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SUMMARY

Kinetochores, multisubunit protein assemblies, con-
nect chromosomes to spindle microtubules to
promote chromosome segregation. The 10-subunit
KMN assembly (comprising KNL1, MIS12, and
NDC80 complexes, designated KNL1C, MIS12C,
and NDC80C) binds microtubules and regulates
mitotic checkpoint function through NDC80C and
KNL1C, respectively. MIS12C, on the other hand,
connects the KMN to the chromosome-proximal
domain of the kinetochore through a direct interac-
tion with CENP-C. The structural basis for this crucial
bridging function of MIS12C is unknown. Here, we
report crystal structures of human MIS12C associ-
ated with a fragment of CENP-C and unveil the role
of Aurora B kinase in the regulation of this interaction.
The structure of MIS12:CENP-C complements pre-
viously determined high-resolution structures of
functional regions of NDC80C and KNL1C and
allows us to build a near-complete structural model
of the KMN assembly. Our work illuminates the
structural organization of essential chromosome
segregation machinery that is conserved in most
eukaryotes.

INTRODUCTION

In eukaryotes, chromosomes are replicated during the S-phase

(synthesis) of the cell cycle and then segregated from a mother

cell to its two daughters during M-phase (mitosis). Accurate

segregation of the sister chromatids (replicated chromosomes)

requires their interplay with the mitotic spindle, which self-as-

sembles through the combined action of microtubules, microtu-
1028 Cell 167, 1028–1040, November 3, 2016 ª 2016 The Author(s).
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bule motors, and microtubule-binding proteins (Foley and

Kapoor, 2013).

Kinetochores mediate the physical interaction of chromo-

somes with the mitotic spindle and ensure that sister chroma-

tids bi-orient, i.e., that they bind to opposite poles of the

mitotic spindle, a condition required for accurate chromosome

segregation (Foley and Kapoor, 2013; London and Biggins,

2014). Kinetochores, which are largely conserved in eukary-

otes, contain �26 core subunits and an array of regulatory

subunits (Pesenti et al., 2016). The core subunits have been

classified into two distinct assemblies, designated constitutive

centromere-associated network (CCAN) and Knl1 complex;

Mis12 complex; Ndc80 complex (KMN), the former loosely

associated with chromatin components and the latter, with

spindle microtubules (McKinley and Cheeseman, 2016; Pe-

senti et al., 2016; Figure S1A). The 16 or more CCAN subunits

fall into several discrete complexes (McKinley and Cheese-

man, 2016; Pesenti et al., 2016). Of these, CENP-C and the

CENP-LN complex interact directly with the centromere-spe-

cific histone H3 variant CENP-A, considered the linchpin of

kinetochore assembly (Carroll et al., 2009, 2010; Kato et al.,

2013; Weir et al., 2016).

The 10-subunit KMN assembly consists of three com-

plexes, the 4-subunit MIS12 complex (MIS12C), the 2-subunit

KNL1 complex (KNL1C), and the 4-subunit NDC80 complex

(NDC80C) (Bharadwaj et al., 2004; Cheeseman et al., 2004; De

Wulf et al., 2003; Desai et al., 2003; Kline et al., 2006; McCleland

et al., 2003; Nekrasov et al., 2003; Obuse et al., 2004; Pinsky

et al., 2003; Westermann et al., 2003; Wigge and Kilmartin,

2001). Human MIS12C (also known as MIND complex or Mtw1

complex in Saccharomyces cerevisiae) contains the MIS12,

PMF1, NSL1, and DSN1 subunits (Figure S1B; synonyms are

reported in Table S1A). KNL1C (known as Spc105 complex in

S. cerevisiae) contains the KNL1 and ZWINT subunits. Finally,

NDC80C contains the NDC80, NUF2, SPC24, and SPC25

subunits.
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The three KMN sub-complexes are functionally distinct.

NDC80C is a long coiled-coil with globular domains at both

ends and an end-to-end length of �55 nm (Ciferri et al., 2005;

Wei et al., 2005). Its two sub-complexes, NDC80:NUF2 and

SPC24:SPC25, are responsible for microtubule binding and

kinetochore localization, respectively (Cheeseman et al., 2006;

Ciferri et al., 2008; DeLuca et al., 2005, 2006; Malvezzi et al.,

2013; Petrovic et al., 2010; Wei et al., 2006, 2007). KNL1, the

largest core kinetochore protein in humans (2,316 residues), is

implicated in mitotic checkpoint control (reviewed in London

and Biggins, 2014). Finally, MIS12C is a binding hub that

connects the other two KMN complexes to CCAN through an

interaction with CENP-C (Gascoigne et al., 2011; Hori et al.,

2013; Hornung et al., 2011, 2014; Liu et al., 2016; Maskell

et al., 2010; Petrovic et al., 2010; Przewloka et al., 2011;

Screpanti et al., 2011). Aurora B phosphorylation at Ser100

and Ser109 of human DSN1 enhances the CENP-C:MIS12C

interaction (Kim and Yu, 2015; Rago et al., 2015; Welburn

et al., 2010; Yang et al., 2008), and the pathway is conserved

in S. cerevisiae (Akiyoshi et al., 2013).

In recent years, there has been substantial progress in the

biochemical and structural characterization of KMN network

components. Negative-stain electron microscopy (EM) demon-

strated that MIS12C is elongated, with a long axis of z20 nm

and one end thinner than the other (Hornung et al., 2011; Maskell

et al., 2010; Petrovic et al., 2010). EM analysis of larger KMN

reconstitutions, including a low-resolution 3D negative stain

EM reconstruction of MIS12C bound to a segment of KNL1

and to an engineered chimeric construct of NDC80C called

NDC80CBonsai (Ciferri et al., 2008), suggested that MIS12C inter-

acts with NDC80C and KNL1C near the thinner end; thatMIS12C

and NDC80C bind ‘‘in series’’ to form an z80 nm structure; and

that KNL1 departs from the axis of the NDC80:MIS12 rod at

an z65� angle (Petrovic et al., 2014; Screpanti et al., 2011).

While the previous work began to illustrate the structural orga-

nization of MIS12C, a high-resolution structure of this complex

has been missing. We have now overcome this limitation by

determining the crystal structure of the human MIS12C in com-

plex with the N-terminal region of CENP-C, previously implicated

inMIS12Cbinding (Przewloka et al., 2011; Screpanti et al., 2011).

The resulting model reveals the overall molecular organization of

the MIS12C and the details of its interaction with CENP-C. We

clarify how Aurora B phosphorylation of DSN1 enhances the

CENP-C:MIS12C interaction. Finally, we build a near complete

structural model of the KMN assembly and discuss its implica-

tions for microtubule binding and CCAN regulation.

RESULTS

Crystal Structure of Human MIS12C
From the results of limited proteolysis experiments (Petrovic

et al., 2014), we engineered a deletion construct of the MIS12C

in which three of the four subunits carried N- or C-terminal

deletions (Table S1B). The resulting construct, referred to as

MIS12CNano, did not crystallize, but addition of residues 1–71

of human CENP-C (CENP-C1–71), coupled with in situ proteolysis

(Dong et al., 2007; Figure S2A; STAR Methods), led to crystals.

We collected X-ray diffraction data to minimum Bragg spacing
of 3.5 Å from a native crystal and obtained initial phases from a

tantalum bromide (Ta6Br12
2+) derivative in a different crystal

form (Table 1). We used density modification methods and

multi-crystal averaging to extend phases and obtain electron

density maps with clear protein-solvent boundaries (Figures

S2B and S2C). Model building was carried out as discussed in

the STAR Methods. Collectively, the crystallographic work ad-

dresses the majority of the sequence of the human MIS12C

and provides an excellent account of distance restraints derived

from cross-linking and mass spectrometry analyses (Herzog

et al., 2012), as summarized in Figures S2D and S2E (see also

Tables S2 and S3).

The MIS12C is an extended rod, with a long axis of �200 Å

(1 Å = 0.1 nm), in line with the previous low-resolution EM ana-

lyses (Figure 1A). The four MIS12C subunits have similar topol-

ogies (Figure 1B) and span the entire length of the complex in

the same orientation, so that all N and C termini cluster at oppo-

site ends. The MIS12C subunits form two distinct subcom-

plexes, MIS12:PMF1 and DSN1:NSL1. The buried surface areas

(Collaborative Computational Project, Number 4, 1994) for the

MIS12:PMF1 and DSN1:NSL1 pairs (4,209 and 3,575 Å2) are

much larger than those of the four other interfaces, which range

between 465 and 1,905 Å2. Both subcomplexes start with N-ter-

minal helical hairpins that interact in four-helix bundles (defined

here as ‘‘Head1’’ and ‘‘Head2’’ domains for the MIS12:PMF1

and DSN1:NSL1 subcomplexes, respectively) and progress

into a ‘‘stalk’’ region (Figures 1A and 1B). The a3 helices of

DSN1 and NSL1 pair in a helical segment (essentially a short

segment of coiled-coil), with a3 of NSL1 kinking at the well-

conserved Pro130Nsl1. The helical connector joins Head2 to the

stalk, but Head2 itself is less restrained, as its linkage to the he-

lical connector is extended and apparently flexible. The connec-

tion of Head1 to the stalk appears to be more fixed. The short a0

helix of the MIS12 subunit is largely buried at an interface of

Head1 with the helical connector of DSN1:NSL1. The core of

the stalk consists of the long and tightly interacting a3 helices

of MIS12 and PMF1. The DSN1 and NSL1 chains in this region

are extended and partly disordered and pack against the

outer surface of the a3 helices of MIS12 and PMF1. It is possible

that this region of MIS12C undergoes tension-dependent

conformational rearrangements when NDC80C binds to micro-

tubules, analogous to those recently proposed for the NDC80C

(Suzuki et al., 2016). The DSN1 and NSL1 chains resume helical

conformation to establish a four-helix bundle that engages the

visible C termini of all four subunits. As explained in the context

of Figure 5, this region is an interaction node where MIS12C

binds with the NDC80C and KNL1C.

In Drosophila melanogaster, no homolog of the DSN1 subunit

has been identified, but biochemical reconstitution with the re-

maining three subunits resulted in a very stable MIS12C, unlike

reconstitutions in which either of the homologs of the MIS12 or

PMF1 subunits had been omitted, resulting in unstable com-

plexes (Liu et al., 2016; Richter et al., 2016). These recent obser-

vations confirm that MIS12 and PMF1 form the ‘‘backbone’’ of

the MIS12C and suggest that NSL1 can adapt and retain signif-

icant stability even in the absence of DSN1.

