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Abstract

Real World Evidence (RWE) and its uses are playing a growing role in medical research

and inference. Prominently, the 21st Century Cures Act—approved in 2016 by the US Con-

gress—permits the introduction of RWE for the purpose of risk-benefit assessments of med-

ical interventions. However, appraising the quality of RWE and determining its inferential

strength are, more often than not, thorny problems, because evidence production methodol-

ogies may suffer from multiple imperfections. The problem arises to aggregate multiple

appraised imperfections and perform inference with RWE. In this article, we thus develop an

evidence appraisal aggregation algorithm called EA3. Our algorithm employs the softmax

function—a generalisation of the logistic function to multiple dimensions—which is popular

in several fields: statistics, mathematical physics and artificial intelligence. We prove that

EA3 has a number of desirable properties for appraising RWE and we show how the aggre-

gated evidence appraisals computed by EA3 can support causal inferences based on RWE

within a Bayesian decision making framework. We also discuss features and limitations of

our approach and how to overcome some shortcomings. We conclude with a look ahead at

the use of RWE.

Introduction

Real World Evidence (RWE) [1] is one of the new frontiers of medical research and inference

and attracts growing interests in academic and industrial research. RWE comprises observa-

tional data obtained outside the context of Randomised Controlled Trials (RCTs) which are

produced during routine clinical practice. According to a broader understanding, it may be

possible to point at any source of information, that is related to medications and not directly

retrievable from RCTs, as a potential generator of RWE, e.g. social networks [2].

Despite being known for a long time and in some cases applied as an informative support

in the drug approval process [3] (e.g. the anticoagulant Rivaroxaban [4]), RWE has recently

been brought to the fore by the US Congress with the Pub.L. 114—255 (21st Century Cures

Act) which modified in 2016 the Food and Drug Administration (FDA) procedures for
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medications licensing. The act allows, under certain conditions, pharmaceutical companies to

provide “data summaries” and RWE such as observational studies, insurance claims data,

patient input, and anecdotal data rather than RCTs data for drug approval purposes. After the

turn to RCTs as gold-standard in the drug approval process, this is the first act allowing for

uses of RWE in the drug approval process in an industrialised country. This move sparked

interest also of the European Medical Agency (EMA) and the Japanese Pharmaceuticals and

Medical Devices Agency (PMDA) [5, 6].

The use and standards for proper use of RWE have ignited a serious debate in the scientific

community [7–11]; for a special issue see [12]. Proponents of the use of RWE point to the fact

that RWE can be produced much faster than conducting and analysing a clinical study [13,

14]. This allows pharmaceutical companies to obtain approval for new products or new indica-

tions (off-label use) quicker, which can benefit companies as well as patients [15]. Faster and

safe drug approval procedures are particularly relevant during the current Covid-19 pandemic

[16, 17]. However, many researchers have expressed concerns related to data quality, validity,

reliability and sensitivity to capture the exposure, adverse effects and outcomes of interest

when using RWE [18–22]. Using RWE for medical inference presents methodological chal-

lenges [23], though some efforts have been carried out to efficiently merge evidence coming

from RCTs and observational studies [24–26], also for causal inference purposes [27, 28].

Attempts to provide a framework for appraising the quality of evidence for medical inference

have been going on since long before the current debate on uses of RWE began, e.g. GRADE

[29, 30]. However, these frameworks do not provide a clear way to quantitatively solve this

problem nor do they lend themselves to an integration into a standard decision making frame-

work [31–34].

The US National Research Council has issued following call: “The risk-of-bias assessment of
individual studies should be carried forward and incorporated into the evaluation of evidence
among data streams” [35]. This point appears crucial to us for appraising RWE. There is how-

ever no commonly accepted methodology for carrying out RWE appraisals. A possible solu-

tion to this problem is to split the appraisal of RWE into multiple more manageable appraisals

along different dimensions and then to aggregate these appraisals. However, how can we

aggregate these multiple appraisals? Subsequently, how can we use this aggregate for decision

making?

We here address these two questions by proposing an algorithm based on (1) the softmax

function—a generalisation of the logistic function to multiple dimensions—as an instrumental

tool for aggregation within (2) a Bayesian decision making framework. While the softmax

function was initially introduced in statistical mechanics, it has now found wide-spread appli-

cations in machine learning and artificial intelligence methods at large [36–38]. On the other

hand, Bayesian approaches are increasing in popularity in part due to their intuitive incorpo-

ration of information and updating procedures.

Drawing on these traditions, we present an Evidence Appraisal Aggregation Algorithm,

EA3 (suggested pronunciation: “EA-cube”) compressing a generic vector of evidence apprais-

als along multiple dimensions into a scalar. Roughly, input data (evidence appraisals) are first

processed through the softmax function and next aggregated by the application of a geometric

mean. EA3 is then shown to have some desirable properties. It offers the possibility of empha-

sizing or the de-emphasizing the maximum values associated to each evidence appraisal via a

cautiousness parameter (the thermodynamic β of softmax). Furthermore, EA3 allows one to

incorporate the importance of the dimensions of appraisals. Eventually, we show how EA3 can

be used to support assessments of causal hypotheses within a Bayesian decision making

approach.
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To the best of our knowledge, EA3 represents one of the first attempts to solve the problem

of evidence appraisal through an easy-to-exploit numerical measure [39, 40]. In line with the

previously mentioned US Environmental Protection Agency (EPA) recommendations [35],

our appraisals can be understood as risk-of-bias assessments—but also of other possible meth-

odological flaws. We offer a formalisation of such assessments and facilitate a tracking of these

assessments through evidence aggregation to the calculation of probabilities of hypotheses of

interest. Our proposal commits to be thus “transparent, reproducible and scientifically defensi-
ble” as suggested by the EPA [35, p. 79].

