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Abstract
Visual information processing requires an efficient visual attention system. The neu-
ral theory of visual attention (TVA) proposes that visual processing speed depends 
on the coordinated activity between frontoparietal and occipital brain areas. Previous 
research has shown that the coordinated activity between (i.e., functional connec-
tivity and “inter- FC”) cingulo- opercular (COn) and right- frontoparietal (RFPn) net-
works is linked to visual processing speed. However, how inter- FC of COn and RFPn 
with visual networks links to visual processing speed has not been directly addressed 
yet. Forty- eight healthy adult participants (27 females) underwent resting- state (rs- )
fMRI and performed a whole- report psychophysical task. To obtain inter- FC, we 
analyzed the entire frequency range available in our rs- fMRI data (i.e., 0.01– 0.4 Hz) 
to avoid discarding neural information. Following previous approaches, we analyzed 
the data across frequency bins (Hz): Slow- 5 (0.01– 0.027), Slow- 4 (0.027– 0.073), 
Slow- 3 (0.073– 0.198), and Slow- 2 (0.198– 0.4). We used the mathematical TVA 
framework to estimate an individual, latent- level visual processing speed parame-
ter. We found that visual processing speed was negatively associated with inter- FC 
between RFPn and visual networks in Slow- 5 and Slow- 2, with no corresponding 
significant association for inter- FC between COn and visual networks. These results 
provide the first empirical evidence that links inter- FC between RFPn and visual net-
works with the visual processing speed parameter. These findings suggest that direct 
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1 |  INTRODUCTION

Visual information processing requires an efficient visual at-
tention system. The speed of information uptake in a given 
unit of time, an index of attentional capacity, can be esti-
mated using the mathematical framework of the “theory of 
visual attention” (TVA; Bundesen,  1990). Within the TVA 
framework, visual processing speed (VPS) is estimated based 
on an individual's accuracy in a whole- report task requiring 
the observer, without emphasis on speed, to report as many 
letters as possible from briefly presented displays that vary 
in duration. The estimated VPS represents a latent- level pa-
rameter that is relatively constant across diverse conditions 
(e.g., Finke et al., 2005). In the neural interpretation of TVA 
(NTVA; Bundesen et al., 2005), it is assumed that the compu-
tations that determine VPS, that is, the selection of relevant 
visual features, are generated in frontal, parietal, and/or lim-
bic (control) areas and projected to occipital (visual- coding) 
areas. A prior independent, exploratory resting- state func-
tional magnetic resonance imaging (MRI) (rs- fMRI) study 
showed, post- hoc, that VPS relates to the inter- network func-
tional connectivity (inter- FC) between the cingulo- opercular 
(COn) and the right frontoparietal (RFPn) networks (Ruiz- 
Rizzo et al., 2018)— both of which comprise frontal, parietal, 
and limbic areas. However, the link between VPS and the 
inter- FC of COn and RFPn, respectively, with occipital areas 
has not yet been directly and systematically addressed. The 
demonstration of such a link would provide the missing key 
empirical evidence for the NTVA's theoretical assumption of 
the projection of the feature selection parameter settings from 
higher- order to occipital areas. Thus, the present study set out 
to test whether such a link indeed exists.

Previous studies have shown that COn and RFPn inter-
act with occipital areas. For example, COn regions, such as 
the prefrontal, insular, and midcingulate cortices (Dosenbach 
et al., 2008; Seeley et al., 2007), increase their functional con-
nectivity with the occipital cortex during eyes open vs. eyes 
closed (Riedl et  al.,  2016). These regions exhibit sustained 
activity in tasks involving active visual processing (Sestieri 
et al., 2013). Similarly, the volume of the white matter tracts 
underlying RFPn regions (i.e., dorsolateral prefrontal cor-
tex and areas around the intraparietal sulcus; Dosenbach 
et al., 2007) predict faster stimulus detection in visuospatial 

attention tasks (Thiebaut de Schotten et  al.,  2011), and 
more right- hemispheric lateralization of the inferior fronto- 
occipital fasciculus has been associated with higher values 
of the TVA- based VPS parameter (Chechlacz et al., 2015). 
Building on this prior evidence, the previously shown rele-
vance of, specifically, COn and RFPn for VPS (Ruiz- Rizzo 
et al., 2018), and the theoretical proposal of the neural TVA 
on how VPS is implemented at the neural level (NTVA; 
Bundesen et al., 2005), the present study addressed the ques-
tion of how inter- FC of, specifically, COn and RFPn with 
occipital regions support VPS.

Rs- fMRI allows measuring the correlation between 
brain regions' spontaneous (i.e., intrinsic) hemodynamic 
activity, which reflects fluctuations in cortical excitability 
(Raichle, 2011). We, thus, used rs- fMRI to study the intrinsic 
inter- FC of COn and RFPn with visual networks. Rs- fMRI 
data are typically temporally filtered (0.01– 0.1 Hz) to remove 
non- neural scanner signal drifts (low frequencies) and cardio- 
respiratory signals (high frequencies) (Cordes et al., 2001). 
However, the spectral centroid (or “center of gravity” of the 
frequencies) of COn, RFPn, and visual networks lies around 
the upper limit of the traditionally filtered frequency range 
(i.e., 0.098, 0.090, and 0.090– 0.118  Hz, respectively; Ries 
et al., 2018). Further, within- network functional connectivity 
can be stronger in the typical range (<0.08  Hz) for dorsal 
prefrontal regions (RFPn), but above 0.08 Hz for insular and 
orbitofrontal areas (COn, Salvador et al., 2008).

Previous rs- fMRI studies (e.g., Gohel & Biswal,  2015; 
Wang et al., 2018; Zuo et al., 2010) have examined all fre-
quencies in their signal by adopting the slowest, supra- 
second oscillatory ranges derived from electrophysiological 
measures of neuronal activity (Penttonen & Buzsáki, 2003). 
This approach has revealed a similar spatial extent of func-
tional connectivity within COn, RFPn, and visual networks 
across frequencies, with most of their total power in interme-
diate ranges (i.e., 0.073– 0.198 Hz; Gohel & Biswal, 2015). 
Following this approach, here we used the entire frequency 
spectrum available in our rs- fMRI data (i.e., 0.01– 0.4  Hz) 
and analyzed inter- FC across discrete frequency bins, includ-
ing one “reference” bin (i.e., entire spectrum). We expected 
significant inter- FC between COn, RFPn, and visual net-
works across frequency bins (Gohel & Biswal, 2015; Wang 
et al., 2018). We furthermore expected the inter- FC of COn 

connectivity between occipital and right frontoparietal, but not frontoinsular, regions 
support visual processing speed.
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and RFPn (respectively) with visual networks to be signifi-
cantly linked to VPS. Finally, we explored whether this link 
is frequency specific.