We speculated that the detachment of Head2 from the core

of the MIS12C might, at least in part, explain our difficulties in
Cell 167, 1028–1040, November 3, 2016 1029



Table 1. X-Ray Data Collection and Refinement Statistics

MIS12CNano

Native

MIS12CNano

SeMet (1)

MIS12CNano

TaBr

MIS12CNano

SeMet (2) MIS12CDHead2 Head2

Space group (main use) C2 (refinement) P1 (multi crystal

averaging)

P21 (phasing) P21 (sequence

assignment)

P21 (refinement) P3221 (refinement)

Wavelength 0.97863 0.99999 1.25224 0.97930 0.97857 0.9793

Source SLS SLS SLS SLS SLS PETRA

Detector Pilatus 6M Pilatus 6M Pilatus 6M Pilatus 6M Pilatus 6M Pilatus 6M

Mol/AU 1 2 2 2 2 1

a, b, c (Å) 146.0, 112.7,

90.8

81.8, 92.9,

105.7

91.9, 107.8,

136.2

82.0, 93.2,

106.3

68.2, 156.4, 76.0 59.6, 59.6, 82.34

a, b, g (�) 90, 114.18, 90 93.0, 92.6,

116.3

90, 102.5, 90 90, 90, 90 90, 102.82, 90 90, 90, 120

Resolution (Å) 19.7–3.5

(3.59–3.50)a
46.2–4.46

(4.58–4.46)

48.6–5.00

(5.13–5.00)

46.4–6.0

(6.16–6.00)

45.5–3.0

(3.08–3.00)

43.75–2.0

(2.05–2.00)

Rsym 18.1 (195.6) 9.9 (184.8) 9.7 (93.4) 9.5 (188.2) 35.1 (102.6) 24.2 (135.5)

I/sI 7.16 (1.05) 5.22 (0.70) 10.59 (2.51) 7.52 (0.82) 9.47 (3.89) 10.63 (2.12)

Completeness (%) 99.0 (99.1) 97.5 (84.5) 99.6 (99.2) 97.9 (99.0) 99.9 (100.0) 99.9 (99.4)

Redundancy 6.76 (6.67) 3.42 (2.58) 6.86 (6.99) 3.51 (3.70) 23.70 (24.82) 19.1 (18.1)

Refinement

Resolution (Å) 19.74–3.5 20.0–3.25 43.75–2.00

No. reflections 14,170 24,286 11,252

Rwork/Rfree (%) 24.44/29.77 24.63/29.71 21.58/24.58

No. atoms

Protein/ligands 6,192 9,621 1,288

Water 6 0 53

Average B (Å2) 74.61 58.56 28.24

Rmsd

Bond lengths (Å) 0.002 0.004 0.003

Bond angles (�) 0.630 0.815 0.516
aValues in parentheses are for highest resolution shell.
obtaining well-ordered crystals of MIS12C. We therefore gener-

ated a deletion construct, referred to asMIS12CDHead2 (i.e., lack-

ing Head2, Table S1B). MIS12CDHead2 retained CENP-C binding

(see below) and readily crystallized with it in the absence of

proteases. We determined the structure at 3.25 Å resolution as

described in the STAR Methods (see also Table 1). The Head1

and Stalk of MIS12CDHead2 retain the overall organization

and relative orientation observed in the crystal of complete

MIS12C, except for a small rigid body movement of Head1 rela-

tively to the stalk (Figure 1C). In addition, we report the crystal

structure of the isolated Head2 domain determined at 2.0 Å

(Figure S2F; Table 1).

Interaction of MIS12C with CENP-C

The sequence of the N-terminal region of CENP-C in distant or-

thologs seems quite divergent, but the function of this region as a

MIS12C binding interface is conserved (Hornung et al., 2014; Liu

et al., 2016; Przewloka et al., 2011; Richter et al., 2016; Screpanti

et al., 2011). The sturdy arrangement of helices in Head1 and in

the helical connector of DSN1:NSL1 provides a composite bind-

ing site for CENP-C (Figure 2A). The main chain of CENP-C

resembles a ‘‘horseshoe.’’ Its first visible segment (residues 6–

22) is extended and binds in a shallow groove between the a1
1030 Cell 167, 1028–1040, November 3, 2016
and a2 helices of MIS12 in Head1. Lys10CENP-C and Tyr13CENP-C

in this segment are necessary for tight binding of CENP-C to

MIS12C (Screpanti et al., 2011). The CENP-C main chain then

takes a turn (at Phe17CENP-C and Cys18CENP-C) to move away

from the stalk through an extended and poorly conserved

segment for which there is weak electron density. The CENP-C

chain bends again to complete its ‘‘U-turn’’ around residues

28–30, emerging in helical conformation (residues 32–44, Fig-

ure 2C; a more detailed description of the interaction is in the

legend of Figures S3A and S3B). In both complexes in the asym-

metric unit of the MIS12CDHead2:CENP-C1-71 crystals, clear elec-

tron density is only visible for residues 6–18 of CENP-C, whereas

no density for the helical C-terminal segment is visible, probably

due to crystal contacts involving MIS12C. As discussed in the

context of Figure 4, the N-terminal region of CENP-C is sufficient

for a high-affinity interaction with MIS12C.

Validation of the MIS12:CENP-C Interaction

CENP-C binds MIS12C mainly on Head1 but also exploits the

interface of Head1 with the helical connector (aC helices of

DSN1 and NSL1). We took three steps to validate this

binding mode. First, we asked if Head1 was necessary, and

possibly sufficient, for CENP-C binding to MIS12C. Second,
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Figure 1. Structure of MIS12C:CENP-C

(A) Cartoon diagrams of the MIS12CNano:CENP-C1–71 complex (Table S1B) in

two orientations. The main structural domains discussed in the text are indi-

cated. The molecular models in this and subsequent figures were generated

with PyMOL. The final model contains residues 2–200 of MIS12, 31–203 of

PMF1, 32–204 of NSL1, 116–155, 159–193, 203–245, and 258–317 of DSN1.

(B) Topology diagrams of the MIS12C subunits.

(C) Cartoon diagrams of theMIS12CDHead2:CENP-C1–71 complex. The coloring

scheme of subunits is as for the MIS12Nano complex shown in (A).

See also Figures S1 and S2.
we asked if the relative position of Head1 and the DSN1:NSL1

helical connector is necessary for high-affinity binding of

CENP-C to MIS12C. Finally, we asked to what extent specific

residues of MIS12C seen at the interface with CENP-C

contribute to the interaction.

To monitor the interaction of CENP-C with MIS12C, we used

site-specific Sortase-mediated ligation (Popp and Ploegh,

2011) to create fluorescein amidite (FAM)-labeled CENP-C1–71

(FAMCENP-C1–71). We visualized the interaction of FAMCENP-

C1–71 with MIS12C through analytical size-exclusion chromatog-

raphy (SEC) experiments, in which proteins are separated based
on their size and shape. Wemonitored elution of FAMCENP-C1–71

from the SEC column by following its absorbance at 495 nm. Af-

ter separation by SDS-PAGE, we visualized it through fluores-

cence of its FAM group (Figure 2D). Isolated FAMCENP-C1–71

or its complex with MIS12CNano (herewith also indicated as

MIS12CWT, to indicate that it did not contain additional mu-

tations) had clearly distinct elution volumes, providing a sim-

ple test for assessing the interaction (Figures 2D and S4).

A MIS12C construct lacking Head1 (MIS12CDHead1) did not

interact with CENP-C, while MIS12CDHead2 bound CENP-C like

MIS12CWT (even with higher affinity, as explained below). We

therefore asked if the isolated Head1 domain bound CENP-

C1–71, but found this not to be the case at the low micromolar

protein concentrations of this assay. Thus, Head1 is necessary,

but not sufficient, for high-affinity binding of MIS12C to CENP-C.

As expected, we saw no binding of Head2 to CENP-C (Figures

2D and S4).

Conservation of MIS12C CENP-C Binding Mode in

Eukaryotes

In the accompanying paper, Y.D., S.J., and S.C.H. report the

structural and biochemical characterization of the interaction of

the fungal (Kluyveromyces lactis) MIND complex with the N-ter-

minal region of Mif2 (equivalent to human MIS12C and CENP-C,

respectively) (Dimitrova et al., 2016). Unlike the human proteins,

a Head1 construct of the MIND complex was sufficient to bind

Mif2 and co-crystallized with it. A crystal structure of the Head1:

Mif2 complex (Figure 2E) shows that a helical segment of KlMif2

(residues 30–35), although shorter than that of human CENP-C,

superposes well with it. Structural alignment of the helical re-

gions brought to light additional sequence conservation in the

N-terminal segment of CENP-C:Mif2, corresponding to residues

6–16 of human CENP-C (Figure 2F). Although the paths of the

N-terminal region of CENP-C and Mif2 on Head1 are different

(Figures 2A and 2E), in both cases there is clustering of positively

charged residues (positions 14 and 16 of human CENP-C) close

to the interface of Head1 with the helical connector (Figure S3).

Thus, comparison of fungal and mammalian orthologs shows

previously unappreciated sequence and structural similarities

in the N-terminal region of CENP-C. Evolutionary conservation

of residues at the surface of MIS12C, however, is limited

(Figure 2G).

Role of the a0 Helix of MIS12 in CENP-C Binding

Binding of CENP-C to MIS12C occurs at the interface of Head1

with the helical connector, which is stabilized by the a0

helix of MIS12 (Figure 3A). The sequence of the a0 helix of

MIS12 is conserved in evolution, especially residues Tyr8MIS12,

Phe12MIS12, and Phe13MIS12. The side chains of these residues

are buried at the interface of a0MIS12 helix with the helical

connector (Figure 3A) and are therefore likely to stabilize the

orientation of Head1 with respect to the connector. We gener-

ated a mutant carrying alanine point mutations of Tyr8MIS12,

Phe12MIS12, and Phe13MIS12 (indicated as MIS12CMIS12-YFF

mutant). MIS12CYFF was soluble and apparently stable, and its

SEC elution profile was essentially undistinguishable from that

of MIS12CWT (Figures S4A and S5A). Nonetheless, while FAM-

CENP-C1–71 co-eluted with MIS12CWT from a SEC column, it

bound only very poorly to the MIS12CMIS12-YFF mutant (Figures

3B and S5A). These observations corroborate the idea that
Cell 167, 1028–1040, November 3, 2016 1031
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Figure 2. Dissection of MIS12:CENP-C

(A) Cartoonmodel of the interaction of CENP-C1–71

with Head1 and the Connector. Two boxed areas

are enlarged in (B) and (C).