The rest of this article is organised as follows: in Materials and Methods, we introduce the

softmax function as well as a motivating example and then present our softmax algorithm in

some detail and discuss its properties. The Results section puts forward a method to apply EA3

in Bayesian decision making problems. A final Discussion outlines advantages and limitations

of our approach and points to important future work.

Materials and methods

In this section, we first introduce the softmax function, then we present the EA3 algorithm and

discuss its properties.

Softmax

The softmax function (more correctly softargmax, also known as normalised exponential func-

tion) is a function from Rk to Rk (k 2 N) mapping a vector ~A ¼ ha1 . . . al . . . aki 2 R
k (k� 2)

to a vector sð~AÞ as follows:

sð~AÞl ¼
expðbalÞ

Pk
i¼1

expðbaiÞ
; ð1Þ

where β is a real number different from zero, see Table 1 for an overview of key notation. We

now briefly discuss some of the properties of the softmax function (henceforth softmax) and

recall some of its applications to mathematical physics, probability theory, statistics, machine

learning and artificial intelligence.

Table 1. Key notation.

k number of dimensions of appraisals

~A tuple of k-appraisals

~R ranking of dimensions of appraisal

~A �~R weighted mean of ~A and~R
β cautiousness parameter

vf appraisal aggregate output of EA3

EA3(~A,~R) appraisal aggregate output of EA3 applied to appraisals ~A and ranking~R
c@k k-tuple with all entries equal to c
O finite set of possible worlds

E body of evidence

P probability function

Q probability function when RWE is not taken at face value

© drug D causes adverse reaction E
Ind indicator of causation

RoG Rate of Growth indicator of causation

https://doi.org/10.1371/journal.pone.0253057.t001
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Normalisation. While the input vector may contain any real number, the output of soft-

max is normalised in the sense that all components of the output vector are in the unit interval

and sum to one. The output vector can hence be understood as a probability distribution over

k elementary events where the probabilities are proportional to the exponential of the input

vector.

Translational invariance. Softmax is invariant under translations: let ~A 0 be obtained

from a vector ~A by adding a constant c 2 R to every component of A then

sð~A 0Þl ¼
expðbðal þ cÞÞ

Pk
i¼1

expðbðai þ cÞÞ
¼

expðbalÞ � expðbcÞ
Pk

i¼1
expðbaiÞ � expðbcÞ

¼ sð~AÞl :

So, if ~A 0 is obtained from ~A via translation, then sð~A 0Þ ¼ sð~AÞ.
Softmax is not scale invariant. It is easy to prove that multiplying every component of an

input vector ~A by some constant c does, in general, not return the same output vector.

The β parameter allows one to change the base of the exponential function. This choice

permits one to emphasise or de-emphasise the maximum value belonging to the input vector,

the greater β the greater the maximal component of the output vector. For β = +1 the output

vector vanishes everywhere except those components at which the input vector is the greatest

(in this case, softmax becomes an argmax). Conversely, for β = −1 the output vector vanishes

everywhere except those components at which the input vector is the smallest (argmin). In the

limit case β = 0 the output vector is the uniform probability distribution resulting in a loss of

all the information contained in the input.

The first use of softmax goes back to 1868 when Ludwig Boltzmann introduced the function

for modelling ideal gases. Today, softmax is known as the Boltzmann-Gibbs distribution in

statistical mechanics, where the index set {1, . . ., l, . . ., k} represents the microstates of a classi-

cal thermodynamic system in thermal equilibrium and al is the energy of that state l and β the

inverse temperature (thermodynamic β) [41, 42]. Beyond the representation of physical sys-

tems, the distribution and this modeling have paved the way to some noteworthy algorithms

based on the same statistical mechanics assumptions, e.g. Gibbs sampling [43].

The normalisation property has led to applications of softmax in probability theory to rep-

resent a categorical distribution [44] and in statistics to define a classification method through

the so-called softmax regression, an equivalent to multinomial logistic regression [45, 46]. This

property has been widely used also in medical statistics [47–49].

In recent years, two fields have been seeing a raising interest towards softmax: machine

learning and artificial intelligence [50, 51]. The term softmax itself has been first introduced by

Bridle in neural networks, where it is usually employed as an activation function to normalise

data [52]. In computer science, applications of softmax are varied: classification methods

(again, softmax regression) for supervised and unsupervised learning [53–55], computer vision

[56–58], reinforcement learning [59–61] and hardware design [62], just to name some current

areas of application. Additionally, a considerable number of conference papers is witnessing

the popularity of softmax and its proposed variants [63–67].

Motivating example

Consider the hypothesis that paracetamol use causes asthma in children [68]. Only relatively

few RCTs have been conducted that could help us determine the truth of this hypothesis [69].

