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Midfrontal neural dynamics 
distinguish between general 
control and inhibition-specific 
processes in the stopping of motor 
actions
Jakob Kaiser, natalie Annette Simon, paul Sauseng & Simone Schütz-Bosbach

Action inhibition, the suppression of action impulses, is crucial for goal-directed behaviour. in order to 
dissociate neural mechanisms specific to motor stopping from general control processes which are also 
relevant for other types of conflict adjustments, we compared midfrontal oscillatory activity in human 
volunteers via EEG between action inhibition and two other types of motor conflicts, unexpected action 
activation and unexpected action change. Error rates indicated that action activation was significantly 
easier than the other two equally demanding tasks. Midfrontal brain oscillations were significantly 
stronger for inhibition than for both other conflict types. This was driven by increases in the delta 
range (2–3 Hz), which were higher for inhibition than activation and action change. Increases in the 
theta range (4–7 Hz) were equally high for inhibition and change, but lower for action activation. These 
findings suggest that inhibition is facilitated by neural mechanisms specific to motor-stopping, with 
midfrontal delta being a potentially selective marker of motor inhibition.

When changing circumstances render prevalent actions as no longer beneficial, we need to be able to stop them. 
The suppression of prepotent behavioural tendencies is called inhibition1. Successful inhibition of action impulses 
is believed to play an important role in avoiding and overcoming harmful behavioural patterns, such as seen in 
addictions, overeating or obsessive-compulsive disorders2,3. Since inhibition implies the absence of a directly 
observable action, the investigation of this phenomenon is difficult at the behavioural level. Therefore, identifying 
neural underpinnings of inhibitory control could greatly benefit our understanding of how to stop unwanted 
action impulses.

Inhibition of intended actions has regularly been found to lead to an increase in low-frequency oscillations 
in the delta-theta range (<7 Hz) in medial frontal brain regions as assessed via EEG4–6. Based on such findings 
one might speculate that these midfrontal oscillations at least in part represent a neural marker of inhibition. For 
example, they might be related to a proposed fronto-basal network for motor suppression, involving the supple-
mentary motor area (SMA), the inferior frontal cortex and the basal ganglia7–10.

However, increases in midfrontal low-frequency oscillations appear to be not exclusive to inhibition. Similar 
neural oscillatory patterns have been found in a wide variety of contexts in which a conflict arises that affords 
readjustments of ongoing behaviour, such as task switching11, or post-error processing12,13. While most studies 
investigated these midfrontal oscillations in the theta range (4–7 Hz), they sometimes have also been reported for 
the delta range (<4 Hz)4,14,15.

Since midfrontal low-frequency oscillations can be found in many different task contexts, it has been sug-
gested that they are part of a general mechanism for facilitating cognitive control16–18. On a neural level, they 
might reflect activity in the cingulate cortex, which has been related to the identification and resolution of behav-
ioural conflicts19,20. Cognitive control refers to neural processes aimed at facilitating cognitive and behavioral 
adjustments for overcoming goal-relevant conflicts. In part, the type of adjustments necessary for successfully 
resolving a conflict strongly depends at the task at hand. For example, while outright inhibition of an intended 

Ludwig-Maximilian-University, D-80802, Munich, Germany. Correspondence and requests for materials should be 
addressed to J.K. (email: J.Kaiser@psy.lmu.de)

Received: 3 January 2019

Accepted: 22 August 2019

Published: xx xx xxxx

open

https://doi.org/10.1038/s41598-019-49476-4
mailto:J.Kaiser@psy.lmu.de


2Scientific RepoRtS |         (2019) 9:13054  | https://doi.org/10.1038/s41598-019-49476-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

motor action can represent an appropriate conflict resolution in some task contexts, other types of conflicts might 
afford the enactment of a new motor action instead21,22. Despite the task-specificity of conflict adjustments, it 
has been suggested that different conflict tasks partially rely on a set of overlapping neural processes for detect-
ing conflicts and initiating cognitive control17,19. Such processes could be described as general cognitive control 
mechanisms, since they are relevant in different types of tasks. Here, midfrontal low-frequency oscillations rep-
resent one possible marker of general control processes16. However, the exact role of midfrontal low-frequency 
oscillations for inhibition is not yet clearly understood. Importantly, since inhibition conflicts elicit both general 
control and inhibition-specific neural processes, previous studies cannot clearly distinguish between oscillatory 
responses which are specifically related to motor stopping as compared to neural reactions related to general con-
trol processes. For understanding the neural underpinnings of successful motor inhibition, it would be important 
to know in how it relies on mechanisms that are specific to motor stopping compared to general control processes 
which are also evoked in other conflict adjustments.

