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1 Introduction into KUM and MOAS – two connected projects 

1.1 Background and motivation 

High drop-out rates, in particular in early phases of university mathematics programs, indicate 

that the transition from school to university poses challenges for beginning undergraduate 

mathematics students (Dieter, 2012; Heublein & Schmelzer, 2018). These high dropout rates 

are considered as a serious problem for individual students and for society more generally 

(Rasmussen & Ellis, 2013). The challenges causing these problems have been described 

internationally for more than a decade (e.g., Clark & Lovric, 2009; Gueudet, 2008; Tall, 2008; 

Ulriksen, Møller Madsen & Holmegaard, 2010). In this regard, a row of studies has indicated 

that the mathematical knowledge students bring from their school education is an important 

foundation for students’ learning processes in their first semesters of university mathematics 

studies (Hailikari et al. 2008; Kosiol, Rach & Ufer, 2019; Rach & Heinze, 2017; Rach & Ufer, 

2020; Ufer, 2015). 

This line of research, focusing on the transition to university mathematics, has repeatedly 

shown that the prior knowledge about mathematics that students possess when entering a 

university mathematics program explains individual differences in students’ success during 

the transition to university mathematics. Knowledge in this sense comprises individual 

representations of mathematical concepts and procedures. These mathematical concepts and 

procedures are defined in, described by, and used in mathematical practice in our society. The 

corresponding individual representations may be more or less in line with a social consensus 

of what forms “normatively correct” mathematical knowledge, and thus will lead individuals 

to provide more or less normatively correct solutions to problems that have to be solved with 

mathematical means (for this understanding of knowledge see also Greene, Sandoval & 

Bråten, 2016, p. 4). 

However, even though research indicates that prior knowledge is a relevant factor when 

supporting or counselling future undergraduate mathematics students, further questions 

arise as to which knowledge is actually relevant for a successful transition: 

Firstly, one might ask whether distinguishing different facets of mathematical knowledge is 

necessary to understand the relevance of knowledge for a successful transition. 

Corresponding approaches might structure different measures of prior knowledge based on 

models discerning different aspects of prior knowledge. For example, different dimensions for 

different knowledge types such as conceptual, procedural, and strategic knowledge might be 

differentiated (see Hailikari et al., 2007). However, prior research on the connection between 

conceptual and procedural knowledge point to a close entanglement of the two dimensions, 

making it hard to separate them empirically (Rittle-Johnson et al., 2015; Schneider, 2006). A 

more promising model might be to consider dimensions according to the mathematical 

content the knowledge refers to, for example knowledge of calculus and analysis (Rach & Ufer, 

2020), knowledge of linear algebra (Dorier, J.-L. & Sierpinska, A. 2002; Stewart, 2017), or 

logical structures (e.g., Durand-Gurrier et al., 2012). 

Secondly, based on the identification of (multiple) such knowledge facets, the question arises, 

which level along a coherent dimension of such a prior knowledge facet actually makes a 

difference between students coping with the transition to university mathematics successfully 
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and those who do not. For example, Rach & Ufer (2020) have proposed four levels of prior 

knowledge for undergraduate analysis lectures based on IRT modelling of data from about 

1500 future undergraduate mathematics students and identified a level of well-connected 

school-related knowledge as a soft threshold that differentiates between students who pass 

the analysis I exam and those who do not. 

Thirdly, prior knowledge required during early undergraduate mathematics may be 

conceptualized from two perspectives: From a top-down perspective, the contents of 

undergraduate mathematics lectures, in particular mathematical concepts, principles, and 

procedures that are regarded as essential to comprehend and make sense of the contents 

introduced in these lectures, can be identified. Under the term top-down prior knowledge, we 

subsume “knowledge about mathematical concepts, that are being used, extended, or 

reconceptualized during university mathematics studies, and which has been acquired until 

end of secondary school. Based on cognitivist and constructivist perspectives on learning, 

learners reconstruct new information encountered in education individually, using their 

existing knowledge about concepts which are related to the new information. Thus, to study 

mathematics at university, learners most likely need appropriate prior knowledge to benefit 

from academic learning opportunities” (Rach & Ufer, 2020, p. 376). Corresponding 

measurement instruments of prior knowledge would embed these contents into items that 

are similar to situations in university lectures that require the use of this knowledge. From a 

bottom-up perspective, the contents of the secondary school curriculum may be surveyed for 

knowledge that arises in undergraduate mathematics and appears essential to cope with 

undergraduate mathematics. Corresponding measurement instruments of this bottom-up 

prior knowledge would embed these contents into items, which are typical for school context. 

 

1.2 KUM and MOAS as related projects 

The projects KUM and MOAS aim to contribute to our understanding of the role of prior 

knowledge in the transition to university mathematics and investigate a mechanism to 

support future undergraduate mathematics students by providing feedback based on a 

Mathematical Online Assessment System (MOAS). It is based on the Knowledge for 

Undergraduate Mathematics (KUM) project that aims at characterizing the relevant 

knowledge for a successful transition to undergraduate mathematics studies, proposing 

corresponding theoretical models and developing appropriate test instruments. The MOAS 

project implements and investigates an online assessment system based on the KUM 

measures and measures from other projects (e.g., SiSMa, Kosiol, Rach & Ufer, 2019; SEPP, 

Ufer, 2015). 

Analysis
Algebraic 
Geometry

Linear Algebra Calculus

Top-down
Prior Knowledge

Bottom-up
Prior Knowledge

Mathematics Knowledge Logic

Logic
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1.3 The KUM project 

The KUM project initially focused on undergraduate analysis courses and strongly built on 

existing works on the role of knowledge of calculus concepts for learning in undergraduate 

analysis lectures (Hailikari et al., 2008; Rach & Heinze, 2017). In particular, the tests used in 

these publications and the four-level model derived by Rach & Ufer (2020) were adapted to a 

test KUM-A (Analysis) that addresses relevant prior knowledge for analysis lectures on the 

four levels. However, based on these efforts and achievements, the KUM project now focuses 

on the transition to university mathematics more broadly, also including mathematical topics 

other than analysis and also including knowledge regarding other aspects such as logic.  

The goals of the KUM project are: 

(1) Developing theoretical level models to describe potentially relevant top-down prior 

knowledge for linear algebra lectures (KUM-LA), relevant bottom-up prior knowledge 

of calculus (KUM-CA) and algebraic geometry (KUM-AG), as well as prior knowledge of 

logic (KUM-LO). 

(2) Developing reliable and valid instruments to measure these knowledge facets that 

can be used in an online testing environment. 

(3) Investigating the validity of the assumed theoretical models in terms of 

dimensionality of the five scales, as well as the proposed knowledge levels. 

(4) Investigating to which extent the proposed knowledge facets explain individual 

differences in learning outcomes in undergraduate mathematics programs beyond 

other measures, such as school grades, individual interest, and individual self-concept. 

At point of writing, a first final version of the theoretical models and test instruments have 

been developed. This report primarily presents results on the evaluation of the developed 

instruments. 

1.4 The MOAS project 

The MOAS project builds on KUM in the sense that the KUM instruments are embedded into 

a Mathematics Online Assessment System (MOAS). Based on feedback models (Hattie & 

Timperley, 2007) and results on the role of formative feedback in learning (Harks et al., 2014), 

the system not only measures participants’ knowledge regarding different facets, but also 

provides individual feedback based on the measured performance. In particular, the level 

models developed within KUM for each knowledge facet allow to provide criterion-oriented 

feedback, connecting students’ scores to their performance on specific items. 

The main goals of the MOAS project are: 

(1) Developing feedback messages for each level of each knowledge facet, which provide 

students with formative feedback on their current level as diagnosed by the 

assessment system, as well as directions for further learning. 

(2) Implementing the KUM scales and the provision of the feedback messages into an 

adaptive online assessment system that requires minimal testing by adaptively 

selecting tasks based on real-time predictions of students’ knowledge levels. 

(3) Investigating students’ expectations towards the system, as well as their processing 

of the feedback and their (intended) actions based on the feedback. 
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(4) Investigating the effects and possible added value of criterion-oriented and social-

comparative feedback. 

At the time of writing, the feedback messages have been developed, and the implementation 

of the knowledge scales in an adaptive testing system is finalized. A first study on questions 

(1) to (4) has been conducted. 

1.5 KUM and MOAS studies up to now 

(1) KUM pilot studies 

In spring 2018, N = 26 secondary school students in their final year as well as university 

students in their first two years from LMU Munich participated in a study to pilot the bottom-

up prior knowledge scales KUM-CA and KUM-AG. The main goal of the study was to investigate 

the psychometric properties of the items and revise the items and scales for the later inclusion 

in MOAS. For validating items of the scale KUM-LA, two Bachelor students conducted an 

interview study with 34 secondary school students in February 2020. The participants were 

asked to work on eight of the multiple-choice items and explain their answers. The results 

indicate that the items are valid in the sense that the students’ reported reasons for choosing 

an attractor or a distractor fitted to the chosen distractor and our assumptions made during 

item design. 

(2) KUM Scaling study 

In autumn 2018, a total of N = 182 future undergraduate mathematics students from 

LMU Munich participated in the KUM scaling study during a preparatory course for university 

mathematics before starting the first semester. 

 The participants of the course completed the five knowledge scales in three sessions spread 

over three days to reduce fatigue effects. For each scale, two item booklets, which differed by 

reverse item sequences, were used. The data was used to validate the level models for the 

five scales, to calculate item parameters, and to derive cut-off values on the corresponding 

IRT scales for the level boundaries. 

(3) MOAS study I 

In autumn 2020, future undergraduate mathematics students from LMU Munich, University 

of Regensburg, and Otto-von-Guericke-University Magdeburg (N = 188) participated in a first 

study on the MOAS system. 

The study consisted of the following six phases: 

 

1. Introduction to the MOAS system and the goals of the study (excluding the comparison 

of the two feedback forms), consent to participation in the study. 

2. Providing relevant background data, and reporting expectations on the feedback 

provided by the MOAS system (questionnaires). 

Introduction Background Data
Criterion-oriented / 
social-comparative 

Feedback

Social-comparative
/criterion-oriented 

Feedback
Debriefing

Scales for 
Knowledge

&
Logic
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3. Working on each of the five knowledge scales in the adaptive online assessment 

system, for a maximum of 10 minutes per instrument. 

4. Receiving either the criterion-oriented or the social-comparative feedback (random 

assignment) and answering questions on the individual processing of the feedback and 

their (intended) actions based on the feedback. 

5. Receiving the other feedback type and answering the same questions with a focus on 

this feedback, again. 

6. Debriefing on the goals of the study. 
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2 Introduction to the presentation of the scales 

For each scale, a short overview about the scale is given, followed by a more detailed 

description (similar structure to Carstensen et al., 2020). 

Name of the variable: Name of the scale and stem of the single 

item names in the dataset 

Measurement point: When we used the scale 

Prompt in the tool (or booklet or 

questionnaire or test): 

Prompt for the participants 

Scaling: Description of the response format in the 

tool 

Reversed Items: Items that were reversed before computing 

the scale 

Source: Author and year of the publication of the 

scale respectively items. 