RWE will thus have to (!) play an important role in treatment and prescription decisions that
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have to be made now, that is before (meta-analyses of) RCTs can deliver conclusive evidence

[70].

RWE for and against this causal hypothesis is, for example, obtained from relatively large

surveys [71–77]. Such evidence is clearly less confirmatory than well-run RCTs and we hence

need to find a way to appraise this evidence. De Pretis et al. (2019) [78] suggested that such sur-

veys can be appraised along three independent and relevant dimensions: duration of the sur-

veyed time period, the sample size and the methodology for adjustment and stratification.

Appraisals are represented by numbers in the unit interval where 1 represents a perfect

appraisal (e.g, perfect methodology for adjustment and stratification) and 0 represents the

worst possible score (e.g. tiny sample size). These three appraisals are then aggregated by tak-

ing their arithmetic mean.

Simply taking the arithmetic mean is problematic for a number of reasons. Firstly, the

dimensions of appraisal are all given the same weight. This problem can be easily addressed by

moving to a weighted mean where the weights represent the importance of the dimensions of

appraisal. Secondly, every weighted mean of three equal numbers c is equal to c. That is, multi-

ple imperfections of RWE of equal degree c lead to an overall appraisal equal to c. We think,

the overall appraisal ought to be less than c, multiple imperfections are worse than just one

imperfection. Thirdly, a decision maker has no flexibility in the aggregation of appraisal to rep-

resent his/her attitude towards the question “how much worse are multiple imperfections than

a single imperfection”. We hence think that a suitable aggregation is not idempotent.

We next present and explain the EA3 algorithm to aggregate evidence appraisals, which

addresses these points.

The evidence appraisal aggregation algorithm EA3

We assume that evidence is appraised in k relevant and pairwise different and mutually inde-

pendent dimensions represented by a normalised appraisal vector

~A ¼ ha1 . . . al . . . aki 2 ½0; 1�
k
, see the E-Synthesis subsection for a suggested set of dimensions

for appraisal. We do not commit to a fixed number of evidence appraisals (in agreement with

multi criteria decision making in medicine [33] and risk prediction for multiple outcomes

[79]).

We also make use of a given ranking of the importance of the different dimensions of

appraisal. We represent this ranking by a vector~R ¼ hr1 . . . rl . . . rki 2 ð0; 1Þ
k

such that
Pk

i¼1
ri ¼ 1. The more important the appraisal al, the greater the value rl.

EA3 proceeds in 5 steps listed in Table 2 and explained below:

1. Appraisals weighted by ranking:

a½1�l ≔ rl � al for all 1 � l � k:

Description. Step 1 weighs every appraisal by its importance.

Table 2. EA3 algorithm structure with objectives described for each step.

Step Objective

1 Appraisals weighted by ranking

2 Softmax with a positive thermodynamic β

3 Rescaling

4 Geometric averaging

5 Normalisation to unit interval

https://doi.org/10.1371/journal.pone.0253057.t002
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2. Softmax with a positive thermodynamic β

a½2�l ≔
expðba½1�l Þ

Pk
i¼1

expðba½1�i Þ
¼

expðb � rl � alÞ
Pk

i¼1
expðb � ri � aiÞ

Description. Step 2 applies, as advertised above, softmax with a parameter β representing

cautiousness, cf. the discussion following Proposition 1.

3. Rescaling

a½3�l ≔ a½2�l �
Xk

i¼1

ri � ai ¼
expðb � rl � alÞ

Pk
i¼1

expðb � ri � aiÞ
� ð~A �~RÞ;

where × denotes the scalar product between two vectors of the same length k.

Description. Step 3 rescales the softmax of Step 2 by aggregated ranked appraisals. Softmax

has the well-known property that it is invariant under uniform pointwise translations, σ
(ha1, . . ., ak) = σ(ha1 + c, . . ., ak + ci). This property means for our application that applying

softmax to a study S1 and to a study S2 which is appraised to be better according to every

dimension by the same amount (c) it holds that σ(S1) = σ(S2). This is clearly undesirable as a

uniformly better study should score better than a uniformly worse study. Multiplying by

~A �~R is a simple and intuitive way of ensuring that EA3 is not invariant under uniform

pointwise translations. Not only is our algorithm sensitive to pointwise translations, it is

even the case that every improvement of an appraisal leads to a greater number vf (see Prop-

osition 2).

4. Geometric averaging:

v : ¼

Qk
i¼1

expðb � ri � aiÞ
Pk

i¼1
expðb � ri � aiÞ

� ð~A �~RÞ ¼
expðb � ð~A �~RÞÞ
Pk

i¼1
expðb � ri � aiÞ

� ð~A �~RÞ

Description. Step 4 compresses the vector to a scalar. To achieve this task, we apply a geo-

metric mean, as it is routinely performed in machine learning for comparing items with a

different number of properties and numerical ranges [80–82].

5. Normalisation to unit interval:

vf ≔ v �
Pk

i¼1
expðb � riÞ
expðbÞ

¼
expðb � ð~A �~RÞÞ

expðbÞ
�

Pk
i¼1

expðb � riÞ
Pk

i¼1
expðb � ri � aiÞ

� ð~A �~RÞ

Description. Step 5 ensures that the final output is in the unit interval. We find this normal-

isation convenient for our application and point out that this step might not be necessary

for other applications.