One way to induce motor conflicts is to let participants repeatedly perform a standard action, which then 
unexpectedly must be replaced by another type of response. Since the frequent performance of the standard 
action leads to the formation of a prepotent motor tendency, the sudden change towards the infrequent response 
behaviour affords increased cognitive control to withstand the inclination to elicit the prepotent motor action. 
Thus, the need to quickly divert from the standard response pattern creates a motor conflict. For example, in 
the classic Go-NoGo paradigm, inhibitory conflicts are typically induced by intermixing frequent (prepotent) 
button presses with the infrequent (conflict-inducing) withholding of button presses23. In order to identify 
inhibition-specific processes, some previous studies compared motor inhibition induced in Go-NoGo tasks with 
alternative types of motor conflicts (for reviews see21,24). For example, some previous experiments contrasted 
inhibition (frequent Go and infrequent NoGo trials) with motor activation conflicts, where on most trials no 
action had to be performed, while some trials afforded a sudden button press (frequent NoGo and infrequent Go 
trials)25. Concerning midfrontal oscillations, results of one study showed increased midfrontal theta responses 
during inhibition compared to activation conflicts26. This could indicate that midfrontal oscillations partly reflect 
an inhibition-specific neural process. However, inhibition conflict tasks compared to activation conflict tasks usu-
ally lead to higher error rates, which suggests differences in task difficulty and, thus, increased demands for cog-
nitive control ressources26,27. Thus, it might be more difficult to quickly suppress a frequently performed action 
(inhibition conflict) compared to a situation in which one occasionally has to perform a button press, which is 
interleaved with longer periods of inaction (activation conflict). Accordingly, previous studies leave open the 
question in how far stronger midfrontal oscillatory responses for inhibition compared to activation conflicts 
reflect inhibition-specific processes as compared to differences in general, non-specific control demand due to 
the increased difficulty of action inhibition.

The goal of the present study was to clarify the role of midfrontal oscillations in inhibition, by comparing 
inhibition with different types of motor conflicts. In each case we only changed the type of frequent (prepotent) 
and infrequent (conflict) action while keeping all other aspects of the tasks identical. As in previous studies, 
we employed a task inducing inhibition conflicts (infrequent stopping after periods of frequent button presses) 
and contrasted it with a task inducing activation conflicts (infrequent button presses after periods of frequent 
inactivity). Importantly, we additionally employed a task evoking conflicts due to a sudden change in motor 
action (infrequent pressing of one alternative button after frequent pressing of another key). Compared to (poten-
tially less demanding) activation conflicts, a sudden change of an action has previously been found to lead to a 
comparable degree of control demand as motor inhibition28. Using EEG, this allowed for dissociation between 
inhibition-specific and general control aspects of midfrontal oscillatory reactions in conflict-induced motor 
adjustments. Additionally, we estimated the neural sources of low-frequency oscillations in midfrontal brain areas 
which were sensitive to the occurrence of motor conflicts across the different types of motor conflicts (action 
inhibition, activation or change).

Results
error rates. Mean rates of errors are shown in Table 1. Analysis of error rates indicated a significant main 
effect of TRIAL TYPE, F(1, 23) = 73.18, p < 0.001, p

2η  = 0.76, a main effect of TASK, F(2, 46) = 33.02, p < 0.001, 
ηp

2 = 0.59, as well as TRIAL TYPE*TASK interaction, F(2, 46) = 15.77, p < 0.001, p
2η  = 0.41. In all three tasks, 

conflict trials lead to more errors than prepotent trials: inhibition: t(23) = 6.80, p < 0.001, d = 1.39, activation: 
t(23) = 3.29, p = 0.003, d = 0.67, change: t(23) = 7.39, p < 0.001, d = 1.51. This increase in error rate from prepo-
tent to conflict trials (i.e., difference in error percentage between conflict and prepotent trials) was significantly 
higher for the inhibition than the activation task, t(23) = 5.09, p < 0.001, d = 1.04, and significantly higher for the 
change than the activation task, t(23) = 5.54, p < 0.001, d = 1.13. In contrast, inhibition compared to change con-
flicts did not lead to a significant increase in errors, t(23) = −0.96, p > 0.90, d = 0.20. This indicates that the acti-
vation task was easier for participants, while the degree of difficulty did not significantly differ between motor 
inhibition and motor change.