(B) Focus on the N-terminal segment of CENP-C

(residues 6–22), with a subset of side chains of

residues at the interface.

(C) Focus on the amphipathic helix of the CENP-C

chain (residues 32–44).

(D) SEC analysis of the indicated MIS12C con-

structs and FAMCENP-C1–71. Protein absorption

at 280 nm (Figure S3) and FAM absorption at

495 nm (shown) were measured. SEC fractions

were analyzed by SDS-PAGE and visualized by

Coomassie staining (Figure S3) or FAM fluores-

cence (shown). A shift to the left in the elution

profiles of FAMCENP-C1–71 indicates binding to

MIS12C. A dotted vertical line indicates elution

volume of the MIS12CDHead1 mutant.

(E) Cartoon model of Kluyveromyces lactis MIND

Head1 bound to Mif2 (Dimitrova et al., 2016).

Mtw1 and Nnf1 are MIS12 and PMF1 orthologs,

respectively. See Figure S4 for additional struc-

tural details.

(F) Sequence alignment of the N-terminal region

of CENP-C orthologs. Hs, Homo sapiens; Mm,

Mus musculus; Rn, Rattus norvegicus; Gg, Gallus

gallus; Xl, Xenopus laevis; Sp, Schizosacchar-

omyces pombe; Sc, Saccharomyces cerevisiae;

Kl, Kluyveromyces lactis. The alignment was ob-

tained with MAFFT (Katoh and Standley, 2013).

(G) Sequence conservation in the CENP-C binding

region mapped onto the MIS12C structure. Con-

servation scores were calculated based on se-

quences from Homo sapiens, Bos taurus, Ovis

aries, Ornithorhynchus anatinus, Gallus gallus,

Pseudopodoces humilis, Python bivittatus, Gekko

japonicus, Xenopus laevis, Danio rerio, Drosophila

busckii,Drosophilamelanogaster,Saccharomyces

cerevisiae, Kluyveromyces lactis, and Schizo-

saccharomyces pombe. Sequence conservation is

color coded from purple (indicates conserved

amino acid positions) to gray (indicates variable

amino acid positions).
residues in the a0 helix of MIS12 stabilize the specific packing of

Head1 against the helical connector required for high-affinity

binding of CENP-C.

To probe the effects of the MIS12CMIS12-YFF mutant on

MIS12C kinetochore localization in vivo, we expressed in

HeLa cells a chimeric construct of GFP with MIS12CWT or

MIS12CMIS12-YFF (Figure S5B). GFP-MIS12WT strongly deco-

rated kinetochores, as shown by co-localization with CREST

anti-centromere antibodies, while GFP-MIS12CMIS12-YFF, which

did not bind to CENP-C in vitro, failed to do so (Figure 3C,

quantified in Figure 3D). In immunoprecipitation experi-
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).

of

-C

of

N

nd

he

ia-

de
ments with an anti-GFP antibody, GFP-

MIS12CWT bound endogenous CENP-C,

CENP-T, NDC80, and KNL1. Conversely,

GFP-MIS12CMIS12-YFF did not appear to

interact with CENP-C or CENP-T, while

it appeared to interact with other KMN
components, but less robustly than GFP-MIS12CWT (Figure 3A

These observations confirm the importance of the a0 helix

MIS12 in stabilizing the interaction of MIS12C with CENP

and suggest that their association enhances the interactions

MIS12C with other kinetochore proteins, including other KM

sub-complexes.

Role of Head1 Negative Charges in CENP-C Binding

In fluorescence polarization experiments, MIS12CWT bou

a 21-residue synthetic fluorescent peptide encompassing t

N-terminal region of CENP-C (FAMCENP-C1–21) with a dissoc

tion constant (Kd) of 126 nM (Figure 4A). Thus, even if this pepti
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Figure 3. Role of the MIS12 a0 Helix in CENP-C Binding

(A) Role of three conserved aromatic residues in the a0 helix of MIS12.

(B) The interaction of MIS12CYFF with FAMCENP-C1–71 was analyzed by SEC. Control profiles for MIS12CWT:FAMCENP-C1–71 is the same already shown in

Figure 2D. The elution profile of MIS12CWT is shown in Figure S4A. Data for absorption at 280 nm and Coomassie staining of SDS-PAGE are shown in Figure S3.

(C) Representative images of stable Flp-In T-REx cells expressing the indicated GFP-MIS12 constructs, showing that the YFF mutant does not localize to ki-

netochores (CREST is an inner kinetochore marker). Scale bar, 10 mm.

(legend continued on next page)
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lacks residues in the CENP-C helical segment (residues 32–

44), it binds MIS12C with high affinity, in line with previous data

(Screpanti et al., 2011). We used this assay to test the effects

of alanine point mutations in conserved residues of Head1

involved in the interaction with the N-terminal region of CENP-C.

MIS12C with Asp30MIS12 and Glu34MIS12 mutated to alanine

(MIS12CMIS12-2D/EA) bound FAMCENP-C1–71 in analytical SEC ex-

periments, but at reduced levels (Figures 4B and S5C). The affin-

ity of MIS12CMIS12-2D/EA for FAMCENP-C1–21 was almost 3-fold

lower than that of wild-type, but a Kd of 321 nM was strong

enough for co-elution in SEC experiments. A different two-

alanine variant of MIS12C (MIS12CMIS12-2E/DA) with Glu65MIS12

and Asp76MIS12 in the MIS12 subunit mutated to alanine, or

a four-alanine variant Asp30MIS12, Glu34MIS12, Glu65MIS12, and

Asp76MIS12 all mutated to alanine, had more severe effects.

MIS12CMIS12-4D/EA showed a severely disrupted association

with FAMCENP-C1–71 in analytical SEC experiments (Fig-

ure 4B). Its Kd for FAMCENP-C1–21 was 1.48 mM, while that of

MIS12CMIS12-2E/DA for FAMCENP-C1-21 was 1.25 mM (Figure 4A).

In agreement with these observations, kinetochore recruitment

of a GFP-MIS124E/DA construct was severely impaired (Figures

4C and 4D). We also created a triple alanine mutant of residues

Asp105Nsl1, Glu112Nsl1, and Asp113Nsl1, three evolutionary

conserved residues in the NSL1 a3 helix that interact with the

side chains of Arg14CENP-C, Arg15CENP-C, and Arg16CENP-C (Fig-

ure 2B). The resultingmutant, MIS12CNSL1-DEDAAA, was unable to

bind FAMCENP-C1–21 in fluorescence polarization experiments

(Figure 4A). Thus, the results of themutagenesis analysis confirm

our inference from the structure that conserved acidic residues

of MIS12 and NSL1 participate in binding the N-terminal region

of CENP-C.

Role of HEAD2 Phosphorylation in CENP-C Binding to

MIS12C

Aurora B phosphorylates DSN1 at Ser100DSN1 and Ser109DSN1

(Welburn et al., 2010; Yang et al., 2008). Being preceded by posi-

tively charged residues at the �3 and �2 positions, Ser100DSN1

and Ser109DSN1 are ideal phosphorylation substrates of Aurora

B kinase (Figure 5A). Phosphorylation of Ser100DSN1 and

Ser109DSN1 stabilizes the interaction of MIS12C with kineto-

chores, and short deletions encompassing the DSN1 region

containing Ser100DSN1 and Ser109DSN1 rescue the detrimental

effects of Aurora B inhibition on kinetochore assembly (Kim

and Yu, 2015; Rago et al., 2015). Thus, phosphorylation of

Ser100DSN1 and Ser109DSN1 may only be required to remove

an inhibitory effect of unphosphorylated DSN1 on the interaction

of the MIS12C with CENP-C, rather than playing a positive

role on CENP-C binding after phosphorylation. Indeed, the

MIS12CDHead2 construct, which also lacks Ser100DSN1 and

Ser109DSN1, binds CENP-C in SEC experiments (Figure 2D).

Thus, Head2 and the segments that precede it (also deleted in

the MIS12CDHead2 construct, see Table S1B) are not required

for CENP-C binding. Indeed, MIS12CDHead2 bound FAMCENP-
(D) Quantification of GFP-MIS12 kinetochore levels. The graph shows mean inten

Mis12WT are set to 1.

(E) Western blot of immunoprecipitates (IP) from mitotic Flp-In T-REx cell lines e

control.

See also Figure S5.
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C1-21 in fluorescence polarization experiments with a Kd of

2.2 nM, i.e., almost 60-fold more tightly than MIS12CWT (Fig-

ure 5B). We observed an equivalent increase in affinity with a

shorter deletion mutant of MIS12C, which lacked only the 10-

residue segment encompassing Ser100DSN1 and Ser109DSN1

(MIS12CDSN1D100–109, Figure 5B). These results argue that

segment 100–109 of DSN1 likely binds directly to the CENP-C

binding site of MIS12C through an inter-subunit interaction, as

depicted schematically in Figure 5C. Aurora B phosphorylation

of DSN1 relieves this inhibitory effect, possibly to focus the inter-

action of MIS12C with CENP-C to kinetochores, where Aurora B

activity concentrates duringmitosis (Akiyoshi et al., 2013; Caldas

et al., 2013; Liu et al., 2009; Welburn et al., 2010).

The motifs of HsDSN1 encompassing Ser100DSN1 and

Ser109DSN1 are related and can be also tentatively aligned with

residues 10–17 of HsCENP-C (Figure 5A), suggesting that

DSN1 interferes with the interaction of the N-terminal region of

CENP-C with MIS12C. This hypothesis agrees with the results

of our assays in Figure 5B demonstrating the effects of DSN1

on CENP-C binding, as these were carried out with FAMCENP-

C1–21, i.e., with a peptide encompassing residues 10–17 of

CENP-C. To gain stronger evidence for this hypothesis, we

created alanine mutants of residues Arg106DSN1, Arg107DSN1,

and Lys108DSN1, and measured binding affinity for FAMCENP-

C1–21 by fluorescence polarization. In agreement with the hy-

pothesis, MIS12CDSN1-RRAA andMIS12CDSN1-RRKAAA bound FAM-

CENP-C1–21 with progressively higher binding affinity, impli-

cating positively charged residues in the DNS1-2 motif in the

mechanism of intra-molecular regulation (Figure 5D). A construct

comprising both Ser100DSN1 and Ser109DSN1 and Head2 did not

bind directly to MIS12CDHead2 (Figure S6A), nor it displaced,

even at concentrations in excess of 100 mM, FAMCENP-C1–21

from MIS12CDHead2, whereas a competitor CENP-C1–71 peptide

competed with FAMCENP-C1–21 effectively (Figure S6B). We

therefore surmise that the high effective concentration of the

DSN1 segment responsible for the regulation of the interaction

of MIS12C with CENP-C compensates for a low interaction

affinity.