To summarize, given two k-tuples ~A;~R 2 ½0; 1�k � ð0; 1Þk as input the algorithm returns a

single number in the unit interval as output. We can understand EA3 as a map and thus write

EA3(~A,~R) 2 [0, 1] (see Corollary 1 for a proof that EA3 maps into the unit interval).

Properties of EA3

Denoting by c@k a vector of length k with all components equal to c, we find that:
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Proposition 1. EA3 is not idempotent, i.e. for all c 2 [0, 1] and all β> 0 it holds that

EA3ðc@k;
1

k
@kÞ ¼ c � exp b � ðc � 1Þ � ð1 �

1

k
Þ

� �

: ð2Þ

Proof. The computation is straightforward:

vf : ¼
expðb � ðc@k� 1

k @kÞÞ
expðbÞ

�

Pk
i¼1

expðb � 1

kÞ
Pk

i¼1
expðb � c

kÞ
� ðc@k�

1

k
@kÞ

¼
expðb � cÞ
expðbÞ

�
exp b � 1

k

� �

exp b � c
k

� � � c

¼ expðb � ðc � 1ÞÞ �
1

exp ðc � 1Þ � bk

� � � c

¼ c � exp b � ðc � 1Þ � ð1 �
1

k
Þ

� �

:

This observation demonstrates the role of β and how the simplest ranking scheme (all

dimensions are ranked equally) acts in the simple case in which all appraisals are equal to c, see

Fig 1 for an illustration. The greater β, the smaller vf, the further away the curves plotted in Fig

1 are away from the identity map. This means that a study with all appraisals equal to c will

have an aggregate, vf, equal to less than c. In other words, RWE that is less than perfect in more

than one respect has an even lower aggregated appraisal. This seems right, studies which might

produce poor evidence for multiple reasons are considered to produce very poor evidence. It is

for this reason that we require that β> 0.

β = +1 represents maximal cautiousness, if the study is not perfect in all respects (c< 1),

then EA3 c@k; 1

k @k
� �

¼ 0. β = 0 represents maximal optimism (and in our eyes overly strong

optimism) in that EA3 c@k; 1

k @k
� �

¼ c, a study with a number of imperfections (c< 1) is over-

all as good as just a single imperfection.

Furthermore, note that if β� 0, then Eq (2) may exceed 1. So, in such a case our Step 5

would fail normalise vf to the unit interval and a different normalisation step would be

required.

Definition 1 (Monotonicity) We call a function f : ½0; 1�
k
! Rmonotone, if and only if the

restriction of f to all coordinates is a strictly monotonously increasing function.

Proposition 2. For every given fixed ranking scheme~R, the function EA3(�,~R) is monotone.
This proposition is key for our purposes as it states that every improved appraisal entails a

better aggregate. In other words, better methodologies have a greater vf which in turn have

greater (dis-)confirmatory weight (see the Results section).

Proof. It suffices to verify that all the partial derivatives of EA3(�,~R) with respect to the al are

strictly positive for all al 2 [0, 1]. Since the normalisation step is a multiplication by a scalar

which does not depend on ~A, it suffices to verify that all the partial derivatives of v with respect

to the al terms are strictly positive for all al 2 [0, 1].
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We now compute that this is indeed the case:

@

@al
v ¼ expðb � ð~A �~RÞÞ �

ðal þ b � rlÞ � ð
Pk

i¼1
expðb � ri � aiÞÞ � ðb � rlÞ � ð~A �~RÞ

ð
Pk

i¼1
expðb � ri � aiÞÞ

2

¼ expðb � ð~A �~RÞÞ �
ðal þ b � rlÞ � ð

Pk
i¼1

expðb � ri � aiÞÞ � ðb � rlÞ � ð
Pk

i¼1
ai � riÞ

ð
Pk

i¼1
expðb � ri � aiÞÞ

2

> expðb � ð~A �~RÞÞ �
ðal þ b � rlÞ � ð

Pk
i¼1

ri � aiÞ � ðb � rlÞ � ð
Pk

i¼1
ai � riÞ

ð
Pk

i¼1
expðb � ri � aiÞÞ

2

� 0 :

The sharp inequality follow from the fact that exp(β � x)> 1� x for all x 2 [0, 1] and all β> 0.

Corollary 1. For every given fixed ranking scheme~R, the function EA3(�,~R) maps into the
unit interval, [0, 1]. Furthermore, we note that vf ð~A;~RÞ ¼ 0, ~A ¼ 0@k and

vf ð~A;~RÞ ¼ 1, ~A ¼ 1@k.

Proof. Applying Proposition 2 it suffices to show that EA3(0@k,~R) = 0 and EA3(1@k,~R) =

1. The first condition follows from 0@k�~R ¼ 0 and the second from 1@k�~R ¼ 1.

Also note that if ~A ¼ 0@k, then ~A �~R ¼ 0 and thus vf = 0. If ~A 6¼ 0@k, then ~A �~R > 0

and thus vf> 0.

