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Abstract
Objective POLE-mutant, microsatellite-instable (MSI), p53-mutant and non-specific molecular profile (NSMP) are TCGA-
defined molecular subgroups of endometrial cancer (EC). Hypothesizing that morphology and tumor immunology might 
differ depending on molecular background concerning composition and prognostic impact, we aimed to comprehensively 
interconnect morphologic, immunologic and molecular data.
Methods TCGA-defined molecular groups were determined by immunohistochemistry and sequencing in n = 142 endo-
metrioid EC. WHO-defined histopathological grading was performed. The immunologic microenvironment (iTME) was 
characterised by the quantification of intraepithelial and stromal populations of tumor-infiltrating lymphocytes (TIL: overall 
T-cells; T-Killer cells; regulatory T-cells (Treg)). Immunologic parameters were correlated with WHO-grading, TCGA-
subgroups and prognosis.
Results High density TIL were significantly more frequent in high-grade (G3) compared to low-grade (G1/2) EC in the 
whole cohort and in the subgroup of POLE-wildtype-/microsatellite-stable-EC. MSI was associated with high-level TIL-
infiltration when taking into account the type of mismatch repair defect (MLH1/PMS2; MSH2/MSH6). Prognostic impact 
of biomarkers depended on molecular subgroups: In p53-mutant EC, Treg were independently prognostic, in NSMP, the 
unique independently prognostic biomarker was WHO-grading.
Conclusions EC morphology and immunology differ depending on genetics. Our study delineated two molecularly distinct 
subgroups of immunogenic EC characterized by high-density TIL-infiltration: MSI EC and high-grade POLE-wildtype/
microsatellite-stable-EC. Prognostic impact of TIL-populations relied on TCGA-subgroups indicating specific roles for TIL 
depending on molecular background. In NSMP, histopathological grading was the only prognostic biomarker demonstrating 
the relevance of WHO-grading in an era of molecular subtyping.
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Introduction

Endometrial cancer (EC) is the most common gynaecologic 
malignancy with an estimated number of over 60.000 newly 
diagnosed cases in the United States accounting for 12.000 
deaths in 2019. Incidence and mortality have been rising 
over the last years [1].

The World Health Organisation (WHO) Classification of 
Tumours of the Female Reproductive Organs [2] classifies 
EC into histologic subtypes (e.g. endometrioid; serous; clear 
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cell) and defines a histopathologic grading of the endome-
trioid subtype into G1, G2 (low-grade) and G3 (high-grade; 
reviewed in [3, 4]) based on the morphologic features glan-
dular vs. solid growth. This classical view has been com-
plemented by insights into molecular genetics. “The Can-
cer Genome Atlas” (TCGA) published a comprehensive 
molecular characterisation based on exome sequencing of 
EC resulting in a classification into four genetically defined 
subgroups [5]: (1) Polymerase-Ɛ (POLE) ultramutated cases, 
(2) Microsatellite instable (MSI) cases with defective mis-
match repair (MMR) due to the loss of function of MMR 
proteins MLH1/PMS2 or MSH2/MSH6, (3) Copy number 
high cases (“serous-like”), characterized by frequent muta-
tions in TP53, extensive copy number variation, low muta-
tional rate and (4) Copy number low microsatellite stable 
(MSS) cases with no defining molecular alteration (Non-
specific molecular profile; NSMP). Subsequently the TCGA 
classification was reliably reproduced by two classifiers 
which are available for routine pathological analysis referred 
to as ProMisE/Vancouver and PORTEC/Leiden based on the 
following analysis: POLE mutational analysis by polymerase 
chain reaction (PCR) followed by mismatch repair protein 
immunohistochemistry (MMR) and p53 immunohistochem-
istry [3, 6–8].

The clinical outcome of EC patients varies significantly, 
suggesting a biological diversity of EC that is not fully 
reflected in the current models [9]. It is well-recognized that 
POLE-mutant cases carry an extremely favourable progno-
sis whereas copy number high cases show an unfavourable 
outcome necessitating aggressive treatment (reviewed in [3, 
10]). However, prognostic biomarkers for MSI and NSMP 
cases remain to be elucidated as these patients show varying 
clinical courses with an overall intermediate prognosis [5, 
10]. Therefore, treatment stratification to avoid under- and 
overtreatment of patients is difficult, especially in EC with 
MSI or NSMP. Furthermore, it is unclear if WHO-grading 
can provide additional information for treatment decisions 
as the prognostic value of WHO grading in the context of 
the novel molecular data is not yet elucidated.