Trial Type

Conflict Task

Inhibition Activation Change

Conflict Trials (25%) 13.0% (9.7) 4.4% (6.4) 16.3% (9.8)

Prepotent Trials (75%) 1.7% (2.7) 1.0% (1.9) 2.9% (3.9)

Table 1. Mean error rates in percentages (with standard deviations) for all adjustment tasks.
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eeG frequency analysis. Analysis of baseline-corrected oscillatory activation indicated a significant main 
effect of TRIAL TYPE, F(1, 23) = 112.20, p < 0.001, p

2η  = 0.83, a significant effect of TASK, F(2, 46) = 3.85, 
p = 0.03, p

2η  = 0.14, as well as a TRIAL TYPE*TASK interaction, F(2, 46) = 9.24, p < 0.001, ηp
2 = 0.29. This indi-

cates that the conflict types differed in their midfrontal reactivity. In all tasks, midfrontal oscillatory responses 
were stronger for conflict compared to prepotent trials, inhibition: t(23) = 11.88, p < 0.001, d = 2.43, activation: 
t(23) = 3.68, p = 0.001, d = 0.75, change: t(23) = 4.66, p < 0.001, d = 0.95. The increase in conflict-elicited 
responses was significantly stronger for the inhibition than the activation task, t(23) = 3.89, p < 0.001, d = 0.79. 
Additionally, midfrontal responses were significantly stronger for inhibition than for change, t(23) = 3.18, 
p = 0.004, d = 0.65. Activation and change did not differ significantly in their conflict-induced increases, 
t(23) = −1.13, p = 0.80, d = 0.23. Thus, all three conflict types induced a midfrontal control signal, with inhibition 
leading to a significantly stronger midfrontal response than any other type of motor conflict.

In order to test for potential differences between the frequency bands involved, we repeated our analysis sep-
arately for the delta and theta band. Adding FREQUENCY (delta/theta) as a factor to the ANOVA led to a signif-
icant FREQUENCY*TRIAL TYPE*TASK interaction, F(2, 46) = 4.98, p = 0.01, p

2η  = 0.18 (qualifying main effects 
of FREQUENCY, TRIAL TYPE, TASK, as well as a FREQUENCY*TRIAL TYPE and a TRIAL TYPE *TASK 
interaction, all p’s < 0.03, cf. Fig. 1 for condition-wise mean values). This indicates that the conflict tasks differed 
in their reactions in the delta and theta range. For delta, the increase in oscillatory power was significantly 
stronger for the inhibition than the activation task, t(23) = 3.81, p = 0.03, d = 0.78. Additionally, delta was signif-
icantly stronger for inhibition than for change, t(23) = 5.64, p < 0.001, d = 1.15. Activation and change did not 
differ in their delta increase, t(23) = 0.54, p > 0.90, d = 0.11. For theta, the conflict-related amplitude increase was 
significantly stronger for inhibition than for activation, t(23) = 3.53, p = 0.005, d = 0.72, but did neither differ 
significantly between inhibition and change, t(23) = 1.81, p = 0.25, d = 0.37, nor between change and activation, 
t(23) = 1.60, p = 0.37, d = 0.33.

Figure 2 shows the results of the statistical analysis for individual time-frequency points. As indicated by the 
analysis of the averaged data, all tasks showed significant increases in activity for conflict compared to prepotent 
trials. Concerning the differentiation between delta and theta, it is noteworthy that the inhibition task and, to a 
lesser extent, the change task both showed conflict induced increases throughout the delta/theta range. On the 
other hand, significant increases for the activation task appeared to be mostly confined to the theta range (cf. 
Fig. 2a). The comparison of the conflict-induced increases between the tasks (Fig. 2b) shows significantly higher 
effects for inhibition compared to activation within both the delta and the theta range. For the contrast between 
inhibition and change, significant effects emerge mostly in the delta range. To conclude, overall midfrontal 
increases in oscillatory power were significantly stronger for inhibition than other types of motor conflicts. This 
was mainly driven by conflict-induced changes in the delta-band which were significantly higher for inhibition 
than for both activation and change conflicts. Theta activity was higher for inhibition than for activation but did 
not clearly differentiate inhibition from motor change.