2 |  MATERIALS AND METHODS

2.1 | Participants

Forty- eight healthy adults (age range: 20– 50  years; 27 fe-
males), taken from the “INDIREA” Munich cohort published 
in Ruiz- Rizzo et  al.,  (2019), were included in the current 
study (see demographic information in Table  1), although 
the current hypotheses and analyses were generated indepen-
dently. The study was approved by the ethics committee of 
the Faculty of Psychology and Educational Sciences of LMU 
Munich, and all participants provided written informed con-
sent. To avoid strong age effects (e.g., on the VPS parameter; 
McAvinue et al., 2012), we selected all participants younger 
than 50 years from the original cohort. All of them exhib-
ited normal psychomotor speed performance in a neuropsy-
chological paper- and- pencil task (TMT- A, Reitan,  1958; 
Tombaugh,  2004); all had normal or corrected- to- normal 
visual acuity, and none was suffering from psychological 
or neurological disorders potentially affecting cognition, or 
from diabetes or color blindness. To further ensure health 
status, participants additionally completed demographic 
and behavioral (e.g., Beck Depression Inventory [BDI]; 
Deutsche Bearbeitung von Beck et al., 1996; Hautzinger 
et  al.,  2009) self- report questionnaires, as well as a test of 
crystallized intelligence (i.e., the multiple- choice vocabulary 
test: “Mehrfachwahl- Wortschatz- Test”; Lehrl et  al.,  1999). 
Thus, we assumed the relationship between inter- FC and our 
TVA- based measure of VPS to be uncontaminated by poten-
tial pathological influences.

Details on data acquisition are reported elsewhere (Ruiz- 
Rizzo et al., 2019). Briefly, after screening for inclusion and 
exclusion criteria, participants underwent rs- fMRI at the 
Klinikum rechts der Isar (Munich, Germany) in a first ses-
sion. In a second session, participants performed the TVA- 
based whole- report task.

2.2 | Experimental design and 
statistical analyses

2.2.1 | Assessment and estimation of VPS 
parameter C

A whole- report task based on TVA (Bundesen,  1990) was 
used to estimate the TVA VPS parameter or parameter “C”. 
In this task, arrays of four letters were presented in an imagi-
nary semicircle under different exposure durations deter-
mined in a pretest before the actual task. To identify individual 
shortest exposure durations, we used a staircase procedure in 
the pretest, which included four blocks of 12 trials each: four 
“adjustment” trials, four trials with unmasked displays pre-
sented for 200 ms, and four masked displays presented for 
250 ms. Each block started with one (of four) adjustment trial 
displayed for 80 ms, immediately followed by a post- display 
mask (see below). If the participant reported at least one letter 
correctly, the exposure duration was decreased by 10 ms in 
the following three adjustment trials within each block, until 
the participant could no longer report one letter correctly 
(i.e., the shortest exposure duration). If this point was reached 
before the last of the 16 adjustment trials, the exposure dura-
tion was held constant for the remaining. Setting the expo-
sure duration that short ensured obtaining a valid estimate of 
the visual perceptual threshold parameter. Then, based on the 
shortest exposure duration, longer values were added to ob-
tain report performance across the whole range from near- 
floor to near- ceiling and thus allow for a more precise 
TVA- based parameter estimation. In the actual whole- report 
task, on each trial, red letters were presented on either the left 
or the right side (counterbalanced) of a fixation point located 
in the screen center (Figure  1). Four blue non- letter items 
(i.e., abstract shapes made of letter parts) were presented on 
the corresponding opposite site to balance visual stimula-
tion.1 Letter stimuli were randomly chosen from the set  

 1This was necessary, as the task was performed during 
electroencephalographic (EEG) recordings where lateralized event- related 
EEG components were assessed. Note that this procedure did not 
compromise the whole- report nature of the task (i.e., cannot be taken to 
resemble a partial- report task) because the letter stimuli were presented on 
one side of the screen (and the abstract items on the other side) for the 
duration of an experimental block, and the instruction was to report all 
letters— with opposite- site abstract items not fulfilling this criterion and 
being of a different color.

T A B L E  1  Demographic variables

Variable (N = 48) Mean ± SD

Age (years) 32.96 ± 9.58

Sex (female/male) 27/21

Education (years) 12.21 ± 1.07

Intelligence (IQ) 110.30 ± 14.05

Depression (BDI score) 4.96 ± 4.80

Handedness 0.71 ± 0.55

TMT- A (time in s) 25.53 ± 10.71

Notes: Handedness: 1, completely right handed; −1, completely left- handed; 
BDI cutoff: 19. TMT- A mean and SD correspond with those reported in 
(Tombaugh, 2004).
Abbreviations: BDI, Beck Depression Inventory (Deutsche Bearbeitung von 
Beck et al., 1996; Hautzinger et al., 2009); SD, standard deviation; TMT- A, 
Trail- Making Test Part A.
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(A, B, D, E, F, G, H, J, K, L, M, N, O, P, R, S, T, V, X). In a 
given trial, a particular letter appeared only once, and each 
letter was equally frequent within a block. Participants were 
instructed to report, verbally, all letters they were “fairly cer-
tain” they had seen (i.e., to avoid too conservative or too lib-
eral a report criterion). Only report accuracy, but not report 
order or speed, was considered to assess performance.

The task consisted of 400 trials, split into ten blocks of 40 
trials each. Within a block, in fifteen of the trials, masks im-
mediately followed stimuli presentation. These masks were 
jumbled blue and red squares, presented for 900 ms at each 
stimulus location to counteract visual persistence (Figure 1). 
Masked trials were presented for five different exposure 
durations (three times each). The use of varying exposure 
durations set for each individual was intended to increase 
precision in the TVA- based parameter estimation by allow-
ing variability in report performance. The remaining 25 block 
trials were unmasked to add a component of iconic mem-
ory buffering (Sperling, 1960) to the estimation and ensure 
a valid and reliable TVA parameter fitting. These unmasked 
trials were presented for either the second shortest masked 
duration (three trials) or 200  ms (22 trials)— we chose the 

duration of 200  ms because electroencephalographic mea-
sures were simultaneously obtained to analyze event- related 
potentials (not reported in this study). Furthermore, as the 
shortest trial was too brief for visual perception, the second 
shortest was presented. Hence, in each block, trials were pre-
sented for seven effective exposure durations (five masked 
and two unmasked).