Not only knowledge on genetics but as well on tumor 
immunology has progressed. Comprehensive studies in vari-
ous tumor entities revealed that a high mutational load with 
subsequent high numbers of immunogenic neoantigens leads 
to a strong anti-tumoral cytotoxic T-cell response [11, 12]. In 
general, based on the presence or absence of T-cells, charac-
terized by expression of CD3 (reviewed in [13]), the immu-
nologic tumor microenvironment (iTME) is classified as 
“T-cell inflamed” versus “non T-cell inflamed” [14, 15]. Sev-
eral subsets of T-cells play—partially antagonising—roles 
in the immunologic host response: CD8 + tumor-infiltrating 
lymphocytes (TIL; T-Killer cells) are crucial for a potent 
cytotoxic antitumor response [14, 15]. Regulatory T-cells 
(Treg), specifically characterized by the expression of the 

transcription factor FoxP3 [16], are involved in the tumor-
host interaction by suppression of the immune responses 
[4, 17]. In EC, the iTME is—in accordance with the above 
described mechanisms—composed of several populations of 
immune cells. Increased numbers of CD3 + TIL have been 
associated with a favourable [18], FoxP3 + Tregs with a poor 
outcome [19]. However, studies comprehensively incorpo-
rating morphologic, molecular and immunologic data are 
still rare [12, 20–23] with only few studies comprising com-
prehensive data on TCGA-defined molecular subgroups.

The overriding hypothesis of our study was, that the role 
of EC morphology represented by WHO grading as well as 
influence and infiltration patterns of various TIL populations 
might differ depending on molecular background (POLE/
P53 mutational status; Microsatellite status). Morphology 
and iTME might therewith carry differing prognostic impact 
depending on TCGA grouping of EC and might have the 
potential to be prognostic biomarkers for specific molecular 
defined EC subgroups (e.g. MSI and NSMP EC). Targeting 
these hypotheses, we analysed the immune contexture in a 
morphologically and molecular well-characterized homo-
geneous cohort of primary, untreated endometrioid EC. We 
correlated immunologic with morphologic data and TCGA-
subgroups and analysed the prognostic impact of morpho-
logic and immunologic biomarkers in the whole patient 
cohort and in the context of the TCGA-subgroups. With this 
study, we present a comprehensive analysis of morphomo-
lecular and immunologic data in endometrioid EC.

Material and Methods

Patient cohort and clinico‑pathological data

Our cohort included n = 142 therapy-naïve patients diag-
nosed with endometrioid EC between 2000 and 2014 who 
underwent resection of primary tumors at Klinikum Rechts 
der Isar, Technical University of Munich, Germany. Grading 
was undertaken according to the current WHO classification 
of tumors of the female reproductive organs [2]. Staging 
was performed according to the UICC/FIGO tumor, node 
and metastasis classification (7th edition; 2011)[24]. Patients 
received standardized adjuvant treatment and follow-up 
according to German guidelines [25]. Median follow-up 
time of patients alive (88/142; 62.0%) was 63.0 months 
(12.0–191.0 months), median follow-up of deceased patients 
(54/142; 38.0%) was 33.0 months (1.0–141.0 months), for 
the whole patient cohort, median follow-up was 74.0 (5.7) 
months. Detailed clinico-pathological data are given in 
Table 1. Approval for the study was obtained from the Ethics 
Review Committee of the Technical University of Munich 
(331/17).
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Tissue micro array construction

Formalin-fixed paraffin-embedded tumor samples were 
assembled into tissue micro arrays (TMA) using a Tissue 
Microarrayer (Beecher Instruments) with a core size of 
0.6 mm. Three cores per case, one from the invasion front 
and two from tumor core region, were selected from the 
primary tumors after reviewing the whole tumor slide. Areas 
were marked taking into account TIL infiltration and were 
representative for TIL distribution of the whole tumors.

Immunohistochemistry (IHC)

An automated immunostainer (Ventana Benchmark XT) 
with an ultraView DAB detection kit (Ventana Medical 
Systems, Roche) was used for immunohistochemical stain-
ing of 2 µm sections from the TMA. Primary antibodies 
against p53 (clone DO-7, dilution 1:200, Dako), MSH2 
(clone G219-1129, dilution 1:200, Cell Marque), MSH6 
(clone 44, dilution 1:400, BD Transduction Laboratories), 
PMS2 (clone EPR3974, ready to use, Roche), MLH1 (clone 
M1, ready to use, Ventana), CD3 (clone MRQ-39, dilution 
1:500, Cell Marque), CD8 (clone C8/144B, dilution 1:100, 
Dako) and FoxP3 (clone 236A/E7, dilution 1:200, Abcam) 
were applied. Appropriate positive and negative controls 
were run in parallel.