“KUM – own development” means that the 

scale was developed by members of the 

project 

Notes: Important information concerning special 

features of the items, the scale, or the 

analysis of data 

 

2.1 Presentation of characteristic values 

For measuring control variables, we mainly used published questionnaires and adopted them 

for this project. The presented scale values are the results of calculating the mean values of 

the single items. For the calculation of the mean values, we only included those participants 

that had dealt with more than half of the items. The descriptive statistics of the items (mean 

values, standard deviations, corrected item-total-correlations) are presented for the reversed 

items. Moreover, there is information concerning the reliability (Cronbachs α) and the 

descriptive statistics of the scales. 

2.2 Data cleansing 

In the main study, Ninv = 441 students were invited to participate. Repeated participation of 

students was prevented by using individual codes that were required to participate in MOAS 

and that were distributed to the students prior to the studies. The students were informed 

about the study and data protection and data use regulations. They could only participate in 

the study after explicit consent. There were Nraw = 244 cases in the raw data set. All of them 

completed the background questionnaires and started at least one knowledge test item. 

N = 229 completed all five knowledge tests. N = 215 viewed the first feedback and completed 

the questionnaire on this feedback. N = 188 viewed the second feedback and completed the 

questionnaire on this feedback. All further analyses are based on this sample of N = 188 

complete datasets. 125 of these students were enrolled at the LMU Munich, 47 at the 

University of Regensburg, and 16 at the OvGU Magdeburg. 
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2.3 Naming of the items and values 

Abbreviations for scales and items 

R Reversed (needs to be reversed for the calculation of the overall 

scale) 

Abbreviations of statistical parameters 

M Mean values, rounded to two decimal places  

SD Standard deviations, rounded to two decimal places 

N Number of participants who worked on the item 

rit-i Corrected item-total-correlations, rounded to two decimal places 

α or WLE Cronbachs α or WLE of the scale, rounded to two decimal places 

 

All items were implemented in German and translated in English for this manual. For research 

projects, the items of the questionnaires can be made available upon request.  
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3 Sociodemographic data 

3.1 Gender 

Name of the variable: demo_gender 

Prompt in the tool Which gender do you assign yourself to?  

Scaling: Multiple choice 

Reversed Items: 0 

Source: “KUM – own development” 

Notes: none 

 

Answers N 

female 94 

male 93 

divers 1 

 

3.2 School qualification grade 

Name of the variable: demo_abitur 

Prompt in the tool Overall qualification grade (1.0-4.0) 

Scaling: open 

Reversed Items: 0 

Source: “KUM – own development” 

Notes: In German upper secondary school, grades 

for individual tests or oral grades are given 

on a scale from 0 (worst) to 15 (best). These 

grades are aggregated and rescaled to 

grades from 1.0 (best) to 4.0 (worst) when 

calculating overall grades. 

 

Answers N 

1.0 18 

1.1 12 

1.2 11 

1.3 8 

1.4 15 

1.5 11 

1.6 8 

1.7 9 

1.8 7 

1.9 17 

2.0 14 

2.1 6 

2.2 7 

2.3 8 

2.4 5 

2.5 5 

2.6 5 
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2.7 3 

2.8 5 

2.9 5 

3.0 3 

3.1 2 

3.2 2 

3.3 0 

3.4 2 

3.5 0 

3.6 0 

3.7 0 

3.8 0 

3.9 0 

4.0 0 

 

3.3 Grade in the last written exam in mathematics 

Name of the variable: demo_Mschriftlich 

Prompt in the tool Last written grade in mathematics  

(0-15 points) 

Scaling: open 

Reversed Items: 0 

Source: “KUM – own development” 

Notes: In German upper secondary school, grades 

for individual tests or oral grades are given 

on a scale from 0 (worst) to 15 (best).  

 

Answers N 

0 0 

1 1 

2 2 

3 2 

4 1 

5 4 

6 4 

7 2 

8 6 

9 12 

10 18 

11 12 

12 18 

13 26 

14 32 

15 43 

 

  



15 

 

3.4 Last oral grade in mathematics 

Name of the variable: demo_Mmuendlich 

Prompt in the tool Last oral grade in mathematics (0-15 points) 

Scaling: open 

Reversed Items: 0 

Source: “KUM – own development” 

Notes: In German upper secondary school, grades 

for individual tests or oral grades are given 

on a scale from 0 (worst) to 15 (best).  

 

Answers N 

0 4 

1 2 

2 2 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 5 

10 7 

11 10 

12 14 

13 26 

14 38 

15 65 
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3.5 Last grade in mathematics 

Name of the variable: demo_Mzeugnis 

Prompt in the tool Last grade in mathematics (0-15 points) 

Scaling: open 

Reversed Items: 0 

Source: “KUM – own development” 

Notes: In German upper secondary school, grades 

for individual tests or oral grades are given 

on a scale from 0 (worst) to 15 (best). 

 

Answers N 

0 1 

1 1 

2 3 

3 0 

4 1 

5 1 

6 1 

7 3 

8 8 

9 7 

10 10 

11 20 

12 20 

13 26 

14 47 

15 35 

 

3.6 Study program 

Name of the variable: demo_study 

Prompt in the tool What degree program are you enrolled in? 

Scaling: open 

Reversed Items: 0 

Source: “KUM – own development” 

Notes: none 

 

Answers N 

Bachelor mathematics 60 

Bachelor business mathematics 33 

Teacher education program, primary level 4 

Teacher education program, lower secondary level  6 

Teacher education program, upper secondary level 60 

Teacher education program, vocational school 1 

Others (mainly STEM-related programs) 24 
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4 Motivational and personal characteristics 

4.1 Interest in mathematics 

4.1.1 General interest in mathematics 

Name of the variable: bg_ial 

Prompt in the tool Your attitudes concerning mathematics. 

Please rate the following statements on a 

scale from disagree to agree.  

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: Pekrun, Goetz, Titz, and Perry (2002) 

Notes: None 

 

 

 

Scale 

N M SD α 

188 2.29 0.45 .73 

 

Sample Item 

bg_ial1 Mathematics is fun to me.  

 

 

  

Name of the item M SD rit-i 

bg_ial1 2.77 0.48 .46 

bg_ial2 2.42 0.62 .65 

bg_ial3 2.45 0.65 .56 

bg_ial4 1.50 0.82 .30 

bg_ial5 2.28 0.63 .59 
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4.1.2 Interest in calculation tasks 

Name of the variable: bg_iakr 

Prompt in the tool see 4.1.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: SISMa – own development (see Ufer, Rach 

& Kosiol, 2017) 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.29 0.51 .74 

 

Sample Item 

bg_iakr2 I like to deal with complicated 

calculations. 

 

 

4.1.3 Interest in proving tasks 

Name of the variable: bg_iakb 

Prompt in the tool see 4.1.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: SISMa – own development (see Ufer et al., 

2017) 

Notes: none 

 

 

 

  

Name of the item M SD rit-i 

bg_iakr1 2.38 0.66 .47 

bg_iakr2 2.07 0.82 .51 

bg_iakr3 2.05 0.88 .49 

bg_iakr4 2.32 0.67 .74 

bg_iakr5 2.61 0.55 .33 

Name of the item M SD rit-i 

bg_iakb1 1.78 0.85 .65 

bg_iakb2  2.14 0.80 .73 

bg_iakb3 1.72 0.80 .60 

bg_iakb4 2.29 0.74 .66 
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Scale 

N M SD α 

188 1.98 0.65 .83 

 

Sample item 

bg_iakb3 Reading mathematical proofs is fun 

to me. 

 

 

4.2 Self-concept in mathematics 

4.2.1 General mathematical self-concept 

Name of the variable: bg_ska 

Prompt in the tool Your attitudes concerning mathematics. 

Please rank the following statements on a 

scale from disagree to agree. 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: Kauper, Retelsdorf, Bauer, Rösler, Möller, & 

Prenzel (2012) 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.09 0.57 .84 

 

Sample item 

bg_ska2 I am very good in mathematics.  

 

 

  

Name of the item M SD rit-i 

bg_ska1 2.12 0.65 .69 

bg_ska2 2.04 0.73 .75 

bg_ska3 2.16 0.74 .69 

bg_ska4 2.03 0.61 .60 
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4.2.2 Self-concept for calculating tasks 

Name of the variable: bg_skr 

Prompt in the tool see 4.2.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 1 

Source: SISMa – own development (see Rach, Kosiol 

& Ufer, 2019) 

Notes: none 

 

 

 

Scale 

N M SD α 

188 1.87 0.48 .76 

 

Sample item 

bg_skr1 (reversed) I often miscalculate when dealing 

with complicated terms or 

equations. 

 

 

4.2.3 Self-concept for proving tasks 

Name of the variable: bg_skb 

Prompt in the tool see 4.2.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 1 

Source: SISMa – own development (see Rach et al., 

2019) 

Notes: none 

 

 

  

Name of the item M SD rit-i 

bg_skr1 (reversed) 1.95 0.70 .55 

bg_skr2 1.74 0.68 .61 

bg_skr3 2.11 0.64 .42 

bg_skr4 1.89 0.71 .63 

bg_skr5 1.66 0.66 .43 

Name of the item M SD rit-i 

bg_skb1 1.65 0.72 .57 

bg_skb2 (reversed) 1.77 0.77 .66 

bg_skb3 1.63 0.67 .74 

bg_skb4 1.43 0.64 .63 
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Scale 

N M SD α 

188 1.62 0.57 .82 

 

Sample item 

bg_skb3 It is easy for me to understand 

mathematical proofs. 

 

 

4.3 Study motives 

4.3.1 Study motives: Perspective motives 

Name of the variable: bg_swm_e 

Prompt in the tool Your study choice. Please rank the following 

statements on a scale from disagree to 

agree.  

I chose to study mathematics because … 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: Ufer (2015) 

Notes: none 

 

 

 

Scale 

N M SD α 

188 1.22 0.83 .82 

 

Sample Item 

bg_swm_e2 … I will earn a lot of money as a 

mathematician. 

 

 

  

Name of the item M SD rit-i 

bg_swm_e1 1.01 0.94 .60 

bg_swm_e2 1.12 0.99 .77 

bg_swm_e3 1.53 0.99 .63 
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4.3.2 Study motives: Application/job motives 

Name of the variable: bg_swm_a 

Prompt in the tool I chose to study mathematics because … 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: Ufer (2015) 

Notes: none 

 

 

 

Scale 

N M SD α 

188 1.95 0.69 .62 

Notes: After 2020, we replace the item bg_swm_a1, which doesn’t fit to the other two items 

of the scale, by the item: “… I will learn many things which will be important in my future job.” 

 

Sample item 

bg_swm_a3 … I will be well prepared for my 

future job. 

 

 

4.3.3 Study motives: Intrinsic motives 

Name of the variable: bg_swm_i 

Prompt in the tool I chose to study mathematics because … 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: Ufer (2015) 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.38 0.50 .64 

Name of the item M SD rit-i 

bg_swm_a1 2.20 0.79 .18 

bg_swm_a2 1.55 1.03 .58 

bg_swm_a3 2.09 0.93 .58 

Name of the item M SD rit-i 

bg_swm_i1 2.13 0.66 .33 

bg_swm_i2 2.51 0.63 .55 

bg_swm_i3 2.49 0.67 .49 
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Sample item 

bg_swm_i2 … I like to deal with questions in 

mathematics. 

 

 

4.3.4 Study motives: Scientific motives 

Name of the variable: bg_swm_w 

Prompt in the tool I chose to study mathematics because … 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: Ufer (2015) 

Notes: none 

 

 

 

Scale 

N M SD α 

188 1.99 0.72 .71 

 

Sample item 

bg_swm_w2 … I want to learn about current 

research in mathematics. 

