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Abstract Transcription regulation in metazoans often involves promoter-proximal pausing of

RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we

discern the functional architecture of human NELF through X-ray crystallography, protein

crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core

subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal

structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C

associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding,

whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form

a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to

bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding

faces of NELF.

DOI: 10.7554/eLife.14981.001

Introduction
Transcription of eukaryotic protein-coding genes by RNA polymerase II (Pol II) is not only regulated

during the initiation phase (Hahn and Young, 2011; Sainsbury et al., 2015) but also during elonga-

tion (Jonkers and Lis, 2015; Li and Gilmour, 2011; Yamaguchi et al., 2013). For many metazoan

genes, elongating Pol II pauses near the promoter, about 20-60 base pairs downstream of the tran-

scription start site (TSS) (Kwak and Lis, 2013). Such promoter-proximal pausing is a key event dur-

ing post-initiation regulation of transcription (Muse et al., 2007; Zeitlinger et al., 2007). Genes

involved in cellular responses, differentiation, and reprogramming are subject to regulation at the

step of promoter-proximal pausing (Williams et al., 2015; Min et al., 2011).

Promoter-proximal pausing requires the DRB sensitivity-inducing factor (DSIF), a heterodimer of

subunits Spt4 and Spt5 (Wada et al., 1998; Yamaguchi et al., 1999b). DSIF binds over the active

site cleft of the Pol II elongation complex to encircle nucleic acids bound in the cleft (Martinez-

Rucobo et al., 2011; Klein et al., 2011). Promoter-proximal pausing also employs the negative

elongation factor (NELF) (Pagano et al., 2014; Yamaguchi et al., 1999a), which comprises the four

subunits NELF-A, -B, -C (or its variant -D, which lacks nine N-terminal amino acid residues), and -E

(Narita et al., 2003).

DSIF and NELF assemble early with transcribing Pol II, which leads to stable promoter-proximal

pausing (Henriques et al., 2013; Wu et al., 2003; Yamaguchi et al., 1999a). Nucleosomes may also

contribute to pausing (Gilchrist et al., 2008, 2010; Jimeno-González et al., 2015). Pol II pause

release relies on a kinase complex called positive transcription elongation factor b (P-TEFb)

(Chiba et al., 2010). P-TEFb phosphorylates DSIF, NELF and the Pol II C-terminal domain (CTD),

which encodes 52 heptapeptide repeats (consensus sequence Y1S2P3T4S5P6S7) that are variably
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phosphorylated during the transcription cycle (Buratowski, 2009; Cheng and Price, 2007;

Fujinaga et al., 2004; Yamada et al., 2006).

DSIF, P-TEFb and NELF are differentially conserved among eukaryotes. DSIF is the most widely

conserved complex with homologs present in most eukaryotes and even prokaryotes. P-TEFb homo-

logs are found in most eukaryotes, whereas NELF conservation is more limited. For example, NELF

homologs have not been identified in model organisms such as Arabidopsis thaliana, Saccharomyces

cerevisiae, and Caenorhabditis elegans (Narita et al., 2003).

NELF was identified as a complex that cooperates with DSIF to repress Pol II elongation

(Yamaguchi et al., 1999a). NELF apparently requires a preformed Pol II-DSIF elongation complex

for stable binding (Missra and Gilmour, 2010; Narita et al., 2003; Yamaguchi et al., 2002). NELF

binding efficiency and the rate of transcription elongation define the position of Pol II pausing

(Li et al., 2013). NELF is associated with chromatin (Wu et al., 2005) and represses transcription

elongation (Wu et al., 2003; Yamaguchi et al., 2002). The NELF-E subunit contains a RNA recogni-

tion motif (RRM) domain that binds RNA (Pagano et al., 2014; Rao et al., 2006; 2008), and this

may contribute to pausing (Yamaguchi et al., 2002; Fujinaga et al., 2004). NELF is required for the

regulation of the heat stress gene hsp70 (Wu et al., 2003), immediate early genes such as junb

(Aida et al., 2006), and expression of genes of the human immunodeficiency virus (Natarajan et al.,

2013; Zhang et al., 2007). It was recently suggested that NELF binds to enhancer RNAs

(Schaukowitch et al., 2014).

Despite the central role of promoter-proximal pausing in gene regulation, the molecular mecha-

nisms for Pol II pausing are unknown. Elucidating this mechanism requires structural information

of the NELF complex. Here we show that regions of human NELF-A and NELF-C form a highly con-

served core subcomplex with a novel fold. One side of this NELF-AC subcomplex exhibits a con-

served binding face for single-stranded nucleic acids. RNA binding experiments in human cells

reveal that NELF-B, NELF-C, and NELF-E associate with RNA in vivo. Our data provide the first struc-

tural model of NELF and extend our understanding of its RNA binding surfaces.

Results

NELF subcomplex NELF-AC
In a long-standing effort to obtain structural information on the intrinsically flexible NELF complex,

we delineated regions in human NELF subunits that form soluble subcomplexes amenable to struc-

tural analysis (Figure 1A, Table 1, Figure 1—figure supplement 1, Materials and methods). Bacte-

rial co-expression of NELF subunit variants revealed that the N-terminal region of NELF-A could be

co-purified with NELF-C. Limited proteolysis and co-expression analysis with truncated protein var-

iants showed that the N-terminal residues 6–188 of human NELF-A and residues 183–590 of human

NELF-C formed a stable subcomplex (‘NELF-AC’) (Figure 1—figure supplement 1B). Purified NELF-

AC could be crystallized by vapor diffusion, and the X-ray structure was solved by single isomor-

phous replacement with anomalous scattering (SIRAS) (Figure 1—figure supplement 1C–E, Materi-

als and methods). The structure contained one NELF-AC heterodimer in the asymmetric unit and

was refined to a free R-factor of 25.6% at 2.8Å resolution (Table 2). The structure shows very good

stereochemistry and lacks only the mobile NELF-A residues 183–188, and NELF-C residues 183–185,

401–402, 445–448, 523, and 564–572.

Unusual structure of the NELF-AC subcomplex
The structure of human NELF-AC reveals a novel fold and an extended interface between the two

NELF subunits (Figures 1B, 2). NELF-C adopts a horseshoe-like structure (Figure 2A). NELF-C consists

of 22 a-helices (a1’-a22’) and a small two-stranded b-sheet (b1’-b2’, residues 367–379) that protrudes

from the surface. The C-terminal half of NELF-C (helices a14’-a19’) forms three HEAT repeats (H1-H3).

The HEAT repeat region shows structural similarity (Holm and Rosenstrom, 2010) to the C-terminal

repeat domain (CTD)-interacting domain (CID) (Meinhart and Cramer, 2004) and the polyadenylation

factor symplekin (Xiang et al., 2010). Despite the presence of a CID-like fold, NELF-AC did not show

significant binding to CTD diheptad peptides carrying phosphorylations at CTD residues serine-2, ser-

ine-5, serine-2 and serine-5, or a consensus non-phosphorylated CTD diheptad peptide (not shown).

Subunit NELF-A forms a highly conserved helical ‘N-terminal domain’ (helices a1–a5, residues 6–110)
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Figure 1. Primary structure and conservation of human NELF-A and NELF-C. (A) Crystallized variant and previously identified functional regions in

human NELF-A and NELF-C. Cleavage sites of chymotrypsin and subtilisin are indicated by black and green scissors, respectively. ‘NELF-C’ delineates

the previously identified NELF-C-binding region in NELF-A (Narita et al., 2003), whereas ‘Pol II’ marks the region in NELF-A that associates with Pol II

(Narita et al., 2003). Boxed regions indicate crystallization constructs. (B) Alignment of NELF-A and NELF-C regions present in the structure from

Homo sapiens (H.s.), Drosophila melanogaster (D.m.) and Dictyostelium discoideum (D.d.). Invariant and conserved residues are highlighted in green

and yellow, respectively. Lighter shades of green or yellow indicate conservation between only two of the represented organisms. Barrels above the

alignment represent a-helices, arrows b-sheets. HEAT-repeats H1-H3 are marked with black lines above the alignment. Residues in the heterodimeric

interface and hydrophobic core are marked by black and red squares, respectively. Red triangles label residues potentially involved in nucleic acid

interaction as identified here. The ’N-terminal domain’ and ’extended region’ of NELF-A are indicated. Sequence alignments were carried out with

ClustalW2 (Larkin et al., 2007) followed by manual editing and rendered with JALVIEW (Waterhouse et al., 2009).

DOI: 10.7554/eLife.14981.002

The following figure supplements are available for figure 1:

Figure supplement 1. Iterative truncation of full-length NELF-AC yields a variant amenable to crystallization and region of the electron density map.

DOI: 10.7554/eLife.14981.003

Figure 1 continued on next page
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that resembles (Holm and Rosenstrom, 2010) the fold of the HIV integrase-binding domain present

in human PC4 and SFRS1-interacting protein (PSIP1) (Cherepanov et al., 2005) (Figure 2B). This

domain is followed by an ‘extended region’ in NELF-A that forms four additional helices (helices a6-a

9, residues 111–182) arrayed around the NELF-C horseshoe (Figures 1B, 2A).

Both NELF-A regions interact extensively with NELF-C through hydrophobic and polar contacts.

Two invariant tryptophan side chains (W24 and W89) on the NELF-A N-terminal domain insert into

largely conserved hydrophobic pockets of NELF-C (Figures 1B, 2C). The extended region of NELF-A

is essential for NELF-C interaction (Narita et al., 2003) and contacts the N- and C-terminal regions

of NELF-C with its helices a6 and a9, respectively. NELF-A helices a7 and a8 are buried in the

NELF-C horseshoe (Figure 2D). Overall, the heterodimer interface has a large surface area (3690

Å2), explaining the stability of the complex in 2 M sodium chloride (not shown).