Fig 1. Behaviour of EA3 c@k; 1

k @k
� �

for varying β, where b � 1 � 1

k

� �
is the second factor within the scope of the

exponential function. The smaller parameter β and the greater the number of appraisals (the greater k), the closer

EA3 c@k; 1

k @k
� �

gets to the identity map. This graph clearly displays the monotonicity of these functions.

https://doi.org/10.1371/journal.pone.0253057.g001
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Similarly, if ~A ¼ 1@k, then ~A �~R ¼ 1 and thus vf = 1. If ~A 6¼ 1@k, then ~A �~R < 1 and

thus vf< 1.

The motivating example—reconsidered

Returning to the suspected causal link between paracetamol use and asthma, we now compare

the aggregated appraisals of several RWE-providing surveys involving children, previously

considered in [78], according to De Pretis et al. (2019) [78] and according to EA3. See Table 3

for the formulae and Figs 2 and 3 for a graphical comparison under the assumption of equally

Table 3. Evidence Appraisal Aggregation according to De Pretis et al. (2019) [78] and EA3 with equally important

appraisal dimensions (~R ¼ 1

3
@3) where SS represents the appraised sample size, D the appraised duration and A

represents the appraised adjustment and stratification.

Survey SS D A De Pretis et al. (2019) EA3

Lesko and Mitchell (1999) [71] 1 0 0.5 1

2

3

2 exp b
2ð Þþexp

b
3ð Þþexp

b
6ð Þ½ �

Newson et al. (2000) [72] 1 0.5 1 5

6

5

2 1þ2exp b
6ð Þ½ �

Lesko et al. (2002) [73] 1 0 0.5 1

2

3

2 exp b
2ð Þþexp

b
3ð Þþexp

b
6ð Þ½ �

Shaheen et al. (2002) [74] 1 1 1 1 1

Karimi et al. (2006) [75] 0.5 0 0.5 1

3
exp � b

3ð Þ
1þ2exp b

6ð Þ

Amberbir et al. (2011) [76] 0.5 1 1 5

6

5

2 1þ2exp b
6ð Þ½ �

Beasley et al. (2011) [77] 1 0.5 1 5

6

5

2 1þ2exp b
6ð Þ½ �

https://doi.org/10.1371/journal.pone.0253057.t003

Fig 2. Aggregated appraisals of Karimi et al. (2006) [75] according to De Pretis et al. (2019) [78] (solid line) and

EA3 (dash-dot line). The latter, lower, curve displays the behaviour with respect to the cautiousness parameter β. Both

curves agree for β = 0 where EA3 equals the weighted mean.

https://doi.org/10.1371/journal.pone.0253057.g002
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Fig 3. Similarly to Fig 2, the upper panel shows the aggregated appraisals of Newson et al. (2000) [72], Amberbir

et al. (2011) [76] and Beasley et al. (2011) [77] according to De Pretis et al. (2019) [78] (solid line) and EA3 (dash-

dot line). The lower panel depicts the aggregated appraisals for Lesko and Mitchell (1999) [71] and Lesko et al. (2002)

[73].

https://doi.org/10.1371/journal.pone.0253057.g003
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important appraisal dimensions,~R ¼ 1

3
@3. We note that for β = 0 both approaches agree and

that the aggregate appraisal computed with EA3 decreases with increasing cautiousness param-

eter β.

We are not aware of other approaches of qualitative aggregations of multiple evidence

appraisals for medical inference. We hence lack a standard against which to benchmark our

proposal. However, there are substantive bodies of literature on aggregating numerically

represented judgements and preferences, which, at times, tackle a formally equivalent aggre-

gation problem. A related proposal for medical inference is the GRADE methodology,

which puts forward a way to obtain a qualitative confidence rating in hypotheses. The sug-

gestion is to use the lowest confidence ranking for critical outcomes as the aggregate confi-

dence [83]. By contrast, our approach is quantitative and all appraisals contribute to the

aggregate.

Another field relevant our work is the current research on Bayesian hierarchical models

for aggregation. In the already mentioned [24, 25] such models are employed to combine

different study types in meta-analysis and account for bias, with the objective of its correc-

tion. Whereas in this article we consider one study and multiple appraisals of bias, the

inverse may be considered true in [24]. There, the author employs a bias-correcting Bayesian

hierarchical model [84] to combine different study types in meta-analysis. That model is

based on a mixture of two random effects distributions, where the first component corre-

sponds to the model of interest and the second component to the hidden bias structure. The

resulting model is thus adjusted by the internal validity bias of the studies included in a sys-

tematic review.

Results. Application of EA3 to Bayesian decision making problems

The bayesian framework

We now illustrate how EA3 can be incorporated into the Bayesian decision making framework

[85], in which decisions are based on all the available evidence [86]. In this framework, a deci-

sion maker is facing a decision problem in which a number of possible acts are at his/her dis-

posal. However, the decision maker is unsure about the state of the world and thus adopts a

prior probability function defined over a finite set of possible worlds, O.

All the available evidence is then used to determine a posterior probability function by con-

ditionalising the prior probability function. In order to represent the decision maker’s prefer-

ences all pairs of acts and worlds, the possible outcomes, are assigned a utility value in the real

numbers. Normatively correct decisions are those which maximise the decision maker’s

expected utilities, where expectations are calculated with respect to the updated probability

function [87–89].