Interaction of MIS12C with NDC80C and KNL1C

The crystal structure of the MIS12C fits snugly into a 3D negative

stain-EM reconstruction (Figure 6A) (Petrovic et al., 2014) of an

artificial KMN assembly construct consisting of MIS12C, the tan-

dem RWD (RING finger, WD repeat, DEAD-like helicases) do-

mains in the C-terminal region of KNL1 (Petrovic et al., 2014),

and NDC80CBonsai, an engineered chimeric construct of the

NDC80C (NDC80CBonsai) in which most of the coiled-coil regions

of NDC80C had been removed to facilitate crystallization (Ciferri

et al., 2008).

Two sequence motifs in human DSN1 and NSL1 (encompass-

ing residues 323–348 and 209–213, respectively) have been

previously implicated in the interaction of the MIS12C with the

SPC24 and SPC25 subunits of NDC80C (that also consist of
sity from two independent experiments. Error bars represent SEM. Values for

xpressing the indicated GFP-Mis12 constructs. Vinculin was used as loading
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Figure 4. Head1 and the Connector Promote CENP-C Binding

(A) Fluorescence polarization experiments with a synthetic FAMCENP-C1–21 peptide (at 20 nM concentration). Increasing concentrations of the indicated MIS12C

species were added and fluorescence polarization monitored at equilibrium. Data fitting was performed as described in the STAR Methods. Due to the very low

binding affinity, binding data for the MIS12CMIS12-YFF and MIS12CNSL1-EDEAAA mutants were not fitted and appear therefore as disconnected points.

(B) SEC profiles of the indicated mutant MIS12Cs incubated with FAMCENP-C1–71. Dotted vertical bars indicate elution volumes of MIS12CWT and
FAMCENP-C1–71.

(C) Representative images of stable Flp-In T-REx cells expressing the indicated GFP-MIS12 constructs and showing that the GFP-MIS12MIS12-4D/EA mutant is

severely impaired in its localization to kinetochores. Scale bar, 10 mm.

(D) Quantification of GFP-MIS12 kinetochore levels. The graph shows mean intensity from two independent experiments. Error bars represent SEM. Values for

Mis12WT are set to 1.

See also Figure S5.
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Figure 5. Intramolecular Regulation of CENP-C Binding

(A) Sequencemotifs in DSN1 that are phosphorylated by Aurora B aligned with

a segment in the N-terminal region of CENP-C.

(B) Fluorescence polarization experiments were carried out as already shown

in Figure 4A with the indicated MIS12C species.

(C) Scheme detailing how Aurora B may regulate binding of CENP-C to

MIS12C.
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RWD domains) (Malvezzi et al., 2013; Petrovic et al., 2010). The

NSL1 and DSN1 motifs immediately follow the last visible resi-

dues of the DSN1 and NSL1 subunits in the crystal structure of

MIS12C (317DSN1 and 204NSL1, respectively). We can infer the

mode of NDC80C binding by the DSN1 motif on the basis of its

sequence similarity to the NDC80C-binding motif of CENP-T

(known as Cnn1 in S. cerevisiae) (Figure 6B). A crystal structure

of Cnn1 in complex with the SPC24:SPC25 dimer has been pre-

viously determined (Malvezzi et al., 2013; Nishino et al., 2013),

and we can therefore model the DSN1:NDC80 interaction on

the experimental structure of the CENP-TCnn1:SPC24:SPC25

complex (PDB: 3VZA), as shown in Figure 6C. The accompa-

nying paper also includes a crystal structure of the yeast

Spc24:Spc25 heterodimer with the C-terminal moiety of Dsn1

(Dimitrova et al., 2016).

We can also infer the mode of NDC80C binding by the NSL1

motif (Petrovic et al., 2010) on the basis of secondary structure

predictions (with the PSIPRED server; Buchan et al., 2013) sug-

gesting that the NSL1 segment 209-PVIHLQRIHQEVFS-222

adopts helical conformation. We speculate that this segment

of NSL1, which is necessary but not sufficient for binding of

human MIS12C and NDC80C (Petrovic et al., 2010), ex-

tends the stalk, making contacts with the RWD domains of

SPC24:SPC25 (Figure 6C). The NSL1 chain then likely reverses

its direction to reach the KNL1 RWD domains, to which it binds

through a motif comprised between NSL1 residues 258 and

281 (Petrovic et al., 2010, 2014). Our previously reported crystal

structure of this interaction (PDB: 4NF9) showed that the NSL1

C-terminal tail binds at the interface of the RWD domains (Pet-

rovic et al., 2014). Fitting of the EM map, however, shows that

KNL1 establishes a much more extended interface with the

C-terminal four-helix bundle in the stalk of MIS12C (Figure 6C).

While at the resolution of the EM map, no detailed molecular

description of this interface is possible, our model explains

why the binding affinity of KNL1 for the NSL1 C-terminal pep-

tide is significantly lower than the binding affinity of KNL1 for

the entire MIS12C (Petrovic et al., 2010, 2014). Furthermore,

extensive cross-linking between ZWINT and the C-terminal

tail of NSL1 (Figure 6D; Tables S2 and S3; for these experi-

ments we used the full length sequences of MIS12C subunits)

suggests that ZWINT, the only remaining KMN subunit to

remain structurally uncharacterized, also positions itself near

the KNL1 binding site of NSL1, in agreement with its ability to

interact directly with the KNL1 C-terminal region (Petrovic

et al., 2014). The cross-linking analysis also identified possible

contacts between the NDC80C and CENP-C1–140, but this

species, at 5 mM, did not show a direct interaction by SEC

(Figure S6C).

DISCUSSION

Together with previous high-resolution structural analyses of

NDC80C and KNL1 (Ciferri et al., 2008; Malvezzi et al., 2013;

Nishino et al., 2013; Petrovic et al., 2014; Primorac et al., 2013;
(D) Fluorescence polarization experiments were carried out as already shown

in (B) with the indicated MIS12C mutant complexes.

See also Figure S6.
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Figure 6. KMN Assembly and Wider Kineto-

chore Organization

(A) Chimera (Pettersen et al., 2004) was used to fit

model of MIS12C in a 3D negative stain EM map

(EMD-2549) of a nine-subunit complex containing

MIS12C, NDC80CBonsai, and the C-terminal RWD

domains of KNL1 (Petrovic et al., 2014).

(B) Sequence alignment of the SPC24:SPC24-

binding region in the N-terminal region of CENP-T

and of the C-terminal region of DSN1.

(C) The C-terminal region of DSN1 downstream of

the terminal part of the stalk domain was modeled

on the structure of the SPC24:SPC25:CENP-T

complex (PDB: 3VZA). The PVIHL motif is neces-

sary for SPC24:SPC25 binding and is predicted to

start a helical segment of NSL1. The chain then

inverts direction to reach KNL1. The structure

of the KNL1 RWD domains bound to the NSL1

C-terminal peptide (PDB: 4NF9) identifies the

peptide at the junction between RWD domains

(Petrovic et al., 2014).

(D) The diagram illustrates the intermolecular

cross-links connecting subunits in different KMN

complexes (listed in part A of Table S2).

(E) Schematic view of kinetochores drawn with

‘‘complexes’’ with realistic relative scales. The

gray moiety may be generated by pseudo 2-fold

symmetry of the CENP-A nucleosome (Weir et al.,

2016). A ruler (in nanometers) was positioned

along the inter-kinetochore axis. On the right, we

indicate the coordinate along the inter-kinetochore

axis of the centroid of a fluorescence signal

associated with the indicated proteins (e.g., by

fusion to GFP or through antibodies). The zero

coordinate was arbitrarily assigned to CENP-IN

(the N terminus of CENP-I) (Suzuki et al., 2014;

Wan et al., 2009).

See also Figure S6.
Wei et al., 2006, 2007), the crystal structures of Mis12C reported

here, and its yeast ortholog, MIND, described in the accompa-

nying paper (Dimitrova et al., 2016), represent an important

step toward the generation of a comprehensive model of

the KMN assembly. These high-resolution analyses comple-

ment sub-nanometer resolution 3D cryo-EM reconstructions of

NDC80CBonsai on microtubules, which revealed how the two

tightly arranged calponin homology (CH) domains in the

NDC80 and NUF2 subunits of NDC80C and a disordered N-ter-
ga

Liu

pa

tw

ad

th

ce

ac

m

Ce
minal segment of NDC80 cooperate for

high-affinity microtubule binding (Alushin

et al., 2010).

Besides DSN1 (as discussed in Re-

sults), all CCAN subunits, except

CENP-C, seem to have been lost from

the genomes of Drosophila melanogaster

and of a few other organisms (Barth et al.,

2014; Drinnenberg et al., 2014; Meraldi

et al., 2006; Przewloka et al., 2007; West-

ermann and Schleiffer, 2013). As in

humans and yeast, the interaction of

MIS12C with CENP-C in Drosophila en-
ges the N-terminal region of CENP-C (Hornung et al., 2014;

et al., 2016; Przewloka et al., 2011; Richter et al., 2016; Scre-

nti et al., 2011). This linkage may be the only connection be-

een the inner and outer kinetochore in organisms devoid of

ditional CCAN subunits. In organisms that contain CCAN, on

e other hand, a pathway of outer kinetochore recruitment

ntered on the CCAN subunit CENP-T (Cnn1 in S. cerevisiae)

ts in parallel to the CENP-C pathway to promote KMN recruit-

ent (Gascoigne et al., 2011; Hori et al., 2008; Kim and Yu, 2015;
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Malvezzi et al., 2013; Nishino et al., 2013; Rago et al., 2015;

Schleiffer et al., 2012; Suzuki et al., 2015). Understanding how

the CENP-C and CENP-T pathways co-exist and possibly coop-

erate in kinetochore assembly is a challenge for future studies.