The NELF-AC core is highly conserved
The crystallized regions of human NELF-AC share considerable homology among metazoans, partic-

ularly at residues forming the hydrophobic cores and the interface between NELF-A and NELF-C

(Figure 1B). The extent of conservation is evident when human and Drosophila melanogaster are

compared, which share 55% identity for NELF-A and 50% identity for NELF-C. Intriguingly, NELF-A

and -C homologs are present in some worms such as the filiarial nematode Loa loa (Figure 1—figure

supplements 2, 3) and single celled organisms such as the green algae Chlorella variabilis and the

slime mold Dictyostelium discoideum (Figure 1—figure supplements 2, 3). Most regions outside of

the crystallized NELF-AC core diverge between single celled organisms and metazoans (Figure 1—

figure supplements 2, 3). Such conservation suggests that NELF may have been present in early

eukaryotes and was lost in certain lineages over time.

NELF-AC structure is preserved in the complete NELF complex
To place the NELF-AC crystal structure in context of the NELF tetramer, we determined the architec-

ture of the four-subunit NELF complex by lysine specific crosslinking followed by mass spectrometry.

We expressed the full-length four-subunit NELF complex recombinantly in insect cells from a single

virus and purified it to homogeneity (Materials and methods, Figure 3A). The purified complex was

Figure 1 continued

Figure supplement 2. Multiple sequence alignment of full-length NELF-A demonstrating the comparatively high conservation of the crystallized

region.

DOI: 10.7554/eLife.14981.004

Figure supplement 3. Multiple sequence alignment of the N-terminal region of NELF-C.

DOI: 10.7554/eLife.14981.005

Table 1. Solubility of bacterially expressed NELF variants. Variants are full-length proteins if not

otherwise specified. (+) = low solubility, (++) = medium solubility, (+++) = high solubility, (1) =

aggregation, (2) = slight aggregation, (3) = stable at high salt concentrations only (500 mM NaCl).

Protein variant Solubility

NELF-AC (+), (1)

NELF-AD (++), (1)

NELF-AC36-590 (++), (1)

NELF-A6-188C36-590 (+++), (2)

NELF-A6-188C183-590 (+++)

NELF-ABC (++), (1)

NELF-A6-188BC36-590 (++), (3)

NELF-ABCE (+), (1), (3)

NELF-A6-188BC36-590E (++), (2), (3)

DOI: 10.7554/eLife.14981.006
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crosslinked with disuccinimidyl suberate (DSS) and lysine-lysine crosslinks were detected by mass

spectrometry as previously described (Herzog et al., 2012). We obtained a total of 424 unique

high-confidence lysine-lysine crosslinks, including 279 intersubunit and 145 intrasubunit crosslinks

(Figure 3—figure supplement 1A,B, Figure 3—source data 1).

Table 2. X-ray diffraction and refinement statistics.

Native SeMet

Data collectiona

Space group I213 I213

Unit cell dimensions

a=b=c (Å) 185.07 184.45

Unit cell angles

a=b=g (º) 90 90

Wavelength (Å) 1.00000 0.97910

Resolution (Å) 46–2.75 (2.82–2.75)b 43–3.25 (3.33–3.25)

Rsym (%) 9 (271) 9 (130)

I/s 32.2 (1.9) 24.0 (2.2)

Completeness (%) 100 (100) 100 (100)

Redundancy
CC (1/2) (%)

39.8 (40.7)
100 (73.9)

20.6 (15.8)
100 (78.4)

No. reflections observed 1,093,935 657,156

No. Reflections unique 27,492 31,923

Figure of merit (SeMet sites) 0.323

Refinement

Resolution (Å) 46-2.75

Rwork/Rfree (%) 23.7 (40.6) / 25.6 (43.3)

No. atoms

Protein 4434

Ligand/ion 2

Water 13

B factors (Å2)

Protein 110.8 (NELF-A)
108.4 (NELF-C)

Ligand/ion 103.5

Water 77.4

R.m.s.d.

Bond lengths (Å) 0.003

Bond angles (˚) 0.662

Ramachandran Plotd

Allowed (%) 1.81

Favored (%) 98.19

Outliers (%) 0

aDiffraction data were collected at beamline X06DA of the Swiss Light Source, Switzerland and processed with

XDS (Kabsch, 2010).bValues in parentheses are for the highest-resolution shells.cCC1/2 = percentage of correlation

between intensities from random half-datasets (Karplus and Diederichs, 2012).dRamachandran plot categories

were defined by Molprobity (Chen et al., 2010).

DOI: 10.7554/eLife.14981.007

Vos et al. eLife 2016;5:e14981. DOI: 10.7554/eLife.14981 5 of 27

Research article Biochemistry Biophysics and structural biology

http://dx.doi.org/10.7554/eLife.14981.007Table%202.X-ray%20diffraction%20and%20refinement%20statistics.%2010.7554/eLife.14981.007NativeSeMetData%20collectionaSpace%20groupI213I213Unit%20cell%20dimensionsa=b=c%20(&x00C5;)185.07184.45Unit%20cell%20angles&x03B1;=&x03B2;=&x03B3;%20(&x00BA;)9090Wavelength%20(&x00C5;)1.000000.97910Resolution%20(&x00C5;)46&x2013;2.75%20(2.82&x2013;2.75)b43&x2013;3.25%20(3.33&x2013;3.25)Rsym%20(%)9%20(271)9%20(130)I/&x03C3;32.2%20(1.9)24.0%20(2.2)Completeness%20(%)100%20(100)100%20(100)RedundancyCC%20(1/2)%20(%)39.8%20(40.7)100%20(73.9)20.6%20(15.8)100%20(78.4)No.%20reflections%20observed1,093,935657,156No.%20Reflections%20unique27,49231,923Figure%20of%20merit%20(SeMet%20sites)0.323RefinementResolution%20(&x00C5;)46-2.75Rwork/Rfree%20(%)23.7%20(40.6)%20/%2025.6%20(43.3)No.%20atomsProtein4434Ligand/ion2Water13B%20factors%20(&x00C5;2)Protein110.8%20(NELF-A)108.4%20(NELF-C)Ligand/ion103.5Water77.4R.m.s.d.Bond%20lengths%20(&x00C5;)0.003Bond%20angles%20(&x00B0;)0.662Ramachandran%20PlotdAllowed%20(%)1.81Favored%20(%)98.19Outliers%20(%)0aDiffraction%20data%20were%20collected%20at%20beamline%20X06DA%20of%20the%20Swiss%20Light%20Source,%20Switzerland%20and%20processed%20with%20XDS%20(Kabsch,%202010).bValues%20in%20parentheses%20are%20for%20the%20highest-resolution%20shells.cCC1/2%20=%20percentage%20of%20correlation%20between%20intensities%20from%20random%20half-datasets%20(Karplus%20and%20Diederichs,%202012).dRamachandran%20plot%20categories%20were%20defined%20by%20Molprobity%20(Chen%20et�al.,%202010).
http://dx.doi.org/10.7554/eLife.14981


Our NELF-AC crystal structure explained 11 inter- and intrasubunit crosslinks, with Ca distances

below the maximum allowed distance of 30 Å (Figure 3C, Figure 3—figure supplement 1C). We

detected only one NELF-A and five NELF-C intrasubunit crosslinks that exceeded a Ca distance of

30 Å, and these could generally be explained by local flexibility. However, for NELF-C, the >30 Å

intrasubunit crosslinks occur between a helices 12’ and 13’ (K353, K380, K384, K388) and a helices

18’ and 19’ (K494, K518) (Figures 2, 4A). These crosslinks suggest helices 12’ and 13’ may change

conformation. Together these data indicate that the structure of NELF-AC is largely preserved within

the complete NELF complex.
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Figure 2. Crystal structure of human NELF-AC complex. (A) Ribbon model of NELF-AC with NELF-A in red and NELF-C in cyan. N- and C-termini,

mobile regions, and truncated regions are indicated by dashed lines. The two views are related by a 180˚ rotation around the vertical axis. Curved lines

marked ’H1–H3’ demarcate alpha helices involved in heat repeats 1–3 (1: 14’, 15’; 2: 16’, 17’; 3: 18’, 19’). Alpha helices are named as in Figure 1B. All

crystallography figures were rendered with Pymol (PyMOL, 2002). (B) NELF-A N-terminal domain enlarged and rotated 60˚ around the horizontal axis

relative to ’bottom view’ (Figure 2A). (C) Detailed view of invariant NELF-A residues W24 and W89 and surrounding residues (stick model) interacting

with the NELF-C surface. NELF-C surface conservation colored according to Figure 1B. The view is rotated by 90˚ around the vertical axis relative to

’bottom view’ (Figure 2A). (D) Detailed view of NELF-A helices a7 and a8 (stick model, residues 138–154) surrounded by NELF-C. NELF-C surface

conservation is colored according to Figure 1B. The view is rotated 60˚ around the horizontal axis relative to ’bottom view’ (Figure 2A).