One immediate issue in this framework is that it is hard to calculate a posterior probability

function. This issue is normally solved by applying Bayes’ Theorem (see the following subsec-

tion). Bayes’ Theorem is ubiquitous in Bayesian analyses and it is straight-forwardly applied, if

the evidence can be taken at face value. In medical inference, where evidence cannot be taken

at face value, numerous methodological design features and choices (conscious and subcon-

scious) bear on the information a study provides.

Bayes’ Theorem

Consider a set of exhaustive and mutually exclusively statistical hypotheses H1, . . ., Hn, i.e. the

states of the world. Let us denote the available evidence by E. Bayes’ Theorem then allows us to
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compute the posterior probability of the hypothesis Hh

PðHhjEÞ|fflfflfflffl{zfflfflfflffl}
Posterior

¼
PðE ^ HhÞ

PðEÞ
¼ PðHhÞ �

PðE ^ HhÞ

PðHhÞ � PðEÞ

¼ PðHhÞ �
PðEjHhÞ

PðE ^ H1Þ þ PðE ^ H2Þ þ . . .þ PðE ^ HnÞ

¼ PðHhÞ|fflffl{zfflffl}
Prior

�
PðEjHhÞ

PðEjH1ÞPðH1Þ þ PðEjH2ÞPðH2Þ þ . . .þ PðEjHnÞPðHnÞ
:

So, the posterior probability can be computed from prior probabilities over hypotheses and

conditional probabilities. The prior probabilities are provided by the decision maker’s prior

beliefs about the state of the world. The conditional probabilities are likelihoods specified by

the statistical hypotheses. Hence, computing the posterior probability is a simple exercise in

the probability calculus—under the assumption that the conditional probabilities are likeli-

hoods specified by statistical models.

In medical inference problems with RWE, the calculations of Bayes’ Theorem remain valid,

the statistical models however do not specify the relevant likelihoods for RWE. The challenge

hence arises to specify these conditional probabilities. We next show how this can be done via

an application of EA3.

EA3 and posterior probabilities of hypotheses based on a single RWE study

How should the posterior probabilities QðE1jHÞ look like, given a single study E1? For starters,

the evidence can be taken at face value, ~A ¼ 1@k, then QðE1jHÞ should just be PðE1jHÞ. If the

evidence contains no information whatsoever, ~A ¼ 0@k and vf = 0, then the posterior

QðE1jHÞ should just equal the prior probability PðE1Þ, so QðE1jHÞ ¼ PðE1Þ. That is, whether

H is true or not, this does not change the probability of obtaining E1. In all other cases, the pos-

terior probability QðE1jHÞ should be somewhere between the posterior PðE1jHÞ and the prior

probability PðE1Þ.

These considerations suggest that QðE1jHÞmay be computed as a weighted mean of the

posterior and the prior probability:

QðE1jHÞ ¼ vf � PðE1jHÞ þ ð1 � vf ÞPðE1Þ : ð3Þ

Applying Corollary 1 we see that QðE1jHÞ is different from the prior, if the posterior and the

prior are different and vf> 0.

From a theoretical point of view, one may interpret the convex combination in Eq (3) as a

Jeffrey update [90]. Under this interpretation, vf is interpreted as the probability that the evi-

dence can be taken at face value and 1 − vf can be interpreted as the probability that the evi-

dence is completely uninformative.
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The modified posterior probability of a hypothesis given one available RWE study is

QðHhjE1Þ ¼
QðHhÞ � QðE1jHhÞ

QðE1jH1ÞQðH1Þ þ QðE1jH2ÞQðH2Þ þ . . .þ QðE1jHnÞQðHnÞ

¼
PðHhÞ � QðE1jHhÞ

QðE1jH1ÞPðH1Þ þ QðE1jH2ÞPðH2Þ þ . . .þ QðE1jHnÞPðHnÞ

¼
PðHhÞ � ðvf � PðE1jHhÞ þ ð1 � vf ÞPðE1ÞÞ

Pn
g¼1

PðHgÞ � ðvf � PðE1jHgÞ þ ð1 � vf ÞPðE1ÞÞ
:

ð4Þ

EA3 and posterior probabilities of hypotheses based on multiple RWE

studies

The assumption of a single available RWE study is, of course, rather unrealistic. We now show

how to deal with multiple available RWE studies, E ¼ fE1; . . . ; Esg. We begin by applying EA3

to all every study individually, thus obtaining s-many outputs v1
f ; . . . ; vsf .

Under the assumption that the studies have been conducted independently from each

other, we can generalise Eq (4) as follows:

QðHhjEÞ ¼
PðHhÞ � QðEjHhÞ

QðEjH1ÞPðH1Þ þ QðEjH2ÞPðH2Þ þ . . .þ QðEjHnÞPðHnÞ

¼
PðHhÞ �

Qs
r¼1
ðvrf � PðE rjHhÞ þ ð1 � vrf ÞPðErÞÞ

Pn
g¼1

PðHgÞ �
Qs

r¼1
ðvrf � PðErjHgÞ þ ð1 � vrf ÞPðErÞÞ

:

E-Synthesis
E-Synthesis is a Bayesian framework developed for determining probabilities of particular

drugs causing a specific adverse reaction [78, 91–95]. In order to facilitate the inference from

real world data to a causal hypothesis a layer of so-called “indicators” has been inserted

between the hypothesis of interest and the data. The indicators have been derived from Hill’s

Guidelines [96] and serve the role as (probabilistic) testable consequences of the causal hypoth-

esis. Learning that an indicator is true raises the probability of the causal hypothesis to a

degree. For example, learning that there is correlation between a drug and an adverse effect

does not entail that the drug causes an adverse reaction. Nevertheless, the presence of a correla-

tion does increase our suspicion that there indeed might be a causal relationship between a

drug and an adverse event.