The VPS parameter, C, was estimated by modeling par-
ticipants' report accuracy as a function of the effective expo-
sure duration, using a maximum likelihood- fitting algorithm 
(Bundesen, 1990; Dyrholm et al., 2011; Kyllingsbæk, 2006). 
Specifically, performance was modeled by an exponential 
growth function characterizing the increase in the probabil-
ity of correct letter report with increasing effective exposure 
duration. The VPS parameter C represents the rate of uptake 
of visual information (in numbers of elements per second) 
and is given by the function's slope at its origin. Although 
not in the focus of the present study, three additional param-
eters were estimated, namely, parameter t0, parameter K, and 
parameter μ. Parameter t0, the function's origin, indicates the 
longest exposure duration (in ms) below which information 
uptake is effectively zero and represents the visual perceptual 

F I G U R E  1  Whole- report task used to estimate the visual processing speed parameter C. In this task, semicircular arrays of letters are 
presented under seven exposure durations determined in a pretest for each participant. Participants are asked to report all letters they are fairly 
certain they have seen, placing emphasis on accuracy, and not speed, of verbal report. In 15 of the 40 trials within a block, masks immediately 
followed stimuli presentation. The remaining 25 block trials were unmasked to add a component of iconic memory buffering to the TVA 
estimation. Non- letter items were presented on the corresponding opposite site to balance visual stimulation
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threshold. Parameter K, the function's asymptote, indicates 
the maximum number of elements that can be simultaneously 
encoded in the visual short- term memory store. Parameter 
μ reflects the duration of iconic memory buffering in un-
masked trials.

2.2.2 | Statistical analyses

To statistically compare networks' inter- FC Z values across 
frequency bins, we performed repeated- measures analyses 
of variance (ANOVA), one for each relevant network pair, 
with frequency bins as the within- subject factor and Z values 
for a particular network pair as the dependent variable. The 
relevant network pairs were COn and visual networks, RFPn 
and visual networks, COn and RFPn, and all visual networks. 
After each repeated- measures ANOVA, post- hoc tests were 
performed on individual Z values for the respective network 
pairs. When Mauchly's test indicated that the assumption of 
sphericity had been violated, Greenhouse- Geisser correction 
was applied. Bonferroni correction (p0.05/6 = 0.008 for com-
parisons involving COn, p0.05/3 = 0.017 for the rest of net-
works) was applied to post- hoc paired- sample t tests. These 
analyses were performed in R 4.0.0 (R Core Team,  2020; 
https://www.R- proje ct.org/; R. Studio v. 1.2.5042; RStudio 
Team, 2020; https://www.rstud io.com/).

We analyzed the relationship between inter- FC of COn and 
RFPn with visual networks and VPS parameter C by multiple 
regressions. Specifically, individual values of C were pre-
dicted from inter- FC Z values in each frequency bin (Slow- 5, 
Slow- 4, Slow- 3, Slow- 2), frequencies altogether (henceforth 
named “Global”; see 2.5 Temporal filtering of rs- fMRI data 
below), age (as after exclusion of high age the range was still 
30 years), and framewise displacement (a measure of head 
movement in the scanner from frame to frame). Five multiple 
regression models were tested, one for each visual network's 
inter- FC with COn and RFPn. Therefore, each model con-
sisted of 13 predictors: six for the inter- FC of COn with a par-
ticular visual network across frequency bins and global; five 
for the inter- FC of RFPn with the same visual network across 
frequency bins and global; one for age; and one for framewise 
displacement. Note that the predictors involving COn were 
six instead of five because there were two subcomponents 
of COn in Slow- 3 instead of one (see 3.1 Brain network se-
lection in the Results section). The goal of this analysis was 
to determine whether any of the predictors (i.e., inter- FC be-
tween a visual network and COn and RFPn, across frequency 
bins) in any of the models (i.e., that differed by visual net-
work) was associated with parameter C— as we had no pri-
ors about one specific visual network or frequency bin being 
more relevant than the others. Including all frequency bins in 
one regression model allowed us to determine whether those 
associations were frequency specific and/or specific to COn 

or RFPn, as (unlike in separate bivariate correlations) the ef-
fect of each predictor is accounted for in the model. Next, 
we compared the beta coefficients in the models where sig-
nificant predictors were found with linear post- hoc contrasts. 
Results were deemed significant if p < 0.05.

2.3 | MRI data acquisition

Image acquisition was conducted on a Philips Ingenia 3  T 
MRI scanner (Philips Healthcare, Best, the Netherlands) 
with a standard 32- channel SENSE head coil, located in the 
Klinikum rechts der Isar, Munich (Germany). During the rs- 
fMRI session, participants were asked to try to avoid thinking 
about anything in particular, moving, or falling asleep. Head 
motion was restrained throughout the scanning session by 
foam padding around participants' heads, and scanner noise 
was reduced by providing participants with earplugs and 
headphones. Six- hundred T2*- weighted blood oxygenation 
level- dependent (BOLD)- fMRI volumes were acquired per 
participant, using a multiband echo- planar imaging (EPI) se-
quence, with a 2- fold in- plane SENSE acceleration (SENSE 
factor, S = 2; Preibisch et  al.,  2015) and an M- factor of 2 
(repetition time, 1,250 ms; time to echo, 30 ms; flip angle, 
70°; 40 slices; 3- mm slice thickness and 0.3- mm inter- slice 
gap; voxel size, 3 × 3 × 3.29 mm3; matrix size, 64 × 64). 
Anatomical detail was achieved by a higher resolution T1- 
weighted volume, acquired with a 3D magnetization pre-
pared rapid acquisition gradient echo (MPRAGE) sequence 
(repetition time, 9 ms; time to echo, 4 ms; flip angle, 8°; 170 
slices; voxel size, 1 mm3; matrix size, 240 × 240).

2.4 | Rs- fMRI data preprocessing

As we were interested in examining frequencies that could 
also include physiological non- neural (e.g., respiratory) or 
scanner “noise” signals (e.g., >0.1 Hz), we reduced the pos-
sibility of including those non- neural signals by applying 
physiologic estimation by temporal independent component 
(IC) analysis (PESTICA; Beall & Lowe, 2007; https://www.
nitrc.org/proje cts/pestica). PESTICA estimates the breath-
ing and pulse signals from the data by performing slice- wise 
temporal ICA, identifying noise components per slice, and 
implementing signal correction (Beall & Lowe, 2007). We 
used this approach because no respiratory or cardiac signals 
were directly measured during rs- fMRI and before the stand-
ard preprocessing, as recommended.

Next, we pre- processed the PESTICA- corrected rs- fMRI 
data using Data Processing Assistant for Resting- State fMRI 
(DPARSF) (Yan & Zang, 2010; https://www.nitrc.org/proje 
cts/dpars f/), which is based on SPM12 software (Statistical 
Parametric Mapping; Penny et  al.,  2011; https://www.fil.

https://www.R-project.org/
https://www.rstudio.com/
https://www.nitrc.org/projects/pestica
https://www.nitrc.org/projects/pestica
https://www.nitrc.org/projects/dparsf/
https://www.nitrc.org/projects/dparsf/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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ion.ucl.ac.uk/spm/softw are/spm12/), running on MATLAB 
(2016a, The Mathworks, Inc., Natick, USA). The prepro-
cessing steps included discarding the first five volumes to 
remove initial T1 saturation; slice- timing correction; reori-
enting to anterior commissure– posterior commissure plane; 
realignment; co- registration to the high- resolution, structural 
image; DARTEL (Diffeomorphic Anatomical Registration 
using exponentiated Lie algebra; Ashburner, 2007) segmen-
tation into the three tissue types (gray matter, white mat-
ter, and cerebrospinal fluid); normalization to the Montreal 
Neurological Institute (MNI) space; spatial smoothing with 
a 4- mm full- width- at- half- maximum Gaussian kernel and 
detrending. Moreover, the signals from white matter and ce-
rebrospinal fluid, the six head motion parameters and their 
corresponding first derivatives, and the “bad” frames (based 
on the framewise displacement metric of Power et al., 2012, 
as implemented in DPARSF) were regressed out from the rs- 
fMRI data. The global signal was not regressed out during 
preprocessing to avoid possible spurious anticorrelations.