DOI: 10.7554/eLife.14981.008

Vos et al. eLife 2016;5:e14981. DOI: 10.7554/eLife.14981 6 of 27

Research article Biochemistry Biophysics and structural biology

http://dx.doi.org/10.7554/eLife.14981.008
http://dx.doi.org/10.7554/eLife.14981


NELF-E
1 380200

NELF-A
1 400 528200

NELF-A

NELF-C
1 590200 400

1 400 528200
NELF-B

NELF-C
1 590200 400

1 580400200

NELF-A

NELF-B

1 400 528200

1 580200 400

NELF-B

NELF-E

1 580200 400

1 200 380

NELF-E
1 380

NELF-C
1 590200 400

200

NELF-B
1 580200 400

N-term Middle C-term

NELF-E
1 380200

N-term RD repeats RRM

NELF-C
1 590200 400

Crystallized regionN-term

NELF-A
5281 200 400

Crystallized region C-termA B

C D E

F G

NELF-A

NELF-B
NELF-C/D
NELF-E

15

20

25

37

50

75
100

150

250

H

MW

kDa

Figure 3. Architecture of human NELF complex as detected by crosslinking MS. (A) The four-subunit human NELF complex was recombinantly

expressed in insect cells and purified to homogeneity. The purified complex (0.9 mg) was run on a 4–12% gradient sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie blue. A molecular weight marker (MW) in kilodaltons (kDa) is provided on

the left side of the gel. (B) Cartoon depiction of individual NELF proteins. Different shades designate unique regions or domains of each protein

(NELF-A red, NELF-B orange, NELF-C cyan, NELF-E purple). N- and C-term refers to the N- or C-terminus of a protein, respectively. RD repeats refer to

a flexible region of NELF-E that is primarily composed of Arg and Asp residues. (C–H) Crosslinks detected within the NELF tetramer displayed as binary

interactions. Intraprotein crosslinks are shown as curves and colored as in (B). Interprotein crosslinks are shown as black lines. The endpoint of each line

specifies a specific residue in the corresponding protein. Crosslinking data is filtered to display crosslinks with an ID-score greater than 30. A full map of

all interprotein crosslinks is provided in Figure 3—figure supplement 1A. All crosslinks can be found in Figure 3—source data 1. Crosslinking data

modeled with xiNET (Combe et al., 2015). (C) NELF-A, NELF-C (D) NELF-B, NELF-A (E) NELF-B, NELF-C (F) NELF-B, NELF-E (G) NELF-E, NELF-C (H)

NELF-E, NELF-A.

DOI: 10.7554/eLife.14981.009

The following source data and figure supplement are available for figure 3:

Source data 1. Crosslinking MS of four-subunit NELF complex primary data for intra and interprotein crosslinks.

DOI: 10.7554/eLife.14981.010

Figure supplement 1. Additional information supporting NELF architecture as determined by crosslinking MS.

DOI: 10.7554/eLife.14981.011
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Figure 4. Surface properties of NELF-AC. Two views of the solvent-accessible surface related by 180˚ rotations around a vertical axis are shown. (A)

Surface representation of NELF-AC with shaded ellipses representing regions where NELF-B (orange) or NELF-E (purple) crosslinks with NELF-AC were

Figure 4 continued on next page
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Topology of the NELF complex
We next used our crosslinking data to determine the topology of the complete NELF complex.

NELF-B is the only subunit of the NELF complex with no available structural information. We first

used our crosslinking data to determine the relative architecture of NELF-B. Intrasubunit crosslinks

reveal three distinct modules that we identify as the N-terminal, middle, and C-terminal regions. The

N-terminal region of NELF-B (85–291) forms extensive crosslinks within itself and with the C-terminal

region (438–519). The C-terminal region also crosslinks considerably with itself. The middle region

(291–438) forms intrasubunit crosslinks within but not outside of the module, suggesting that it may

act as a hinge between the N- and C- terminal regions.

We next used the program I-TASSER to generate homology based models of NELF-B

(Kelley et al., 2015; Yang et al., 2015). I-TASSER predicted that NELF-B forms a HEAT repeat fold (C-

score = -2.31, best template structure is 1B3U – human PP2A). The model is supported by our cross-

linking data, suggesting a strong curvature of the HEAT repeat fold, as observed for a HEAT repeat

protein folding around its interaction partner (Cingolani et al., 1999) (Figure 3—figure supplement

1D).

NELF-B crosslinks with NELF-AC via its N- and C- terminal regions. The crosslinks primarily map

to a single face of NELF-AC (Figure 4A). Two NELF-A residues present in the NELF-AC crystal struc-

ture, K55 and K166 form crosslinks with NELF-B residues K72, K278, K487 and K85 (Figure 3D).

NELF-C primarily crosslinks to the N-terminal region of NELF-B (K85, K92, K126, K146) via a helices

12’ and 13’ and helices 18’ and 19’ (Figure 3E). Interestingly, one N-terminal residue of NELF-C that

is not present in our crystal structure (K125) forms three crosslinks with NELF-B (K85, K278, and

K497). NELF-B and -E crosslink extensively, consistent with biochemical interaction data

(Narita et al., 2003) (Figure 3F). The N-terminus and the RRM domain of NELF-E (Rao et al., 2006)

(residues 257–335, PDB ID: 2JX2) crosslink to both the N- and C-terminal regions of NELF-B. We

also detect an intrasubunit crosslink between NELF-E residues K260 and K332, which are located on

the same face of the RRM (Figure 3—figure supplement 1E), supporting the general conservation

of the fold in the complex.

With respect to crosslinks between NELF-E and NELF-C, two lysines in the non-crystallized N-

-terminal region of NELF-C (K66 and K125) form several crosslinks with NELF-E, including its RRM

domain. Regions of NELF-C in the vicinity of helices 18’ and 19’, which are also responsible for some

of the detected crosslinks between NELF-B and -C, crosslink with the NELF-E N-terminal region and

the RRM (Figures 3G, 4A). No crosslinks were detected between the crystallized region of NELF-A

and NELF-E (Figure 3H). The region directly following the crystallized portion of NELF-A (190–255)

forms multiple crosslinks with the rest of the NELF complex. Given that NELF-A (190–255) is highly

susceptible to proteolysis and is predicted to be the primary region associating with Pol II, the multi-

ple interprotein crosslinks formed by NELF-A (190–255) with NELF-B, -C, and -E are likely favored by

flexibility within the molecule when Pol II is absent (Narita et al., 2003).

Our crosslinking data suggest the 3D topology for the entire NELF complex. The NELF-AC sub-

complex interacts with NELF-B primarily through contacts made by NELF-C and the N-terminal

region of NELF-B. The opposite face of NELF-AC remains solvent exposed in the complex. NELF-B

with its predicted heat repeats forms a cradle around the N-terminal region of NELF-E, tethering the

RRM domain to the rest of the complex. Taken together, NELF is a modular, flexible, multivalent

complex with many interaction faces for both nucleic acids and protein partners.

Figure 4 continued

detected. Lysines are shown in stick representation and numbered. NELF-B and NELF-E primarily crosslink to one face of the NELF-AC dimer. Four

empty ellipses represent patches of positively charged residues. (B) Surface conservation. Residues that are invariant from human to Drosophila are in

green, conserved residues in yellow (Figure 1B). Surface areas involved in nucleic acid binding (patches 1–4) (Results) are highlighted. Colors of labels

according to color code of protein features belong to (Figure 2). (C) Electrostatic surface potential generated with ABPS (Baker et al., 2001). Blue, red,

and white areas indicate positive, negative and neutral charge, respectively. Surface areas involved in nucleic acid binding (patches 1–4). Colors of

labels according to color code of protein features belong to (Figure 2).

DOI: 10.7554/eLife.14981.012

The following figure supplement is available for figure 4:

Figure supplement 1. Conserved surface patch 5.

DOI: 10.7554/eLife.14981.013
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NELF-AC binds single-stranded nucleic acids
Analysis of the surface of the NELF-AC structure showed that the face opposite of where we

detected NELF-BE crosslinks contains four positively charged patches (Figure 4A–C, bottom view).

Patch 1 consists of NELF-A residues R65 and R66 and NELF-C residues R291 and K315. Patch 2

encompasses NELF-C residues K371, K372, and K374, and patch 3 contains NELF-C residues K384

and K388. Patch 4 is composed of NELF-A residues K146, K161, K168, and R175, and NELF-C resi-

dues R419 and R506. These patches are well conserved among metazoans, and are partially con-

served in Dictyostelium (Figure 1B). Our crosslinking MS data revealed that all positive patches,

except for patch 3 (NELF-C K384, K388), were devoid of crosslinks with NELF-B or -E indicating that

surface patches 1, 2, and 4 are not involved in subunit contacts. In addition to the four positive

patches, the NELF-AC surface contains a conserved polar patch (patch 5) that is formed by NELF-A

residues K166, R167, K170, L174, E177, K181, and S182, and residues E491, K494, D498, D526,

S528, R531, Y532, T535 and E536 that protrude from NELF-C helices a18’ and a20’ (Figure 4—fig-

ure supplement 1). Interestingly, three lysines in this region (NELF-A K166, K181, NELF-C K494)

crosslink to NELF-B.

The positively charged patches of NELF-AC suggested that the subcomplex may associate with

nucleic acid. To investigate this, we used fluorescence anisotropy titration assays (Figure 5, Materials

and methods). We first assessed NELF-AC binding to 25-nt, single-stranded (ss) DNA and ssRNA oli-

gonucleotides bearing a 5’ FAM label. Two random sequences with either 44% or 60% GC content

were employed. Interestingly, we detected moderate binding of NELF-AC to the ssDNA and ssRNA

with 60% GC content. Fitting the resulting binding curves by linear regression analysis gave apparent

Kd’s in the low micromolar range (Figure 5A, Table 3). The addition of competitor tRNA did not affect

NELF-AC association with the 60% GC ssDNA/ssRNA indicating that the interaction is specific (Fig-

ure 5—figure supplement 1A). In contrast, we found that the 44% GC content RNA failed to associate

significantly with the NELF-AC complex (Figure 5B). Additionally, NELF-AC did not associate with

nucleic acid duplexes composed of the 60% GC sequence (DNA or DNA-RNA hybrids, not shown),

suggesting that RNA and DNA binding by the subcomplex may be sequence and structure

dependent.