 

 

4.4 Conscientiousness 

Name of the variable: bg_gewi 

Prompt in the tool How do you work? Please rank the 

following statements on a scale from 

disagree to agree. 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 1 

Source: Dehne & Schupp (2007).  

Notes: none 

 

  

Name of the item M SD rit-i 

bg_swm_w1 1.99 0.92 .62 

bg_swm_w2 1.78 0.95 .68 

bg_swm_w3 2.19 0.85 .33 
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Scale 

N M SD α 

188 2.16 0.52 .54 

 

Sample item 

bg_gewi1 I am someone who works 

thoroughly. 

 

  

Name of the item M SD rit-i 

bg_gewi1 2.41 0.67 .47 

bg_gewi2 (reversed) 1.84 0.88 .41 

bg_gewi3 2.24 0.60 .22 
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5 Feedback 

After assessing multiple knowledge facets, MOAS provides students with individual feedback 

for each of these knowledge facets based on their scores. In particular, students receive 

criterial and social feedback. To evaluate the effectiveness of either type of feedback and 

improve feedback in future versions of MOAS, students were asked to rate the quality of either 

type of feedback regarding several aspects. In this manual, we first give a review of prior 

research that the feedback within MOAS as well as the scales to evaluate the feedback were 

based upon. Afterwards, we report on the quality of these scales separately for every type of 

feedback (criterial and social). 

5.1 Review of prior research 

Feedback describes instructional interventions that provide learners with information and an 

assessment of their current or prior performance, often meant to stimulate future learning 

processes that reduce the gap between current and expected performance (Hattie & 

Timperley, 2007). To describe feedback content and feedback processing in the MOAS project, 

we build on the following models. 

5.1.1 Feedback content in the MOAS project 

Hattie and Timperley (2007) describe the content of feedback messages. In particular, they 

point out that feedback should provide answers to three major questions:  

(1) Where am I going? 

This refers to information about goals, that is the results of learning expected in the 

respective learning setting. 

(2) How am I going? 

This refers to information about students’ current performance and progress towards 

these goals. 

(3) Where to next? 

This refers to information about activities that need to be undertaken to make further 

progress towards these goals. 

Beyond this, Hattie and Timperley (2007) distinguish between feedback on different levels 

that relate to the goals resp. expected learning results: 

a. Task level 

Information about how well tasks are performed or understood. 

b. Process level 

Information about the main processes required to perform or understand the task. 

c. Self-regulation level 

Information that addresses self-monitoring and self-regulation of the learners’ 

learning actions. 

d. Self level 

Information that contains general evaluations of the learner or affective messages 

towards the learner. 

In their review of feedback studies, Hattie and Timperley (2007) mention that feedback on the 

self level has little effect on learning outcomes. Feedback on the task level is considered most 
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promising for simple tasks, for which the learners have sufficient knowledge to find a correct 

solution strategy by themselves. However, it is considered less effective for more complex 

tasks, unless it directs learners’ attention towards the solution process. Feedback on the task 

level has little transfer effects. Feedback on the process level may, for example, trigger 

learners to search for errors, to activate conceptual knowledge about the task, and to initiate 

a restructuring of conceptual knowledge. Feedback on the self-regulation level is also 

considered effective if the task has substantial self-regulatory demands and if the feedback 

directs the learners towards sustained self-regulated work on the learning tasks. However, 

feedback on the self-regulation level requires that learners have favorable attitudes towards 

the task and self-regulated learning techniques. 

In view of the Hattie and Timperley model, MOAS intends to provide feedback on each of the 

three feedback questions: (1) What is the level of knowledge that is considered sufficient to 

productively engage in a university mathematics program (e.g., Rach & Ufer, 2020)? (2) In 

relation to this level of knowledge, how can the current prior knowledge of the learner be 

described? (3) Which actions might be helpful to develop the learners’ prior knowledge 

towards the next higher knowledge level? The main type of feedback in MOAS is criterial 

feedback (resp. “sachliche Normen”) that compares individual performance to a reference 

performance (Hattie and Wollenschläger, 2014; Kopp and Mandl, 2014). For each prior 

knowledge facet, the criterial feedback in MOAS first provides a process-level feedback of the 

students’ skills. This information is based on the knowledge level for the respective facet, to 

which the student has been assigned based on her or his test performance. It primarily 

comprises information about the knowledge that seems to be rightly available and the kinds 

of tasks the student can already solve (question 2). Moreover, the student receives 

information about problems and knowledge facets that go beyond her or his current 

knowledge level (questions 1 and 2). This information is based on the knowledge level above 

the one the student was assigned to. Additionally, the feedback contains an evaluation of the 

student’s current knowledge level in relation to the level that is considered necessary for a 

successful entry into a mathematics program (based on Rach & Ufer, 2020 for top-down prior 

knowledge of analysis, and parallel considerations for the other facets, question 1). Finally, 

question 3 is addressed by providing hints for further study, and two exemplary tasks that 

might be worth studying. In line with typical implementations of social feedback, this feedback 

type primarily provided information on students’ achievement in relation to a comparison 

group (question 2).  

Hattie and Wollenschläger (2014) as well as Kopp and Mandl (2014) point out that feedback 

content may also draw on other norms to assess learners’ current performance. Beyond 

criterial feedback, comparing individual performance to a reference performance (see above), 

they differentiate a social norm that compares individual performance to the distribution of 

performance in a group of learners, and an individual norm that compares the current 

individual performance with prior individual performance. In MOAS, we investigated a social 

norm feedback besides the criterial norm feedback to find out which norm is more useful for 

students. The social feedback in MOAS reports students’ individual knowledge level for each 

facet as a grade on an equivalent scale to German school grades (from 1=”very good” to 

5=”inadequate”; the worst level 6=”insufficient” was not used in this feedback) and presents 



27 

 

a table with the frequency of each grade that would be expected for a typical classroom with 

30 students. The frequency table data was based on the MOAS pilot studies. 

In the MOAS main study, all participants received feedback with a social norm as well as 

feedback with a criterial norm separately and one after the other. The sequence of the two 

types (first criterial then social or vice versa) was randomized. 

5.1.2 Determinants of feedback processing in the MOAS project 

Even though feedback research has strongly focused on how feedback is delivered and what 

it should contain, the call to consider how learners actually process feedback has increased 

over the last years (Strijbos & Müller, 2014; Narciss, 2013). In particular, Narciss’s (2013) 

model for interactive tutoring feedback proposes to differentiate between an internal 

feedback loop and external feedback. As part of the internal feedback loop, the learner 

evaluates her or his perceived performance (individual feedback) against her or his individual 

goals. This process may be influenced by external feedback if it stimulates the comparison of 

the external feedback with either the perceived performance or the individual goals. 

Furthermore, it is plausible that feedback may also trigger comparisons between individual 

goals and goals communicated in the feedback message (Where am I going?). 

In particular, feedback is intended to lead to self-evaluations of the learner based on the 

feedback message that in turn should trigger further learning processes (e.g., Narciss, 2013). 

Depending on which norm (social, criterial, individual) is used to assess students’ performance 

in the feedback message, different internal comparisons may be triggered. In the context of 

self-concept development, the internal/external frame of reference model (e.g., Marsh et al., 

2015) differentiates social comparisons (corresponding to a social norm), criterial comparisons 

(corresponding to a criterial norm), temporal comparisons (corresponding to an individual 

norm), and dimensional comparisons. Dimensional comparisons also correspond to 

comparisons within individual learners and thus a kind of individual norm but refer to 

comparisons between performance in different fields or tasks (and not regarding prior 

individual performance). For example, a learner might perceive his or her performance in 

science as higher than his or her performance in languages, and consequently arrive at a 

positive self-evaluation in terms of science performance. 

Such comparison processes as well as the further actions taken based on the feedback 

processing may be influenced not only by characteristics of the feedback message and its 

presentation but also by a number of personal characteristics. Strijbos and Müller (2014) 

highlight attributional processes, in which learners explain potential differences between 

individual performance and individual or external goals. The authors point out that these 

attributional processes are closely connected to learners’ self-efficacy expectations regarding 

the task resp. their individual self-concept, which both are strongly connected to their past 

performance. Summarizing, they argue that learners with high self-efficacy perceive negative 

feedback as less threatening and are likely to increase their efforts to reach the goal. Learners 

with low self-efficacy, in contrast, tend to attribute negative feedback to internal and stable 

factors, which may decrease efforts towards the intended goal – in particular if the goal 

appears to be out of reach for the learner. Finally, focusing on the current knowledge about 

the relation of person characteristics and the use of feedback, the authors conclude that, for 
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example, higher agreeableness may decrease the relation between emotions and the 

individual processing of feedback, while higher conscientiousness is generally assumed to 

have a positive impact on feedback processing. Based on these prior works, the MOAS project 

investigates plausible predictors of feedback processing, including individual performance, 

self-concept and interest, and conscientiousness. 

A possible factor influencing the processing of the feedback message (including comparison, 

generation, and selection of control actions; Narciss, 2013) is the perception of the feedback, 

in particular its perceived usefulness (e.g., Harks et al., 2014a). Harks et al. (2014b) find that 

criterial feedback was perceived as more useful than social feedback (called process-oriented 

resp. grade-oriented feedback in Harks’ works), and the usefulness totally mediated the 

relation between feedback type and achievement resp. interest. The effect of perceived 

usefulness on intrinsic learning motivation was stronger for learners with higher interest and 

weaker for learners with higher self-concept (Harks et al., 2014b). Considering the 

comparisons assumed in Narciss’s (2013) model, it seems plausible that the fit between 

individually perceived performance and external assessment of the performance might 

increase feedback acceptance and processing. 

A more direct measure of feedback processing might be the extent to which students actually 

report to be /are able to excerpt and draw on information that is included (resp. that is not 

included) in the feedback message, such as information on the relevant learning or 

performance goals in the corresponding context (Where am I going?), on assessments of the 

own performance based on criterial, social, and dimensional norms (How am I going?), or on 

potential actions that might be taken based on the feedback (Where to next?). 

However, being able to take up the relevant information included in feedback does not 

guarantee that a learners’ future actions actually reflect that information and may thus still 

be a too distal measure for feedback. The actual effects of feedback (beyond the processing 

of the information therein and the subsequent comparison processes) might thus be 

measured best based on the degree to which concrete actions are planned based on the 

feedback, whether the feedback stimulates a reflection of individual plans, for example the 

choice of a study program, or if the feedback affects the stability of the decision for a concrete 

study program. That is, focusing on whether the learners actually plan to change their 

behavior based on the feedback may be the most proximal measure of feedback effectiveness. 

The MOAS draws on a set of instruments to measure students’ feedback perception and 

processing. These instruments mainly comprise self-developed questionnaire scales.  
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5.2 Students’ expectations 

At the very beginning of the system, the students state their expectations concerning the 

feedback using single items. 

Name of the variable: stu_exp 

Prompt in the tool What do you expect from MOAS? 

I expect to … 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Source: KUM – own development 

Notes: none 

 

 

 

 

 

Items 

exp_criterial1 … know which tasks I can already 

solve in each topic. 

exp_criterial2 … know what I still have to learn 

about every topic. 

exp_dimensional … be able to compare my 

performances between different 

topics. 

exp_social … know from the feedback, how 

well I am doing in each topic 

compared to the other students. 