Scoring of immunohistochemical stainings

Testing of microsatellite status as well as analysis of p53 sta-
tus were performed by immunohistochemistry in analogy to 
ProMisE/Vancouver and PORTEC/Leiden classifiers [3, 6, 
8] taking into account all tumor cores. MSI was determined 
as two markers negative (MSH2/MSH6; MLH1/PMS2). IHC 
score 0 (complete p53 negativity) or IHC score 2 (strong 
nuclear p53 positivity in all tumor cells) was used as a sur-
rogate marker for p53-mutation. Intermediate/heterogeneous 
nuclear staining (score 1) was documented as p53 wild type 
(Fig. 1, Supplementary Fig. 1).

Staining results of p53, MSH2, MSH6, MLH1 and 
PMS2 stains on TMA which showed staining results close 
to respective cut-offs were repeated on whole slides of full 
tissue blocks to reach a final result for respective stainings.

For analyses of TIL populations (Fig. 1; Supplementary 
Fig. 1), each tumor core was evaluated separately and the 
average density across all cores of specific regions (invasive 
front; tumor center) and whole tumor was calculated. The 
analysis of the TIL subpopulations was performed in three 
areas: (1) Intraepithelial TIL: the tumor region of the respec-
tive cores showing the highest density of the TIL popula-
tion was selected on low power magnification (4x). Within 
this region, the amount of intraepithelial TIL (CD3i; CD8i; 
FoxP3i) was scored by counting the absolute number of TIL 
within 100 tumor cells using high power magnification (40x 
[26]). (2) Stromal TIL: In analogy to previous TIL-scoring 
approaches [27] density was evaluated by determination of 
percentage of the tumor stroma occupied by the respective 
TIL populations (CD3s; CD8s; FoxP3s). (3) Overall TIL: 
Density was scored via determination of the percentage 
of the tumor area (exclusion of necrosis) occupied by the 
respective TIL population (CD3o; CD8o; FoxP3o) [28].

Absolute values for TIL infiltrates were documented and 
subsequently assigned to scoring groups as described below.

Table 1  Clinicopathological and molecular data

Number of cases Percentage 
of cases (%)

Median age (range)
 69.7 (36.7–94.0)

pT stage
 1a/1b 101 71.1
 2 24 16.9
 3 16 11.3
 N/A 1 0.7

pN stage
 0 132 93.0
 1 10 7.0

M stage
 0 135 95.1
 1 7 4.9

FIGO Stage
 Ia/Ib 100 70.4
 II 19 13.4
 III 16 11.3
 IV 7 4.9

Grading
 1 45 31.7
 2 45 31.7
 3 52 36.6

p53 status
 p53 mutation 20 14.1
 p53 wildtype 122 85.9

Microsatellite status
 MSS 93 65.5
 MSI (MLH1/PMS2) 42 29.6
 MSI (MSH2/MSH6) 7 4.9

POLE status
 POLE mutation 7 4.9
 POLE wildtype 135 95.1

Molecular Classification
 POLE-mutant 7 4.9
 MSI 47 33.1
 P53-mutant 12 8.5
 NSMP 76 53.5
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Cut‑off determination for TIL infiltration

Using disease-specific survival (DSS) as an endpoint for 
the determination of the optimal prognostic cut-off values, 
receiver operating characteristic (ROC) curves were calcu-
lated for TIL density and followed by area under the curve 
(AUC) analysis. Cut-offs for high versus low TIL density 
were set at values with the highest Youden’s index (Sup-
plementary Table 1).

DNA extraction

After marking of the tumor area and annotation of per-
centage of vital tumor tissue (≥ 50% tumor cell content) 
for micro-dissection, DNA was extracted using the Max-
well 16 RSC extraction system (Promega) according to the 
manufacturer´s protocols. DNA concentration was measured 
fluorometrically using the QuBit 3.0 system (Thermo Fisher 
Scientific) and DNA quality was determined by a qPCR 
assay (RNAseP assay, Thermo Fisher Scientific).