To investigate whether the positively charged patches were involved in nucleic acid binding, we

generated NELF-AC variants in which lysine and arginine residues in the patches were substituted

with methionine and glutamine, respectively. Indeed, single-stranded nucleic acid binding to the

60% GC RNA and DNA constructs was impaired in variants with mutations in three or four of the

positively charged patches (Figure 5C, Table 3). The strongest RNA binding defects are associated

with mutations to patches 1 and 4, whereas mutations to patch 2 appear to have a greater impact

on ssDNA association.

We also tested whether single-stranded nucleic acids corresponding to known Pol II in vivo pause

sites could associate with NELF-AC (Figure 5—figure supplement 1C inset). A ssRNA oligonucleotide

with a sequence corresponding to a promoter-proximal transcript from the junB gene bound NELF-

AC with a Kd of ~8.0 ± 0.9 mM, whereas ssDNA corresponding to the non-template strand in this region

bound more weakly (Aida et al., 2006) (Figure 5—figure supplement 1C). Furthermore, ssRNA and

ssDNA derived from the c-fos promoter-proximal region sequences (Fivaz et al., 2000) also bound

NELF-AC, albeit with a preference for DNA (Figure 5—figure supplement 1C). Taken together,

NELF-AC binds single-stranded nucleic acids in vitro via positively charged patches, and suggests

both the strength of binding and the preference for RNA or DNA is possibly sequence-dependent.

NELF-AC and NELF-B associate with RNA in context of the NELF
tetramer
We next addressed whether NELF-AC associates with nucleic acids while residing in the NELF tetra-

mer. The NELF-E RRM is reported to bind RNA in the mid nanomolar to micromolar range

(Pagano et al., 2014; Rao et al., 2006) and thus could mask nucleic acid interactions by other subu-

nits in our binding assays. To aid data interpretation, we generated NELF variants that lack the NELF--

E RRM or NELF-E entirely. We used our crosslinking and limited proteolysis experiments to generate

a NELF-E N-terminal fragment that stably binds NELF-B, but lacks the RRM (NELF-E residues 1–138).

The WT NELF tetramer, NELF DRRM, and NELF-ABC were overexpressed in insect cells and purified

to homogeneity (Materials and methods, Figure 6A, Figure 6—figure supplement 1A).
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The WT tetramer, NELF DRRM and NELF-ABC were subjected to fluorescence anisotropy titration

assays using the labeled 25-nt 60% GC random RNA/DNA oligonucleotides employed for the NELF-

AC studies. The WT protein binds both the 60% GC ssDNA and RNA, however, the resulting curves

are complex and cannot be fit by a simple single site binding model (Figure 6B, Figure 6—figure

supplement 1B). NELF DRRM and NELF-ABC also bind the 60% GC RNA, but the curves can be fit

by a single site binding model (apparent Kd NELF DRRM 30 ± 7 nM, NELF-ABC 75 ± 14 nM), demon-

strating that regions of NELF outside of the NELF-E RRM associate with RNA. To further investigate

NELF’s RRM domain-independent RNA-binding behavior, a patch mutated variant of NELF-C
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Figure 5. NELF-AC binds single-stranded nucleic acids. (A) Binding of wild type (WT) NELF-AC to 10 nM fluorescently labeled ssRNA or ssDNA with

60% GC content as monitored by the change in relative fluorescence anisotropy. Error bars reflect the standard deviation from three experimental

replicates. (B) Binding of wild type (WT) NELF-AC to 10 nM fluorescently labeled ssRNA with 44% GC content. The 60% RNA binding data shown in (A)

is shown as a reference. Error bars reflect the standard deviation from three experimental replicates. (C, D) Binding of WT NELF-AC and variants

containing mutations in surface patches (Figure 3) to the same ssRNA (B) or ssDNA (C) used in panel A. Numbers indicate mutated patches present in

NELF-AC variants. Patch 1: NELF-A R65Q, R66Q, NELF-C R291Q, K315M Patch 2: NELF-C K371M, K372M, K374M Patch 3: NELF-C K384M, K388M

Patch 4: NELF-A K146M, K161M, K168M, R175Q NELF-C R419Q, R506Q.

DOI: 10.7554/eLife.14981.014

The following figure supplement is available for figure 5:

Figure supplement 1. Fluorescence anisotropy controls.

DOI: 10.7554/eLife.14981.015
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(residues R291Q, K315M, K371M, K372M, K374M, K384M, K388M, R419Q, R506Q) was used to

replace the WT NELF-C protein in the WT, DRRM, and ABC complexes (Figure 6—figure supple-

ment 1C). All NELF variants containing patch-mutated NELF-C showed reduced binding to RNA

(Figure 6C–E). Binding deficits to the 60% GC RNA and ssDNA were similar in magnitude to those

observed with the NELF-C patch mutations present in the NELF-AC subcomplex (Figure 5, Fig-

ure 6—figure supplement 1D–F, Table 3).

Table 3. Curve fitting data for NELF RNA and DNA binding as determined by fluorescence

anisotropy. Fluorescence anisotropy data found in Figures 5–7 were fit with a single site binding

model where possible (Materials and methods). Apparent disassociation constants (Kd,app), R
2, and

Bmax (maximum anisotropy) values with error where applicable for the 60% ssRNA and DNA

substrate as well as the TAR RNA are shown. NA means fitting was not applicable.

RNA 60% GC

Protein construct Kd,app (mM) R2 Bmax

NELF-A (6-188)+ NELF-C (183–590) 6.87 ± 0.46 0.99 91.66 ± 1.73

Patch mutant 124 14.33 ± 2.41 0.91 79.26 ± 4.44

Patch mutant 234 NA NA NA

Patch mutant 1234 14.31 ± 2.67 0.93 84.94 ± 5.27

WT NELF NA NA NA

NELF DRRM 0.030 ± 0.007 0.92 79.87 ± 3.67

NELF-ABC 0.074 ± 0.014 0.95 78.68 ± 3.66

NELF+patch mutated -C NA NA NA

NELF DRRM patch mutated -C 0.094 ± 0.020 0.93 71.75 ± 3.99

NELF-ABC patch mutated -C 0.290 ± 0.99 0.85 76.99 ± 8.2

NELF-B 8.50 ± 1.59 0.96 113.1 ± 9.10

NELF-B, NELF-E (1-138) 2.83 ± 1.00 0.97 111 ± 4.42

ssDNA 60% GC

Protein construct Kd,app (mM) R2 Bmax

NELF-A (6-188)+ NELF-C (183-590) 17.5 ± 1.33 0.98 85.66 ± 2.28

Patch mutant 124 12.92 ± 2.28 0.93 12.92 ± 2.56

Patch mutant 234 NA NA NA

Patch mutant 1234 NA NA NA

WT NELF NA NA NA

NELF DRRM 0.03 ± 0.01 0.71 39.05 ± 3.28

NELF-ABC 0.10 ± 0.03 0.85 43.68 ± 3.23

NELF+patch mutated -C NA NA NA

NELF DRRM patch mutated -C 0.30 ± 0.08 0.92 50.26 ± 3.76

NELF-ABC patch mutated -C 0.77 ± 0.02 0.91 54.85 ± 7.60

NELF-B 6.31 ± 1.92 0.89 110.6 ± 13.15

NELF-B, NELF-E (1-138) 17.42 ± 3.5 0.97 170 ± 18.69

TAR RNA Stem loop

Protein construct Kd,app (mM) R2 Bmax

NELF-A (6-188)+ NELF-C (183-590) NA NA NA

WT NELF 0.146 ± 0.03 0.92 118.4 ± 4.50

NELF DRRM 0.869 ± 0.14 0.95 116.5 ± 4.72

NELF-ABC 1.32 ± 0.18 0.97 131.7 ± 5.22

NELF-B, NELF-E (1-138) 5.59 ± 1.05 0.95 82.82 ± 5.88

DOI: 10.7554/eLife.14981.016
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Despite containing the NELF-C patch-mutated variant, NELF DRRM and NELF-ABC retain the

ability to bind RNA, suggesting that other regions of NELF-AC or NELF-B associate with RNA. To

address whether NELF-B can associate with ss nucleic acid, NELF-B or NELF-B with an N-terminal

fragment of NELF-E (1–138) were overexpressed in insect cells and purified (Figure 6—figure sup-

plement 1A). Binding experiments performed with these NELF-B variants demonstrate that both

bind the 60% GC RNA and ssDNA with affinities similar to that measured for NELF-AC (Table 3,

Figure 7A). Together these data indicate that in addition to the NELF-E RRM, the NELF tetramer

associates with RNA via NELF-B and -C.

Figure 6. NELF-AC associates with RNA in context of the NELF tetramer. (A) NELF constructs expressed and purified from insect cells represented as

cartoons. NELF was produced as a FL construct, a construct lacking the NELF-E RRM (NELF DRRM), or without NELF-E (NELF-ABC). (B) Binding of the

WT NELF tetramer, NELF DRRM, or NELF-ABC to 10 nM of the 60% GC content RNA as determined by relative change in fluorescence anisotropy.