In Figure 6E, the KMN and CCAN components are drawn

schematically but at their approximate scale. CENP-A is

assumed to be in axis with the microtubule. Its closest CCAN

components are CENP-C and CENP-LN, previously shown to

bind CENP-A directly (Carroll et al., 2009, 2010; Kato et al.,

2013). Most of CENP-C is disordered and flexible, with the

exception of its C-terminal Cupin-like dimerization domain (Co-

hen et al., 2008) (not shown in Figure 6). Besides binding

CENP-A (residues 516–537 of CENP-C) (Kato et al., 2013),

CENP-C binds the CCAN complexes CENP-LN and CENP-

HIKM (residues 189–400 of CENP-C) (Klare et al., 2015; Nagpal

et al., 2015; Weir et al., 2016) and MIS12C through its N-terminal

region (Hornung et al., 2014; Liu et al., 2016; Przewloka et al.,

2011; Richter et al., 2016; Screpanti et al., 2011; Weir et al.,

2016). The ordered succession of binding sites on CENP-C ap-

pears to recapitulate the outer to inner kinetochore axis, sug-

gesting that it is a scaffold ordering kinetochore assembly (Klare

et al., 2015). The additional CCAN subunits that interact with

CENP-C or, more generally, whose localization to kinetochores

depends on CENP-C, including CENP-TW and CENP-OPQUR,

have been also implicated in MIS12C localization (Hornung

et al., 2014; Kim and Yu, 2015; Rago et al., 2015). At least in fungi,

a direct interaction with the MIND complex of the homologs

of the CENP-OPQUR subunits has been identified (Dimitrova

et al., 2016; Hornung et al., 2014), but we could not detect this

interaction with the human proteins (unpublished data).

In summary, CCAN, using CENP-C as a spacer, may generate

sturdy linkages radiating from CENP-A to position multiple KMN

assemblies to surround a microtubule. The arrangement of

CCAN and KMN complexes in Figure 6 fits well with the posi-

tioning of individual subunits by a pseudo-super resolution anal-

ysis (Joglekar et al., 2009; Suzuki et al., 2014; Wan et al., 2009).

These studies and the model derived here are consistent with

the observed kinetochore thickness (�80 nm), most of which

can be spanned by the KMN assembly.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-GFP Generated in-house N/A

Mouse monoclonal anti-MIS12 Generated in-house #QA21-74-4-3

Rabbit polyclonal anti-CENP-C Trazzi et al., 2009 #SI410

Mouse monoclonal anti-Vinculin Sigma-Aldrich Cat#V9131; RRID: AB_477629

Rabbit polyclonal anti-KNL1-N Generated in-house #SI0787

Mouse monoclonal anti-HEC1 GeneTex Cat#GTX70268; RRID: AB_371632

Rabbit polyclonal anti-CENP-T/W Generated in-house #SI0882

Mouse monoclonal anti-DSN1 Generated in-house #RC11-3(40)

Sheep anti-mouse HRP Amersham Cat#NXA931-1ML; RRID: AB_772209

Donkey anti-rabbit HRP Amersham Cat#NXA934-1ML

Human anti-centromere (CREST) Antibodies Inc. Cat#15-234-0001

Goat anti-human Alex Fluor 647 Invitrogen Cat#A-21445; RRID: AB_2535862

Chemicals, Peptides, and Recombinant Proteins

GST-Prescission (3C protease) Musacchio Lab N/A

Endoproteinase Asp-N Sigma Aldrich Cat#000000011420488001

Lysyl Endopeptidase Wako Cat#125-05061

Ndc80C Petrovic et al., 2014 N/A

KNL1C Petrovic et al., 2014 N/A

Zwint1 Musacchio Lab N/A

Protease-inhibitor mix HP Plus Serva Cat#39107

PhosSTOP phosphatase inhibitors Roche Cat#04906845001

DNaseI Roche Cat#13146700

FAM-CENP-C 1-21 GenScript N/A

FAM-GGGK GenScript N/A

Sortase A (S.pyogenes) Hidde Ploegh Lab Addgene:Cat#51139

Sortase A delta 59 (S.aureus) Hidde Ploegh Lab Addgene:Cat#51138

Zeocin Invitrogen Cat#R25001

Doxycycline Sigma Cat#D9891;

CAS: 24390-14-5

Nocodazole Sigma Cat#M1404;

CAS: 31430-18-9

L-glutamine PAN Biotech P04-80100

DAPI Serva Cat#18860.01

Poly-L-Lysine Sigma Aldrich Cat#P4832;

CAS: 25988-63-0

Bissulfosuccinimidylsuberate (BS3) Creative Molecules Cat#001SS

Urea Sigma-Aldrich Cat#U6504;

CAS: 57-13-6

4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-

4-methylmorpholinium chloride (DMTMM)

Sigma Aldrich Cat#74104;

CAS: 3945-69-5

Acetonitrile Fluka Cat#34967;

CAS: 75-05-8

Trypsin Promega Cat#V511

(Continued on next page)
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Ammonium Bicarbonate (Ambic) Fluka Cat#C990X98;

CAS: 1066-33-7

Trifluoroacetic acid (TFA) Sigma Aldrich Lot#RB228879;

CAS: 76-05-1

Tris(2-carboxyethyl)phosphine

hydrochloride (TCEP-HCl)

Pierce Cat#20490; CAS: 51805-45-9

Iodoacetamide Sigma Aldrich Cat#I6125;

CAS: 144-48-9

Critical Commercial Assays

JBS Floppy-Choppy Jena Bioscience Cat#CO-110

JBS Tantalum Cluster Derivitization Kit Jena Bioscience Cat#PK-103

JSCG Core Suites QIAGEN Cat#130724;130725;130726;30727

Deposited Data

MIS12/CENP-C full-length structure This study PDB:5LSK

MIS12Dhead2 structure This study PDB:5LSJ

Head2 structure This study PDB:5LSI

Experimental Models: Cell Lines

Trichoplusia ni:BTI-Tnao38 Garry W Blissard Lab N/A

S.frugiperda:Sf9 cells in Sf900� III SFM ThermoFisher Cat#:12659017

Human: Flp-In T-Rex HeLa S.S. Taylor, University of Manchester N/A

Human: Flp-In T-Rex HeLa-MIS12 This paper N/A

Human: Flp-In T-Rex HeLa-MIS12 YFF This paper N/A

Human: Flp-In T-Rex HeLa-MIS12 4D/EA This paper N/A

Experimental Models: Organisms/Strains

E.coli:BL21-CodonPlus(DE3)-RIL strain Agilent Technologies #230240

E.coli:One Shot OmniMAX 2 T1R

Chemically Competent Cells

ThermoFisher #C854003

E.coli:BL21-CodonPlus(DE3)-RIPL strain Agilent Technologies #230280

Recombinant DNA

pGEX-2rbs Musacchio Lab

MultiBac Geneva Biotech N/A

pST39 Tan et al., 2005 N/A

pST39-MIS12C This study N/A

pST39-MIS12C YFF This study N/A

pST39-MIS12C MIS12-2D/EA This study N/A

pST39-MIS12C MIS12-2E/DA This study N/A

pST39-MIS12C MIS12-4D/EA This study N/A

pST39-MIS12C NSL1-DED/AAA This study N/A

pST39-MIS12C D100-109 This study N/A

pST39-MIS12C DSN1-RRAA This study N/A

pST39-MIS12C DSN1-RRKAAA This study N/A

pST39-MIS12C Dhead1 This study N/A

pST39-MIS12C Dhead2 This study N/A

pGEX-2rbs-Head1 This study N/A

pGEX-2rbs-Head2 This study N/A

pGEX-CENP-C 1-71 Screpanti et al., 2011 N/A

pCDNA 5/FRT/TO plasmid Invitrogen Cat#V6520-20

pcDNA 5/FRT/TO EGFP Krenn et al., 2012 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pcDNA 5/FRT/TO EGFP-MIS12 This study N/A

pcDNA 5/FRT/TO EGFP-MIS12 YFF This study N/A

pcDNA 5/FRT/TO EGFP-MIS124D/EA This study N/A

pFL-MIS12:PMF1 This study N/A

pUCDM-NSL1:DSN1 This study N/A

Software and Algorithms

Origin OriginLab www.originlab.com

ImageJ 1.46 r NIH https://imagej.nih.gov/ij/

Imaris 7.3.4 32-bit Bitplane http://www.bitplane.com/imaris

GraphPad Prism 6.0 GraphPad software http://www.graphpad.com

Coot Emsley et al., 2010 http://www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/

UCSF Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera

Phenix Adams et al., 2010 https://www.phenix-online.org

XDS Kabsch, 2010 http://xds.mpimf-heidelberg.mpg.de/

PyMol The PyMOL Molecular Graphics System,

Version 1.2r3pre, Schrödinger, LLC

https://www.pymol.org/

UCLA Diffraction Anisotropy Server http://services.mbi.ucla.edu/anisoscale

CCP4 package Winn et al., 2011 www.ccp4.ac.uk

xQuest/XProphet Walzthoeni et al., 2012 http://proteomics.ethz.ch/cgi-bin/

xquest2_cgi/index.cgi

SHARP Bricogne et al., 2003 https://www.globalphasing.com

Other

Sep-Pak C18 Vac Cartridge, 50 mg Sorbent Waters Cat#WAT054955

Zeba Spin Desalting Columns, 7K MWCO,

0.5 mL

Thermo Scientific Cat#89883

Amicon concentrators (3K/10K/30K) Millipore Cat#UFC900324;UFC901024;UFC903024

Nitrocellulose membrane GE Healthcare Cat#10600001

Mowiol mounting media Calbiochem Cat#475904

4-12% NuPAGE Bis-Tris gels Life Technologies Cat#NP0321BOX

GST-Trap FF (5 ml) GE Healthcare Cat#17-5130-01

His Trap FF (5ml) GE Healthcare Cat#17-5255-01

Superdex 75 (10/300) GL GE Healthcare Cat#17-5174-01

Superdex 75 (16/600) pg GE Healthcare Cat#28-9893-33

Superdex 200 (10/300) GL GE Healthcare Cat#17-5175-01

Superdex 200 Increase 5/150 GL GE Healthcare Cat#28-9909-45

Superdex Peptide PC 3.2/300 GE Healthcare Cat#29-0362-31

Resource Q (6 ml) GE Healthcare Cat#17-1179-01

Resource S (6 ml) GE Healthcare Cat#17-1180-01

Glutathione Affinity Resin Expedeon Cat#AGS0010

Protein G-agarose beads Amintra Cat#APG0005

Protein A-agarose beads Roth Cat#1278.1

GFP-Trap_A ChromoTek Cat#gta-20

Corning 384 Well Low Volume Black Round

Bottom Polystyrene NBS Microplate

Corning Cat#4514

ECL Prime western blotting system GE Healthcare Cat#RPN 2232
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by, Andrea Musacchio (andrea.musacchio@

mpi-dortmund.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

cDNAs used for expression of recombinant proteins were either of human origin, or generated synthetically based on human

sequences.

Flp-in T-Rex HeLa cell lines were maintained at 37�C and 5% CO2 in DMEM supplemented with 10% tetracycline-free FBS, 2 mM

L-glutamine. Doxycycline-inducible stable cell lines were generated using the pcDNA 5/FRT/TO-based plasmids (Tighe et al., 2004).