 

5.3 Feedback perception 

5.3.1 Reception of feedback 

 

Name of the variable: stu_exp_c 

Prompt in the tool How do you experience the feedback? 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Source: KUM – own development 

Notes: none 

 

 

 

 

Name of the item M SD 

exp_criterial1 2.68 0.56 

exp_criterial2 2.71 0.57 

exp_dimensional 2.21 0.80 

exp_social 1.62 1.02 

Name of the item M SD 

fb_reze_read_c 2.63 0.61 

fb_reze_comp_c 2.52 0.61 
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Items 

fb_reze_read_c I carefully read the feedback. 

fb_reze_comp_c I understood the feedback. 

 

Name of the variable: stu_exp_s 

Prompt in the tool How do you experience the feedback? 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Source: KUM – own development 

Notes: none 

 

 

 

 

Items 

fb_reze_read_s I carefully read the feedback. 

fb_reze_comp_s I understood the feedback. 

 

 

5.3.2 Usefulness of feedback 

Name of the variable: feed_useful_c 

Prompt in the tool see 5.3.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 1 

Source: adapted from different sources, e.g. 

Rakoczy et al., 2019 

Notes: none 

 

 

 

 

 

 

Scale 

N M SD α 

188 2.28 0.61 .86 

 

  

Name of the item M SD 

fb_reze_read_s 2.54 0.69 

fb_reze_comp_s 2.62 0.57 

Name of the item M SD rit-i 

fb_qual_hful_c 2.37 0.71 .81 

fb_qual_help_c 2.22 0.79 .77 

fb_qual_nuse_c 

(reversed) 

2.38 0.83 .48 

fb_qual_usef_c  2.35 0.70 .80 

fb_qual_valu_c 2.09 0.78 .61 
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Sample item 

fb_qual_help_c The feedback is helpful. 

 

 

Name of the variable: feed_useful_s 

Prompt in the tool see 5.3.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 1 

Source: adapted from different sources, e.g. 

Rakoczy et al., 2019 

Notes: none 

 

 

 

 

 

 

Scale 

N M SD α 

188 2.13 0.65 .85 

 

Sample item 

fb_qual_help_s The feedback is helpful. 

 

 

5.3.3 Fit of feedback and perceived performance 

Name of the variable: feed_fit_c 

Prompt in the tool see 5.3.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

Name of the item M SD rit-i 

fb_qual_hful_s 2.26 0.76 .77 

fb_qual_help_s 2.10 0.81 .76 

fb_qual_nuse_s 

(reversed) 

2.18 0.96 .40 

fb_qual_usef_s 2.16 0.77 .75 

fb_qual_valu_s 1.97 0.80 .68 

Name of the item M SD rit-i 

fb_fit_know_c 1.72 0.83 .74 

fb_fit_perf_c 2.06 0.82 .47 

fb_fit_self_c 1.77 0.80 .57 

fb_fit_skil_c 1.68 0.80 .71 
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Scale 

N M SD α 

188 1.81 0.65 .81 

 

Sample item 

fb_fit_skil_c The feedback correctly reflects my 

mathematical skills. 

 

 

Name of the variable: feed_fit_s 

Prompt in the tool see 5.3.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

Scale 

N M SD α 

188 1.68 0.67 .83 

 

Sample item 

fb_fit_skil_s The feedback correctly reflects my 

mathematical skills. 

 

 

5.4 Information identified in the feedback 

5.4.1 Information on expected performance 

Name of the variable: feed_exp_c 

Prompt in the tool What do you take from the feedback? 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

Name of the item M SD rit-i 

fb_fit_know_s 1.55 0.83 .75 

fb_fit_perf_s 2.07 0.83 .53 

fb_fit_self_s 1.60 0.77 .60 

fb_fit_skil_s 1.48 0.84 .75 
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Scale 

N M SD α 

188 2.21 0.63 .90 

 

Sample item 

fb_goal_impsk_c The feedback shows which skills are 

important in a mathematics study 

program for me. 

 

 

Name of the variable: feed_exp_s 

Prompt in the tool What do you take from the feedback? 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

Scale 

N M SD α 

188 1.91 0.74 .93 

 

Sample item 

fb_goal_impsk_s The feedback shows which skills are 

important in a mathematics study 

program for me. 

  

Name of the item M SD rit-i 

fb_goal_expkn_c 2.28 0.75 .73 

fb_goal_expsk_c 2.25 0.79 .73 

fb_goal_impkn_c 2.13 0.80 .73 

fb_goal_impsk_c 2.21 0.75 .67 

fb_goal_reqkn_c 2.20 0.78 .79 

fb_goal_reqsk_c 2.21 0.76 .76 

Name of the item M SD rit-i 

fb_goal_expkn_s 2.10 0.83 .78 

fb_goal_expsk_s 2.06 0.84 .78 

fb_goal_impkn_s 1.88 0.84 .84 

fb_goal_impsk_s 1.74 0.92 .73 

fb_goal_reqkn_s 1.87 0.88 .83 

fb_goal_reqsk_s 1.81 0.87 .78 
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5.4.2 Criterial feedback information 

Name of the variable: feed_crit_c 

Prompt in the tool What do you take from the feedback? 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.27 0.59 .86 

 

Sample item 

fb_stat_crit4_c The feedback shows me which skills 

I should develop concerning the 

different topics. 

 

 

Name of the variable: feed_crit_s 

Prompt in the tool What do you take from the feedback? 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

  

Name of the item M SD rit-i 

fb_stat_crit1_c 2.32 0.74 .60 

fb_stat_crit2_c 2.11 0.78 .63 

fb_stat_crit3_c 2.18 0.72 .68 

fb_stat_crit4_c 2.43 0.68 .77 

fb_stat_crit5_c 2.30 0.76 .74 

Name of the item M SD rit-i 

fb_stat_crit1_s 1.77 1.04 .71 

fb_stat_crit2_s 1.63 1.02 .78 

fb_stat_crit3_s 1.76 0.95 .76 

fb_stat_crit4_s 1.86 0.95 .86 

fb_stat_crit5_s 1.69 1.04 .73 
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Scale 

N M SD α 

1881 1.74 0.85 .91 

 

Sample item 

fb_stat_crit4_s The feedback shows me which skills 

I should develop concerning the 

different topics. 

 

 

5.4.3 Social feedback information 

Name of the variable: feed_sozi_c 

Prompt in the tool see 5.4.2 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: adapted from different sources, e.g. Gibbs, 

2003 

Notes: none 

 

 

 

Scale 

N M SD α 

188 1.05 0.98 .97 

 

Sample item 

fb_stat_sozi1_c The feedback shows me how good I 

am compared to other participants 

of MOAS. 

 

  

Name of the item M SD rit-i 

fb_stat_sozi1_c 1.00 1.05 .91 

fb_stat_sozi2_c 1.06 1.06 .93 

fb_stat_sozi3_c 1.05 1.02 .93 

fb_stat_sozi4_c 1.07 1.00 .90 
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Name of the variable: feed_sozi_s 

Prompt in the tool see 5.4.2 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: adapted from different sources, e.g. Gibbs, 

2003 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.52 0.63 .91 

 

Sample item 

fb_stat_sozi1_c The feedback shows me how good I 

am compared to other participants 

of MOAS. 

 

 

5.4.4 Dimensional feedback information 

Name of the variable: feed_dime_c 

Prompt in the tool see 5.4.2 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.28 0.62 .89 

Name of the item M SD rit-i 

fb_stat_sozi1_s 2.57 0.69 .77 

fb_stat_sozi2_s 2.59 0.68 .84 

fb_stat_sozi3_s 2.53 0.72 .84 

fb_stat_sozi4_s 2.41 0.76 .73 

Name of the item M SD rit-i 

fb_stat_dime1_c 2.32 0.70 .70 

fb_stat_dime2_c 2.32 0.67 .81 

fb_stat_dime3_c 2.20 0.74 .78 

fb_stat_dime4_c 2.28 0.73 .76 
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Sample item 

fb_stat_dime3_c The feedback shows me concerning 

which topics I am stronger or 

weaker.  

 

 

Name of the variable: feed_dime_s 

Prompt in the tool see 5.4.2 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.25 0.61 .88 

 

Sample item 

fb_stat_dime3_s The feedback shows me the topics 

that I am stronger or weaker in. 

 

  

Name of the item M SD rit-i 

fb_stat_dime1_s 2.27 0.67 .69 

fb_stat_dime2_s 2.25 0.71 .76 

fb_stat_dime3_s 2.23 0.78 .73 

fb_stat_dime4_s 2.24 0.69 .80 
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5.5 Consequences of feedback perception 

 

5.5.1 Information on potential actions and consequences in the feedback 

Name of the variable: feed_con_info_c 

Prompt in the tool What does the feedback mean for your 

preparation concerning the study program? 

The statements refer to the current reading 

of the feedback as well as to the use of the 

feedback in near future. 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: adapted from Nieskens et al., 2011 

Notes: none 

 

 

 

 

Scale 

N M SD α 

188 2.15 0.64 .84 

 

Sample item 

fb_con_inf1_c Feedback gives me hints to prepare 

for a mathematics study program. 

 

 

Name of the variable: feed_con_info_s 

Prompt in the tool What does the feedback mean for your 

preparation concerning the study program? 

The statements refer to the current reading 

of the feedback as well as to the use of the 

feedback in the near future. 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: adapted from Nieskens et al., 2011 

Notes: none 

 

  

Name of the item M SD rit-i 

fb_con_inf1_c 2.13 0.81 .68 

fb_con_inf2_c 1.98 0.81 .67 

fb_con_inf3_c 2.14 0.80 .73 

fb_con_inf4_c 2.36 0.68 .65 
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Scale 

N M SD α 

188 1.62 0.84 .88 

 

Sample item 

fb_con_inf1_s Feedback gives me hints to prepare 

for a mathematics study program. 

 

 

5.5.2 Planned actions and consequences based on the feedback 

Name of the variable: feed_con_act_c 

Prompt in the tool see 5.5.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.18 0.77 .91 

 

Sample item 

fb_con_act1_c Because of the feedback, I will 

repeat again some of the content 

before the study program starts. 

 

  

Name of the item M SD rit-i 

fb_con_inf1_s 1.58 1.02 .77 

fb_con_inf2_s 1.49 0.98 .79 

fb_con_inf3_s 1.60 0.97 .73 

fb_con_inf4_s 1.81 0.96 .66 

Name of the item M SD rit-i 

fb_con_act1_c 2.23 0.83 .75 

fb_con_act2_c 2.14 0.87 .86 

fb_con_act3_c 2.22 0.89 .74 

fb_con_act4_c 2.14 0.87 .86 
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Name of the variable: feed_con_act_s 

Prompt in the tool see 5.5.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: KUM – own development 

Notes: none 

 

 

 

Scale 

N M SD α 

188 2.11 0.81 .90 

 

Sample item 

fb_con_act1_s Because of the feedback, I will 

repeat again some of the content 

before the study program starts. 

 

 

5.5.3 Reflection of study choice based on the feedback 

Name of the variable: feed_con_ref_c 

Prompt in the tool see 5.5.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: adapted from different sources, e.g. Köller 

et al., 2017 and Nieskens et al., 2011 

Notes: none 

 

 

 

Scale 

N M SD α 

188 0.79 0.82 .92 

Name of the item M SD rit-i 

fb_con_act1_s 2.15 0.95 .73 

fb_con_act2_s 2.03 0.93 .79 

fb_con_act3_s 2.18 0.88 .75 

fb_con_act4_s 2.06 0.90 .86 

Name of the item M SD rit-i 

fb_con_ref1_c 0.75 0.91 .84 

fb_con_ref2_c 0.69 0.89 .86 

fb_con_ref3_c 0.62 0.83 .86 

fb_con_ref4_c 1.09 1.02 .73 
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Sample item 

fb_con_ref1_c Because of the feedback, I will think 

about my study choice once more. 