Data was fit with a single site binding equation when possible. Apparent Kd values are found in Table 3. Error bars reflect the standard deviation from

three experimental replicates. (C–E) Binding of the WT or patch mutated NELF-C variants to 10 nM of the 60% GC content RNA as determined by

fluorescence anisotropy. The following residues were mutated in the NELF-C patch mutant: R291Q, K315M, K371M, K372M, K374M, K384M, K388M,

R419Q, R506Q. Darker shades of red indicate the WT protein constructs whereas lighter shades of red indicate the NELF-C patch mutated variant. Error

bars reflect the standard deviation from three experimental replicates. When possible, curves were fit with a single site binding model and apparent Kd

values are found in Table 3. (C) NELF tetramer (D) NELF DRRM (E) NELF-ABC.

DOI: 10.7554/eLife.14981.017

The following figure supplement is available for figure 6:

Figure supplement 1. Purity of NELF truncation constructs and DNA binding.

DOI: 10.7554/eLife.14981.018
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NELF-E and -B associate with the HIV-1 TAR stem loop
The human immunodeficiency virus (HIV)-1 transactivation response (TAR) element is a hairpin

shaped RNA produced +59 nucleotides after Pol II initiates transcription from the HIV-1 long termi-

nal repeat of the integrated HIV-1 virus (Karn and Stoltzfus, 2012) (Figure 7C). The TAR RNA is

used to recruit P-TEFb and other factors to promoter proximally paused Pol II (Ott et al., 2011). The

NELF-E RRM domain binds the HIV-1 TAR RNA in vitro (Pagano et al., 2014; Rao et al., 2006;

Yamaguchi et al., 2002; Fujinaga et al., 2004) and is postulated to regulate Pol II elongation by

associating with the TAR element (Karn and Stoltzfus, 2012). To expand our understanding of

NELF association with the TAR RNA stem loop, we performed fluorescence anisotropy binding

experiments with our collection of NELF variants and a 5’ FAM labeled TAR stem loop. Binding

Figure 7. NELF-B association with ssRNA, ssDNA and TAR RNA stem loop. (A) Binding of NELF-B (light red) or NELF-BE (1–138) (red) to the 60% GC

RNA as determined by fluorescence anisotropy. NELF-AC (dark red) (Figure 5A) binding to the same RNA is shown as a reference. Error bars reflect

the standard deviation from three experimental replicates. Data were fit with a single site binding model. Apparent Kd values are reported in Table 3.

(B) Binding of NELF-B (cyan) or NELF-BE (1–138) (sky blue) to the 60% GC DNA as determined by fluorescence anisotropy. NELF-AC (dark blue)

(Figure 5A) binding is shown as a reference. Error bars reflect the standard deviation from three experimental replicates. Data were fit with a single site

binding model. Apparent Kd values are reported in Table 3. (C) 2D structure of TAR RNA stem loop region used for fluorescence anisotropy

experiments presented in (D). Dots indicate hydrogen bonds between bases. Lines represent the phosphate backbone. RNA was labeled with a 5’ FAM

label. (D) Binding of the NELF tetramer (dark purple), NELF DRRM (orchid), NELF-ABC (thistle), NELF-BE (1–138) (medium purple), and NELF-AC (light

purple) to the TAR RNA stem loop. Data were fit with a single site binding model. Apparent Kd values are reported in Table 3.

DOI: 10.7554/eLife.14981.019
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experiments performed with the WT NELF complex revealed strong association between NELF and

the TAR RNA stem loop (146 ± 30 nM), similar to affinities reported by the Lis group for the isolated

human NELF-E RRM and the TAR stem loop (200 ± 10 nM) (Pagano et al., 2014). Interestingly,

NELF complexes lacking the NELF-E RRM or NELF-E retained the ability to associate with the TAR

stem loop albeit with a » 6–10-fold reduction in binding affinity (869 ± 140 nM NELF DRRM, NELF-

ABC 1.32 ± 0.18 mM). To determine which subcomplex of NELF is responsible for the non-RRM

mediated association with the TAR stem loop, we tested binding of NELF-AC and NELF-BE (1–138)

to the TAR stem loop. NELF-BE (1–138) modestly associated with the TAR stem loop (5.6 ± 1.0 mM)

whereas NELF-AC showed little association (Figure 7D). This further suggests that RNA binding by

NELF-AC is influenced by RNA sequence and/or structure and that NELF associates with RNA on

surfaces outside of the RRM domain.

NELF-B, NELF-C and -E associate with RNA in vivo
It is known that the NELF-E subunit binds RNA in vitro and in vivo (Pagano et al., 2014;

Yamaguchi et al., 2002; Schaukowitch et al., 2014; Missra and Gilmour, 2010). Our biochemical

experiments demonstrate that NELF additionally binds to single-stranded nucleic acids via NELF-B

and NELF-AC in vitro. To determine whether NELF-B or NELF-AC can also associate with RNA in

vivo, we performed photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation

experiments in Jurkat and 293FT cells. Cells were treated for 16 hr with 4-thiouridine (4sU) to label

RNA and enhance crosslinking efficiency. RNA was crosslinked to associated proteins using UV light

at a wavelength of 365 nm prior to immunoprecipitation with subunit-specific antibodies. The immu-

noprecipitated material was treated with RNase, dephosphorylated, and rephosphorylated in the

presence of ATP [g-32P]. The resulting material was analyzed by SDS-polyacrylamide gel electropho-

resis (SDS-PAGE).

We found that a NELF-E antibody immunoprecipitated the entire NELF complex, as determined

by mass spectrometry analysis and Western blotting, in an apparently stoichiometric fashion, allow-

ing us to assess RNA binding by each subunit (Figure 8A and Figure 8—figure supplement 1A–C,

Figure 8—figure supplement 2). Bands corresponding to NELF-E and NELF-B/C were readily and

reproducibly detected in the radiolabeled sample from both cell lines (Figure 8B and Figure 8—fig-

ure supplement 1C). The intensity of the band for NELF-B/C was less than that observed for the

NELF-E band, indicating that NELF-B/C may associate more weakly with RNA than NELF-E. This is

consistent with the reported high RNA-binding affinity of the NELF-E RRM domain and our biochem-

ical results (Pagano et al., 2014; Rao et al., 2006). Immunoprecipitation with a NELF-A antibody

produced similar results in Jurkat cells (Figure 8—figure supplement 1D). To confirm that NELF-C

binds RNA, the NELF-A, -B and -C subunits were cloned into mammalian expression vectors and

overexpressed in 293FT cells. Consistent with the native protein, the overexpressed NELF-B and

NELF-C subunits bound RNA whereas the NELF-A subunit failed to associate with RNA (Figure 8C,

Figure 8—figure supplement 3A–C). Together these results indicate that NELF-B, -C, and -E all

associate with RNA in cells.

Discussion
Deciphering the mechanism of promoter-proximal Pol II pausing is essential for understanding gene

regulation and requires structural information of Pol II elongation complexes bound by DSIF, NELF,

and P-TEFb. To this end, structures of the involved multi-protein components are required. Struc-

tural information is available for Pol II elongation complexes (Martinez-Rucobo and Cramer, 2013),

DSIF (Klein et al., 2011; Martinez-Rucobo et al., 2011), and P-TEFb (Baumli et al., 2008;

2012; Schulze-Gahmen et al., 2013; 2014; Tahirov et al., 2010). However, structural information

about NELF is lacking, except for the RRM domain of NELF-E (Rao et al., 2006; 2008). To close this

gap, we report here the crystal structure of the conserved core NELF subcomplex NELF-AC and the

architecture of the 4-subunit, complete NELF complex. We further show that NELF-B and NELF-AC

bind single-stranded nucleic acids in vitro, and that NELF-B and NELF-C, in addition to NELF-E, asso-

ciate with RNA in vivo. These results provide an important step in understanding NELF function and

provide the basis for a mechanistic analysis of the role of NELF in promoter-proximal pausing.

From our structural, biochemical and in vivo data, we propose an architectural model for the NELF

complex. In the complex, NELF-AC binds to the N-terminal region of NELF-B. The N-terminal region
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Figure 8. NELF association with RNA in cells. (A) Immunoprecipitation of the entire NELF complex by a NELF-E

specific antibody from Jurkat cells treated with 4-thiouridine (4sU) for 16 hr and UV-crosslinked as detected by

Western blot anaylsis with subunit specific antibodies. Cells treated with 4sU, but not UV-crosslinked are shown as

a control. Star indicates NELF-C detected on the same blot. Western blot detected with HRP-conjugated

secondary antibodies. (B) Phosphorimage of SDS-PAGE used to resolve RNAs crosslinked to NELF subunits from

Panel A. Protein crosslinked to RNA was treated with PNK in the presence of ATP [g-32P]. The resulting protein

was run on a 4–12% gradient SDS-PAGE. The gel was incubated with a phosphorimage screen and imaged with a

Typhoon imager. In crosslinked cells, a band is seen for the NELF-E and NELF-B/C subunits. Cells treated with

4sU, but not UV-crosslinked are shown as a control. A Coomassie stained gel with purified NELF is shown as size

reference. (C) Phosphorimage of SDS-PAGE used to resolve 5’ P-32 labeled RNAs crosslinked to overexpressed -C

(left), or -B (right) 293FT cells. Overexpressed NELF-C/-B were immunoprecipitated by N-terminal 3X FLAG tags.

Coomassie stained gels of overexpressed NELF-C and -B are shown as a size reference. See Figure 8—figure

supplement 3 for further controls.

DOI: 10.7554/eLife.14981.020

The following figure supplements are available for figure 8:

Figure supplement 1. Additional controls for NELF-B, NELF-C and -E association with RNA in cells.

