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As a result of shorter winters and warmer springs, many plants in the 
Northern Hemisphere are flowering earlier than they did in the past 
(Fitter and Fitter, 2002; Menzel et al., 2006). In a study of 385 British 
species with flowering data from 1954 to 2000, nearly all were found 
to flower earlier in 2000 than in 1954; 10 species, however, flowered 
significantly later (Fitter and Fitter, 2002). As illustrated by this and 
other examples, phenological responses to climate change are highly 
species-specific, and it is therefore important to have empirical data 
from a broad range of species monitored at multiple locations if we 
are to understand the mechanisms underlying leaf-out, flowering, 

or fruiting times under climate change. Knowledge of plant phe-
nology is also relevant because numerous specialized herbivorous, 
nectarivorous, or frugivorous insects and other animals that de-
pend on leaves, flowers, or fruits, with higher food chains are af-
fected in turn (Renner and Zohner, 2018). Analyses of phenological 
time series have shown that study durations of around 20 years are 
needed for meaningful comparisons of temperature or photoperiod 
sensitivities among species (Bolmgren et al., 2013). Such long time 
series are usually only available for economically or horticulturally 
important species, for example, Japanese cherries, whose flowering 
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times have been recorded since 850 (Primack et al., 2009) or grapes, 
whose harvest dates in Burgundy have been recorded since 1370 
(Chuine et al., 2004).

Other long-term data on phenology come from phenological 
garden networks and from stand-alone studies at particular sites that 
were re-monitored some time later. Examples are the International 
Phenological Gardens of Europe (IPG), a network founded in 1957 
and still in existence today (Kaspar et al., 2014; Humboldt University 
of Berlin, 2020). The IPG network gathers dates of leaf unfolding, 
flowering, autumn coloring, and leaf fall for 21 species in 89 gardens 
(status of 2010). The world’s first such garden network functioned 
from 1750 to 1752 and involved 18 estates distributed over the ter-
ritory of Sweden (Linnaeus, 1751, 1753; Ihne, 1884; Schnelle, 1955). 
A second phenological network was maintained from 1781 to 1792 
by the Societas Meteorologica Palatina in Mannheim and included 
several stations across Europe (it is published in the Ephemerides 
Societatis Meteorologicae Palatinae [1784–1795]; http://opacp​lus.
bsb-muenc​hen.de/title/​34299​3-3). A third phenological network 
was established by the Belgian astronomer, mathematician, and 
statistician Adolphe Quetelet (1796–1874), a pioneer in the ap-
plication of quantitative methods in biology. Quetelet’s network 
functioned from 1841 until 1872 and comprised approximately 
80 stations throughout Europe (Quetelet, 1842, 1844, 1845, 1849, 
1853; Ihne, 1884; Schnelle, 1955). The data appear to have mainly 
been analyzed by Quetelet’s student Ch. Morren who also coined 
the term phenology (Morren, 1853; Demarée and Chuine, 2007). 
Two stand-alone legacy data sets both were started in the 1850s. 
One focused on the phenology of 24 species in the Royal Botanic 
Garden in Edinburgh that were regularly monitored from 1850 un-
til 1939 (Harper et al., 2004). The other focused on the leaf-out and 
flowering times of 400 species growing at Walden Pond in Concord, 
Massachusetts (United States) and was gathered between 1852 and 
1860 by Henry David Thoreau (Miller-Rushing and Primack, 2008; 
Polgar et al., 2014). Thoreau’s data have provided important insights 
into phenological strategies, local extinctions, and plant invasions 
once they were compared to data from the same site re-monitored 
from 2004 until 2013 (and continued since).

We recently found unpublished handwritten notes in the 
Archives of the Bavarian Academy of Science that show that Carl 
Friedrich Philipp von Martius (1794–1868), director of the Munich 
Botanical Garden and secretary of the Academy, monitored the phe-
nology of some 450 species in the Botanical Garden and contributed 
his data to Quetelet’s network. Having transcribed Martius’s obser-
vations, we here make his data available. One way to use the 1844 
data would have been to compare them to the same species’ mod-
ern flowering times at the location where Martius observed them. 
With the expansion of the city, however, Munich’s botanical garden 
in 1914 was moved to a new location, 5.5 km further west, and none 
of the old beds and plantings survive today. Many native species 
included in Martius’s data set, however, continue to grow in the city, 
and, with several years of monitoring, their phenology will become 
comparable to Martius’s 1844 data, similar to Thoreau’s legacy data 
set (Miller-Rushing and Primack, 2008; Polgar et al., 2014).