Evidence for adverse reactions often emerges spontaneously in form of case reports and

suspected adverse reactions are often confirmed only from observational data [97]. Such RWE

is at a high risk of bias and hence the RWE needs to be appraised. E-Synthesis has been

designed to incorporate such appraisals of RWE, making their role explicit by formalising

them as variables (previously, these variables have been termed “evidential modulator” vari-

ables). The following dimensions of appraisal have been suggested within the E-Synthesis
framework: sample size, duration of the study, degree of sponsorship bias, degree of adjust-

ment for covariates and the degree of analogy between the study population and the studied

population. Randomised studies can also be appraised for how well blinding, randomization

and placebo control were implemented.
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E-Synthesis was originally intended for philosophical applications, however it has also

recently been developed for more practical matters. As yet, no suggestion has been made of

how to aggregate evidence appraisals and how to incorporate these appraisals for decision

making. We next show how this can be done for a specific indicator of causation applying EA3.

Denoting by © the causal hypothesis of a drug D causing a specific adverse drug reaction

(ADR) and by Ind an indicator variable, we have for the posterior probability of © for RWE,

QðOc jEÞ,

QðOc jEÞ ¼
QðOc ^ EÞ
QðEÞ

¼
QðOc ^ Ind ^ EÞ þ QðOc ^ Ind ^ EÞ

QðOc ^ Ind ^ EÞ þ QðOc ^ Ind ^ EÞ þ Qð �Oc ^ Ind ^ EÞ þ Qð �Oc ^ Ind ^ EÞ

¼ 1þ
Qð �Oc ^ Ind ^ EÞ þ Qð �Oc ^ Ind ^ EÞ
QðOc ^ Ind ^ EÞ þ QðOc ^ Ind ^ EÞ

" #� 1

¼ 1þ
Qð �Oc Þ � QðIndj �Oc Þ � QðEjIndÞ þ Qð �Oc Þ � QðIndj �Oc Þ � QðEjIndÞ
QðOc Þ � QðIndjOc Þ � QðEjIndÞ þ QðOc Þ � QðIndjOc Þ � QðEjIndÞ

" #� 1

¼ 1þ
Pð �Oc Þ � PðIndj�Oc Þ � QðEjIndÞ þ Pð �Oc Þ � PðIndj �Oc Þ � QðEjIndÞ
PðOc Þ � PðIndjOc Þ � QðEjIndÞ þ PðOc Þ � PðIndjOc Þ � QðEjIndÞ

" #� 1

:

This calculation uses the fact that the causal indicator variable mediates the inference from

data to the causal hypothesis © in the technical sense that conditionalisation on it renders the

data and © independent.

Motivating example—coda

We now return to the motivating example of determining a probability of the causal hypothe-

sis (©) that paracetamol use causes asthma in children. In the E-Synthesis approach, the Beasley

et al. (2011) [77] study is informative about the “rate of growth” indicator, so Ind = RoG. The

posterior probability of © (given only this study) is thus computed as:

QðOc jE1Þ ¼ 1þ
Pð �Oc Þ � PðRoGj �Oc Þ � QðE1jRoGÞ þ Pð �Oc Þ � Pð �RoGj �Oc Þ � QðE1j

�RoGÞ
PðOc Þ � PðRoGjOc Þ � QðE1jRoGÞ þ PðOc Þ � Pð �RoGjOc Þ � QðE1j

�RoGÞ

� �� 1

:

Using Eq (3) and the suggested conditional probabilities of P(RoG|�)

(PðRoGjOc Þ ¼ 26 2

7
% � 26:3% > PðRoGj �Oc Þ ¼ 3

7
% � 0:4% [78, p. 3]) this becomes

QðOc jE1Þ ¼

1þ

Pð �Oc Þ �
3

7
% � ðvf � PðE1jRoGÞ þ ð1 � vf ÞPðE1ÞÞ þ 99

4

7
% � ðvf � PðE1j

�RoGÞ þ ð1 � vf ÞPðE1ÞÞ

� �

PðOc Þ � 26
2

7
% � ðvf � PðE1jRoGÞ þ ð1 � vf ÞPðE1ÞÞ þ 73

5

7
% � ðvf � PðE1j

�RoGÞ þ ð1 � vf ÞPðE1ÞÞ

� �

2

6
6
4

3

7
7
5

� 1

:
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[78, p. 11] gives PðE1jRoGÞ ¼ 0:825 and PðE1j
�RoGÞ ¼ 0 and so