 

 

Name of the variable: feed_con_ref_s 

Prompt in the tool see 5.5.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 0 

Source: adapted from different sources, e.g. Köller 

et al., 2017 and Nieskens et al., 2011 

Notes: none 

 

 

 

Scale 

N M SD α 

188 0.80 0.86 .93 

 

Sample item 

fb_con_ref1_s Because of the feedback, I will think 

about my study choice once more. 

 

 

5.5.4 Stability of study choice in view of feedback 

Name of the variable: feed_con_stab_c 

Prompt in the tool see 5.5.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 1 

Source: adapted from different sources, e.g. Köller 

et al., 2017 and Nieskens et al., 2011 

Notes: none 

 

  

Name of the item M SD rit-i 

fb_con_ref1_s 0.80 0.97 .84 

fb_con_ref2_s 0.70 0.90 .87 

fb_con_ref3_s 0.65 0.91 .86 

fb_con_ref4_s 1.05 1.00 .77 
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Scale 

N M SD r 

188 1.69 0.77 .41 

 

Sample item 

fb_con_stab1_c The feedback confirms my study choice for 

a program with a focus on mathematics. 

 

 

Name of the variable: feed_con_stab_s 

Prompt in the tool see 5.5.1 

Scaling: 0 = disagree, 1 = somewhat disagree, 

2 = somewhat agree, 3 = agree 

Reversed Items: 1 

Source: adapted from different sources, e.g. Köller 

et al., 2017 and Nieskens et al., 2011 

Notes: none 

 

 

 

Scale 

N M SD r 

188 1.68 0.80 .50 

 

Sample item 

fb_con_stab1_s The feedback confirms my study choice for 

a program with a focus on mathematics. 

 

  

Name of the item M SD 

fb_con_stab1_c 1.54 0.93 

fb_con_stab2_c 

(reversed) 

1.84 1.00 

Name of the item M SD 

fb_con_stab1_s 1.54 0.94 

fb_con_stab2_s 

(reversed) 

1.83 1.01 
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6 The KUM scales 

The items and scales for mathematical knowledge were generated against the background of 

two aims of MOAS, that is i) to model knowledge regarding different facets and levels and 

then ii) to analyze the role of different facets of knowledge for being successful in university.  

6.1 Review of prior research and test concept 

6.1.1 Mathematics knowledge scales 

Prior research on the secondary-tertiary transition has highlighted students’ mathematical 

knowledge as one important factor for the success of this transition. The importance mirrors 

cognitivist and constructivist perspectives on learning, as learners reconstruct new 

information encountered at university based on their existing knowledge about concepts that 

are related to the new information. Thus, to study mathematics at university, learners most 

likely need appropriate prior knowledge to benefit from academic learning opportunities. 

To investigate the impact of student’s mathematical knowledge, it thus seems mandatory to 

identify knowledge that may be required as a basis during these learning processes as well as 

a basis for coping with the demands of typical situations during the first year of mathematics-

related degree programs and corresponding lectures. As analysis and linear algebra are usually 

the two central content areas in the first year of mathematics programs, knowledge related 

to these areas appears as essential. As described above, we conceptualized prior knowledge 

regarding each of these two areas from two perspectives: 

i) Top-Down perspective 

Based on the contents of undergraduate mathematics lectures, mathematical 

concepts, principles, and procedures that are regarded as essential to comprehend 

and make sense of the contents are identified. Corresponding measurement 

instruments of top-down prior knowledge embed these contents in items similar 

to later situations in university, thus approximating later practices. 

ii) Bottom-Up perspective 

Based on the contents of the secondary school curriculum, mathematical concepts, 

principles, and procedures that are central in the school context and regarded as 

essential to comprehend and make sense of undergraduate mathematics lectures 

are identified. Corresponding measurement instruments of bottom-up prior 

knowledge embed these contents in items similar to known situations from the 

school context. 

Based on these perspectives, the first step for item generation were theoretical analyses of 

i) the mathematical content covered in typical analysis and linear algebra lectures (top-down 

perspective) and ii) the mathematical content covered in secondary school (bottom-up 

perspective). In both perspectives, we identified mathematical knowledge that is in the focus 

of the school context or the university context and has a theory-based potential for high 

predictivity for success in early undergraduate mathematics, in particular real analysis and 

linear algebra lectures. These analyses were also based on more general research findings in 

the context of the transition from school to university, for example, the results of MaLeMINT 

(Deeken et al., 2020). Based on this background, we decided to design four different scales: 
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• Knowledge of Calculus (KUM-CA; Bottom-up perspective) 

• Knowledge of Analytic Geometry (KUM-AG; Bottom-up perspective) 

• Knowledge of Analysis (KUM-A; Top-down perspective) 

• Knowledge of Linear Algebra (KUM-LA; Top-down perspective) 

For each scale, multiple different mathematical topics were selected for item generation, as 

an exhaustive assessment of all contents, especially regarding the bottom-up perspective, was 

impossible due to time constraints and also appeared unreasonable as some secondary 

mathematics contents appeared more likely to be predictive for being successful in university 

than other mathematical contents. For example, students’ handling of inequalities, in 

particular also including norms/absolute values, was included as an important prerequisite for 

university mathematics as corresponding knowledge is highly important to keep up in 

introductory university mathematics courses, for example regarding the concept of ε-δ-

continuity. In contrast, knowledge about elementary geometry, for example regarding the 

formula for the volume of a cone, was regarded as less relevant for students’ success in 

undergraduate mathematics courses. Summing up, we assume the following topics as relevant 

for success in university mathematics programs (some concepts belong to both fields): 

Calculus & Analysis – real number, term, inequality, function, limit, derivation, integral; 

Analytic Geometry & Linear Algebra – equation, linear equation system, vector, linear 

independent, linear combination, vector operation, line, straight, number set, group. 

Prior research from mathematics education on the secondary-tertiary transition has 

repeatedly highlighted features of school mathematics that differ from features of 

mathematics as it occurs in first-year university mathematics programs (e.g., Tall, 2008). 

School-mathematics, according to these works, is more related to working with specific 

examples, calculation procedures, and the application of these procedures on more or less 

authentic real-world problems. Considering this description through models of knowledge 

qualities, school mathematics might be characterized as putting a focus on automatization of 

procedures and often on more informal connections between different entities of a 

knowledge network. In terms of a systematic hierarchical ordering of mathematical concepts, 

school mathematics might be considered less “deep” than university mathematics but more 

intensively connected to meaningful representations of the concepts. University 

mathematics, in contrast, is often considered more “abstract”, focusing less on examples and 

more on the specific mathematical relations between the concepts and generic 

representations of these concepts. These findings at least partially correspond to the 

distinction of different qualities of knowledge (e.g., de Jong and Ferguson-Hessler, 1996), in 

particular the distinction of conceptual knowledge (“knowing that”) and procedural 

knowledge (“knowing how”) (see Förtsch et al, 2018). 

Differentiating knowledge of facts and knowledge of procedures has a long tradition in 

psychology (e.g., Anderson, 1983) and resonates in mathematics education, for example in 

Skemp’s (1976) distinction between relational understanding (similar to conceptual 

knowledge) and instrumental understanding (similar to a superficial form of procedural 

knowledge). Even though concrete definitions vary, conceptual knowledge usually refers to a 

network of general facts, concepts, and principles while procedural knowledge covers 

sequences of mental or concrete actions to achieve a specific goal (cf. Rittle-Johnson et al., 
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2015). With respect to measurement, it is widely agreed that procedural knowledge will show 

on tasks in a domain which participants have solved frequently before whereas conceptual 

knowledge is best assessed with unfamiliar tasks (Rittle-Johnson et al., 2015). While 

procedural knowledge is usually restricted to solve well-delineated types of problems or sub-

problems, conceptual knowledge can be applied more flexibly and broadly across a range of 

familiar and unfamiliar tasks. Other works use the distinction between “declarative 

knowledge” and “compiled knowledge” or “encapsulated knowledge” (De Jong and Ferguson-

Hessler, 1996; Schmidt and Rikers, 2007). Both conceptual knowledge and procedural 

knowledge are assumed to occur in declarative as well as compiled or encapsulated forms. 

Similar to the works of Jukic and Dahl (2012), we are interested in distinguishing different 

types of knowledge and therefore use the terms conceptual and procedural knowledge. 

Approaches from mathematics education have proposed an integrated modelling of 

conceptual and procedural knowledge, for example as procepts (Gray and Tall, 1994), or their 

mutual relations, for example the process of treating a known procedure as a new mental 

object (reification, Sfard, 1991). Overall, research has underlined that it is difficult to 

empirically separate conceptual and procedural knowledge (Schneider, 2006; Rittle-Johnson 

et al., 2015) and that the distinction may not be meaningful for contents that are well learned. 

Taking these considerations and distinctions into account, it did not appear meaningful for the 

MOAS project to further differentiate the scales and the generated items regarding 

conceptual and procedural knowledge. Still, the scales focusing on students’ mathematical 

knowledge from a bottom-up perspective may be more closely connected to the notion of 

procedural knowledge, as it is measured in rather familiar tasks similar to those from the 

school context. In contrast, students’ mathematical knowledge from a top-down perspective 

may be more closely connected to the notion of conceptual knowledge, as it is measured in 

rather unfamiliar tasks similar to the situations students may later encounter at university. 

Finally, for the scales focusing on students’ mathematical knowledge from a bottom-up 

perspective, task complexity related to arithmetic demands and the number of steps or 

procedures that must be executed to solve the task has been considered explicitly. Williams 

and Clarke (1997) refer to this as “numerical complexity”, which is driven by the types and 

combinations of operations required to perform a task and is independent of the conceptual 

complexity of the task, which is based on the specific concepts handled in the task (see further 

Stillman & Galbraith, 2003). As an elementary example, the conceptual difficulty of solving the 

tasks 136:4 and 123456789876544:4 is equivalent as both tasks can be solved via a division 

algorithm, however the arithmetic demand of the latter task is higher, thus leading to a higher 

item complexity (see further Pantsar, 2019). Moreover, also the status of the tasks as routine 

and non-routine tasks, based on the curricula for secondary education, was considered. In 

particular, task complexity was considered lower if the task rather represents a routine task, 

that is a demand that has already been encountered before, whereas the complexity of non-

routine task, i.e. tasks that can be classified as a problem (in the sense of problem-solving 

research; see e.g., Dörner, 1979; Schoenfeld, 1985), was considered higher. 

6.1.2 Logic scale 

Knowledge of logic as addressed in KUM primarily comprises knowledge underlying 

normatively correct logical reasoning. The focus is primarily on procedural and strategic 
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knowledge and less on conceptual knowledge about logical constructs or corresponding 

notations. In this vein, verbal logical reasoning tasks are used to measure knowledge. 