Flp-In T-REx HeLa cells used to generate stable doxycycline-inducible cell lines were a gift from S.S. Taylor (University of Manches-

ter, Manchester, England, UK). Flp-In T-REx host cell lines were maintained in DMEMwith 10% tetracycline-free FBS supplemented

with 50 mg/ml Zeocin. Flp-In T-REx HeLa expression cell lines were generated as previously described (Petrovic et al., 2014). Trans-

gene expression was induced by the addition of 100 ng/ml Doxycycline hydrate for 24 hr.

E. coli BL21(DE3)-Codon-plus-RIL (or RIPL) cells were grown in Terrific Broth (TB) at 37�C.

METHOD DETAILS

Plasmids
The N-terminal EGFP-MIS12 full-length constructs used for in vivo experiments were generated by subcloning in pcDNA5/FRT/TO/

EGFP-IRES vector, a modified derivative of the pCDNA 5/FRT/TO plasmid. The pcDNA 5/FRT/TO/EGFP vector was obtained by

cloning the sequence encoding EGFP from pEGFP-C1 into the pcDNA 5/FRT/TO-IRES vector. Sequences encoding deletion ver-

sions of MIS12 used for in vitro studies were generated using a modified procedure of the standard Quick-Change site-directed

mutagenesis kit protocol in pST39 background (Sawano and Miyawaki, 2000). The constructs encoding Head1 and Head2 versions

were generated by Gibson assembly method in pGEX-2rbs, a modified derivative of pGEX-6P-1 expression vector generated in-

house. Site-directed mutants were introduces using a modified procedure of the standard Quick-Change site-directed mutagenesis

kit protocol (Sawano and Miyawaki, 2000). All plasmids were verified by DNA sequencing.

Immunoprecipitation and Immunoblotting
For immunoprecipitation, mitotic cells were harvested by shake-off and lysed in buffer (75 mM HEPES pH 7.5, 150 mM KCl, 1.5 mM

MgCl2 1 mM EGTA, 10% glycerol, and 0.075% NP-40) supplemented with and protease inhibitor cocktail and PhosSTOP phospha-

tase inhibitors. For immunoprecipitation experiments, extracts were pre-cleared with a mixture of protein A–agarose and protein

G–agarose for 1 hr at 4�C and subsequently incubated with GFP-Traps (3 ml/mg of extract) for 3 hr at 4�C. Immunoprecipitates

were washed in lysis buffer and resuspended in sample buffer, boiled at 95�C, resolved on SDS-PAGE with NuPAGE Bis-Tris

4%–12% gradient gels and transferred onto nitrocellulose membranes. Antibody concentrations were as follows anti-GFP,

1:1000-3000; anti-Mis12, 1:1000; anti-CENP-C, 1:500; anti-Vinculin, 1:20000; anti-Knl1-N, 1:1000; anti-Hec1, 1:1000; anti-CENP-

TW, 1:500, anti-Dsn1, 1:200; secondary antibodies, affinity-purified with horseradish peroxidase conjugate, 1:10000. After incuba-

tion with ECL western blotting system, images were acquired with the ChemiDoc� MP Imaging System (BIO-RAD) in 16-bit TIFF

format. Levels of images were adjusted using ImageJ software and then cropped and converted to 8-bit.

Immunofluorescence
Flp-In-T-Rex HeLa cells were plated on coverslips pre-coated with poly-L-lysine for 24 hr. Asynchronously growing cells were fixed

using 4% paraformaldehyde. Cells were stained for CREST/anti-centromere antibodies (1:100), diluted in 2% BSA-PBS for 1.5 hr.

Goat anti–human Alexa Fluor 647 was used as secondary antibody. DNA was stained with 0.5 mg/ml DAPI and coverslips were

mounted with Mowiol mounting media. Preparations were examined under a microscope (MARIANAS, from 3i-Intelligent Imaging

Innovations, Inc.) built around a stand (Axio Observer Z1; Zeiss) equipped with CSU-X1 confocal scanner unit (Yokogawa Electric

Corporation) and a Plan-Apochromat 100x/1.4NA oil-immersion objective (Zeiss). Images were acquired as z sections at 0.27 mm.

Images were converted into maximal intensity projections, exported and converted into 8-bit. Quantification of kinetochore signals

was performed on unmodified 16-bit z series images using Imaris 7.3.4 32-bit software. After background subtraction, all signals

were normalized toCREST. At least 728 kinetochores were analyzed per condition.Measurements were exported in Excel (Microsoft)

and graphed with GraphPad Prism 6.0.

Protein Expression and Purification
A truncated version of the humanMIS12C complex (MIS12CNano) previously generated based on results of limited proteolysis exper-

iments (Petrovic et al., 2014) was used as a starting point for structural and biochemical experiments. Constructs of MIS12 used in

this study are described in Table S1B. E.coli BL21(DE3)-Codon-plus-RIL (or RIPL) cells containing the pST39 plasmid encoding a

variant of the Mis12 complex under study, were grown in Terrific Broth (TB) at 37�C to an OD600 of 0.8. Protein expression was
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induced by the addition of 0.1 mM ITPG at 18�C and cells were incubated overnight for 16 hr. Cell pellets were resuspended in buffer

A (20 mM Tris-HCl, pH 8, 300 mM NaCl, 10% (v/v) glycerol and 2 mM 2-mercaptoethanol supplemented with protease-inhibitor mix

HP Plus and DNaseI, lysed by sonication and cleared by centrifugation. The cleared lysate was applied to 5 mL Ni-NTA-Fast Flow

column pre-equilibrated in buffer A. The column was washed with 30 column volumes of buffer A containing 20 mM imidazole, and

the bound protein was eluted with buffer A supplemented with 300 mM imidazole. The eluate was dialysed against ion exchange

buffer A (20mMTris-Hcl, pH 8, 30mMNaCl, 1mMEDTA and 1mMTCEP) and applied to a 6mLResourceQ column pre-equilibrated

in the same buffer. Elution of bound protein was achieved by a linear gradient from 30 mM to 300 mM NaCl in 20 column volumes.

Relevant fractions were concentrated in 10 kDamolecular mass cut-off Amicon concentrators and applied to a Superdex 200 10/300

column equilibrated in size-exclusion chromatography buffer (20 mM Tris-HCl, pH 8, 150 mMNaCl and 1 mM TCEP). Size-exclusion

chromatography was performed under isocratic conditions at a flow rate of 0.4 ml/min, and the relevant fractions were pooled,

concentrated, flash-frozen in liquid nitrogen and stored at�80�C.OtherMis12 variants used in this studywere purified using identical

conditions. The expression of Head1 and Head2 constructs (MIS12:PMF1 and NSL1:DSN1 respectively, see Table S1B) was per-

formed in E.coli BL21(DE3)-Codon-plus-RIL (or RIPL) cells. Protein expression was induced by the addition of 0.4 mM IPTG at

18�C and cells were incubated overnight for 16 hr. Cell pellets were resuspended in GST binding buffer (20 mM Tris-HCl, 300 mM

NaCl, 10%(v/v) glycerol, 1 mM EDTA and 1mM TCEP) supplemented with protease-inhibitor mix HP Plus and DNase I, lysed by son-

ication and clarified by centrifugation. The cleared lysate was incubated with Amintra Glutathione resin for two hours at 4�C.
Following extensive washing (50-100 bead volume), the mixture was incubated with GST-3C protease (generated in house) over-

night. The flow-through fraction was dialyzed against ion-exchange buffer A (see above), applied to a 6 mL Resource Q column

(in case Head1) or 6 mL Resource S (in case of Head2), pre-equilibrated in the same buffer and the sample eluted using a linear

gradient (from 30 to 300 mM NaCl for Head1 or 30 to 500 mM NaCl for Head2) over 20 column volumes. Relevant fractions were

pooled, concentrated (10 kDa molecular mass cut-off Amicon concentrators) and applied to a Superdex 75 (10/300 or 16/600) col-

umn equilibrated in SEC buffer (20 mM Tris-HCl, pH 8, 150 mM NaCl and 1 mM TCEP). The sample was eluted under isocratic con-

ditions, at a flow rate of 0.4 ml/min (for 10/300) or 1 ml/min (for 16/600), relevant fractions pooled, concentrated and flash-frozen.

During purification of the Head2 construct, a stable proteolytic fragment generated by removal of residues near the N-terminal region

of the DSN1 subunit was observed. The proteolytic fragment was separated from the full-length protein during the Resource S step,

and was used in crystallization trials (vide infra).

In order to increase yield, MIS12CNano construct was also generated for the expression in insect cells. Expression and purification

of the MIS12CNano complex was carried out in insect cells using a MultiBac system. Production of high-titer V2 virus was carried out

separately for pFL-PMF1:MIS12 and pFL-DSN1-6xHis-NSL1 in Sf9 cells. Tnao38 insect cells (Hashimoto et al., 2012) were used for

expression (96 hr, 27�C), after which the cells were centrifuged, washed once in PBS, re-centrifuged and frozen. Purification of MIS-

C12Nano was carried out in the same manner, as for the samples generated in E. coli.

CENP-C1-71 (Screpanti et al., 2011) was expressed in E. coli BL21(DE3)-Rosetta cells harboring the pGEX6P-2rbs-CENP-C1-71

plasmid. Cells were grown in TB to an OD600 of 0.8. Protein expression was induced by the addition of 0.2 mM ITPG at 18�C and

cells were incubated overnight for 16 hr. Cell pellets were resuspended in GST binding buffer (20 mM Tris-HCl, 500 mM NaCl,

10%(v/v) glycerol, 1mM EDTA and 1 mM TCEP) supplemented with protease-inhibitor mix HP Plus and DNase I, lysed by sonication

and clarified by centrifugation. The cleared lysate was applied to a 5 mL GST-Fast Flow column, pre-equilibrated in the GST binding

buffer. Following extensive washing (50-100 column volume), GST-3C protease (generated in house) was added and the mixture

incubated overnight. The flow-through fraction was concentrated (3 kDa molecular mass cut-off Amicon concentrators) and sample

applied to a Superdex 75 (16/600) column, pre-equilibrated in CENP-C SEC buffer (20 mM Tris-HCl, pH 8, 300 mM NaCl and 1 mM

TCEP). The sample was eluted under isocratic conditions, at a flow rate of 1 ml/min, relevant fractions pooled, concentrated and

flash-frozen.