Here we take an alternative approach for obtaining multiple flow-
ering dates between 1844 and 2020 to link them to climate change 
and thereby study species responses to shorter winters and warmer 
and earlier springs. We checked the Munich herbarium for species 
with >10 fertile collections made between 1844 and 2020 within the 
city of Munich, focusing on species with short flowering periods to 
reduce noise, and then linked flowering times to empirical spring air 

temperatures for the years 1844 to 2020 from one of the world’s old-
est continuously functioning observatories, Hohenpeißenberg, close 
to Munich (Winkler, 2009). State-supported weather stations be-
fore the mid-1800s were confined mostly to Europe and the United 
States, but became ubiquitous by 1880. Today, Hohenpeißenberg 
is operated by the German Weather Service and its data have been 
fully digitized. The goals of this study thus were (1) to make Martius’s 
complete 1844 data set available (with modern taxonomic names) 
and to clarify the role played by Martius and Quetelet in the devel-
opment of plant phenological monitoring, and (2) to link empirical 
flowering times to spring air temperatures for the years 1844 to 2020, 
taking advantage of the Hohenpeißenberg meteorological data.

MATERIALS AND METHODS

Historic research

Coauthor Wesche is the author of a biography of Martius 
(Wesche, 2020) and familiar with the Martius papers and letters 
in the Archives of the Bavarian Academy of Sciences. Martius 
was secretary of the mathematical-natural science section of 
the Academy from 1841–1868 and, in this function, ran the sec-
tion’s monthly meetings, maintained its records, and engaged in 
correspondence with members of other academies. We found 
his handwritten notes on plant phenology in an appendix to the 
Academy’s Archives entitled “Beobachtungen über den perio-
dischen Fortschritt der Vegetation angestellt an 500 Pflanzen 
waehrend der Monate April, Mai, Juni u. Juli 1844 im koenigl. 
botanischen Garten zu München” (“Notes of the periodic develop-
ment of vegetation based on the monitoring of 500 plants during 
the months of April, May, June, and July 1844 in the royal botanical 
garden in Munich”; Martius, 1845). These pages were photographed 
at high resolution and plant names, observation dates and any notes 
then entered into an Excel spreadsheet (Microsoft, Redmond, CA, 
USA). Taxon names were checked and updated as required.

Selecting focal species and determining their temperature 
sensitivity

Using label data on specimens in the herbarium of Munich (herbar-
ium abbreviation M), we searched for species in Martius’s set that 
had short (i.e., not exceeding 2 weeks) flowering periods and that 
had been collected at least 10 times between 1844 and 2020 within 
28 km from the historic Botanical Garden Munich, with 28 km being 
essentially the city perimeter (Munich’s N to S extension is 20.7 km, 
its E to W extension 27 km). Unfortunately, most species in Martius’s 
data set have been collected fewer than 10 times within this perime-
ter (Renner and Rockinger, 2016). Among the few species with suf-
ficient collections and short flowering times are two Ranunculaceae, 
Anemone patens L. and Anemone pulsatilla L., that co-occur in the 
Garchinger Heide, a nature reserve 22 km from the city center where 
the old botanical garden had been located. This patch of grassland 
has been a focus of Bavarian botany and conservation since 1854. 
One other herb, Arum maculatum L., likewise has been collected 10 
times since 1844, perhaps because its large leaves and inflorescences 
are conspicuous before most other plants have leafed out.

To determine the temperature sensitivities of these species, we 
analyzed the effect of spring temperatures on their flowering dates. 
Information on daily mean air temperatures came from station 

http://opacplus.bsb-muenchen.de/title/342993-3
http://opacplus.bsb-muenchen.de/title/342993-3


� April 2021, Volume 108  •  Renner et al.—Flowering dates linked to climate records back to 1844  •  713

data available through the German Meteorological Service (DWD; 
https://opend​ata.dwd.de/clima​te_envir​onmen​t/CDC/obser​vatio​
ns_germa​ny/clima​te/daily/​kl/recen​t/), with data for 1844 until 1878 
coming from Hohenpeißenberg, from 1879 to 2020 from the city of 
Munich. The optimal preseason for each species was defined as the 
period before the mean flowering date (across years) for which the 
coefficient of determination (R2) of a linear model between flower-
ing date and air temperature was highest. Preseason temperature 
refers to the mean temperature for the respective preseason. Tested 
preseasons ranged from 15 to 90 days (with 15-day steps). Species 
with earlier mean flowering dates tended to have shorter optimal 
preseason periods, with flowering dates of Anemone pulsatilla, 
Anemone patens, and Arum maculatum being best explained (high-
est R2) by preseasons of 30, 60, and 90 days, respectively.