Figure 8 continued on next page
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of NELF-E is sandwiched in between the N- and C- termini of NELF-B, anchoring the flexible NELF-E

RRM domain to the rest of the complex. Strong RNA binding by the NELF-E RRM may initially recruit

NELF to RNA and secondary binding events by NELF-B and NELF-C may further stabilize the complex

on nucleic acid. Future structural studies are required to determine the nucleic acid binding surfaces

of NELF-B and to determine how RNA snakes from the NELF-E RRM through the rest of the complex

(Figure 9). It is also likely that RNA-binding involves major conformational changes.

It is known that the extent of Pol II pausing strongly differs between different genes (Muse et al.,

2007). Such gene specificity may be explained by differences in promoter-proximal DNA regions.

How can DNA sequence influence pausing? First, certain sequences may lead to DNA-RNA hybrids

that favor Pol II pausing by slowing down the elongation rate, similar to DNA sequences that influ-

ence pausing of bacterial RNA polymerase or Drosophila Pol II (Larson et al., 2014;

Vvedenskaya et al., 2014; Greive and Hippel, 2005; Nechaev et al., 2010). DNA sequence also

affects binding of proteins such as GAGA factor and estrogen receptor, which both are reported to

recruit NELF to specific genes to induce pausing (Aiyar et al., 2004; Li et al., 2013). Second,

nascent RNA may bind to NELF with different affinities, influencing the efficiency of NELF recruit-

ment to pause sites. Indeed, we observed that nucleic acid binding of NELF-AC may depend on the

nucleic acid sequence, and it is known that the RNA-binding activity of the NELF-E RRM domain is

sequence-dependent (Pagano et al., 2014). It is also known that DNA regions differ in their GC con-

tent (Ginno et al., 2012) and in Drosophila a sequence motif was reported to be associated with

pausing (Hendrix et al., 2008). Third, nucleosome stabilities vary with DNA sequence and nucleo-

somes are known to influence Pol II elongation (Gilchrist et al., 2008; 2010; Mayer et al., 2015).

NELF association with RNA may not only be required for pausing, but may also be important for

mRNA processing when NELF acts together with interaction factors such as Integrator and the cap

binding complex (CBC) (Narita et al., 2007; Stadelmayer et al., 2014; Yamamoto et al., 2014). The

NELF interaction with CBC is involved in the appropriate 3’ processing of histone mRNAs

(Narita et al., 2007). Similarly, processing of U1, U2, U4, and U5 snRNAs is dependent on NELF and

Integrator (Yamamoto et al., 2014). Future work is required to determine which RNAs associate with

NELF in cells and if this binding activity is independent of NELF’s role in promoter proximal pausing.

We note that nucleic acid binding alone may explain recruitment of NELF to certain genes and its

association with promoter-proximal regions, but is insufficient to explain Pol II pausing, which addi-

tionally requires a change in the elongation behavior of Pol II. This may involve a conformational switch

in the polymerase that may be triggered or stabilized by NELF binding to the Pol II surface. Analysis of

this intricate mechanism awaits structural studies of functional complexes comprising Pol II, DSIF,

NELF and additional factors. The results reported here provide an important step towards this goal.

Materials and methods

Preparation of human NELF-AC protein subcomplex for crystallization
The borders of NELF-A and NELF-C within the NELF-AC subcomplex were determined by limited

proteolysis of human full-length NELF-AC complex followed by Edman sequencing. Human NELF-A

(Q9H3P2) and NELF-C (Q8IXH7) were amplified from codon optimized DNA (Mr. Gene) and cloned

into pET28a and pET21b vectors, between NdeI and XhoI or NdeI and BamHI restriction sites,

respectively, resulting in N-terminally His6-tagged NELF-A (6–188) and untagged NELF-C (183–590).

Synthetic oligonucleotides were purchased from Thermo Fisher Scientific and Sigma Genosys.

Plasmids encoding NELF-A (6–188) and NELF-C (183–590) were co-transformed into E. coli BL21

CodonPlus (DE3) RIL cells (Stratagene). Cells were grown in LB medium at 37˚C until OD600 ~0.6

and cooled on ice for 30 min. Protein expression was induced by the addition of 1 mM IPTG. After

Figure 8 continued

DOI: 10.7554/eLife.14981.021

Figure supplement 2. NELF complex peptides detected by mass spectrometry analysis after NELF-E IP.

DOI: 10.7554/eLife.14981.022

Figure supplement 3. Overexpression of NELF-A, NELF-B, and NELF-C in 293FT and RNA association.

DOI: 10.7554/eLife.14981.023
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induction, cells were grown for an additional 16 hr at 18˚C. All purification steps were performed at

4˚C. Cells were resupsended and lysed in buffer A (150 mM NaCl, 40 mM Na-HEPES pH 7.4, 10 mM

imidazole, 2 mM DTT, 0.284 mg/ml leupeptin, 1.37 mg/ml pepstatin A, 0.17 mg/ml PMSF, 0.33 mg/

ml benzamidine). The lysate was applied to Ni-NTA agarose (Qiagen) beads and washed extensively

with buffer A containing 20 and 40 mM imidazole. Protein was eluted from the beads with buffer A

containing 200 mM imidazole. The eluted protein was mixed with 1 U thrombin/mg protein (Sigma)

and dialyzed against buffer B (150 mM NaCl, 40 mM Na-HEPES pH 7.4, 2 mM DTT) for 16 hr at 4˚C.
The protein was applied to Ni-NTA beads equilibrated in buffer B to remove uncleaved protein. The
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Figure 9. Model of NELF architecture and RNA binding regions. The NELF-AC crystal structure, crosslinking data,

and in vivo experiments reveal the overall architecture of NELF. NELF-AC (NELF-A red, NELF-C cyan) forms a

stable complex that interacts with the N-terminus of NELF-B (orange). NELF-B N- and C- termini sandwich the

NELF-E N-terminus. The NELF-E RRM is loosely connected to the entire complex. RNA binds to NELF-E, NELF-B,

and NELF-C. The two faces of NELF-AC determined by crystallography and crosslinking are shown below the

complex in cartoon format. Three RNA binding faces on the surface of NELF-C are marked with numbers (1, 2, 4).

The region of NELF-A that is predicted to bind Pol II, which is absent in our crystal structure is boxed. N- and C-

termini for each protein are marked.

DOI: 10.7554/eLife.14981.024
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Ni-NTA flow through was applied to an anion exchange column (HiTrap Q-HP, 1 ml, GE Healthcare)

equilibrated in buffer B. Protein was eluted via a salt gradient from 100 mM to 1 M NaCl in buffer B.

The protein was further purified by size exclusion chromatography with the use of a Superose 6 10/

300 column (GE Healthcare) equilibrated in buffer B. Peak fractions were pooled and concentrated

by centrifugation in Amicon Ultra 4 ml concentrators (10 kDa MWCO) (Millipore) to 12 mg/ml. Pro-

tein concentration was determined by absorbance at 280 nm using protein-specific parameters. Pro-

tein was aliquoted, flash frozen, and stored at -80˚C.
For production of selenomethionine-labeled protein, NELF-AC (6–188 and 183–590) plasmids

were co-transformed into E. coli B834 (DE3) cells. For protein expression, cells were grown in Sele-

noMet Medium (AthenES) supplemented with 40 mg/ml L-selenomethionine (SeMet). Selenomethio-

nine-labeled protein was purified as above.

X-ray structure determination
Native and selenomethionine-labeled NELF-AC crystals were grown by hanging-drop vapor diffusion

and were obtained by mixing 1 ml NELF-AC protein (12 mg/ml) with 1 ml reservoir solution containing

14–14.5% (w/v) PEG 3350 and 200 mM sodium malonate pH 6.8–7.0. Tetrahedral NELF-AC crystals

grew within 3–5 days. Crystals were cryo-protected in mother liquor containing 25% (w/v) glucose,

and flash frozen in liquid nitrogen.

Diffraction data for native crystals were collected under cryo conditions (100 K) in 0.1˚ increments

at beamline X06DA of the Swiss Light Source in Villigen (Switzerland) using a wavelength of

1.0000 Å and a Pilatus 2M-F detector (Broennimann et al., 2006). Raw data were processed and

scaled with XDS (Kabsch, 2010). The structure was solved by SIRAS using diffraction data from an

isomorphous crystal of SeMet-labeled protein. Location of 13 selenomethionine sites, calculation of

initial phases and density modification were performed with the SHELX suite (Sheldrick, 2008). An

initial model was built with Buccaneer (Cowtan, 2006). The model was iteratively built with COOT

(Emsley and Cowtan, 2004) and refined with REFMAC (Vagin et al., 2004) and phenix.refine

(Adams et al., 2010) until the R-factors converged. In the final model, 98.2% of residues are in pre-

ferred Ramachandran regions and 1.8% of residues are in additionally allowed regions. Figures were

prepared with PyMol (PyMOL, 2002).