Crystallization
Prior to crystallization trials, purifiedMIS12CNano:CENP-C1-71 complex was mixed with 1 mg/ml solution of a-Chymotrypsin at a ratio

1:1000 (w/w). Initial crystallization hits of MIS12CNano:CENP-C1-71 were obtained in sitting drop crystallization experiments at ca.

10 mg/ml in a 96 well format using a Mosquito protein crystallization robot (TTP Labtech) at 4�C. Crystals grew as shower of thin

plates, in range of conditions of various commercial screens including JCSG CoreI conditions B3 and D10, JCSG Core II conditions

C10 and D100 and Procomplex condition D11 within 24-48 hr, reaching maximum size in 4-6 days. Crystals were further optimized in

96-well sitting drop iQ plates using a two-dimensional grid screen varying PEG6K (from 6%–12%) and pH (from 6-8). Crystals ob-

tained in this way were also used as a source for seeds. In general, seeds were used in streak-seeding experiments employing a

cat-whisker to optimize crystals in 24-well hanging-drop experiments. Streak-seeding from non-substituted protein was also

used to facilitate growth of selenomethionine crystals. In general, MIS12CNano:CENP-C1-71 complexes purified from E. coli and insect

cells were used. For phasing, crystals were soaked overnight in mother liquor containing Ta6Br12 ranging in concentration from

0.5 mM to 2 mM. Crystals were cryo-cooled in a mother liquor solution containing 20%–25% (v/v) glycerol or 20% (v/v) ethylene

glycol.

The MIS12CDHead2:CENP-C1-71 was crystallized at approximately 9.2 mg/ml in sitting drop crystallization experiments in a 96-well

plate format. Initial crystals were obtained after 5 days at 4�C in JCSG Core I condition B10 (20% (w/v) PEG 3350, 0.2 M Potassium

Sodium Tartrate). Crystals were cryo-cooled in a mother liquor solution containing 20% (v/v) glycerol.
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We also obtained crystals of the isolated Head2 domain, generated by co-expression of N-terminal segments of DSN1 and NSL1

(Table S1B). Nonspecific proteolysis of the N-terminal DSN1 region (residues 68-106) occurred during purification. The Head2 pro-

teolytic fragment was crystallized at approximately 15mg/ml in sitting drop crystallization experiments in a 96-well plate format. Initial

crystals were obtained at 20�C in JCSG Core III condition F10 (0.2 M Potassium Sodium Tartrate, 0.1 M Tri-Sodium Citrate, pH 5.6,

and 2M Ammonium Sulfate). Crystals were cryo-cooled in a mother liquor solution containing 20% (v/v) glycerol.

Crystal Structure Determination
All data were collected at 100K using a Pilatus 6M detector either at the X10SA beamline at the SLS in Villigen, Switzerland, or at the

P11 beamline of PETRA in Hamburg, Germany. All datasets were integrated and scaled using XDS and XSCALE and corrected for

anisotropic diffraction using the UCLA Diffraction Anisotropy Server (except for the isolated Head2 domain data). The quality of the

MIS12Nano:CENP-C1-71 crystals varied greatly in an unpredictable manner and necessitated screening of a large number of crystals.

The best diffracting native crystals (3.5 Å) obtained by in situ proteolysis belonged to space group C2 with one molecule per asym-

metric unit and were difficult to reproduce. Crystals obtained in conditions similar to the standard ones (see Crystallization), grew in a

different space group (P21) with two molecules per asymmetric unit and were soaked with a Tantalum bromide cluster. They dif-

fracted to 5Å with a significant anomalous signal up to 6.5 Å. Phasing with PHENIX and SHARP located three binding sites for the

Ta6Br12 cluster and allowed unambiguous positioning of alpha helices into the electron density. Molecular replacement with PHASER

could successfully place the initial a-helical model into the native dataset in the C2 space group. Multi-crystal averaging of the native

C2 dataset and another crystal in space group P1 (SeMet protein, but collected at 0.999 Å, that diffracted to 4.5 Å) with dmmulti

(CCP4 package) greatly improved the density up to a point where refinement with PHENIX started to lower the free R factor. Separate

masks were used for Head1, Head2 and the Stalk. Initially, the PHENIX option ‘‘autobuild from fragments’’ was used to improve the

electron density. Later, secondary structure constraints and optimized weights were employed to prevent over-fitting. The sequence

was assigned with the help of the structure of the K. lactisMIS12 complex (Dimitrova et al., 2016), which was fitted segment-wise to

the human complex, accompanied by extensive analysis and comparison of secondary structure predictions (using PSIPRED) and

complemented by cross-linking-mass spectrometry data. The anomalous signal of the P21 SeMet crystal (collected at SeMet wave-

length, diffracting to 6 Å) extended up to only �10A, and was therefore of limited use to the sequence assignment, but was used to

confirm the positions of most of the selenomethionines. The CENP-C sequence was modeled into an Fobs-Fcalc electron density map

after refinement of the protein was essentially complete and further lowered the free R value to a final 29.8% with acceptable

Ramachandran geometry (91.8% favored, 6.6% allowed and 1.6% outliers).

The crystal structure of the MIS12CDHead2 was solved using molecular replacement with PHASER. It contained 2 molecules per

asymmetric unit in a distinct P21 crystal form. Head1 and the stalk were used as separate search models since no solution could

be obtained with the model of full-length MIS12C after removal of Head2. Indeed, Head1 and the Stalk showed some hinge-bending

motion of the two domains in comparison to the full-length structure in the C2 spacegroup. Rigid body refinement of the domains and

separate helices lowered the free R factor. The slightly better resolution of the MIS12CDHead2 crystals compared to the full-length

structure facilitated sequence assignment and further refinement using PHENIX. In spite of a high R factor, data up to 3.0 Å were

initially included in refinement as they improved its convergence, whereas in the final refinement data to 3.25Å was used. The final

model built on density for the MIS12CNano crystals contains residues 2-200 of MIS12, residues 31-203 of PMF1, residues 116-155,

159-193, 203-245, and 258-317 of DSN1, residues 32-204 of NSL1, and residues 6-22 and 28-48 of CENP-C.

The structure of the MIS12CHead2 was solved by molecular replacement, using the structure of the Head2 derived from the MIS12-

CNano:CENP-C1-71 as a search model in Molrep (Collaborative Computational Project, Number 4, 1994). It contained 1 molecule per

asymmetric unit in spacegroup P32. The structure was rebuilt with Coot and refined with Refmac5, in iterative cycles until R-factors

converged. The final refinement was done with PHENIX.

Fluorescence Polarization
Fluorescence polarization measurements were performed with a Safire 2 instrument (Tecan) at 30�C. The reaction volume was 20 mL

and the fixed concentrations (20 nM) of 5-FAM labeled CENP-C1-21 peptide weremixedwith increasing concentrations of the respec-

tive Mis12 variant (in the range of 1.28 pM-30 mM) in binding buffer (20 mM Tris-HCl, pH 8, 150 mMNaCl and 1mM TCEP) in Corning

384 Well Low Volume Black Round Bottom Polystyrene NBS microplates. The reaction mixtures were allowed to equilibrate for

approximately 15 min at room temperature. Fluorescein (5-FAM) was exited with polarized light at 470 nm, and the emitted light

was detected at 525 nm through both horizontal and vertical polarizers. No change in the observed signal (or the underlying observed

dissociation constant) was detected after one-hour incubation on ice. Polarization values are shown as mean ± standard error of the

mean for three replicates and are plotted as a function of the logarithm of Mis12 concentration. Dissociation constant values (Kd)

were obtained by fitting the fluorescence polarization data by non-linear least square method using the Origin software.

Protein Labeling
For site-specific protein labeling, Sortasemediatedmethod was implemented. The C-terminal end of CENP-C1-71 was engineered to

encode C-terminal sortase recognition motif (LPETGG) followed by a hexahistidine tag. The S. aureus SortaseAD59 expression

plasmid was a kind gift of Hidde Ploegh. For labeling reaction, CENP-C1-71 was mixed at a concentration of 50 mM with 150 mM

SortaseA and 1 mM synthetic peptide GGGK (labeled via lysine to 5-FAM) in reaction buffer (50 mM Tris-HCl, pH 7.5, 150 mM
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NaCl and 10 mM CaCl2) and incubated overnight at 4�C protected from light. Following overnight incubation, labeled CENP-C1-71

was separated from Sortase A and non-labeled CENP-C1-71 by passage through Nickel beads equilibrated in CENP-C SEC buffer

(20 mM Tris-HCl, pH 8, 300 mM NaCl and 1 mM TCEP). The labeled CENP-C1-71 peptide was separated from excess synthetic pep-

tide through repeated centrifugation steps with 3 kDamolecular mass cut-off Amicon concentrators, until the synthetic peptide in the

flow-through was not detectable. The concentration of the labeled FAMCENP-C1-71 fragment was estimated by measuring the absor-

bance for fluorescein at 495 nm.

Analytical Size-Exclusion Chromatography
Analytical size-exclusion chromatography was carried out on a Superdex 200 Increase 5/150 (ÄKTAmicro system) column. The sam-

ples were eluted under isocratic conditions at 4�C in SEC buffer (20 mM Tris-HCl, pH 8, 150 mMNaCl and 1 mM TCEP) at a flow rate

of 0.2 ml/min. Elution of proteins was followed by monitoring wavelengths at 280 and 495 nm. Proteins were mixed at 5 mM in a total

volume of 50 ml, incubated for 30 min on ice, spun for 15 min in a bench-top centrifuge before each chromatographic step. Relevant

fractions (50 ml) were analyzed by SDS-PAGE. Chromatographic runs containing labeled protein fragments were analyzed by SDS-

PAGE, and in-gel fluorescence was detected using a ChemiDoc� MP Imaging System (BIO-RAD).