2.5 | Temporal filtering of rs- fMRI data

Following the frequency ranges of the slowest oscillations 
as defined in Penttonen and Buzsáki (2003) and on previ-
ous rs- fMRI studies (e.g., Gohel & Biswal,  2015; Zuo 
et  al.,  2010), we focused on four frequency bins: “Slow- 
5” (0.01– 0.027  Hz), “Slow- 4” (0.027– 0.073  Hz), “Slow- 
3” (0.073– 0.198  Hz), and “Slow- 2” (0.198– 0.4  Hz). The 
upper limit of Slow- 2, and our highest frequency possible, 
was defined based on the Nyquist frequency for our 1.25- s 
repetition time, that is, (1/1.25)/2 Hz. The current sampling 
frequency did not permit including the actual upper limit of 
Slow- 2 (i.e., 0.5 Hz), and “Slow- 1” (0.5– 0.75 Hz) (cf. Gohel 
& Biswal, 2015). We used these bins to temporally filter the 
preprocessed data. Thus, we obtained five data versions, each 
with a different frequency composition, namely, the four fre-
quency bins and one “Global,” encompassing all bins (i.e., 
0.01– 0.4 Hz) and, hence, being virtually equivalent to unfil-
tered data, for comparison (similar to the approach by Gohel 
& Biswal, 2015). Note that these versions solely differed in 
their spectral content and that global was included as a refer-
ence, to better appreciate the possible frequency specificity 
of inter- FC, and its association with VPS.

2.6 | IC analysis and dual regression

Spatial group ICA was used to decompose the preprocessed 
BOLD- fMRI volumes into 75 spatially ICs and their related 
non- orthogonal time courses (Mckeown et  al.,  1998) with 
FSL (v. 5.0.7; Jenkinson et  al.,  2012) MELODIC (v. 3.14; 
Smith et al., 2004). The number of ICs was chosen following 

Allen et al., (2011), who identified all resting- state networks 
relevant for our study. Dual regression was performed on 
all ICs to generate participant- specific time courses (Stage 
1) and spatial maps (Stage 2) (Beckmann et al., 2009). The 
participant- specific time courses were used as input for the 
inter- FC analysis. Both ICA and dual regression were per-
formed separately for each of the four frequency bins and for 
the global data.

2.7 | Brain network selection

For each frequency bin, we obtained the ICs' spatial cross- 
correlation values with resting- state network templates 
(Allen et al., 2011) using FSL's fslcc command (https://surfer.
nmr.mgh.harva rd.edu/pub/dist/frees urfer/ tutor ial_packa 
ges/OSX/fsl_501/src/avwut ils/fslcc.cc). As we were inter-
ested only in networks previously shown relevant for VPS 
(Haupt et al., 2020; Ruiz- Rizzo et al., 2018), we selected the 
two ICs, as defined in Allen et al., (2011), that showed the 
highest correlation coefficients with, correspondingly, COn 
(Allen et al.'s Salience, IC 55), RFPn (Allen et al.'s IC 60), 
and visual networks (Allen et al.'s IC 39, IC 46, IC 48, IC 59, 
IC 64, and IC 67). Note that we did not exhaustively select all 
brain networks relevant for attention (e.g., the dorsal atten-
tion network or the bilateral executive control network) but 
only those that have been specifically associated with VPS. 
Next, the two ICs that correlated the highest were visually 
inspected and the one including the most relevant regions of 
each network were chosen. These regions included the an-
terior insula and anterior midcingulate cortex for COn; the 
right middle frontal gyrus and anterior inferior parietal lobule 
for RFPn; and striate and extrastriate cortex, as well as lateral 
geniculate nucleus of the thalamus, for the visual networks 
(Uddin et al., 2019). After visual inspection, if both ICs in-
cluded parts of the relevant regions in a complementary man-
ner (i.e., the network was split), both were selected. If both 
ICs included the relevant regions, but these were unidentifi-
able from the overall spatial pattern of the IC (i.e., the ICs 
additionally included other brain regions or noise patterns), 
none was selected.

2.8 | Inter- FC analyses

To calculate the individual inter- FC of network pairs, the 
specific time courses (i.e., those derived from Stage 1 of 
the dual regression) of the networks of interest were cor-
related for each participant. The resulting r value matrices 
were Fisher Z transformed and averaged across participants 
to obtain a group- level inter- FC matrix. One- sample t tests 
were computed on the group mean Fisher- Z- transformed cor-
relation matrix and the false discovery rate (FDR) method 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/tutorial_packages/OSX/fsl_501/src/avwutils/fslcc.cc
https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/tutorial_packages/OSX/fsl_501/src/avwutils/fslcc.cc
https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/tutorial_packages/OSX/fsl_501/src/avwutils/fslcc.cc
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(Benjamini & Hochberg, 1995) was used to correct for mul-
tiple comparisons (p < 0.05 and q < 0.05). We repeated this 
step for each frequency bin (including global). This analysis 
was performed with custom code written in MATLAB (Ruiz- 
Rizzo & Küchenhoff, 2020).

2.9 | Code accessibility

Analysis scripts for the inter- FC and the statistical analyses 
and analyzed neuroimaging data are publicly available and 
can be accessed online (https://osf.io/nhqg3/). Analyzed be-
havioral data will also be accessible to qualified researchers 
upon request.

3 |  RESULTS

3.1 | Brain network selection

Coefficients for the cross- correlation of ICs with the net-
work templates of Allen et al., (2011) are listed in Table 2. 
COn was consistently identified across all frequency bins 
and global. For Slow- 3, two subcomponents of COn were 
identified, one centered on the insula and the other on the 
anterior cingulate cortex (ACC) (Figure  2a, top row, third 
column; IC32 and IC42, respectively). Thus, both ICs (i.e., 
IC32 and IC42) were included in further analyses. RFPn was 
consistently identified across all frequency bins and Global 

(Figure 2a, bottom row). Finally, five (out of six) of Allen 
et al.'s visual system networks (named here as Vis- 39, Vis- 
46, Vis- 59, Vis- 64, and Vis- 67 following Allen et al.'s IC 
numbering) were consistently identified across all frequency 
bins and global (Figure 2b). Allen et al.'s IC 48 could be iden-
tified only in global and Slow- 4 and, thus, was excluded from 
further analyses.

