 0.907520 0.012576

SVC Haar 0.903709 0.019944

NN Daubechies-4 0.902693 0.020325

Sklearn NN Haar 0.900915 0.007749

GBC D.-Mey. 0.900407 0.014990

multinom. Reg. D.-Mey. 0.899644 0.005462

NN Symlets-4 0.898882 0.017403

RFC Symlets-4 0.898628 0.013211

GBC Symlets-4 0.896596 0.017530

RFC none 0.895579 0.618267

D.-Mey. 0.894817 0.022739

GBC Daubechies-4 0.893547 0.013084

NN Haar 0.893293 0.017912

RFC Daubechies-4 0.889228 0.008257

Coiflets-4 0.888720 0.009400

GBC Coiflets-4 0.888211 0.009273

multinom. Reg. Coiflets-4 0.886433 0.012449

GBC none 0.882622 0.896850

NN Coiflets-4 0.863059 0.017530

D.-Mey. 0.858740 0.016895

DTC Haar 0.842226 0.022104

SVC Daubechies-4 0.839177 0.049670

DTC D.-Mey. 0.837398 0.022993

Symlets-4 0.832317 0.012322

Coiflets-4 0.831809 0.021341

Daubechies-4 0.826982 0.021341

SVC Symlets-4 0.821138 0.042048

DTC none 0.782520 0.698298

KNC Haar 0.749492 0.028074

SVC D.-Mey. 0.733232 0.015244

63

B.3 Feature models B APPENDIX EXPERIMENTS

Model DWT wavelet Median Accuracy Interquartile distance

Coiflets-4 0.688770 0.062246

KNC Daubechies-4 0.626016 0.021087

Symlets-4 0.590447 0.077617

D.-Mey. 0.569614 0.030488

none 0.535061 0.624238

Coiflets-4 0.532520 0.037983

SVC none 0.436484 0.740854

Sklearn NN none 0.225356 0.212779

multinom. Reg. none 0.206047 0.886306

Sklearn NN Daubechies-4 0.188008 0.000000

Symlets-4 0.188008 0.000000

D.-Mey. 0.188008 0.000000

Coiflets-4 0.188008 0.000000

NN none 0.139482 0.714431

Table B.6: Aggregated results of the models using feature inputs. Results are grouped

by model and major preprocessing variation. DWT wavelet denotes here if the features

are extracted from the DWT coefficients with the corresponding wavelet or based on the

signal itself if the wavelet is "none". Aggregation is over all denoising variations for the

combination.

64

C ELECTRONIC ANNEX

C Electronic Annex

The electronic delivery of this thesis includes:

• This thesis as PDF file in its current form,

• the source code written in Python, version 3.7.9, 64-bit (Van Rossum and Drake,

2009),

• the original datasets as: ZIP-files, unpacked as CSV and TXT files,

• the results as CSV and tex files,

• the models in either the JOBLIB or H5 format

• most of the preprocessed data in the NPZ format.

The electronic delivery does not include the data preprocessed as images through

CWT as these datasets are ∼1GB and ∼6GB in size for max. scales of 64 and 128

respectively.

The code, original datasets in ZIP format and the results are also available on

Github: https://github.com/joshuawagner93/master_thesis_wagner_joshua. Included is

a Readme.md file which explains the steps to run the code and how to initialize a new

virtual environment with the right Python module versions.

65

https://github.com/joshuawagner93/master_thesis_wagner_joshua

Statement of authorship

I hereby declare that I have written the master’s thesis on my own without the use of any

sources other than those cited in the text, graphics, tables and formulas. Neither this nor

a similar work has been presented to an examination committee.

Munich, March 22, 2021 .

	Introduction
	Related Publications
	Methodology
	Models
	Traditional statistical models
	Machine learning models
	Neural Network
	CNNs
	RNNs
	Additional layers

	Preprocessing Methods
	Feature Extraction
	Fourier Transformation
	Continuous Wavelet Transformation
	Discrete Wavelet Transformation
	Discrete Wavelet Preprocessing

	Datasets
	UCI-HAR dataset
	M4 competition dataset

	Experimental Results
	Classification
	CWT image models
	Time-series models
	Feature models

	Forecasting

	Conclusion
	Bibliography
	Appendix Methodology
	LSTM-CNN architecture
	Continuous Wavelets
	Discrete Wavelets

	Appendix Experiments
	CWT results
	Multiresolution TS
	Feature models

	Electronic Annex