QðOc jE1Þ ¼ 1þ

Pð �Oc Þ �
3

7
% � ðvf � 0:825þ ð1 � vf ÞPðE1ÞÞ þ 99

4

7
% � ð1 � vf ÞPðE1Þ

� �

PðOc Þ � 26
2

7
% � ðvf � 0:825þ ð1 � vf ÞPðE1ÞÞ þ 73

5

7
% � ð1 � vf ÞPðE1Þ

� �

2

6
6
4

3

7
7
5

� 1

¼ 1þ
Pð �Oc Þ
PðOc Þ

�

3

7
% � vf � 0:825þ ð1 � vf ÞPðE1Þ

26
2

7
% � vf � 0:825þ ð1 � vf ÞPðE1Þ

2

6
4

3

7
5

� 1

:

The posterior probability of © given by De Pretis et al. (2019) [78] is instead:

PðOc jE1Þ ¼ 1þ
Pð �Oc Þ
PðOc Þ

�
PðRoGj�Oc Þ
PðRoGjOc Þ

� �� 1

¼ 1þ
PðRoG ^ �Oc Þ
PðRoG ^Oc Þ

� �� 1

¼
PðRoG ^Oc Þ

PðRoG ^Oc Þ þ PðRoG ^ �Oc Þ
¼ PðOc jRoGÞ :

We note that in the model of De Pretis et al. (2019) [78] this single study is conclusive evidence
that RoG holds, i.e. there does exist a strongly increasing dose-response relationship between

paracetamol use in children and severe onset of asthma. This probability is

PðOc jE1Þ ¼ PðOc jRoGÞ ¼ 1þ
Pð �Oc Þ
PðOc Þ

�
3

7
%

26 2

7
%

� �� 1

¼ 1þ
Pð �Oc Þ
PðOc Þ

�
3

184

� �� 1

:

See Figs 4 and 5 for comparisons of PðOc jE1Þ [78] and QðOc jE1Þ (EA3).

Discussion

In this article, we presented an algorithm to support the assessment of the inferential strength

of RWE in order to make sound decisions. We proceeded by considering different dimensions

of appraisal and then moved on to aggregate multiple appraisals according to the different

dimensions into an aggregate. Subsequently, we showed how such an aggregate can be used

within a Bayesian decision making framework. Our formal approach carries forward evidence

appraisals, incorporates them into an overall appraisal of the evidence and integrates it into

decision making [35]. It also enables sensitivity analyses of these appraisals via variation of

appraisals, variations of ~A, as well as sensitivity analyses of the ranking, variations of~R, and the

cautiousness parameter β. Furthermore, our approach is transparent, reproducible and scien-

tifically defensible, thus satisfying the desiderata suggested by the US Environmental Protec-

tion Agency [35, p. 79].

While our formal aggregation approach is motivated by the need to appraise RWE for med-

ical inference, the developed algorithm is, in principle, applicable to other aggregation prob-

lems, too. Whether it is suitable to a particular problem depends on particular circumstances.

Our approach is limited by the assumptions we made, e.g. we assumed that the dimensions

of appraisal are independent of each other and that rankings and appraisals can be represented

numerically. If at least one of our assumptions fails to hold in an application, then the theoreti-

cal considerations made here might not apply. These limitations may be overcome by applica-

tions of multi-criteria decision making methodology [98].

In future work, we aim to determine empirically supported dimensions for evidence

appraisal, calibrate ranking schemes and determine (normatively and/or descriptively) appro-

priate values of the β-parameter in order to assess the validity and reliability of EA3 based on
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actual data [35]. The β-parameter which represents cautiousness reflects risk attitudes which

can differ from user to user and from application to application.

Furthermore, EA3 reflects the position of a single agent (or of a unanimous committee). In

reality, drug approval or withdrawal decisions are a group effort involving experts from differ-

ent areas (toxicologists, pharmacists, clinicians, statisticians as well as patient representatives

[99]), which have different risk attitudes (different β), different appraisals (different ~A) and dif-

ferent rankings (different~R). We thus plan to integrate EA3 into a multi-agent framework

which represents different (risk) attitudes, preferences and areas of expertise of stakeholders in

drug (un-)safety assessments.

We expect the assessment and use of RWE for medical inference to continue to grow in

coming years, drawing on scientific fields in which there are, by the very nature of the investi-

gation, (next to) no randomised studies. For example, in macroeconomics we cannot simply

randomly assign countries into different trial arms to learn about the disputed causal relation-

ships between minimum wages and employment [100] and in nutrition science it is not possi-

ble to randomise people into drinkers of red wine and non drinkers for a trial lasting several

years to learn about the hypothesised causal influences of red wine on health and well-being

[101]. Similarly, in pharmacovigilance ADRs may take too long to manifest (years of treatment

with olanzapine cause tardive dyskinesia [102]) or be too rare yet fatal (in some cases, 1 fatality

in every 10,000 patients [103]) to be detected by RCTs. We think that the use of RWE for phar-

macovigilance and medical inference more widely is an area holding great promise despite

Fig 4. Posterior probability of the causal hypothesis ©, considering Beasley et al. (2011) [77] as evidence E1, and

computed in agreement with De Pretis et al. (2019) [78] (solid line) and EA3 (dash-dot, dotted and dashed lines).

For EA3, different lines represent different priors PðE1Þ, whereas the prior P(©) is always set to 1%. All curves agree for

νf = 1 where De Pretis et al. (2019) [78] becomes a special case of EA3.

https://doi.org/10.1371/journal.pone.0253057.g004
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justified worries about biases and confounding. The development and application of RWE

appraisal methods hence seems to become even more important in the future.
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