Source estimation. Figure 3 shows the statistical maps for the comparisons of conflict-induced activation 
(conflict trials – prepotent trials) between inhibition and the other two tasks in ROIs of source-reconstructed 
data. For the contrast between the change and activation task, no significant differences emerged in any of the 
ROIs. For inhibition compared to the activation task, during the initial phase of the trials stronger effects for inhi-
bition emerged at the caudal anterior cingulate cortex. Additionally, to the end of the trial, inhibition compared 
to activation also showed significant increases for the posterior cingulate and paracentral cortex. Note that the 
response time maximum throughout the experiment was 600 ms, and hence neural processes related to conflict 
resolution were most likely to take place in the earlier time period of the trial. Accordingly, significant differences 
at the end of the time period could also be related to post-response processes. For inhibition compared to motor 

Figure 1. Mean power increases in dB between 0.2 to 0.6 seconds after stimulus onset separately for (a) delta 
(2–3 Hz) and (b) theta (4–7 Hz) frequencies for all conditions. Error bars show +−1 standard error. Dots 
represent individual data points with lines connecting data points of the same participant within each task.

https://doi.org/10.1038/s41598-019-49476-4


4Scientific RepoRtS |         (2019) 9:13054  | https://doi.org/10.1038/s41598-019-49476-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

change, significant differences emerged at the anterior caudal cingulate cortex, as well as the posterior cingulate 
cortex. Additionally, the rostral anterior cingulate cortex, as well as the frontal lobe showed prolonged significant 
differences in the later stage of the trial. Overall, comparison of inhibition with other motor tasks in source space 
suggests that differences in midfrontal low-frequency activity were mostly driven by increased activation of the 
caudal anterior cortex and the posterior cingulate cortex.

Discussion
Previous studies found midfrontal oscillations in the delta-theta range both during motor inhibition4,6,29, as well as 
other cases of behavioural adjustments affording increased cognitive control13,30,31. The current study contrasted 
motor inhibition with two other common types of action conflicts: sudden motor activation and sudden motor 
change. This allowed us to distinguish between inhibition-specific and general control-related reactivity in mid-
frontal oscillations. For each motor task the conflict response led to increased midfrontal low-frequency activ-
ity. Importantly, inhibition compared to other motor conflicts led to significantly stronger midfrontal reactions. 
Midfrontal low-frequency oscillations have repeatedly been observed during conflict tasks and are commonly inter-
preted as part of a general (i.e. not task-specific) mechanism for enacting cognitive and behavioural control17,20. 
Thus, the finding that inhibition selectively elicited a stronger midfrontal response is of great relevance for our 
understanding of this frequently reported oscillatory response, as it refines our understanding of the role of mid-
frontal activity for inhibition and motor control. Importantly, in the current study the motor inhibition task and the 
motor change task showed a comparable rate of errors and obviously were equally demanding. This strongly suggests 
a specific midfrontal involvement in inhibition rather than differences due to mere task difficulty.

While midfrontal control signals are often reflected in both the delta and theta range, previous studies of mid-
frontal control signals mostly focused on theta reactivity4. In the current study, inspection of the time-frequency 
data suggests that differences between inhibition and the other tasks were more likely to occur in the delta-range 
rather than in the theta-range. Some previous experiments suggested that delta and theta might contribute sep-
arately to motor inhibition32,33. For example, it has been found that delta activity but not theta activity increased 
during inhibition of more frequently repeated (i.e. potentially more prepotent) actions32. However, these studies 
did not compare inhibition with other types of behavioural conflicts, and therefore cannot delineate between the 
contributions of inhibition-specific compared to more general control processes for such findings. The results 
of the present study suggest that midfrontal delta activity is a more selective marker of motor inhibition, while 
theta activity does not allow for a clear distinction between inhibition and motor conflicts with a similar degree 
of control demands.