POLE (NM.006231) mutational analysis

All cases were analyzed for POLE-Ɛ-mutations by 
Sanger sequencing of exons 9, 11, 13, and 14, which 

were amplified using primers as previously described 
[29]. Subsequent Sanger sequencing was conducted on 
a 3130 genetic analyzer (Applied Biosystems) using 5 µl 
amplified DNA/sample and the BigDye Terminator Cycle 
Sequencing Kit (Applied Biosystems) according to the 
manufacturers` protocols. Reported files were examined 
using BioEdit version 7.2.5.

Statistics

Analyses were performed using SPSS 25 (SPSS Inc.) and 
R 3.6.1. The distribution of qualitative data was com-
pared between groups using χ2-test or Fisher’s exact test. 
Survival probabilities were plotted with the cumulative 
incidence function. Median follow-up was estimated with 
the Kaplan–Meier estimate for potential follow-up, mean 
follow-up and 5 year survival by Kaplan Meier estimate. 
Overall survival (OS) was defined as patients alive at the 
end of follow-up, disease-specific survival (DSS) as all 
patients, who did not suffer from disease-related death. 
Disease-free survival (DFS) included all patients, who 
did not suffer from disease progression/recurrence during 
follow-up. Multivariate survival analysis was performed 
with the Cox Proportional Hazard model. All statistical 
tests were performed on exploratory two-sided 5% sig-
nificance level.

Fig. 1  Representative micrographs of endometrioid endometrial 
carcinoma: a hematoxylin–eosin staining; b p53 staining showing a 
p53-mutant carcinoma with immunohistochemical staining score 2; 
c MLH1 staining showing a carcinoma with loss of MLH1 expres-

sion (positive internal control); d CD3 staining visualizing CD3 + Pan 
T-cell infiltrate; e; CD8 staining visualizing CD8 + T Killer-cell infil-
trate (f) FoxP3 staining with nuclear positivity in regulatory T-cells
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Results

Morphologic and molecular characterization of EC

90/142 (63.4%) EC were classified as low grade (G1/G2), 
52 (36.6%) as high grade (G3). According to the above 
described classifiers [3, 6–8], the study contained 4.9% 
POLE-mutant (detailed list of mutations in Supplementary 
Table 2), 33.1% MSI, 8.5% p53-mutant and 53.5% NSMP 
cases (Table 1).

Composition of populations of tumor infiltrating 
lymphocytes

Absolute infiltration densities (mean; median; range) of 
TIL populations are given in Supplementary Table 3. Clas-
sification in scoring groups showed the following results 
(o = overall; i = intraepithelial; s = stromal):  CD3ihigh 
112/142 (78.9%);  CD3shigh 79/142 (55.6%);  CD3ohigh 
51/142 (35.9%).  CD8ihigh 71/142 (50.0%);  CD8shigh 103/142 
(72.6%);  CD8ohigh 81/142 (57.0%).  FoxP3ihigh 5/142 (3.5%); 
 FoxP3shigh 29/142 (20.4%);  FoxP3ohigh 28/142 (19.7%) 

(Supplementary Table 4; Supplementary Table 5). High 
density immune cell infiltrate of all analyzed TIL popula-
tions was significantly more frequent at the invasive front 
compared to tumor center (p < 0.01).

Correlation of immunologic variables 
with morphomolecular and clinical data

Immunologic-morphologic correlation: A high-density Pan 
T-cell infiltrate (CD3 +) and T-Killer cell infiltrate (CD8 +) 
was significantly more frequent in high-grade EC whereas 
in contrast a high density Treg infiltrate was more frequently 
observed in low-grade cases (p < 0.05; Fig. 2; detailed num-
bers and p values in Table 2, Supplementary Table 4).

Immunologic-molecular correlations: MSI was associated 
with CD3 + , CD8 + and FoxP3 + T-cell infiltrate when con-
sidering the specific mismatch repair defect (MLH1/PMS2 
versus MSH2/MSH6): In MLH1/PMS2 deficient EC sig-
nificantly higher levels of CD3 + ; CD8 + and FoxP3 + TIL 
infiltrates were observed compared to MSH2/MSH6-defi-
cient and MSS cases (Fig. 2). No significant association of 
p53 and POLE mutation with immunologic parameters was 
found, most likely due to only rare mutant cases (p < 0.05; 

Fig. 2  Association of CD3o + and CD8o + TIL infiltrates (overall 
infiltration density) with morphomolecular parameters: a CD3o + TIL 
infiltrate correlated with grading; b CD8o + TIL infiltrate correlated 

with grading; c CD3o + TIL infiltrate correlated with microsatellite 
status; d CD8o + TIL infiltrate correlated with microsatellite status
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detailed numbers and p values in Table 2, Supplementary 
Table 4).