3.2 | Inter- FC between COn, RFPn, and 
visual networks

The group average correlation matrix, per frequency bin, 
between COn, RFPn, and visual networks is depicted in 
Figure 3, and the corresponding statistical comparison across 
frequency bins, for COn, RFPn, and visual network pairs is 
shown in Figure 4. COn exhibited significant inter- FC with 
three visual networks (Vis- 39, Vis- 59, and Vis- 67) in three 
frequency bins: Slow- 4, Slow- 3, and Slow- 2. The inter-
 FC with Vis- 39 was negative in both Slow- 4 (Z  =  −0.28, 
p < 0.001) and Slow- 2 (Z = −0.09, p = 0.004). The inter- FC 
with Vis- 59 was negative in Slow- 4 (Z = −0.16, p < 0.001) 
and positive in Slow- 3 (ACC- subcomponent: Z  =  0.08, 
p  =  0.011; insula- subcomponent: Z  =  0.14, p  <  0.001). 
Finally, the inter- FC with Vis- 67 was also negative in Slow- 4 
(Z  =  −0.12, p  =  0.004) and positive in Slow- 3 (insula- 
subcomponent: Z = 0.12, p < 0.001). As a reference, when all 
frequencies were considered together (i.e., global), COn ex-
hibited significant negative inter- FC with Vis- 39 (Z = −0.12, 

T A B L E  2  ICs with highest correlation coefficients with network templates across frequency bins (and global, for comparison)

Network template

Frequency bin

Slow−5 Slow−4 Slow−3 Slow−2 Global

COn IC20 (0.63) IC32 (0.52) IC32 (0.38) IC51 (0.27) IC27 (0.39)

IC15 (0.24) IC35 (0.41) IC42 (0.31) IC23 (0.24) IC44 (0.36)

RFPn IC7 (0.64) IC4 (0.70) IC2 (0.72) IC61 (0.43) IC3 (0.69)

IC14 (0.25) IC18 (0.21) IC33 (0.27) IC58 (0.26) IC15 (0.33)

Vis−39 IC11 (0.49) IC20 (0.43) IC3 (0.44) IC52 (0.28) IC4 (0.49)

IC14 (0.28) IC40 (0.43) IC33 (0.35) IC40 (0.22) IC15 (0.28)

Vis−46 IC2 (0.49) IC8 (0.58) IC5 (0.47) IC11 (0.47) IC5 (0.46)

IC1 (0.35) IC2 (0.36) IC10 (0.39) IC10 (0.31) IC11 (0.44)

Vis−59 IC1 (0.51) IC6 (0.47) IC4 (0.54) IC2 (0.51) IC1 (0.52)

IC32 (0.32) IC17 (0.39) IC63 (0.29) IC3 (0.25) IC28 (0.33)

Vis−64 IC5 (0.55) IC1 (0.64) IC5 (0.51) IC8 (0.49) IC5 (0.48)

IC2 (0.44) IC6 (0.35) IC4 (0.41) IC10 (0.37) IC14 (0.45)

Vis−67 IC18 (0.47) IC2 (0.48) IC40 (0.48) IC44 (0.44) IC38 (0.44)

IC43 (0.33) IC39 (0.36) IC10 (0.30) IC8 (0.31) IC14 (0.38)

Note: Correlation coefficients between Allen et al., (2011)'s templates and the two independent components (ICs) with the highest values are shown separately for 
networks of interest and frequency bins. Selected ICs (based on correlation coefficients and visual inspection) are marked in bold. Allen et al.’s Salience (IC 55) and 
Right frontoparietal network (IC 60) correspond to the cingulo- opercular network (COn) and right frontoparietal network (RFPn), respectively, of the present study. 
Slow- 5:0.01– 0.027 Hz; Slow- 4:0.027– 0.073 Hz; Slow- 3:0.073– 0.198 Hz; Slow- 2:0.198– 0.4 Hz. Vis, visual networks.

https://osf.io/nhqg3/
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p < 0.0001) and Vis- 59 (Z = −0.10, p < 0.0001) and positive 
with Vis- 46 (Z = 0.07, p = 0.004). When comparing across 
frequency bins (Figure 4a), we found the average inter- FC 
between COn and visual networks to differ significantly 
(F[3.38, 812.6] = 33.67, p < 0.001, η2 = 0.09). In particular, 
the (positive) inter- FC between COn's insula- subcomponent 
and visual networks in Slow- 3 was significantly stronger 
compared with the inter- FC between (single component) 
COn and visual networks in all other frequency bins (all 
Bonferroni- corrected p values < 0.001), though it was 
comparable in magnitude (i.e., absolute value) to the nega-
tive inter- FC between COn and visual networks in Slow- 4 
(t(47) = −1.19, p = 0.241).

RFPn exhibited significant negative inter- FC with the 
same three visual networks as COn (Vis- 39, Vis- 59, and Vis- 
67) in all frequency bins (Figure 3; e.g., Vis- 59: Z = −0.38 in 
Slow- 5; Vis- 39: Z = −0.35 in Slow- 4; Vis- 67: Z = −0.10 in 
Slow- 3; all p values < 0.001) but Slow- 2, in which the only 
significant inter- FC was observed with Vis- 46 (Z = −0.07, 
p = 0.021). As a reference, in global, RFPn showed signif-
icant negative inter- FC with all visual networks (Z values' 
range: −0.37 to −0.19; all p values < 0.0001). When com-
paring across frequency bins (Figure 4b), we again found the 

inter- FC between RFPn and visual networks to differ signifi-
cantly (F[2.28, 544.92] = 50.94, p < 0.001, η2 = 0.11). In 
particular, the mean inter- FC was decreasingly less negative 
with increasing frequency, indicating that correlations were 
stronger and more negative in slower than in faster frequency 
bins. Bonferroni- corrected post- hoc tests revealed that in-
ter- FC between RFPn and visual networks was equally strong 
in Slow- 5 (mean Z = −0.25) and Slow- 4 (mean Z = −0.23), 
but decreased in magnitude in Slow- 3 (mean Z  =  −0.12, 
p < 0.0001, in comparison with all other bins) and Slow- 2 
(mean Z = −0.02, p < 0.001, in comparison with all other 
bins).