Figure 2. Statistical maps showing significant contrasts for each time-frequency point between averaged 
activity of conflict and prepotent trials within each task, as well as the contrasts in conflict induced activity 
(conflict − prepotent trials) between the tasks. Each statistical map is controlled for multiple comparisons via 
false discovery rate adjustments. Nonsignificant points have been masked as 0.
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It should be noted, however, that the current findings do not suggest that midfrontal oscillatory activity in the 
delta and theta range represent independent processes. In fact, despite the differences in delta and theta reactivity, 
inspection of the time-frequency maps shows a considerable overlap in their response. Increases in the delta and 
theta band occurred simultaneously, suggesting they are both part of one complex oscillatory signal. It must also 
be pointed out that the results of the time-frequency analysis inevitably represent some degree of imprecision con-
cerning the activity in each individual frequency band. That is, estimations of the power in one frequency band are 
influenced by the activity in adjacent bands34. Therefore, suggestions concerning a potential dissociation between 
the adjacent delta and theta band should be considered with caution. Nevertheless, our results indicate, that a dif-
ferentiation between lower frequency bands (~delta) and higher frequencies (~theta) within the midfrontal control 
signal could lead to new insights concerning the neural correlates of inhibition and other types of control conflicts.

Figure 3. Statistical maps showing significant contrasts between tasks conflicts for each time-frequency point 
for source-reconstructed regions of interests (ROIs) in midfrontal to frontal regions. Each contrast compares 
conflict-induced activity (defined as the average difference between conflict and prepotent trials in each task) 
between two tasks. Statistical maps are controlled for multiple comparisons via false discovery rate adjustments. 
Nonsignificant points have been masked as 0. The contrast between the change and activation task is omitted, 
since no significant differences were found here.
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In discussing the relevance of oscillatory measures for the study of inhibition and conflict resolution, it is 
worth noting that these processes have also been linked to event-related potentials (ERPs) in midfrontal regions. 
More specifically, conflict inhibition is known to elicit the N2/P3-complex25,35,36. Given the overlap in their spatial 
and temporal occurrence, it is reasonable to assume that N2/P3 and midfrontal delta/theta at least in part an 
expression of the same underlying, neural mechanisms32. One approach to disentangle oscillatory activity from 
event-related potentials is the calculation of non-phase-locked oscillatory activity, which is assumed to lower the 
impact of ERPs on time-frequency results. The analysis of non-phase-locked time-frequency data in the current 
study showed clear evidence for midfrontal effects in the delta/theta range. This is in line with previous research 
showing that the removal of phase-locked activity (i.e., event-related potentials) did not significantly diminish 
conflict-induced effects on midfrontal oscillatory activity37–39. Overall, these findings would support the view 
that midfrontal oscillations are not solely an expression of event-related potentials such as the N2/P3-complex. 
However, it should be noted that currently established analysis techniques do not allow for an unambiguous 
disentanglement of ERPs and oscillatory activity40,41. The exact relation between event-related activity and oscil-
lations as indicators of the same cognitive phenomena is rather complex and not yet clearly understood42,43. 
Therefore, further research is needed to clarify the relation and potential dissociation of conflict-related ERPs and 
oscillatory activity related to the midfrontal control signal.

Our current results do not imply that low-frequency activity during conflict resolution is confined to the 
midfrontal brain areas. For example, some previous studies have observed increased low-frequency activity in 
parietal areas during behavioural conflict adjustments, which might be an indicator of frontoparietal network 
related to attentional and cognitive control11,18. We focussed on midfrontal delta/theta activity, since previous 
research suggests it as an essential hub for the detection and resolution of behavioural conflicts20. Source esti-
mation of the current data suggests that the difference between inhibition and other motor conflict tasks was 
most strongly pronounced in anterior and posterior cingulate cortex. Previous studies identified the anterior 
cingulate cortex as a main source for neural activity related to conflict resolution in range of different types of 
conflict tasks9,41,44. Taken together with the current findings, this might suggest that inhibition and other conflict 
tasks share overlapping neural sources for the generation of the midfrontal control signal, but that inhibition 
compared to other motor conflicts leads to a stronger response in the low-frequency range. It should be noted 
that the precision of source estimation in the current study is necessarily limited by the fact, that we did not have 
access to individual brain topographies, but instead relied on a standardized brain template. Importantly, since 
our analysis was focused on the source of midfrontal low-frequency oscillations our findings do not rule out the 
existence of inhibition-specific networks which might be crucial for inhibition but are not necessarily reflected in 
frontal delta/theta oscillations.