RESULTS

Martius’s phenological data and his contribution to Quetelet’s 
phenological monitoring network

High-resolution photos of the original pages with Martius’s phenol-
ogy observations are available online as Appendix S1. Appendix S2 
provides a list of the 500 plant individuals representing 450 species 
that he monitored, with their currently accepted scientific names 
and flowering and fruiting times as recorded in 1844. For each 
species, Martius noted when it was flowering and later added the 
dates when that species (likely the same individual) was in fruit. A 
note at the beginning of his enumeration states that observations 
were made “10 zu 10 Tagen in jedem Monat” (see Appendix S1, 
p. 1), that is, every 10 days, which appears to have been the case 
at least for flowering dates, whereas fruiting times appear to have 
been recorded three times per month. When a species is recorded as 
fruiting in “⅔ August”, we took that to mean a date around August 
20. For a few species, he also gives the height of each plant, using 
a format in which an apostrophe must refer to the height in Paris 
feet or Bavarian feet (e.g., 1½’). A Paris foot would be 32.48 cm, a 
Bavarian foot 29.178 cm (Meyer-Stoll, 2010, p. 35). The entries for 
the flowering and fruiting dates are in a different handwriting, sug-
gesting that at least two people were involved, one of them probably 
M. Gustave Lommler, a name mentioned by Quetelet (1844, p. 22; 
see below).

According to the protocol of the math.-nat. section meeting 
of 11 January 1845 (ABAdW, Sitzungsberichte der mathematisch-
physikalischen Klasse, Protokolle 1845–1847 [Beilage 61], vol. 1845, 
Jan. 11, Erste Sitzung, fol. 50–55), Martius on that day presented his 
phenological observations from the growing season of 1844. The 
protocol indicates that all data would be sent to Adolphe Quetelet 
in Brussels to become part of Quetelet’s phenological observational 
network. Between May 1842 and 1867, Martius wrote 38 letters to 
Quetelet (preserved in the Martius archive in Munich), and Quetelet 
(1844, 1845) lists Martius’s contribution in his “Observations des 
phénomènes périodiques” in den Nouveaux mémoires de l’Académie 
Royale des Sciences et Belles-Lettres de Bruxelles. We could not de-
termine how Martius and Quetelet first got into contact.

Long before his collaboration with Quetelet, however, Martius, 
then 31 years old, tried to establish a phenological network at the 
1827 meeting of the society of German Natural Historians and 
Physicians for which he served as the local organizer (Isis 21, 
5.6, 1828, 431, https://zs.thulb.uni-jena.de/recei​ve/jport​al_jpvol​

ume_00031406). A report on the meeting in the journal Flora 
(1827, vol. 38, pp. 593–608) states that it was agreed that partici-
pants would record and exchange leaf-out dates, flowering times, 
and fruiting times of widespread species, with the results to be pub-
lished in the same journal. However, no resulting data seem to have 
been published.

In later years, Martius wrote two more (unpublished) texts in 
which he refers to the importance of plant phenology. The first, 
dating to 1840, was a scientific assessment written for Crown 
Prince (later King) Maximilian II (1848–1864; BSBM, Martiusiana 
III, D, 4, 5 Nr. 7 – Büchler and Schumacher, 1990, p. 52), entitled 
“Denkschrift über die Abfassung einer Pflanzenstatistik von Bayern” 
or “Memorandum on composing a plant statistics for Bavaria”. In 
this report, Martius mentions the importance of recording periodi-
cally repeated plant behavior because he considered an understand-
ing of why trees flower or fruit 4–6 weeks earlier or later at different 
locations of both theoretical and practical interest. His second text 
(Martius, 1850) is entitled “Ueber die botanische Erforschung des 
Königreichs Bayern” (“On the botanical exploration of the kingdom 
of Bavaria”) and states (p. 8) that the length of the annual vegetation 
period is an important variable to record and that monitoring of 
periodical plant phenomena, following the “method” of the Belgian 
astronomer and statistician Adolphe Quételet, had been ongoing in 
the Munich Botanical Garden “for several years” (p. 11).

Responsiveness of Anemone and Arum flowering times to 
spring temperatures from 1844 to 2020

Using Martius’s 1844 flowering records and those documented by 
herbarium specimens made within the city perimeter between 1844 
and 2020 (Appendix S3), along with temperature data from the 
German Weather Service, we found that the mean advances in flow-
ering date over time (as inferred from linear models) in Anemone 
pulsatilla, A. patens, and Arum maculatum were, respectively, 2.1, 
1.6, and 1.3 days/decade (Fig. 1A). These are average trends over the 
past 176 years. Figure 1B shows the results when we used a LOESS 
smoothing function instead of linear regression to account for the 
nonlinearity of climate warming.