COn showed significant inter- FC with RFPn in the follow-
ing frequency bins (Figure 3): positive in Slow- 4 (Z = 0.19, 
p  <  0.0001) and Slow- 3 (ACC- subcomponent: Z  =  0.15, 
p < 0.0001), and negative in Slow- 2 (Z = −0.13, p < 0.001). 
In Slow- 5, inter- FC with RFPn was non- significant 
(Z  =  −0.08, p  =  0.065). As a reference, in global, the in-
ter- FC between these two networks was positive (Z = 0.08, 
p  <  0.001). Comparison across frequency bins (Figure  4c) 
revealed the inter- FC between RFPn and COn to differ sig-
nificantly (F[2.90, 136.49] = 18.30, p < 0.001, η2 = 0.24). 
Bonferroni- corrected post- hoc tests showed that the inter- FC 

F I G U R E  2  Networks of interest identified for each frequency bin. Independent components (ICs) representative of the cingulo- opercular and 
right frontoparietal networks (a) and visual networks (b) (following Allen et al., 2011) in each frequency bin (Slow- 5 to Slow- 2) and global, for 
comparison. Montreal Neurological Institute coordinates (x, y, z, in mm) correspond to the slices shown for each network. Slow- 5:0.01– 0.027 Hz; 
Slow- 4:0.027– 0.073 Hz; Slow- 3:0.073– 0.198 Hz; Slow- 2:0.198– 0.4 Hz. Brain images are shown in radiological orientation (right hemisphere on 
the left)
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between RFPn and COn was significantly more positive in 
Slow- 4 and Slow- 3 (ACC- subcomponent only) than in the 
other frequency bins or the insula- subcomponent in Slow- 3 
(all p values < 0.001; Figure 4c).

Finally, for all visual networks, there was positive in-
ter- FC throughout the entire frequency range (range: 
Z = 0.84 in Slow- 5 to 0.06 in Slow- 2; Figure 3). As a ref-
erence, in global, the inter- FC among all visual networks 

F I G U R E  3  Group average correlation matrices between visual processing speed (VPS) relevant networks. Correlation matrices representing 
functional connectivity (Z values) between higher order networks previously shown relevant for VPS (cingulo- opercular network, COn, and 
right frontoparietal network, RFPn) and visual networks (Vis) across frequency bins (Slow- 5 to Slow- 2) and global (frequencies altogether), for 
reference. Red indicates positive correlations, whereas blue and white indicate, respectively, negative and around- zero correlations. False discovery 
rate (FDR)- corrected (q < 0.05) significant values are marked with a “*”. See text for specific frequency ranges included in each bin
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was significantly positive, too (Z values' range: 0.75 [Vis- 
59 and Vis- 46] to 0.12 [Vis- 39 and Vis- 67]). When com-
paring across frequency bins (Figure 4d), although always 
positive, the inter- FC between visual network pairs differed 
significantly (F[3.38, 812.6] = 33.67, p < 0.001, η2 = 0.09). 
Specifically, inter- FC decreased in strength with increasing 
frequency (Figure 4d). For example, the inter- FC between 
Vis- 39 and Vis- 59 was of 0.83 (p  <  0.0001) in Slow- 5, 
0.59 (p  <  0.0001) in Slow- 4, 0.54 (p  <  0.0001) in Slow- 
3, but only of 0.06 in Slow- 2 (p  =  0.037, n.s. after FDR 
correction).

In summary, we found that the mean inter- FC of COn 
with visual networks was strongest in Slow- 4 (negative) and 
Slow- 3 (insula- subcomponent; positive); the mean inter- FC 
of RFPn with visual networks was negative and strongest 
in Slow- 5 and Slow- 4; the mean inter- FC between COn 
and RFPn was positive and strongest in Slow- 4 and Slow- 3 
(ACC- subcomponent); and the mean inter- FC between visual 
networks was positive and strongest in Slow- 5. Next, we in-
vestigated whether there is an association of VPS C with the 
inter- FC between these networks and, further, whether this 
association is frequency specific.

F I G U R E  4  Mean inter- functional connectivity (FC) between cingulo- opercular, right frontoparietal, and visual networks across frequency 
bins. (a) The mean Z value of the inter- FC between the cingulo- opercular (COn) and all visual networks was strongest in Slow- 3 (positive) with 
the COn's insula- subcomponent (Slow- 3_Ins) and Slow- 4 (negative). (b) The mean Z value of the inter- FC between the right frontoparietal 
network (RFPn) and all visual networks was negative and strongest in Slow- 5 and Slow- 4. (c) The mean Z value of the inter- FC between COn and 
RFPn was positive and strongest in Slow- 4 and Slow- 3 with the COn's anterior cingulate cortex (ACC)- subcomponent (Slow- 3_ACC). (d) The 
mean Z value of the inter- FC among visual networks was positive and strongest in Slow- 5. Significance was determined at Bonferroni- corrected 
p0.05/6 = 0.008 (for a and c, where COn was subdivided into two subcomponents) and p0.05/3 = 0.017 (for b and d). Bars represent 95% confidence 
intervals
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3.3 | Association of VPS parameter C 
with the inter- FC between COn, RFPn, and 
visual networks

Values for VPS parameter C ranged from 10.34 to 47.01 let-
ters per second (mean = 22.90 ± 7.70). We conducted five 
linear regressions (one for each visual network: Vis- 39, Vis- 
46, Vis- 59, Vis- 64, and Vis- 67) to test the associations be-
tween VPS parameter C values and the inter- FC of COn and 
RFPn with visual networks across frequency bins and Global, 
controlling for age and head motion.

Figure 5 depicts the predictors' beta coefficients (and their 
corresponding 95% confidence intervals) of inter- FC of COn 
(a) and RFPn (b) with each visual network across frequency 
bins (depicted in different colors and geometrical shapes). 
Significant associations with parameter C were found only 
for the inter- FC of RFPn with two of the five visual networks 
(Vis- 59 and Vis- 64) (confidence intervals not including zero; 
Figure  5b). Specifically, more negative inter- FCs of RFPn 
with Vis- 59 (Slow- 5: β = −0.56, SE = 0.22, p = 0.014) and 
Vis- 64 (Slow- 5: β = −0.56, SE = 0.22, p = 0.015; Slow- 2: 
β = −0.35, SE = 0.16, p = 0.034) were significantly asso-
ciated with higher VPS parameter C. No further significant 
associations were observed (all p values >0.060).

To determine possible frequency specificity for the fre-
quency bins that proved significant (i.e., inter- FC of RFPn and 
Vis- 59 in Slow- 5 and inter- FC of RFPn and Vis- 64 in Slow- 5 
and Slow- 2), we calculated post- hoc linear contrasts of the 
beta coefficients (i.e., Slow- 5 > Slow- 4; Slow- 5 > Slow- 3; 

Slow- 5  >  Slow- 2; Slow- 2  >  Slow- 4; and Slow- 2  >  Slow- 
3). In the regression model of inter- FC between Vis- 59 and 
RFPn (green diamond in Figure 5b), contrasts indicated that 
the association was significantly different between Slow- 5 
and Slow- 4 (z = −2.77, p = 0.016), marginally different be-
tween Slow- 5 and Slow- 3 (z = −2.24, p = 0.065), and not 
different between Slow- 5 and Slow- 2 (p = 0.685). Similarly, 
in the model of inter- FC of RFPn with Vis- 64 (ocher upward 
triangle in Figure 5b), the association was significantly dif-
ferent between Slow- 5 and Slow- 4 (z = −3.43, p = 0.002) 
and Slow- 2 and Slow- 4 (z = −2.53, p = 0.022), but not be-
tween Slow- 5 and Slow- 3 (p = 0.102), Slow- 5 and Slow- 2 
(p  =  0.751), or Slow- 2 and Slow- 3 (p  =  0.249). Thus, the 
association with VPS parameter C observed in Slow- 5 for the 
inter- FC between RFPn and Vis- 59 and Vis- 64 appears to be 
also present (although less marked) in Slow- 3 and Slow- 2, 
arguing that it is not frequency- specific.