Fluorescence anisotropy assays with NELF-AC
WT and mutant NELF-AC proteins were expressed and purified as described above. For the final

size exclusion step, the column was equilibrated in buffer C (50 mM NaCl, 10 mM HEPES pH 7.4

and 2 mM DTT). Peak fractions were pooled, concentrated by centrifugation to 30 mg/ml, aliquoted,

flash frozen, and stored at �80˚C.
5’-/6-FAM labeled ssDNA, ssRNA and dsDNA were obtained from Integrated DNA Technologies

and dissolved in water to 100 mM. Sequences for ssDNA and dsDNA were 44% GC ACCCCACAAC

TAAAAAATCCCAACC, and 60% GC AAGGGGAGCGGGGGAGGATAATAGG (corresponding

sequences for ssRNA). Natural ssDNA sequences correspond to sequences of exposed coding (non-

template) strands at the c-fos gene (bps 87–96 downstream of the TSS [Fivaz et al., 2000]) and the

junB gene (bps 45–54 downstream of the TSS [Aida et al., 2006]) during promoter-proximal pausing

+/�5 bps (Figure 5—figure supplement 1C, inset): AAGACTGAGCCGGCGGCCGC and AGG-

GAGCTGGGAGCTGGGGG, respectively. Natural ssRNA sequences correspond to 25 nt of nascent

mRNA sequence predicted to be proximal to the RNA exit pore on the Pol II surface at c-fos (bps

53–77 relative to TSS) and junB (bps 13–37 relative to TSS) during promoter-proximal pausing (Fig-

ure 5—figure supplement 1C inset): CCGCAUCUGCAGCGAGCAUCUGAGA and AGCGGC-

CAGGCCAGCCUCGGAGCCA, respectively. The sequence corresponding to the HIV-1 TAR RNA

stem loop is: CCAGAUCUGAGCCUGGGAGCUCUCUGG. The HIV-1 TAR RNA substrate was diluted

to 50 mM with folding buffer (final conditions 100 mM NaCl, 20 mM Na.HEPES pH 7.5, 3 mM MgCl2,

10% (v/v) glycerol). The TAR RNA was folded by incubating the RNA at 95˚C for 3 min and transfer-

ring to ice for 10 min. The TAR RNA was diluted in folding buffer instead of water for all

experiments.

NELF-AC was serially diluted in two fold steps in buffer C. Nucleic acid (2.4 ml, 10 nM final con-

centration) and NELF-AC (12 ml, 100–0.1 mM final concentration) were mixed on ice and incubated

for 10 min. The assay was brought to a final volume of 24 ml and incubated for 20 min at RT in the
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dark (final conditions: 30 mM NaCl, 3 mM MgCl2, 10 mM Na-HEPES pH 7.4, 2 mM DTT and 50 mg/

ml BSA). To test for non-specific binding, 5 mg/ml yeast tRNA (Sigma) was added to reactions as a

competitor (Figure 5—figure supplement 1). 20 ml of each solution was transferred to a Greiner

384 Flat Bottom Black Small volume plate.

Fluorescence anisotropy was measured at 30˚C with an Infinite M1000Pro reader (Tecan) with an

excitation wavelength of 470 nm (±5 nm), an emission wavelength of 518 nm (±20 nm) and a gain of

72. All experiments were done in triplicate and analyzed with GraphPad Prism Version 6. Binding

curves were fit with a single site quadratic binding equation:

y¼

Bmax � x½ � þ L½ � þKd;app�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Bmax is the maximum specific binding, L is the concentration of nucleic acid, x is the con-

centration of NELF-AC, Kd,app is the apparent disassociation constant for NELF-AC and nucleic

acid. Error bars are representative of the standard deviation from the mean of three experimental

replicates. Experiments were performed on different days from at least two different protein

preparations.

Cloning and expression of human FL NELF tetramer, NELF DRRM,
NELF-ABC, NELF-B, and NELF-BE (1–138)
Vectors encoding the full-length human cDNAs for NELF-A, -B, -D and -E were generous gift of Hir-

oshi Handa (Narita et al., 2003) and were used as PCR templates for subcloning into modified pFast-

Bac vectors via ligation independent cloning (LIC) (a gift of Scott Gradia, UC Berkeley, vectors 438-A,

438-B [Addgene: 55218, 55219]). NELF-D bears an N-terminal 6x His tag followed by a tobacco etch

virus protease cleavage site. Individual subunits were combined into a single plasmid by successive

rounds of ligation independent cloning. Each subunit is proceeded by a PolH promoter and followed

by an SV40 termination site. For simplicity, residues of the NELF-D subunit are numbered in this text

according to NELF-C nomenclature. The NELF-D patch mutant was generated as a synthetic gene

block (IDT) from the cDNA sequence and cloned into the 438-B vector using LIC. NELF-E (1–138) was

truncated by round the horn PCR. For NELF-B or NELF-BE (1–138) expression constructs, NELF-B was

cloned with an N-terminal 6x His tag followed by a tobacco etch virus protease cleavage site.

Purified plasmid DNA (0.5–1 mg) was electroporated into DH10EMBacY cells to generate bacmids

(Berger et al., 2004). Bacmids were prepared from positive clones by isopropanol precipitation and

transfected into Sf9/Sf21 cells grown in Sf-900 III SFM (ThermoFisher) or ESF921 (Expression Tech-

nologies), respectively, with X-tremeGENE9 transfection reagent (Sigma) to generate V0 virus. V0

virus was harvested 48–72 hr after transfection. V1 virus was produced by infecting 25 ml of Sf9 or

Sf21 cells grown at 27˚C, 300 rpm with V0 virus (1E6 cell/ml, 1:50 (v/v) cells:virus). V1 viruses were

harvested 48 hr after proliferation arrest and stored at 4˚C. For protein expression, 600 ml of Hi5

cells grown in ESF921 medium (Expression Technologies) were infected with 300 ml of V1 virus and

grown for 48 hr at 27˚C. Cells were harvested by centrifugation (238xg, 4˚C, 30 min), resuspended

in lysis buffer at 4˚C (300 mM NaCl, 20 mM Na.HEPES pH 7.4, 10% glycerol (v/v), 1 mM DTT,

30 mM imidazole pH 8.0, 0.284 mg/ml leupeptin, 1.37 mg/ml pepstatin A, 0.17 mg/ml PMSF,

0.33 mg/ml benzamidine), snap frozen, and stored at �80˚C.

Purification of full-length (FL) NELF tetramer, NELFDRRM, NELF-ABC,
NELF-B, and NELF-BE (1–138)
Protein purification steps were performed at 4˚C. Frozen cell pellets were thawed and lysed by soni-

cation. Lysates were clarified by centrifugation in an A27 rotor (ThermoFisher) (26,195 xg, 4˚C,
30 min), followed by ultracentrifugation in a Type 45 Ti rotor (Beckman Coulter) (235,000 xg, 4˚C,
60 min). Clarified lysates were filtered through 0.8 mm syringe filters (Millipore) and applied to a

5 mlL HisTrap columns (GE Healthcare) equilibrated in lysis buffer. HisTrap columns were washed

with 10CV of lysis buffer followed by 5CV of high salt wash buffer (800 mM NaCl, 20 mM Na.HEPES

pH 7.4, 10% glycerol (v/v), 1 mM DTT, 30 mM imidazole pH 8.0, 0.284 mg/ml leupeptin, 1.37 mg/ml
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pepstatin A, 0.17 mg/ml PMSF, 0.33 mg/ml benzamidine) and 5CV of lysis buffer. The NELF-B con-

struct was washed with a high salt buffer containing 1 M NaCl.

For the FL NELF tetramer, HisTrap columns were washed with 5CV of low salt buffer (150 mM

NaCl, 20 mM Na.HEPES pH 7.4, 10% glycerol (v/v), 1 mM DTT, 30 mM imidazole pH 8.0, 0.284 mg/

ml leupeptin, 1.37 mg/ml pepstatin A, 0.17 mg/ml PMSF, 0.33 mg/ml benzamidine) before a tandem

5 ml HiTrap Q and HiTrap S column (GE Healthcare) equilibrated in low salt buffer were directly cou-

pled to the HisTrap column. Protein was eluted from the HisTrap column by a gradient from 0–100%

nickel elution buffer (150 mM NaCl, 20 mM Na.HEPES pH 7.4, 10% glycerol (v/v), 1 mM DTT,

500 mM imidazole pH 8.0, 0.284 mg/ml leupeptin, 1.37 mg/ml pepstatin A, 0.17 mg/ml PMSF,

0.33 mg/ml benzamidine), after which the HisTrap and HiTrap S column were decoupled from the

HiTrap Q column. The HiTrap Q column was washed with 5CV of low salt buffer and protein was

eluted by gradient from 0–100% high salt buffer. Peak fractions were analyzed by SDS-PAGE. HiTrap

Q fractions containing FL NELF were combined with 2 mg of His6-TEV protease, 416 mg lambda pro-

tein phosphatase and dialyzed overnight at 4˚C in a Slide-A-Lyzer (2–12 ml 10 kDa MWCO) (Thermo-

Fisher) against 1 L of lysis buffer containing 1 mM MnCl2. Truncation constructs were eluted directly

from the HisTrap column by a gradient from 0–100% nickel elution buffer containing 300 mM NaCl.

Peak fractions were analyzed by SDS-PAGE, and pooled for TEV protease and lambda phosphatase

treatment overnight as described for the FL tetrameric protein.

Protein was removed from the Slide-A-Lyzer cassette and applied to a 5 mL HisTrap column to

remove uncleaved protein and TEV protease. Protein was concentrated in an Amicon 15 ml centrifu-

gal concentrator (FL tetramer 100 MWCO; NELF DRRM and NELF-ABC 50 MWCO; NELF-B and

NELF-BE (1–138) 30 MWCO) (Millipore) to 1.0–2.0 ml. The protein was applied to a S200 16/600 pg

column (GE Healthcare) equilibrated in 150 mM NaCl, 20 mM Na.HEPES pH 7.4, 10% (v/v) glycerol,

and 1 mM DTT. Peak fractions were analyzed by SDS-PAGE. Pure fractions were concentrated as

described above to 500 ml, aliquoted, flash frozen, and stored at �80˚C. Typical protein preparations

yield 10–15 mg of FL tetrameric NELF from 1 L of insect cell culture.