Flowering dates for the three species showed a strong response 
to spring temperatures, with each 1°C increase in air temperature 
leading to, respectively, 4.2, 3.2, and 4.2 days earlier flowering (Fig. 
1B). The preseason lengths best explaining the variation in flowering 
dates were 30, 60, or 90 days, respectively, but the inferred tempera-
ture sensitivity remained similar when shorter or longer presea-
sons (30–90 days) were used (temperature sensitivity ranges = −3.1 
to −4.6 days/°C for Anemone pulsatilla, −2.6 to −3.2 days/°C for 
Anemone patens, and −3.6 to −4.2 for Arum maculatum; Fig. 2).

DISCUSSION

Phenological changes in Anemone spp. and Arum maculatum 
from 1844 to 2020

Flowering times in Anemone and Arum over the past 176 years have 
advanced by 3.2 to 4.2 days per 1°C warming, similar to advances 
seen in Anemone nemorosa and other European herbs during more 
recent periods (Fitter and Fitter, 2002: 1954–2000; Renner and 
Zohner, 2018: 1960–2016). Our study combined Martius’s obser-
vations on living plants, made every 10 days, with label data from 

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/recent/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/recent/
https://zs.thulb.uni-jena.de/receive/jportal_jpvolume_00031406
https://zs.thulb.uni-jena.de/receive/jportal_jpvolume_00031406
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fertile herbarium specimens, which invariably introduced some 
noise. However, many studies have compared past phenology in-
ferred from herbarium collections with flowering times obtained 
from field observations and found that both kinds of data yield 

essentially the same results (e.g., Borchert; 
1996; Primack et al., 2004; Bolmgren and 
Lönnberg, 2005; Davis et al., 2015; Panchen 
et al., 2012).

A 6-year-long study (1992–1997) of 
A. maculatum at several locations in England 
showed that fruit set was lowest in individuals 
that flowered earlier or later than the major-
ity and interpreted this finding as evidence 
for stabilizing selection on synchronous flow-
ering (Ollerton and Diaz, 1999). How such 
synchronous flowering might be affected by 
climate warming was not discussed. Our re-
sults now show that A. maculatum has ad-
vanced its flowering time to the same extent 
as other spring-flowering herbs, despite pro-
ducing just one or few inflorescences per plant 
with the most fertile period confined to 2 h 
in the early evening when the spadix warms 
to 15–25°C above ambient temperatures. The 
warming enhances the emission of volatile 
compounds that attract minute flies, which 
are trapped overnight in female-stage inflo-
rescences and released the next day, loaded 
with pollen (Bermadinger-Stabentheiner and 
Stabentheiner, 1995; Gibernau et al., 2004; 
Wagner et al., 2008). The most common pol-
linators are Psychoda phalaenoides (Linnaeus 
1758) and P. grisescens (Tonnoir 1922) 
(Chartier et al., 2013), which each have larger 
geographic ranges and longer activity periods 
than A. maculatum (Ježek and Barták, 2000). 
Today’s 23-day earlier flowering of Arum 
(compared to 1844) therefore may not have 
required much shifting in the phenology of 
the relevant species of Psychoda.

Martius’s and Quetelet’s role in the history 
of phenological monitoring networks and 
the significance of legacy data

Martius’s 1827 call for phenological obser-
vations to be exchanged among a network of 
collaborators and his own monitoring in the 
Munich Botanical Garden are among the ear-
liest phenological efforts after Linnaeus (1751) 
in Sweden and the Societas Meteorologica 
in Mannheim (1784–1795), and just before 
the efforts at the Royal Botanic Garden in 
Edinburgh from 1850 until 1939 (Harper 
et al., 2004) and at Walden Pond from 1852 
until 1860 (Miller-Rushing and Primack, 
2008; Polgar et al., 2014). It is their compar-
ison to modern data from the same location 
that makes legacy data so valuable, and such 
comparisons become easier once the historic 

data have been digitized and tabulated as here done for Martius’s 
observations. One way in which this large data set might be used in 
future studies would be as a source of information on the availability 
of particular flowers (with their nectar and pollen) for specialized 
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nectarivorous or pollenivorous insects or insects looking for ovipo-
sition sites, such as the Psychoda flies that become trapped in Arum 
inflorescences (Gibernau et al., 2004). Another use of Martius’s 
1844 data would be their incorporation into large-scale analyses of 
flowering in southern-central Europe, which might allow the inclu-
sion of more specimens from additional herbaria.
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