Logical reasoning has been studied in connection to learning in upper secondary and 

undergraduate mathematics from two perspectives. From a perspective of the theory of 

formal discipline (Attridge & Inglis, 2013; Handley et al., 2007; Inglis & Simpson, 2008, 2009; 

Morsanyi, Kahl, & Rooney, 2017; Morsanyi, McCormack, & O’Mahony, 2018), the assumption 

has been studied to which extent studying mathematics contributes to building up abstract 

logical reasoning skills. From a perspective of prerequisites for successful learning in 

undergraduate studies, logical reasoning has been studied as a predictor of success on specific 

mathematical tasks, for example proving (Sommerhoff, 2017). Less research is available on 

the role of logical reasoning for succeeding in undergraduate mathematics courses. One goal 

of including knowledge about logic in KUM is to address this gap. 

Regarding this open question, a range of logical structures can be assumed to be relevant for 

undergraduate mathematics learning. Introductory mathematics courses and transition 

courses usually focus on what actually characterizes a valid mathematical statement, for 

example structural features of such statements such as junctors (and, or, implication, 

equivalence) and quantifiers (in particular universal and existence quantifiers) (e.g., 

Reichersdorfer et al., 2014). 

Conditional reasoning: In terms of prior research, the gradual development of conditional 

reasoning from primary school to adolescence has attracted substantial attention (Janveau-

Brennan & Markovits, 1999). From this perspective, logical reasoning on tasks covering the 

four basic logical forms of conditional reasoning (MP: Modus Ponens, MT: Modus Tollens, DA: 

Denial of the Antecendent, AC: Acceptance of the Consequent, cf. Datsogianni et al., 2020) 

has been studied. Results indicate that even elementary school students show valid 

conditional reasoning on some logical forms in specific familiar contexts (e.g., MP tasks in 

categorical contexts such as “If an animal is a cat, then it has legs”; Markovits, 2000; Markovits 

& Thompson, 2008). Other studies have shown that only about a third of adult participants 

systematically answered other forms (DA, AC) in a normatively correct way (Christophorides, 

Spanoudis, & Demetriou, 2016; Gauffroy & Barrouillet, 2009; Moshman, 1990; Markovits, 

2014; Ricco, 2010). Strongest problems are typically observed for less familiar contexts, such 

as counterfactual (“If you throw a feather at a window, then it will break.”), artificial (“On 

planet varius, if the trees swibble, the weather will frase.”) or abstract (“If A, then B”) contexts. 

Even though conditional reasoning can be considered to be at the heart of mathematical 

proof, Sommerhoff (2017) found no relation between conditional reasoning in an abstract 

context and undergraduate students’ proof skills. 

Less research is available on students’ skills to identify the equivalence or non-equivalence of 

two given conditionals. For example, it has been reported repeatedly in the mathematics 

education literature that students do not differentiate between an implication and its 

converse (e.g., Küchemann & Hoyles, 2009). In this context, the equivalence of a conditional 

(if p, then q) and its contrapositive (if not q, then not p) is a central logical relation, while other 

conditionals (if not p, then not q; if q, then p) are not equivalent to the original statement (if 

p, then q). However, little systematic research is available on the identification of equivalent 
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and non-equivalent statements. Other junctors than implications in conditional statements 

(e.g., conjunction, disjunction) have been used less frequently in the past to assess logical 

reasoning (cf. Leighton, 2004) so that these structures have not been considered for the KUM 

at the current point of development. 

Reasoning with syllogisms and quantified statements: Regarding quantifiers, a long-standing 

line of psychological research covers syllogistic reasoning. Categorical syllogisms usually 

consist of two statements which describe a relation between a subject and a predicate 

implicitly via a middle term (e.g., “All M are P. All S are M.”), while the correct conclusion 

reflects this relation explicitly (“All S are P.”; cf. Leighton, 2004). The relations are expressed 

by one of four moods that structurally relate loosely to logical quantifiers: “all A are B” 

(universal quantifier), “some A are B” (existence quantifier), “no A are B” (universal quantifier 

and negation) and “some A are not B” (existence quantifier and negation). In syllogistic 

reasoning tasks, usually a number (e.g., three) alternative conclusions and the option “no 

inference can be made” is provided for participants to select the correct answer from. There 

is evidence that participants answer tasks with counterfactual or improbable prerequisites by 

drawing on their contextual knowledge about the subject, the predicate, the middle term and 

their relations, rather than using the normatively correct interpretation of the statements (cf. 

Leighton, 2004 for an overview). Some researchers argue that this reflects a form of pragmatic 

or adaptive rationality which may be more relevant for decisions in ill-defined, complex real-

world tasks (Evans & Feeney, 2004) than making normatively correct inferences. However, for 

success in mathematics degree programs which focus on strictly defined concepts and their 

logical relations, reasoning in line with the normative interpretation of syllogistic statements 

can be assumed to be a relevant skill. 

As for conditionals, identifying equivalent and non-equivalent statements involving 

quantifiers may be a relevant task in undergraduate mathematics learning. In particular 

statements involving one quantifier and a negation (“For all x not p(x).” is equivalent to “There 

is no x so that p(x).”) or the combination of two quantifiers (“For all x, there is a y, such that 

p(x,y).” is a weaker statement than “There is a y, such that for all x we have p(x,y).”) have a 

number of equivalent and non-equivalent forms. In advanced undergraduate calculus or 

“analysis” courses, statements involving a combination of quantifiers frequently occur, for 

example, when epsilon-definitions of convergence or continuity are introduced. Dealing 

flexibly with equivalent forms of these kinds of statements and their negations is necessary in 

many proofs and justifications in this context. However, beyond the study of Barkai et al., 

(2009) on teacher education students’ reasoning with single quantifiers, only little research 

on undergraduate students’ skills in dealing with quantifiers is available. 

Based on the described results, the following decisions were made in the design of the KUM 

logic test: 

1. Logical structures 

Regarding logical structures, the test items are restricted to conditionals, existence and 

universal quantifiers, and negations. In syllogistic reasoning tasks, the traditional 

wording of the existence quantifier (some … are …) was used to keep the connection 

to prior research. In other tasks, existence quantifiers were explicitly presented in the 
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form of verbal statements (there is a … such that …) as it is frequent in mathematical 

practice (and not quantifier symbols such as ∃,∀). Separate task sets addressed 

conditionals and quantifiers, with negations occurring in both of the task sets. 

2. Task types 

For both logical structures, two task types were designed: 

(A) Inference tasks which present two statements and a number of possible 

conclusions together with the option “no conclusion is possible”. Participants are 

asked to select the normatively correct conclusion from the alternatives. For 

conditional reasoning tasks, a conditional was provided and a statement about the 

antecedent or the consequent of the conditional. In this way, all four logical forms 

were covered. The answer alternatives asked whether the other part of the conditional 

(consequent of antecedent) could be concluded to be true, to be false, or if no 

conclusion was possible. For inference tasks with quantifiers, typical syllogistic 

reasoning tasks were used. 

(B) Equivalence judgement tasks which present two statements made by two persons 

(here Hans and Petra). The participants were asked to judge whether the statements 

were equivalent (“If Hans is right, then Petra is right, and vice versa.”), or Hans’ 

statement was stronger than Petra’s (“If Hans is right, then Petra is right, but not vice 

versa.”), or Petra’s statement was stronger than Hans’ (“If Petra is right, then Hans is 

right, but not vice versa.”), or if the two statements were logically independent. 

Equivalence judgement tasks for conditionals involved a conditional (e.g., with the 

structure “If not A, then B.”) and either its contrapositive (“If not B, then A.”), its 

converse (“If B, then not A.”), or the converse of its contrapositive (“If A, then not B.”). 

Equivalence judgement tasks for quantifiers either contained two statements with one 

quantifier and a negation each or two statements with two quantifiers (with and 

without negations). Equivalent and non-equivalent statement pairs were included. 

3. Contexts 

In terms of contexts, four different kinds of contexts were used: (A) everyday contexts 

(example item: “If it rains, the street will get wet.”), (B) artificial contexts (“On planet 

varius, if the trees swibble, the weather will frase.”), (C) valid mathematical contexts 

(“If a function f has an extreme value at the position x, then f’(x) = 0.”) and (D) pseudo-

mathematical contexts (“For every nice function f, there is a position x, such that 

f(x) = 2.”; participants were instructed that “nice functions” should be assumed to be 

some definable mathematical term and that at least one “nice function” exists).  

Context types (A)-(C) were implemented for conditional reasoning and conditional 

equivalence judgement tasks. Syllogistic reasoning tasks involved artificial contexts 

with everyday objects (with statements such as “All Chinese are Teachers.”). 

Equivalence judgement tasks for quantifiers only covered pseudo-mathematical (D) 

contexts. 

The current items in the KUM logic tests are a selection of a larger item universe. The selection 

was made to cover all major facets of the item model but was still restricted to a number of 

tasks that could administered in a scaling study. 



49 

 

6.2 Generating level models 

All knowledge tests were scaled based on the sample from the scaling study which took place 

in an introductory course for future university mathematics students (bachelor programs in 

mathematics and in financial mathematics, upper secondary mathematics teacher education 

program) at the LMU Munich. As the scales were distributed over three consecutive days, the 

sample for each scaling varied from 125 to 142 students. Two booklets, containing the same 

items in reverse orders, were used to reduce sequency effects and effects of missing data. The 

raw data was scored dichotomously and scaled with the one-dimensional Rasch model using 

the R package TAM (Robitzsch et al., 2020). 

To distinguish different qualities of knowledge within each of the five knowledge facets, we 

aimed to identify and characterize levels of knowledge. A prominent approach to develop such 

levels is the bookmark procedure (Mitzel et al., 2001): The items are sorted by their empirical 

difficulties and are analyzed regarding contrasting demands of the items against the 

background of the theoretical frameworks (described in each section below). This method 

leads to a verbal description of the knowledge levels and a list of corresponding items which 

can be solved using knowledge on the respective level (cf. Rach & Ufer, 2020 for the analysis 

knowledge test). 

6.3 Knowledge of analysis 

6.3.1 Scaling results 

 

Scale Knowledge of analysis 

WLE mean *0.00 

WLE sd 1.09 

WLE reliability 0.77 

EAP reliability 0.79 

MNSQ infit – mean 1.00 

MNSQ infit – max 1.18 

MNSQ infit – min 0.83 

MNSQ outfit – mean 1.08 

MNSQ outfit – max 2.95 

MNSQ outfit – min 0.73 

item parameter mean -0.36 

item parameter sd 1.40 

item parameter max 2.91 

item parameter min -3.50 

item parameter SE mean 0.24 

* EAP parameters were restrained to zero for scaling. 
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6.3.2 Items, answer formats, and item parameters 

 

Name of the variable Response 

format 

Threshold 

value 

Level Concept 

score_moas_analysis_1 Single choice -3.50 1 Derivations 

score_moas_analysis_2 Single choice -1.50 1 Real numbers 

score_moas_analysis_3 Complex choice 0.24 3 Derivations 

score_moas_analysis_4 Single choice -0.02 2 Real numbers 

score_moas_analysis_5 Single choice -1.14 2 Real numbers 

score_moas_analysis_6 Single choice -1.99 1 Functions 

score_moas_analysis_7 Single choice -1.11 2 Derivations 

score_moas_analysis_8 Single choice -1.56 1 Functions 

score_moas_analysis_9 Open -2.38 1 Functions 

score_moas_analysis_10 Complex choice 1.15 4 Functions 

score_moas_analysis_11 Complex choice -0.52 2 Functions 

score_moas_analysis_12 Open 0.04 3 Derivations 

score_moas_analysis_13 Open 1.69 4 Equations 

score_moas_analysis_14 Complex choice 0.37 3 Functions 

score_moas_analysis_15 Single choice 0.02 3 Series 

score_moas_analysis_16 Complex choice 0.46 3 Functions 

score_moas_analysis_17 Complex choice 0.26 3 Functions 

score_moas_analysis_18 Complex choice -1.19 2 Functions 

score_moas_analysis_19 Open -0.98 2 Functions 

score_moas_analysis_20 Complex choice 1.13 4 Functions 

score_moas_analysis_21 Complex choice 0.51 3 Derivations 

score_moas_analysis_22 Complex choice 0.64 3 Functions 

score_moas_analysis_23 Single choice 2.91 4 Derivations 

score_moas_analysis_24 Single choice 0.36 3 Sequences 

score_moas_analysis_25 Single choice -1.67 1 Real numbers 

score_moas_analysis_26 Single choice -1.56 1 Rational numbers 
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6.3.3 Description of knowledge levels 

 

Level Level Description # Items Threshold value Item example 

1 Procedural knowledge and knowledge about 

facts 

7 below -1.35  

 
Calculate the first derivation of the function f: ℝ! → ℝ, f(x) = 3x" + x

!