Chemical Cross-linking and Mass Spectrometry
Cross-linking of the 10-subunit KMN assembly complex with a CENP-C fragment was performed by mixing 45 mg of the complex (at

1mg/ml) with 650 mMof an equimolar mixture of isotopically light (d0) and heavy (d12) labeled BS3 (bis-sulfosuccinimidylsuberate) for

30 min at 37�C. The reaction was quenched by adding a final concentration of 100 mM ammonium bicarbonate for 20 min at 37�C.
Cross-linked proteins were enzymatically digested by trypsin or AspN and cross-linked peptides were identified by tandem mass-

spectrometry (Herzog et al., 2012;Walzthoeni et al., 2012). Cross-linked proteins were denatured by adding 2 sample volumes of 8M

urea and reduced by incubating with 5 mMTCEP at 35�C for 15min. Proteins were alkylated with 10mM iodoacetamide for 35min at

room temperature in the dark. Samples were proteolytically digested using either trypsin or AspN. For the trypic digest, proteins were

first incubated with lysyl endopeptidase (1/50, w/w) for 2 hr at 35�C followed by adding trypsin (1/50, w/w) overnight at a final con-

centration of 1 M urea. For the AspN digest, the protease was added twice, first at a final concentration of 1.6 M Urea (1/50, w/w) for

2 hr at 35�C and second in 0.5mMUrea (1/50, w/w) overnight. Proteolysis was stopped by the addition of 1% (v/v) trifluoroacetic acid

(TFA). Acidified peptides were purified by reversed-phase chromatography on C18 columns (Sep-Pak). Eluates were dried, recon-

stituted in 20 ml of mobile phase (water/acetonitrile/TFA, 75:25:0.1) and cross-linked peptides were enriched on a Superdex Peptide

PC 3.2/30 column. Fractions of the cross-linked peptides were analyzed by liquid chromatography coupled to tandem mass spec-

trometry using a LTQ Orbitrap Elite (Thermo Scientific) instrument. The cross-link fragment ion spectra were searched and peptides

identified by the open-source software xQuest (Walzthoeni et al., 2012). The results were filtered according to the following param-

eters: score < 0.85, MS1 tolerance window of�4 to 4 ppm and scoreR 22 andmanually validated. False positive rates calculated by

xProphet (2) were 0.04 for inter-protein cross-links and < 0.01 for intra-protein cross-links.

QUANTIFICATION AND STATISTICAL ANALYSIS

For polarization experiments, values are shown as mean ± standard error of the mean (described in Method Details). For kinetochore

localization experiments, quantification and statistical analysis (mean ± SEM) are described in the figure legends.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the MIS12Dhead2, Head2, and MIS12:CENP-C full-length structures reported in this paper are PDB: 5LSJ,

5LSI, and 5LSK, respectively.
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Figure S1. Organization of the KMN Network, Related to Figure 1

(A) Drawing of the KMN network and its interaction with CCAN. CH, Calponin-homology domain; RWD, RING finger, WD repeat, DEAD-like helicases.

(B) Schematic representation of the organization of subunits of the KMN network and main functional domains; CC, coiled-coil; N, N-terminal tail (involved in

microtubule binding); PEST, proline-glutamic-serine-threonine. The CENP-C motif and the central region of CENP-C contain conserved nucleosome binding

motifs.



Figure S2. Electron Density Maps, Related to Figure 1

(A) Results of limited proteolysis experiment with Chymotrypsin at protease:substrate ratios similar to that used in crystallization experiment. The red numbers

indicate the boundaries of the MIS12Nano construct (see Table S1). Black numbers indicate boundaries of protease-trimmed segments, shown in white. Some of

the trimmed segments, however, were clearly visible in the crystal’s electron density, suggesting that proteolysis is less efficient in the crystallization buffer. See

STAR Methods section ‘Crystal structure determination’ for additional details.

(B and C) Snapshots of electron density for theMIS12C full length model. The shownmap is an omit map, obtained with Phenix (Adams et al., 2010), contoured at

1 sigma (panel A) or at 1.5 sigma (panel B). In B, three Phe residues in the Phe-Phe-Gly-Phe motif of MIS12 are shown. The color scheme is the same already used

in Figure 1.

(D) Cartoon model of the MIS12C colored according to confidence of model building, from highest confidence (green) to medium (orange) to lowest (red).

(E) Intra MIS12C cross-links, extracted from Tables S2 and S3, were mapped onto the final model of the MIS12C, and distances between Ca atoms of cross-

linked lysines were tabulated. Cross-links were shown in black if the calculated distance betweenCa atomswas compatible with formation of a cross-link, i.e., if it

was less or equal to the combined length of the cross-linker (11.4 Å) and of two extended lysine side chains (�6.3 Å, and therefore�24 Å in total). Two cross-links

indicated in blue may reflect large-scale relative movements of Head2 and Head1 (possibly reflecting the Aurora B-regulated intra-molecular interaction). Only

two cross-links (shown in brown) were inconsistent with the model, but they could reflect temporary fluctuations in the structure of the MIS12C.

(F) Cartoon model of the Head2 structure in two orientations (Nsl1, blue; Dsn1, orange).
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Figure S3. Further Comparison of MIS12C:CENP-C and MIND:Mif2, Related to Figure 2

(A andB) Cartoon diagrams ofMIS12C:CENP-C andMIND:Mif2 (left and right, respectively) aroundHead1 and theCENP-C/Mif2 binding sites. Mif2 is shown here

in yellow rather than wheat to facilitate interpretation of subsequent panels. The main chain of CENP-C resembles a ‘‘horseshoe.’’ Its first visible segment

(residues 6-22) is extended and binds in a shallow groove between the a1 and a2 helices of MIS12 in Head1. Lys10CENP-C, Tyr13CENP-C, Arg14CENP-C,

Arg16CENP-C, and Phe17CENP-C interact with residues in Head1 and with the N-terminal region of the a3 helices of DSN1:NSL1 (in the helical connector, see

Figure 2B). Asp105Nsl1, Glu112Nsl1, and Asp113Nsl1 in the NSL1 a3 helix are very well conserved in evolution and interact with the side chains of Arg14CENP-C,

Arg15CENP-C, and Arg16CENP-C. Lys10CENP-C and Tyr13CENP-C are necessary for tight binding of CENP-C to MIS12C (Screpanti et al., 2011). The CENP-C main

chain takes a turn around residues Phe17CENP-C andCys18CENP-C,moving away from the stalk in an extended and poorly conserved segment. Electron density for

this segment of CENP-C is weak. The CENP-C chain bends again to complete its ‘‘U-turn’’ around residues 28-30, emerging in helical conformation (residues 32-

44, Figure 2C). The CENP-C helix packs snugly against the groove between a1 of PMF1 and a2 ofMIS12, and is amphipathic, with the side chains of Val 34CENP-C,

Leu35CENP-C, Ile37CENP-C, Leu38CENP-C, Cys41CENP-C, and Phe42CENP-C pointing inward toward Head1, and those of Glu36CENP-C, Asp40CENP-C, and

Glu44CENP-C, pointing outward.

(C) Overall superposition of Head1 domains in the two structures demonstrates superposition of the CENP-C and Mif2 helical region, but not of the N-terminal

regions.

(D) Zoom-in view of the helical region highlighting the similarity of binding mode of CENP-C and Mif2 to Head1 domain.

(E) Zoom-in view of the N-terminal regions of CENP-C and Mif2 demonstrates clustering of positively charged residues despite an overall different path of the

polypeptide chains on the Head1 surface.
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Figure S4. Size-Exclusion Chromatography Assays with SDS-PAGE, Related to Figure 2

(A–F) SEC elution profiles of the indicated species were monitored at 495 nm (to follow FAM absorption) and 280 nm (to follow general protein absorption). SDS-

PAGE were analyzed for fluorescence (from FAMCENP-C1-71) and also stained with Coomassie Brilliant Blue to visualize all proteins.
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Figure S5. Size-Exclusion Chromatography Assays with SDS-PAGE Loading Controls, Related to Figures 3 and 4

(A and C) SEC analysis of the indicated species with absorbance at 495 nm (to follow FAM absorption) and 280 nm (to follow general protein absorption). SDS-

PAGE were analyzed for fluorescence (from FAMCENP-C1-71) and also stained with Coomassie Brilliant Blue to visualize all proteins.

(B) Western blot of stable Flp-In T-REx cells expressing the indicated MIS12 constructs showing that expression levels of MIS12WT and MIS12CYFF are similar to

one another. Vinculin was used as loading control.



 MIS12CΔHead2
 Head2

 MIS12CΔHead2    + Head2  

Elution volume (ml)

A
bs

or
pt

io
n 

at
 2

80
 n

m
 (A

U
) CENP-C1-140      

 Ndc80 + CENP-C1-140 
 Ndc80

CENP-C1-140      

10 

15 

20 
25

37 
50 
75 

100 

10 

15 

20 
25

37 
50 

NDC80
NUF2

SPC25
SPC24

75 
100 

CENP-C1-140      

10 

15 

20 
25

37 
50 
75 

100 

10

15

20
25

37
50
75

100

DSN1

NSL1

MIS12

PMF1

NSL129-99

DSN168-200

10

15

20
25

37
50
75

100

DSN1

NSL1

MIS12

PMF1

10

15

20
25

37
50
75

100

NSL129-99

DSN168-200

1.4 1.8 2.2 2.6 3.01.0

10
15
20
25

5

30
35
40
45

0

Elution volume (ml)
1.4 1.8 2.2 2.6 3.01.0

A
bs

or
pt

io
n 

at
 2

80
 n

m
 (A

U
)

4
6
8

10

2

12
14
16
18

0

P
ol

ar
iz

at
io

n 
(x

10
3 )

log [competitor] (μM)

CENP-C1-71

Head2 

A B

C

(legend on next page)



Figure S6. Additional Binding Assays, Related to Figures 5 and 6

(A and C) SEC analysis of the indicated species with absorbance at 280 nm. SDS-PAGE were stained with Coomassie Brilliant Blue to visualize all proteins.

(B) Fluorescence polarization experiments were carried out with a synthetic FAMCENP-C1-21 peptide and saturating concentrations of the indicated MIS12C

species and polarization monitored at equilibrium (like in Figure 4A). Unlabeled CENP-C1-71 was added as positive control for competition at the indicated

competitor concentration. Head2 had no effects as competitor even at high concentrations, suggesting that its intra-molecular interaction with Head1 is of very

modest affinity.


	Structure of the MIS12 Complex and Molecular Basis of Its Interaction with CENP-C at Human Kinetochores
	Introduction
	Results
	Crystal Structure of Human MIS12C
	Interaction of MIS12C with CENP-C
	Validation of the MIS12:CENP-C Interaction
	Conservation of MIS12C CENP-C Binding Mode in Eukaryotes
	Role of the α0 Helix of MIS12 in CENP-C Binding
	Role of Head1 Negative Charges in CENP-C Binding
	Role of HEAD2 Phosphorylation in CENP-C Binding to MIS12C
	Interaction of MIS12C with NDC80C and KNL1C


	Discussion
	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	Plasmids
	Immunoprecipitation and Immunoblotting
	Immunofluorescence
	Protein Expression and Purification
	Crystallization
	Crystal Structure Determination
	Fluorescence Polarization
	Protein Labeling
	Analytical Size-Exclusion Chromatography
	Chemical Cross-linking and Mass Spectrometry

	Quantification and Statistical Analysis
	Data and Software Availability