Surprisingly, the inter- FC of COn and visual networks 
was not significantly associated with VPS parameter C in any 
of the frequency bins and in any of the models (all p values > 
0.129; Figure 5a). We also found no significant results for the 
inter- FC of RFPn or COn with visual networks in Global in 
any of the models (all p values > 0.158). None of the control 
variables showed significant associations with VPS param-
eter C in any of the models (age: all p values > 0.255; head 
motion: all p values > 0.400).

For completeness, we additionally examined the potential 
link between VPS parameter C and the inter- FC between COn 
and RFPn. We observed a significant association between the 

F I G U R E  5  Estimates of linear regressions of visual processing speed (VPS) parameter C on inter- functional connectivity (inter- FC) of 
cingulo- opercular network (COn) and right frontoparietal network (RFPn) with visual networks. The standardized coefficients (and their respective 
95% confidence intervals) of five multiple regression models of VPS C on the inter- FC of COn (a) and RFPn (b) with each visual network (Vis- ), 
are depicted in five different colors and geometrical shapes. All models included as predictors the inter- FC of both COn and RFPn with one of the 
five visual networks, respectively (hence five regression models), across frequency bins and global, age, and head motion. For clarity, inter- FC 
predictors are clustered on the y- axis and presented separately for COn (a) and RFPn (b). Estimates of age and head motion, as well as of the 
intercept, were omitted from the figure for simplicity. Significant estimates are those whose confidence interval does not cross the middle vertical 
(black dashed) line. Conventions for the regression models: Vis- 39: purple, circle; Vis- 46: blue, square; Vis- 59: green, diamond; Vis- 64: ocher, 
upward triangle; Vis- 67: red, downward triangle
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inter- FC of COn's ACC- subcomponent and RFPn in Slow- 3 
only (β = −0.34, SE = 0.16, p = 0.043; p values of all other 
frequency bins and global > 0.269).

In summary, we found higher VPS parameter C to be sig-
nificantly associated with a more negative inter- FC between 
RFPn and visual networks in Slow- 5 (Vis- 59 and Vis- 64) and 
Slow- 2 (Vis- 64) only. However, contrary to our expectations, 
we did not find a significant association between VPS param-
eter C and the inter- FC of COn with visual networks for any 
frequency bin or global.

4 |  DISCUSSION

In this study, we used TVA modeling and a frequency- 
based approach to systematically investigate whether the 
between- network functional connectivity (inter- FC) of the 
cingulo- opercular network (COn) and the right frontopari-
etal network (RFPn) with visual networks is associated with 
VPS, building on previous theoretical proposals and explora-
tory work. We found that inter- FC of RFPn, but not that of 
COn, with visual networks was linked with VPS, and that 
this link was also observed beyond the typically analyzed 
frequency range. Filtering rs- fMRI data into four frequency 
bins (Slow- 5:0.01– 0.027  Hz, Slow- 4:0.027– 0.073  Hz, 
Slow- 3:0.073– 0.198  Hz, and Slow- 2:0.198– 0.4  Hz) re-
vealed a functional subdivision for COn in Slow- 3, with the 
strongest inter- FC with visual networks for COn's insula- 
subcomponent and the strongest inter- FC with RFPn for 
COn's ACC- subcomponent. Further, our approach revealed 
the strongest inter- FC between RFPn and visual networks in 
the slowest bins (Slow- 5 and Slow- 4). Our results are indica-
tive of a frequency- specific inter- FC between higher- order 
and primary resting- state networks relevant for VPS and pro-
vide the first empirical evidence for a link between a latent 
VPS parameter and the intrinsic inter- FC between right fron-
toparietal (but not frontoinsular) and occipital regions.

4.1 | Inter- FC between RFPn and visual 
networks links with VPS

We found that the inter- FC between RFPn and visual networks, 
but not between COn and visual networks, was associated 
with the VPS parameter (Figure 5). The NTVA (Bundesen 
et al., 2005) proposes that the computations that determine 
VPS (i.e., selection of visual features) are generated in fron-
tal, parietal, and/or limbic areas and projected to occipital 
areas. Previous research based on within- network functional 
connectivity linked COn and RFPn with VPS (Ruiz- Rizzo 
et al., 2018). The current study goes beyond by providing the 
crucial yet missing piece of evidence on whether and how 
those computations pass onto visual cortices. In addition, our 

finer grained approach (in both the temporal and the spatial 
domain) revealed an association of VPS and inter- FC not 
only in the typically analyzed frequency range (Slow- 5) but, 
notably, also in frequencies beyond this range (Slow- 2 and, 
less strongly, Slow- 3), and for two visual networks (Vis- 59 
and Vis- 64) that include, respectively, dorsal (adjoining pari-
etal cortex) and primary visual areas (Allen et al., 2011). This 
finding is in accordance with well- established evidence that 
attentional control signals from (fronto)parietal regions of 
RFPn modulate sensory processing in visual cortices (Gilbert 
& Li,  2013; Green & McDonald, 2008; Riedl et  al.,  2016; 
Scolari et al., 2015), with evidence of preferential functional 
connectivity of RFPn regions to primary occipital regions 
supporting central vision (Griffis et al., 2017), and with evi-
dence that more right- hemispheric lateralization of the infe-
rior fronto- occipital fasciculus associates with higher VPS 
(Chechlacz et al., 2015). In the present study, inter- FC was 
measured at rest and the VPS parameter C was obtained in-
dependently (i.e., from modeling accuracy in a whole- report 
task performed on a different day). Accordingly, this associa-
tion would imply that the intrinsic inter- FC with RFPn re-
flects the individual potential of the visual system to process 
information in an efficient manner, as the parameter C repre-
sents a latent- level measure of VPS (e.g., Finke et al., 2005). 
Future studies might determine whether there is a functional 
subdivision within the RFPn whose connectivity with visual 
areas more accurately represent this efficient processing 
(akin to the separate pathways that support the control of spa-
tial attention; Szczepanski et al., 2013).