Fluorescence anisotropy of FL NELF tetramer, NELFDRRM, NELF-ABC,
NELF-B, and NELF-BE (1–138)
Fluorescence anisotropy experiments were performed essentially as described for NELF-AC except

for the following modifications. Protein was diluted in half log dilution steps in a buffer containing

150 mM NaCl, 20 mM Na.HEPES pH 7.4, 10% (v/v) glycerol, and 1 mM DTT. The final buffer con-

tained 60 mM NaCl, 3 mM MgCl2, 10 mM Na-HEPES pH 7.4, 2 mM DTT, 50 mg/ml BSA, and 5 mg/

ml baker’s yeast tRNA. 18 ml of the solution was used for measurements.

Mass spectrometric identification of crosslinking sites
The 4-subunit human NELF complex (10 mg, 5.5 mM in 95 ml final volume) purified from insect cells

was incubated with 1.1 mM disuccinimidyl suberate (DSS) H12/D12 (Creative Molecules) for 30 min

at 30˚C in a final buffer containing 100 mM NaCl, 30 mM Na.HEPES pH 7.4, 10% (v/v) glycerol,

1 mM DTT, and 3 mM MgCl2. The crosslinking reaction was quenched by adding ammonium bicar-

bonate to a final concentration of 100 mM and incubation for 10 min at 30˚C. The chemical cross-

links on NELF complexes were identified by mass spectrometry as described previously

(Herzog et al., 2012). Briefly, cross-linked complexes were reduced with 5 mM TCEP (Thermo Scien-

tific) at 35˚C for 15 min and subsequently treated with 10 mM iodoacetamide (Sigma-Aldrich) for

30 min at room temperature in the dark. Digestion with lysyl enodpeptidase (Wako) was performed

at 35˚C, 6 M Urea for 2 hr (at enzyme-substrate ratio of 1:50 w/w) and was followed by a second

digestion with trypsin (Promega) at 35˚C overnight (also at 1:50 ratio w/w). Digestion was stopped

by the addition of 1% (v/v) trifluoroacetic acid (TFA). Acidified peptides were purified using C18 col-

umns (Sep-Pak, Waters). The eluate was dried by vacuum centrifugation and reconstituted in water/

acetonitrile/TFA, 75:25:0.1. Cross-linked peptides were enriched on a Superdex Peptide PC 3.2/30

column (300 � 3.2 mm) at a flow rate of 25 ml min�1 and water/acetonitrile/TFA, 75:25:0.1 as a

mobile phase. Fractions of 100 ml were collected, dried, and reconstituted in 2% acetonitrile and

0.2% FA, and further analyzed by liquid chromatography coupled to tandem mass spectrometry

using a hybrid LTQ Orbitrap Elite (Thermo Scientific) instrument. Cross-linked peptides were identi-

fied using xQuest (Walzthoeni et al., 2012). False discovery rates (FDRs) were estimated by using
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xProphet (Walzthoeni et al., 2012) and results were filtered according to the following parameters:

FDR = 0.05, min delta score = 0.90, MS1 tolerance window of �4 to 4 ppm, ld-score > 22.

Analysis of NELF-RNA binding in cells
Jurkat cells were maintained in RPMI (Gibco) with 10% FBS and Glutamax. 293FT cells were main-

tained in DMEM (Gibco) with 10% FBS and Glutamax. Cells were routinely checked for mycoplasma

contamination using the PlasmoTest Mycoplasma Detection Kit (InvivoGen, 12K06-MM). Antibodies

used were anti-NELF-A (Santa Cruz, sc-23599); anti-COBRA1 (Bethyl Laboratories, A301-911A-M);

anti-THL1 (Cell Signaling, D5G6W); anti-NELF-E (Millipore, ABE48); anti-GAPDH (Sigma, G8795);

anti-FLAG M2 (Sigma, clone M2, F1804); and anti-c-MYC (Sigma, clone 9E10, M4439).

Photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation was performed

as described, with a few modifications. All concentrations are final unless otherwise indicated. Jurkat

and 293FT cells were incubated with 4-thiouridine (4sU) (100 mM) (Carbosynth, NT06186) for 16 hr in

growth medium. Cells were then washed two times with PBS and crosslinked at 365 nm with a Bio-

Link BLX 365 (PeqLab) UV lamp operated at 0.15 J/cm2 (293FT) or 0.2 J/cm2 (Jurkat). Cells were

scraped from the plates with cold PBS and collected by centrifugation. Pellets were resuspended in

3 volumes of NP-40 Lysis Buffer (50 mM HEPES-KOH pH 7.5, 150 mM KCl, 2 mM EDTA-NaOH pH

8.0, 1 mM NaF, 0.5% (v/v) NP-40, 0.5 mM DTT, 1x complete EDTA-free protease inhibitor cocktail

(Sigma, P8340)) and incubated on ice for 10 min. The resulting lysate was then passed through a

syringe with 27G needle seven times and centrifuged at 13000 g for 15 min at 4˚C. The supernatant

fraction was further clarified by passing it through a 5 mm syringe filter (Pall Corporation, 4650). Total

protein concentration was determined by the Bradford method. Control cells were treated with 4sU

but not crosslinked and underwent the same treatment as the crosslinked samples.

For endogenous NELF-A and NELF-E immunoprecipitation experiments, 30 mg of total protein

was incubated with 70 mg of anti-NELF-A antibody (Santa Cruz, sc-23599) or 50 mg of anti-NELF-E

antibody (Bethyl Laboratories, A301-914A) conjugated to Protein G Dynabeads (Invitrogen, B00262).

For plasmid overexpression experiments, 20 mg of total protein was incubated with 70 ml anti-FLAG

M2 Magnetic Beads (Sigma, M8823) or 15 mg of anti-c-Myc antibody (Sigma, clone 9E10, M4439)

conjugated to Protein G Dynabeads (Invitrogen, B00262). The protein was incubated with the anti-

body-conjugated beads for 2 hr at 4˚C on a rotating wheel. Beads were then washed three times

with 1 ml of cold IP Wash Buffer (50 mM HEPES-KOH pH 7.5, 300 mM KCl, 0.05% (v/v) NP-40,

0.5 mM DTT, 1x complete EDTA-free protease inhibitor cocktail (Sigma, P8340)). The beads were

resuspended in 200 ml of IP Wash Buffer and treated with 50 U/ml RNAse T1 (Thermo Scientific,

EN0542) for 15 min at 22˚C and cooled on ice for 5 min. Beads were washed three times with 1 ml

of cold High Salt Wash Buffer (50 mM HEPES-KOH pH 7.5, 500 mM KCl, 0.05% (v/v) NP-40, 0.5 mM

DTT, 1x complete EDTA-free protease inhibitor cocktail (Sigma, P8340)), followed by one wash with

1 ml of Phosphatase Buffer pH 6.0 (50 mM Tris-HCl pH 7.0, 1 mM Mg2Cl2, 0.1 mM ZnCl2).

RNAs were dephosphorylated in 100 ml of Phosphatase Reaction Mix (1X Antarctic Phosphatase

Reaction Buffer (NEB, M0289S), 1 U/ml Antarctic Phosphatase (NEB, M0289S), and 1 U/ml RNase

OUT (Invitrogen, 10777–019)) for 30 min at 37˚C, 300 rpm. Beads were washed once with 1 ml of

Phosphatase Wash Buffer (50 mM Tris-HCl pH 7.5, 20 mM EGTA, 0.5% (v/v) NP-40) and two times in

Polynucleotide Kinase Buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM MgCl2). Beads were

resuspended in 20 ml of Kinase Reaction Mix (1X T4 PNK Reaction Buffer (NEB, M0201S), 1 U/ml T4

PNK (NEB, M0201S), 2 U/ml RNAse OUT (Invitrogen, 10777–019), and 1 mCi/ml ATP-g-32P (Perkin

Elmer, NEG502Z) and incubated for 1 hr at 37˚C, 800 rpm. Beads were washed five times with 1 ml

of Polynucleotide Kinase Buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM MgCl2), resuspended

in 25 ml of 2X SDS-loading buffer, and incubated for 5 min at 95˚C. The eluted supernatant (20 ml)

was run on a Novex Bis-Tris 4–12% (Invitrogen) SDS-PAGE in 1X MOPS buffer for 1 hr at 160 V. The

gel was exposed to a phosphorimager screen overnight at �20˚C. The phosphorimager screen was

scanned on a Typhoon FLA 9500 (GE). To determine the specificity and crossreactivity of the NELF

antibodies used for immunoprecipitation experiments, samples treated with nonradioactive ATP

were submitted for mass spectrometry (MS) analysis. The MS analysis confirmed that all NELF subu-

nits are present and verified that the detected radiolabeled signal corresponds to NELF subunits.

To generate NELF-A, -B, and -C overexpression plasmids, the gene coding regions of human

NELF-A, -B, and -C were cloned into pCMV-GLuc2 (NEB) between the BamHI and NotI sites. Genes

were cloned with N-terminal affinity tags followed by a TEV protease cleavage site (3xMYC NELF-A,
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3xFLAG NELF-B and -C). DNA for transfection was isolated from E. coli and purified by phenol chlo-

roform extraction and ethanol precipitation. Plasmids were resuspended in water at a final concen-

tration of ~10 mg/mL and stored at �20˚C prior to transfection.

For plasmid transfection and 4-thiouridine labeling in 293FT, plasmids were transfected into 293FT

cells using Lipofectamine 2000 (ThermoFisher Scientific) as directed by the manufacturer. Briefly, 25

mg of plasmid was transfected into cells growing in p145 cm2 dishes (5 dishes per condition). Thirty-

two hrs after transfection, 100 mM 4sU (Carbosynth, NT06186) was added to the growth medium.

Cells were incubated at 37˚C for an additional 14–16 hr. Photoactivatable-ribonucleoside-enhanced

crosslinking and immunoprecipitation experiments were performed 48 hr after transfection.
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