Immunologic-clinical correlations: Correlation of immu-
nologic with clinical data revealed only few significant asso-
ciations. Amongst others, overall Treg (FoxP3o) density was 
significantly higher in cases with high FIGO stage (p < 0.05; 
detailed numbers and p values Supplementary Table 5).

Correlation of immunologic variables 
with morphomolecular data in the molecular 
defined subgroup MSS and POLE wildtype EC

POLE-mutant and MSI EC are known to be highly immu-
nogenic due to their high mutational load. We hypothesized 
that a further immunogenic subgroup of EC potentially 
exists among the subgroup of MSS EC without POLE 
mutation (POLE-wildtype + MSS EC). Therefore, we ana-
lyzed associations of immunologic and morphomolecular 
data in this specific molecular defined subgroup (n = 88): 
High-density immune cell infiltrate (CD3; CD8; FoxP3) was 
significantly correlated with high-grade (G3) morphology 
(p < 0.05; Supplementary Table 6).

Survival associations of immunologic parameters 
in the whole patient cohort

Analysing survival associations in the whole patient cohort, 
we did not detect any significant correlations (Supplemen-
tary Table 7 summarizes OS, DSS and DFS for all immu-
nologic variables).

Survival associations of immunologic parameters 
depending on TCGA‑defined subgroups

In line with previous literature, molecular classification of 
EC according to TCGA resulted in four prognostic groups 
(POLE-ultramutated; MSI; P53-mutant; NSMP) signifi-
cantly associated with DSS (p = 0.041) and DFS (p = 0.014) 
(Supplementary Fig. 2) with POLE-mutant EC carrying the 
most favourable prognosis and p53-mutant EC showing the 
worst outcome. These data may prove the robustness of our 
results.

In p53-mutant EC, stromal Treg were an independent 
prognostic factor for OS (p = 0.035), DSS (p = 0.032) and 
DFS (p = 0.012). Median OS (DSS; DFS) of patients with 
 FoxP3slow was 83.0 (108.0; 90.0) months compared to 12.0 
(12.0; 11.0) months of counterparts  (FoxP3shigh), 5 year 
survival rates were OS/DSS/DFS: 84.2%/84.2%/73.7% vs. 
0.0%/0.0%/0.0%. Results of cox regression analysis (incor-
porating age, grading, FIGO stage) are given in Table 3.

In NSMP EC, WHO grading was identified as independ-
ent prognostic factor for DSS and DFS whereas immuno-
logic variables did not influence outcome. Patients with Ta
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low-grade EC had a mean DSS/DFS 117.7/127.1 months 
while mean DSS/DFS of counterparts with high-grade car-
cinomas was 107.8/112.9 months. 5 year survival rates were 

as follows: DSS 90.9%/57.1%; DFS 81.8%/57.1%. Resulting 
hazard ratios for high-grade EC were 4.2 for DSS (p = 0.11) 
and 2.8 for DFS (p = 0.042; Fig. 3; Table 3).

Table 3  Multivariate statistical analysis for p53-mutant endometrial carcinoma (left side) and endometrial carcinoma with non-specific molecu-
lar profile (right side) under inclusion of age, grading, stage and FoxP3 + TIL (in p53-mutant endometrial carcinoma) 

Endometrial carcinoma with p53 mutation Endometrial carcinoma with non-specific molecuar profile (NSMP)

HR (OS) Lower CI 
(95%)

Upper CI 
(95%)

p value HR (DSS) Lower CI 
(95%)

Upper CI 
(95%)

p value

Age Age
 Per year 2.755 0.369 20.560 0.323  Per year 0.978 0.310 3.084 0.970

Grading Grading
 1 0.698  Low 0.011
 2  > 25  < 0.001  > 25  High 4.329 1.404 13.349
 3  > 25  < 0.001  > 25

FIGO Stage FIGO Stage
 Low (I/II) 12.477 0.682  > 25 0.089  Low (I/II) 0.019
 High (III/

IV)
 High (III/

IV)
4.375 1.270 15.069

FoxP3 + TIL
 Low 0.035
 High 49.3 1.315  > 25

HR (DSS) Lower CI 
(95%)