A precise dissociation between neural mechanisms specific to inhibition and other potentially related control 
functions remains a persistent problem for neuroscientists. There are two related reasons for this: First, success-
ful inhibition relies on several cognitive functions generally necessary for behavioural readjustments such as 
detection of stimulus deviations (such as the No Go-signal in a stream of Go-signals) and motor planning21,24,45. 
Secondly, cognitive control tasks which do not necessitate an outright motor stopping in conflict situations nev-
ertheless can evoke inhibitory tendencies. For example, surprising events as well as error-related feedback are 
known to evoke motor slowing, which is believed to rely on a partial activation of motor inhibition networks5,46,47. 
In these cases, the partial enactment of motor stopping tendencies could help to avoid automatic and potential 
erroneous responses and thus might facilitate goal-directed readjustment of behavioural tendencies, for example 
in the form of a speed-accuracy trade off48,49. Thus, it might be possible to characterize different cognitive control 
tasks with respect to their degree of inhibitory involvement. Based on the present findings, one could specu-
late that control conflicts that evoke a stronger tendency to withhold or delay motoric reactions (e.g., in order 
re-evaluate the next response) show stronger increases in the delta range than cognitive conflicts where the next 
motor response is less uncertain, even when these tasks are matched for their overall demand on cognitive con-
trol resources. However, future research is needed to test those assumptions, for example by comparing control 
conflicts that differ in their degree of motor involvement13.

To conclude, previous studies observed midfrontal low-frequency oscillations both in motor inhibition and 
other tasks demanding behavioural adjustments due to action conflicts. The present study presents evidence sug-
gesting that the midfrontal oscillatory response is selectively higher for inhibitory conflicts. This effect appears to 
be due to a differential response in the delta and theta band: Theta activity did not differentiate between inhibition 
and the equally demanding motor change task. This could indicate that theta waves more strongly reflect control 
demands that are independent of the specific type of required motor adjustment, whereas delta waves, however, 
are selectively increased for outright motor stopping.

Method
participants. Participants were 27 right-handed students voluntarily taking part for either course token or 
financial reimbursement. Three participants were excluded from statistical analysis due to too small numbers of 
artefact-free EEG trials (see below). The resulting sample consisted of 24 participants (16 female) with a mean age 
of 25.79 years (SD = 4.55). All participants provided written informed consent before the experiment. The study 
was approved by the local ethical board at the Department of Psychology of the Ludwig-Maximilian-University 
Munich, and the procedure was in accordance with its guidelines.

Apparatus and measurement setup. The experiment was presented on a 24-inch monitor at a distance 
of approximately 90 cm from the participants. In this study we used the three stimuli square/circle/triangle as 
response cues, each of which indicated one of three possible actions: Go (pressing a button), No-Go (not press-
ing any button), Switch-Go (pressing an alternative button). The assignment between symbols and actions was 
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randomized for each participant and remained constant throughout the experiment. Each of the three stimuli was 
presented in white on a grey background in the centre of the screen with a visual angle of 0.8°.

EEG was recorded with a BrainVision QuickAmp amplifier using 65 active electrodes (Brain Products 
ActiCap), positioned according to the international 10–20 system. The FCz was used as online reference, and an 
additional ground electrode was mounted on the AFz-position. Impedances were kept below 15 kOhm. EEG was 
recorded with 500 Hz sample rate and an online filter with a bandpass between 0.016 Hz and 250 Hz.

procedure. The experiment was divided in three tasks (inhibition/activation/change), each presented in sep-
arate blocks. The order of the tasks was counterbalanced between participants. Each task induced a motor conflict 
by contrasting one type of frequent/prepotent action, presented in 450 (75%) of all trials, with one type of infre-
quent/conflict action, presented in 150 (25%) of the trials, resulting in 600 trials per task. The order of prepotent 
and conflict trials was randomized separately for each individual task. The to-be-performed responses differed 
across tasks as follows: In the inhibition task, participants had to press the down-arrow button in prepotent trials 
(75% Go), but to not press any button in the conflict trials (25% No-Go). In the activation task, participants had 
not to press any button in the prepotent trials (75% No-Go), but to press the down-arrow button in the conflict 
trials (25% Go). In the change task, participants had to press the down-arrow button in the prepotent trials (75% 
Go), but to press the up-arrow button instead in the conflict trials (25% Change-Go). At the beginning of each 
task, participants were informed about the relative frequency of Go, No-Go or Change-Go trials in the upcoming 
sequence of trials, respectively. Participants performed a short training block consisting of 16 trials prior to each 
task, which was repeated in cases where instructions were obviously not followed correctly. Participants were 
instructed to respond by using their right index finger throughout the whole experiment. The timing of events 
was kept constant across all three tasks: Each trial started with the presentation of one response cue for 100 ms, 
which indicated the action the participant had to perform. Participants were instructed to respond as quickly 
and accurately as possible within a 600 ms time window starting with the onset of the cue. An error message 
was shown if participants incorrectly pressed a button in No-Go trials, pressed the wrong or no button in Go/
Change-Go trials or gave the response too late. If participants responded correctly, no feedback was provided. 
Each trial was separated by a blank screen for a jittered duration of 1500 to 2000 ms.