" − 6. 

2 Conceptual knowledge incorporating few or 

disconnected well-known representations 

6 -1.35 to -0.00 Let / be /:ℝ → ℝ, /(0) = 3# + 1. State the y-axis intercept of the graph of /. 

3 Connected conceptual knowledge 

incorporating multiple, connected, but not 

necessarily formal representations of 

mathematical concepts 

 

9 0.00 to 0.90 In which interval is the angle α with these conditions: tan(α) > 0 and  

sin(α) < 0? 

� ]0°; 90°[= (0°; 90°) 

� ]90°; 180°[= (90°; 180°) 

� ]180°; 270°[= (180°; 270°) 

� ]270°; 360°[= (270°; 360°) 

4 Connected conceptual knowledge, including 

formal notations and central mathematical 

practices like proving and defining formally 

4 Above 0.90  
The value of lim

!→#

√%&!'√%

!
 is  

� 0. 

� 
$

%√%
. 

� 
$

√%
. 

� ∞. 
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6.4 Knowledge of linear algebra 

6.4.1 Scaling results 

 

Scale Knowledge of 

linear algebra 

WLE mean *-0.02 

WLE sd 1.35 

WLE reliability 0.81 

EAP reliability 0.82 

MNSQ infit – mean 1.00 

MNSQ infit – max 1.27 

MNSQ infit – min 0.82 

MNSQ outfit – mean 1.07 

MNSQ outfit – max 3.64 

MNSQ outfit – min 0.57 

item parameter mean -0.04 

item parameter sd 1.55 

item parameter max 3.69 

item parameter min -3.71 

item parameter SE mean 0.25 

* EAP parameters were restrained to zero for scaling. 

 

6.4.2 Items, answer formats, and item parameters 

 

Name of the variable Response 

format 

Threshold 

value 

Level Concept 

score_moas_linalg_1 Complex choice -0.82 1 Vector operations 

score_moas_linalg_2 Complex choice -1.46 1 Vector operations 

score_moas_linalg_3 Complex choice -0.24 2 Orthogonal vectors 

 score_moas_linalg_4 Complex choice 0.99 3 Scalar products 

score_moas_linalg_5 Complex choice 1.36 3 Orthogonal vectors 

score_moas_linalg_6 Open 0.70 3 Linearly dependent 

vectors 

score_moas_linalg_7 Complex choice -0.23 2 Linear combinations 

score_moas_linalg_8 Complex choice 3.69 4 Linearly dependent 

vectors 

score_moas_linalg_9 Complex choice 2.43 4 Linearly dependent 

vectors 

score_moas_linalg_10 Complex choice 0.86 3 Linearly dependent 

vectors 

score_moas_linalg_11 Complex choice -0.59 2 Linearly dependent 

vectors 

score_moas_linalg_12 Single choice -1.23 1 Straights 

score_moas_linalg_13 Single choice -0.30 2 Straights 
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score_moas_linalg_14 Open 0.01 2 Straights 

score_moas_linalg_15 Complex choice -0.02 2 Linear equation systems 

score_moas_linalg_16 Open -0.62 1 Linear equation systems 

score_moas_linalg_17 Single choice -1.57 1 Linear equation systems 

score_moas_linalg_18 Open -0.55 2 Distances 

score_moas_linalg_19 Single choice -3.71 1 Distances 

score_moas_linalg_20 Complex choice 1.13 3 Groups 

score_moas_linalg_21 Complex choice 0.07 2 Groups 

score_moas_linalg_22 Open -1.27 1 Groups 

score_moas_linalg_23 Open -2.41 1 Linear functions 

score_moas_linalg_24 Complex choice 1.48 4 Linear functions 

score_moas_linalg_25 Complex choice 1.22 3 Linear functions 

 



54 

 

6.4.3 Description of knowledge levels 

 

Level Level Description # Items Threshold value Item example 

1 Procedural knowledge and knowledge 

about facts 

8 below -0.60  

 

Which operations with two vectors !!, !" ∈ ℝ" have a vector as a result, which 

operations a number? Mark the operations with a vector as result. 

� !! + !" 

� !! ∘ !" (scalar product) 

� ' ⋅ !! (' ∈ ℝ) 
� !! − !" 

2 Conceptual knowledge incorporating few 

or disconnected well-known 

representations 

8 -0.60 to 0.50 Which of the following equation systems have exactly one solution in ℝ?  

Mark them. 

� 
, − - = 1
3, − 3- = 0 

� 
, − - = 1
2, + 2- = 6 

� 
, − - = 1

−, + - = −1 

� 
, − - = 1
2, − 2- = 2 
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3 Connected conceptual knowledge 

incorporating multiple, connected, but 

not necessarily formal representations of 

mathematical concepts 

 

6 0.50 to 1.40 Two vectors are orthogonal to each other in ℝ" . Which of the following 

statements are true? Mark them. 

� Each vector in ℝ" can be presented as a linear combination of the two 

vectors. 

� The zero vector is only represented by 0 ⋅ !! + 0 ⋅ !"  as a linear 

combination of the two vectors. 

� The scalar product of the two vectors is 0. 

� The intersection angle of !! with the x-axis is as large as the intersection 

angle of !" with the x-axis. 

4 Connected conceptual knowledge, 

including formal notations and central 

mathematical practices like proving and 

defining formally 

3 Above 1.40 Which of the following ! ∈ ℝ"  are for any positive numbers ', 4 > 0  always 

linear independent from 6'47? Mark them. 

� 6127 

� 6' − 44 − '7 

� 6' + 44 7 

� 6 3−47 

Table 1 Levels of knowledge in the KUM-LA test with item examples and difficulty parameters 
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6.5 Knowledge of calculus 

6.5.1 Scaling results 

 

Scale Knowledge of 

calculus 

WLE mean -0.04* 

WLE sd 1.12 

WLE reliability 0.72 

EAP reliability 0.75 

MNSQ infit – mean 0.99 

MNSQ infit – max 1.23 

MNSQ infit – min 0.81 

MNSQ outfit – mean 1.00 

MNSQ outfit – max 1.28 

MNSQ outfit – min 0.61 

item parameter mean -0.72 

item parameter sd 0.93 

item parameter max 1.07 

item parameter min -2.76 

item parameter SE mean 0.25 

*EAP parameters were restrained to zero for scaling. 

 

6.5.2 Items, answer formats, and item parameters 

 

Name of the variable Response 

format 

Threshold 

value 

Level Concept 

score_moas_rvinf_01 Open 0.07 3 Equations  

score_moas_rvinf_02 Single Choice -1.50 2 Terms 

score_moas_rvinf_03 Single Choice -2.60 1 Equations 

score_moas_rvinf_04 Single Choice -0.93 2 Equations 

score_moas_rvinf_05 Single Choice 0.22 4 Terms 

score_moas_rvinf_06 Single Choice 0.14 4 Functions 

score_moas_rvinf_07 Single Choice 0.27 4 Terms 

score_moas_rvinf_08 Single Choice -0.59 3 Inequalities 

score_moas_rvinf_09 Single Choice -0.88 3 Inequalities 

score_moas_rvinf_10 Single Choice -2.76 1 Functions 

score_moas_rvinf_11 Single Choice -1.36 2 Equations 

score_moas_rvinf_12 Open -0.37 3 Calculation Rules 

score_moas_rvinf_13 Open -0.75 3 Functions 

score_moas_rvinf_14 Open -1.83 2 Derivations 

score_moas_rvinf_15 Single Choice 0.61 4 Derivations 

score_moas_rvinf_16 Single Choice 0.03 3 Derivations 

score_moas_rvinf_17 Complex Choice 0.07 4 Calculation Rules 

score_moas_rvinf_18 Complex Choice -0.71 3 Calculation Rules 
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score_moas_rvinf_19 Complex Choice 0.25 4 Calculation Rules 

score_moas_rvinf_20 Single Choice -1.00 2 Calculation Rules 

score_moas_rvinf_21 Single Choice 1.07 4 Calculation Rules 

score_moas_rvinf_22 Open -0.68 3 Integrals 

score_moas_rvinf_23 Complex Choice -0.55 3 Calculation Rules 

score_moas_rvinf_24 Single Choice -0.83 3 Limits 

score_moas_rvinf_25 Single Choice -0.55 3 Functions 

score_moas_rvinf_26 Single Choice -1.23 2 Derivations 

score_moas_rvinf_27 Single Choice -0.48 3 Polynomial Divisions 

score_moas_rvinf_28 Single Choice -1.82 2 Linear Equation Systems 

score_moas_rvinf_29 Single Choice -2.14 2 Linear Equation Systems 
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6.5.3 Description of knowledge levels 

Level Level Description # Items Threshold value Item example 

1 Elementary processing of mathematical 

objects and symbols in routine settings. No 

difficult calculations required. 

 

2 below -2.5 

 

Given a linear function f whose graph has slope 2 and goes through the point 

P(1|5). What is the functional equation of f? 

� !(#) = 2# + 5 

� !(#) = 2# + 1 

� !(#) = 2# + 3 

� !(#) = 2# − 3 

2 Processing of mathematical objects and 

symbols in routine settings that require a 

substantial number of calculations or algebraic 

operations 

8 -2.7 to -0.90 Simplify the term 15#! − 5#[(# + -)(3 − -)] + 15#- 

3 Processing of mathematical objects and tasks 

in known but non-routine situations. 

Knowledge about specific calculation rules 

without the need to apply them. 

12 -0.90 to 0.07 Let f(x) = − "

!
# + 7  be a given function with x ∈ ℝ . Determine the inverse 

function f#"(#). 
� f#"(#) = −2# + 14 

� f#"(#) = 2# − 14 

� f#"(#) = −2# − 14 

� f#"(#) = 2# + 14 

4 Processing of mathematical objects and tasks 

which require the application of specific, non-

routine conceptual knowledge or strategies to 

be solved. 