Higher VPS parameter C was associated with lower (nega-
tive) inter- FC between RFPn and visual networks (Figure 5b; 
Slow- 5 and Slow- 2, green and ochre bars). Theoretically, 
VPS is determined by categorizations, that is, selection 
of or bias toward visual features (“object x has feature i”; 
Bundesen,  1990). In neural terms, such selection increases 
the firing rate of the cortical neurons coding for a particu-
lar feature and, correspondingly, decreases the firing rate of 
neurons coding for other features (Bundesen et  al.,  2005). 
Functional connectivity has been proposed to reflect fluctua-
tions in cortical excitability (Raichle, 2011). Moreover, spon-
taneous, infra- slow neuronal fluctuations have been shown to 
underlie functional connectivity (Matsui et al., 2016). Thus, 
the negative inter- FC between RFPn and visual networks 
(observed in Slow- 5 and Slow- 2) suggests a neural imple-
mentation of the category selection mechanism— a visual 
categorization would increase the activity of, specifically, 
the visual areas coding for a particular feature, but not of all 
visual areas (coding other features and where activity would 
decrease), thereby translating into a net decrease.

The inter- FC between COn and visual networks was 
not associated with VPS parameter C, contrary to what 
we expected and unlike RFPn. One possibility for this 
null finding may be that COn's functional role in sustained 
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cognitive control (see below) is not limited solely to visual 
processing and requires more interaction with higher order 
networks (e.g., to control switching between default mode 
and central executive networks; Sridharan et  al.,  2008) 
than with unimodal networks. This possibility is further 
supported by our finding of an association of the inter- FC 
between COn and RFPn with VPS, also shown previ-
ously in an exploratory analysis that aimed to shed light 
on the functional connectivity within COn (Ruiz- Rizzo 
et al., 2018). COn and RFPn are two functionally well cou-
pled but distinct networks associated with cognitive con-
trol (e.g., Crittenden et al., 2016; Dosenbach et al., 2007). 
Whereas COn has been suggested to be involved in cogni-
tive control across longer periods of time, RFPn appears to 
adjust control more rapidly and dynamically (Dosenbach 
et al., 2008; Sadaghiani et al., 2012). The functional con-
nectivity within COn and its inter- FC with RFPn have pre-
viously been shown relevant for the VPS parameter C in 
an independent sample of young adults (e.g., Ruiz- Rizzo 
et  al.,  2018). In light of this previous evidence, the new 
findings allow us to propose a possible functional hierarchy 
among intrinsic networks relevant for the latent parameter 
VPS. In detail, while sustaining cognitive control in a vi-
sual task, COn might require RFPn to respond (in a pha-
sic manner) to incoming stimuli, and RFPn would thereby 
enhance stimulus processing in visual (primary and dorsal 
occipital) regions. Assessing effective (i.e., directional) FC 
could provide further empirical support to this proposal.

4.2 | Inter- FC between VPS relevant 
networks is frequency- specific

Previous studies showed that resting- state networks can be 
observed at frequencies beyond the traditionally examined 
frequency range (0.01– 0.1 Hz) and that filtering data to this 
range discards potential differences in functional connec-
tivity (Gohel & Biswal,  2015; Kalcher et  al.,  2014; Wang 
et al., 2018; Zuo et al., 2010). Accordingly, we followed a 
frequency- based approach, which yielded two main insights. 
First, there was a meaningful subdivision of COn in Slow- 3 
into its two core regions (e.g., Seeley et al., 2007), the insula 
and the ACC. This subdivision showed a particular inter- FC 
pattern, with significant inter- FC of the insula- subcomponent 
with visual networks and significant inter- FC of the ACC- 
subcomponent with RFPn. Of note, this subdivision only 
occurred in Slow- 3 (also see Salvador et  al.,  2008), which 
includes frequencies typically filtered out (e.g., >0.1), and 
is in agreement with task- fMRI evidence of a functional 
dissociation between the insula (alerting) and the ACC (set 
switching) (Han et al., 2019) and previous rs- fMRI evidence 
of the intrinsic connectivity of the (posterior dorsal) insula 
with visual brain areas (Cauda et al., 2011).

Second, the average inter- FC of COn and RFPn with 
all visual networks appears stronger in some frequencies 
(Figure  4), though it is present across all frequency bins 
(Figure 3) (see also, Gohel & Biswal, 2015). For COn, the 
strongest average inter- FC with visual networks was found 
in Slow- 4 (upper typical range) and Slow- 3 (faster than the 
typically analyzed rs- fMRI BOLD signal frequency range), 
whereas for RFPn, the strongest average inter- FC with visual 
networks was found in Slow- 5 and Slow- 4 (the typically ana-
lyzed frequency range), aligning well with previous evidence 
on brain- regional differences in frequency power (e.g., Baria 
et al., 2011). The strongest inter- FC between visual network 
pairs was found in Slow- 5, in accordance with previous docu-
mentations that the fMRI- BOLD signal in occipital networks 
mostly concentrates in infra- slow frequencies (i.e., 0.01– 
0.06 Hz; Wu et al., 2008; Baria et al., 2011) and correlates 
positively with lower frequency electroencephalographic 
amplitude (i.e., delta and theta rhythms; ~1.0– 8.2 Hz; Jann 
et al., 2010). From a methods perspective, the previous doc-
umentations, along with the found association between the 
inter- FC of RFPn with visual networks in Slow- 2 and VPS 
parameter C, provide supportive evidence that a frequency- 
binned approach can yield additional, valuable insights into 
the rs- fMRI BOLD signal. Accordingly, combining the fre-
quencies altogether without binning (i.e., “Global”) cancels 
out any specificity in inter- FC or the association of inter- FC 
with VPS.

In interpreting our results, some limitations should be 
considered. First, the two COn subcomponents were identi-
fied only in Slow- 3. Future studies should determine whether 
this separation is specific to Slow- 3 or COn. Further, the 
results on the strongest inter- FC in specific frequency bins 
do not directly imply “communication” preferences be-
tween the neuronal populations of those networks. Rather, 
inter- FC was observed across the entire spectrum measured 
with BOLD- fMRI, which is in line with electrophysiologi-
cal evidence showing that the oscillations that characterize 
functional networks span multiple frequency bands (Mantini 
et al., 2007). Finally, task- based fMRI studies investigating 
VPS variability within an individual could help elucidate the 
meaning and relevance of the observed negative association 
between inter- FC (of RFPn and visual networks) and VPS. 
Despite its limitations, our study underscores the usefulness 
of a frequency- based approach for better understanding the 
spontaneous fMRI- BOLD activity and how it links to behav-
ior (Kalcher et al., 2014; Sasai et al., 2014; Wu et al., 2008).

5 |  CONCLUSION

Our study provides first empirical evidence that the in-
trinsic inter- FC between RFPn and visual networks links 
to VPS. Albeit expected, we did not find such a link for 
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COn. Our systematic frequency- based approach revealed 
that the inter- FC between functional networks relevant for 
VPS and their link to VPS are also observed in frequencies 
above 0.1 Hz.
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