Data preprocessing. The data was filtered (low-pass: 30 Hz) and referenced to an average of all electrodes 
offline. For six participants one noisy electrode, and for one participant two noisy electrodes were replaced by 
spherical interpolations in EEGLAB50. Data was segmented into epochs from −1500 ms to +1500 ms relative 
to response cue onset. Components representing eye blinks were identified and removed using independent 
component analysis in EEGLAB, leading to a removal of 1–6 (mean = 1.6) components per participant. Trials 
with maximum deflections of +−80 µV were deleted to account for noise artefacts, resulting in the removal 
of, on average, 5.27% (SD = 4.58%) of all trials. Since the goal of the study was to investigate the implementa-
tion of successful conflict resolution, trials with incorrect responses were excluded from further analysis (mean 
rate = 4.22%, SD = 3.56%). On average, the number of remaining trials per participant and condition were 416.0 
(SD = 29.0) for the prepotent actions and 124.9 (SD = 15.3) for the conflict actions.

frequency analysis. Time-frequency power does not only capture purely oscillatory (non-phase-locked) 
activity but is also influenced by event-related (phase-locked) potentials34. This raises a challenge for a distinction 
between event-related potentials and oscillatory phenomena within the same time-range. Since the focus of our 
investigation was the role of midfrontal oscillations, we subtracted phased-locked activity from the overall neural 
activation prior to time-frequency calculation. More specifically, for each condition we calculated the average 
event-related potential by taking the mean of all trials. The condition-wise event-related potential was then sub-
tracted from each single trial of that condition. This approach is commonly used to minimize the influence of 
event-related activity on time-frequency measures and, thus, provide a purer measure of non-phase locked, i.e. 
oscillatory activity37,51,52 (but see Discussion for a further consideration of this issue). Time-frequency power 
was calculated around cue onset, based on the extracted 3-second epochs to avoid edge artefacts. Frequency 
calculation was performed in Brainstorm using Morlet Wavelets from 2–20 Hz in 1-Hetz steps53. Basis for the 
wavelet generation was a template waveform (so-called ‘mother wavelet’) with a central frequency of 1 Hz and 
a temporal resolution of 2 seconds FWHW (full-width at half maximum). For each individual frequency bands, 
target wavelets were generated by scaling the template waveform accordingly. The resulting time-frequency data 
was averaged for each condition. The power values at each time point were baseline-corrected via a decibel con-
version relative to the frequency-specific average power between 300 and 100 ms prior to stimulus onset (dB val-
ues = 10 *log10[power/baseline]). The length of the baseline time window is similar to other studies concerning 
low-frequency oscillations4,28,54. Since in wavelet analysis each individual data point of the time-frequency results 
is estimated via weighted averages of surrounding time points, choosing a relatively short baseline is appropriate 
for time-frequency data34.

Statistical analysis. In order to assess participants’ performance, the mean rate of error trials from each 
condition was submitted to a 3*2 ANOVA with the within factors TASK (inhibition/activation/change) and 
TRIAL TYPE (prepotent trial/conflict trial).

Based on previous studies of midfrontal theta, we analysed oscillatory power at the FCz electrode4,13,55. As can 
be seen in Fig. 4, this location shows a strong peak for activity in both the delta and theta frequency band in the 
midfrontal brain area. The time course of activity at this electrode indicated an increase of low-frequency oscil-
lations approximately 200 ms after signal onset (cf. Fig. 5). Accordingly, we extracted activity in the delta/theta 
range (2–7 Hz) between 200 and 600 ms for each condition. EEG data was analysed with a 3*2 ANOVA with the 
two within-subject factors TASK (inhibition/activation/change) and TRIAL TYPE (prepotent trial/conflict trial). 
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As a follow-up to the TASK*TRIAL TYPE interaction, the difference in conflict-induced reactions between the 
three tasks was investigated by calculating the relative increase in oscillatory power (difference between conflict 
and prepotent trials) for each task and comparing these difference scores between tasks. In a subsequent step, we 
also repeated our analysis separately for theta (4–7 Hz), as well as delta oscillations (2–3 Hz). This allowed testing 
for potential differentiations between these frequency bands, as well as facilitated comparability with previous 
studies of midfrontal control oscillations which often exclusively focused on the theta range4,6. Greenhouse Geiser 
corrections were applied for ANOVAs in case of violations of sphericity, with corrected p-values and original 