7 Above 0.07 Simplify the term ln(7) + ln(8) + 3 ⋅ ln(2) − ln(88) 

� ln ;$
%
< + ln	(6) 

� ln ;$&%&'
%'

< 

� ln(7) 
� ln(7 − 8 − 78) 

Table 1 Levels of the KUM-CA test with item examples and difficulty parameters 



59 

 

6.6 Knowledge of analytical geometry 

6.6.1 Scaling results 

 

Scale Knowledge of 

analytical 

geometry 

WLE mean -0.11* 

WLE sd 1.25 

WLE reliability 0.38 

EAP reliability 0.59 

MNSQ infit – mean 1.01 

MNSQ infit – max 1.15 

MNSQ infit – min 0.87 

MNSQ outfit – mean 1.02 

MNSQ outfit – max 1.43 

MNSQ outfit – min 0.74 

item parameter mean -0.17 

item parameter sd 1.36 

item parameter max 2.82 

item parameter min -2.27 

item parameter SE mean 0.28 

* EAP parameters were restrained to zero for scaling. 

 

6.6.2 Items, answer formats, and item parameters 

 

Name of the variable Response 

format 

Threshold 

value 

Level Concept 

score_moas_rvag_01 Open -1.28 1 Vectors 

score_moas_rvag_02 Single Choice -2.27 1 Vectors 

score_moas_rvag_03 Single Choice -1.53 1 Lines 

score_moas_rvag_04 Single Choice 0.07 2 Vector Products 

score_moas_rvag_05 Open 1.44 3 Vector Products 

score_moas_rvag_06 Open -0.48 2 Dot Products 

score_moas_rvag_07 Single Choice 0.58 3 Planes 

score_moas_rvag_08 Single Choice -0.15 2 Lines 

score_moas_rvag_09 Single Choice -0.97 2 Relative Positions 

score_moas_rvag_10 Single Choice 1.17 3 Distances 

score_moas_rvag_11 Open 2.82 4 Triple Products 

score_moas_rvag_12 Single Choice -0.18 2 Circles 

score_moas_rvag_13 Single Choice -0.11 2 Spheres 

score_moas_rvag_14 Single Choice -1.53 1 Linear Combinations 
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6.6.3 Description of knowledge levels 

Level Level Description # Items Threshold value Item example 

1 Elementary processing of mathematical 

objects and symbols in routine settings. No 

difficult calculations required. 

4 below -1.0 

 Let the points ! = #154' and ( = #736' be given. Determine the centre of the line 

segment !(,,,,. 
2 Processing of mathematical objects and 

symbols in routine settings that require a 

substantial number of calculations or algebraic 

operations 

6 -1.0 to 0.50 
Determine the intersection of lines .: 0⃗ = #220' + 5#

1−1−3' ; 5 ∈ ℝ and 

.: 0⃗ = # 1−2−2' + : #
−124 ' ; : ∈ ℝ. 

3 Processing of mathematical objects and tasks 

in known but non-routine situations. 

3 0.50 to 2.80 
The plane E is created by the vectors ;⃗ = #−2−43 '  and <=⃗ = #−1−12 '  and goes 

through the point !⃗ = #100'. Determine the cartesian equation of the plane. 

4 Processing of mathematical objects and tasks 

which require the application of specific, non-

routine conceptual knowledge or strategies to 

be solved. 

1 Above 2.80 Determine the volume of the parallelepiped which is determined by the vectors 

;⃗ = #203', <=⃗ = #−42−1', and >⃗ = #−321 '. 
Table 2 Levels of the KUM-AG test with item examples and difficulty parameters 
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6.7 Knowledge of logic 

6.7.1 Scaling results 

 

Scale Knowledge of logic 

WLE mean *0.00 

WLE sd 1.07 

WLE reliability 0.83 

EAP reliability 0.85 

MNSQ infit – mean 1.00 

MNSQ infit – max 1.23 

MNSQ infit – min 0.71 

MNSQ outfit – mean 1.02 

MNSQ outfit – max 1.59 

MNSQ outfit – min 0.66 

item parameter mean -0.57 

item parameter sd 0.95 

item parameter max 1.76 

item parameter min -2.93 

item parameter SE mean 0.22 

* EAP parameters were restrained to zero for scaling. 
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6.7.2 Items, answer formats, and item parameters 

 

Name of the variable Response 

format 

Threshold 

value 

Level Logical 

structure 

Task type Context 

score_moas_logic_1 Single choice -0.44 4 conditional equivalence judgement everyday 

score_moas_logic_2 Single choice -0.63 3 conditional equivalence judgement everyday 

score_moas_logic_3 Single choice -0.02 4 conditional equivalence judgement everyday 

score_moas_logic_4 Single choice -0.20 4 conditional equivalence judgement everyday 

score_moas_logic_5 Single choice -1.44 2 conditional equivalence judgement mathematical: extrema 

score_moas_logic_6 Single choice 0.21 4 conditional equivalence judgement mathematical: extrema 

score_moas_logic_7 Single choice 0.37 4 conditional equivalence judgement mathematical: extrema 

score_moas_logic_8 Single choice -0.61 3 conditional equivalence judgement mathematical: extrema 

score_moas_logic_9 Single choice 0.18 4 conditional equivalence judgement mathematical: lineare independence 

score_moas_logic_10 Single choice -0.79 2 conditional equivalence judgement mathematical: lineare independence 

score_moas_logic_11 Single choice -0.64 3 conditional equivalence judgement mathematical: lineare independence 

score_moas_logic_12 Single choice 0.23 4 conditional equivalence judgement mathematical: lineare independence 

score_moas_logic_13 Single choice -0.33 4 conditional equivalence judgement fictional 

score_moas_logic_14 Single choice -0.19 4 conditional equivalence judgement fictional 

score_moas_logic_15 Single choice -0.35 4 conditional equivalence judgement fictional 

score_moas_logic_16 Single choice -0.41 4 conditional equivalence judgement fictional 

score_moas_logic_17 Single choice -0.52 4 conditional inference everyday 

score_moas_logic_18 Single choice -1.04 2 conditional inference everyday 

score_moas_logic_19 Single choice -2.90 1 conditional inference mathematical: extrema 

score_moas_logic_20 Single choice -1.14 2 conditional inference mathematical: extrema 

score_moas_logic_21 Single choice -0.47 4 conditional inference mathematical: lineare independence 

score_moas_logic_22 Single choice -0.95 2 conditional inference mathematical: lineare independence 

score_moas_logic_23 Single choice -2.94 1 conditional inference fictional 

score_moas_logic_24 Single choice -1.31 2 conditional inference fictional 

score_moas_logic_25 Single choice -1.02 2 quantifiers inference everyday 

score_moas_logic_26 Single choice -1.14 2 quantifiers inference everyday 
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score_moas_logic_27 Single choice -0.18 4 quantifiers inference everyday 

score_moas_logic_28 Single choice -1.10 2 quantifiers inference everyday 

score_moas_logic_29 Single choice -1.45 2 quantifiers inference everyday 

score_moas_logic_30 Single choice -0.35 4 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_31 Single choice -0.62 3 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_32 Single choice -0.46 4 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_33 Single choice 0.79 5 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_34 Single choice 1.76 5 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_35 Single choice -1.20 2 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_36 Single choice -0.63 3 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_37 Single choice -0.34 4 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_38 Single choice -0.34 4 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_39 Single choice 1.01 5 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_40 Single choice -1.09 2 quantifiers equivalence judgement pseudo-mathematical: nice functions 

score_moas_logic_41 Single choice -0.63 3 quantifiers equivalence judgement pseudo-mathematical: nice functions 
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6.7.3 Description of knowledge levels 

Level Level Description # Items Threshold value Item example 

1 Elementary conditional inferences 

 

• Conditional inferences in the Modus 

Ponens form. 

 

2 below -2.17 

 

For every differentiable function f and !! ∈ ℝ, it is true that: 

• If f has a local extremum at !!, then %"(!!) = 0. 

• f has a local extremum at !!. 

This information is true, for sure. 

What can you conclude from this information? 

 

� %"(!!) = 0 

� %"(!!) ≠ 0 

� None of the two options above. 

 

2 Conditional and syllogistic inferences and 

identifying simple equivalent statements 

 

• Conditional inferences in the Modus 

Tollens or Acceptance of the 

Consequent forms with statements that 

contain negations. 

• Syllogistic reasoning with at least one 

universal quantifier. 

• Identifying that a conditional without 

negations is equivalent to its 

contrapositive. 

• Identifying and using that statements of 

the form “for all x not s(x)” are 

equivalent to statements of the form 

“there is no x, such that s(x)”. 

11 -2.17 to -0.71 It is true that: 

• If it rains, then the street is wet. 

• The street is not wet. 

This information is true, for sure. 

What can you conclude from this information? 

 

� It is raining. 

� It is not raining. 

� None of the two options above. 
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3 Advanced conditional reasoning and 

identifying non-equivalence of statements 

involving negations 

 

• Conditional inferences in the Denial of 

the Antecedent form. 

• Identifying that a conditional (possibly 

with negations) is equivalent to its 

contraposition. 

• Identifying that a conditional is logical 

independent from the converse of its 

contraposition. 

• Identifying and using that statements of 

the form “not for all x s(x)” are 

equivalent to statements of the form 

“there is at least one x, such that not 

s(x)”. 

• Identifying the correct logical relation 

between two non-equivalent quantified 

statements involving a quantifier and a 

negation. 

16 -0.71 to -0.26 Hans and Petra are talking about so-called nice functions and their values at 

different positions of their domain ℝ. 

• Hans states:  

Not all nice functions f have the value 2 at position ! = 1. 

• Petra states:  

All nice functions f do not have the value 2 at position ! = 1. 

 

How do the two statements relate to each other logically? 

� The two statements say the same, logically. If Hans is right, then also 

Petra is right. If Petra is right, then also Hans is right. 

� If Hans is right, then also Petra is right (but not necessarily the other way 

round).  

� If Petra is right, then also Hans is right (but not necessarily the other way 

round). 

� The two statements are logically completely independent. Each of the 

two could be right, independently of the other one being right or not. 

4 Non-equivalence of a conditional and its 

converse 

 

• Identifying the correct logical relation 

between a conditional (possibly 

involving negations) and its converse. 

• [Making syllogistic inferences with a 

counterintuitive conclusion.] 

 

8 -0.26 to 0.58 

 

Hans and Petra are talking about the weather. 

• Hans states:  

If it rains, then the street is not dry. 

• Petra states:  

If the street is not dry, then it rains. 

 

How do the two statements relate to each other logically? 

� The two statements say the same, logically. If Hans is right, then also 

Petra is right. If Petra is right, then also Hans is right. 

� If Hans is right, then also Petra is right (but not necessarily the other way 

round).  

� If Petra is right, then also Hans is right (but not necessarily the other way 

round). 



66 

 

� The two statements are logically completely independent. Each of the 

two could be right, independently of the other one being right or not. 

5 Relation between universal and existence 

quantifiers 

 

• Identifying the correct logical relation 

between two non-equivalent 

statements involving a universal and an 

existence quantifier. 

 

3 above 0.58  Hans and Petra are talking about so-called nice functions and their values at 

different positions of their domain ℝ. 

• Hans states:  

For all nice functions f, there is at least one position !, such that the 

value of f at the position ! is not 2. 

• Petra states:  

There is at least one position !, such that not all nice functions have the 

value 2 at the position !. 

 

How do the two statements relate to each other logically? 

� The two statements say the same, logically. If Hans is right, then also 

Petra is right. If Petra is right, then also Hans is right. 

� If Hans is right, then also Petra is right (but not necessarily the other way 

round).  

� If Petra is right, then also Hans is right (but not necessarily the other way 

round). 

� The two statements are logically completely independent. Each of the 

two could be right, independently of the other one being right or not. 

Table 1 Levels of the KUM-LO test with item examples and difficulty parameters
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