Figure 4. Topographical plots representing oscillatory power between 0.2 to 0.6 seconds after stimulus onset 
separately for (a) delta (2–3 Hz) and (b) theta (4–7 Hz) frequencies.
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degrees of freedom being reported. Post-hoc comparisons were Bonferroni-corrected. All statistical tests were 
calculated in R using the packages ezANOVA and effsize.

Since the analysis of summary scores based on averaged time-frequency points might obscure information 
about the extent of individual effects, we also calculated statistical differences between the conditions based on 
individual data points. More specifically, for each condition and participant, we extracted one time-frequency 
map of low-frequency activity during the trial period (2–7 Hz, 0–600 ms). These maps were used to calculate sta-
tistical contrasts between the individual data points of average oscillatory activity in conflict and prepotent trials 
in each task. For this purpose, we employed nonparametric permutation tests as implemented in the Brainstorm 
function process_test_permutation2p (using 1000 randomizations). Additionally, for each task and participant 
we calculated the difference map between the average activity in the conflict and prepotent trials as a measure of 
conflict-induced increases in oscillatory power. We then employed the same nonparametric permutation proce-
dure to calculate the contrasts of conflict-induced increases between the three tasks (i.e., inhibition – activation; 
inhibition – change; change – activation). In each case, multiple comparisons were controlled for via false discov-
ery rate correction as implemented in Brainstorm.

Source estimation. For estimating the sources of conflict-related increases we employed source reconstruc-
tion in Brainstorm53. Based on the MRI template ICBM152 with 15,002 dipoles, a symmetric boundary element 
model (BEM) of the cortex surface with a grid resolution of 5 mm was generated as forward model. For each 
participant a noise covariance matrix was calculated based on the −0.3 to −0.1 pre stimulus baseline. Source 
reconstruction was performed with the minimum norm approach with unconstrained dipole orientation based 
on Brainstorm’s default parameter settings56. Since the focus of our study was midfrontal oscillations, we extracted 
from the source-reconstructed data regions of interest (ROIs) in the central to frontal region as defined in the 
neuroanatomical atlas Mindboggle57. This led to the extraction of 16 ROIs (i.e., 8 analogous regions on the left 
and right hemisphere): caudal anterior cingulate cortex, rostral anterior cingulate cortex, posterior cingulate 
cortex, superior frontal lobe, caudal middle frontal gyrus, rostral middle frontal gyrus, precentral gyrus, and 
paracentral cortex (cf57 for a detailed description of the localization procedure). For each ROI and each condition, 
frequency-maps were calculated for each participant for the main trial period (0–0.6 s) in the delta-theta range 
(2–7 Hz). Frequency maps were converted to decibel relative to the pre-stimulus baseline. The goal of this analysis 
was to identify potential differences in source activation between inhibition and other types of motor conflicts. 
Therefore, we estimated the increase in oscillatory activity in the delta-theta range due to the occurrence of a con-
flict within each of the three tasks and compared conflict-related increases between the tasks. More specifically, 
for each task we subtracted the mean activity during prepotent trials from the mean activity during conflict trials. 
For each ROI separately, we then contrasted this measure of conflict-induced activation between the tasks with 

Figure 5. Time-frequency plots for the FCz separately for all conditions. Dashed line at time point 0 indicates 
action stimulus onset.
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nonparametric permutation tests across the time-frequency maps (inhibition – activation, inhibition – change, 
change – activation), employing false discovery rate corrections for multiple comparisons. Thus, the resulting 
maps indicate conflict-induced source activity which differs between the tasks.

Data Availability
Data and materials of this study are achieved online at https://osf.io/zdtgy/?view_only=66dc9498c4d247d-
4b2a28e6ac9c57cb4.
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