Upper CI 
(95%)

p value HR (DFS) Lower CI 
(95%)

Upper CI 
(95%)

p value

Age Age
 Per year 1.791 0.134 23.978 0.660  Per year 1.572 0.561 4.401 0.390

Grading Grading
 1 0.726  Low 0.042
 2  > 25  < 0.001  > 25 High 2.778 1.037 7.442
 3  > 25  < 0.001  > 25

FIGO Stage FIGO Stage
 Low (I/II) 0.119 Low (I/II)  < 0.001
 High (III/

IV)
12.377 0.518  > 25 High (III/IV) 8.527 3.144 23.123

FoxP3 + TIL
 Low 0.032
 High 71.588 1.430  > 25

HR (DFS) Lower CI 
(95%)

Upper CI 
(95%)

p value

Age
 Per year 0.477 0.050 4.506 0.518

Grading
 1 0.991
 2  > 25  < 0.001  > 25
 3  > 25  < 0.001  > 25

FIGO Stage
 Low (I/II) 0.029
 High (III/

IV)
17.238 1.347  > 25

FoxP3 + TIL
 Low 0.012
 High 147.060 2.976  > 25
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No correlation of immunologic parameters with outcome 
was observed in POLE-mutant cases.

Discussion

EC is the malignancy with highest prevalence and incidence 
in gynaecology. Clinical outcome of patients varies signifi-
cantly [9]—necessitating prognostic biomarkers to avoid 
over- or undertreatment. Molecular subgrouping as defined 
by TCGA into POLE-mutant EC, MSI EC, NSMP EC and 
p53-mutant EC renders valuable prognostic information with 
POLE-mutant cases carrying a favourable prognosis whereas 
P53-mutant EC show an unfavourable outcome necessitating 
aggressive treatment (reviewed in [3, 10]). However, prog-
nostic biomarkers for MSI and NSMP cases remain to be 
elucidated as these patients show varying clinical courses 
with an overall intermediate prognosis [5, 10]. Further-
more, the future prognostic value of morphologic grading 
described by the WHO classification [3, 4] in the molecular 
context is up to date unclear as e.g. POLE-mutant EC show 
a high-grade (G3) morphology despite comparably benign 
clinical course [6, 7, 10]. TCGA-defined molecular groups 
might not only give prognostic information but may, fur-
thermore, influence the composition and prognostic impact 
of the iTME of EC consisting of various TIL populations.

Aiming to gain data to further elucidate the role and 
impact of morphology and tumor immunology in the con-
text of the underlying molecular alterations we analysed the 
immune contexture represented by the intratumoral T-cell 
infiltrate (Pan T-cells, T-Killer cells, Treg) in a morpho-
logically and molecularly well-characterized homogeneous 

cohort of primary, untreated endometrioid EC. We cor-
related immunologic with morphologic data and TCGA-
defined molecular subgroups and analysed the prognostic 
impact of morphologic and immunologic biomarkers in the 
whole patient cohort and in the context of TCGA-subgroups.

Confirming previous studies, our data show that sub-
groups of EC contain a T-cell inflamed immunogenic iTME 
represented by a dense T-cell infiltration [18, 20–22]. In 
accordance with our hypothesis outlined in the introduc-
tion, these immunogenic subgroups were characterized by 
distinct morphologic and molecular features:

We observed an immunogenic subgroup characterized by 
high-grade (G3) morphology: A high-density TIL infiltrate 
was significantly correlated with WHO-defined high-grade 
(G3) EC—a finding, which was observed as well in a pre-
vious analysis by Li et al. [30]. The correlation might, at 
first glance, be explained by a high number of high-grade 
morphology cases with MSI or POLE-mutation, both of 
which are known to show high-grade morphology and to be 
densely infiltrated by immune cells [17, 20, 22, 30–32]. But 
the correlation was found to be significant in the subgroup 
of MSS EC without POLE mutation (MSS/POLE wildtype 
EC), demonstrating, that an immunogenic subgroup of EC 
without MSI/POLE mutation is characterized by high-grade 
(G3) morphology.

Furthermore, MSI was confirmed to be a highly immuno-
genic subtype of EC: MSI EC were significantly associated 
with a high density TIL infiltrate. In previous studies these 
finding was linked to a high mutational load in MSI cancers 
[12, 20, 22, 23, 30, 31]. Interestingly, in our study, the corre-
lation of MSI with high immunogenicity was only significant 
when the underlying type of MMR defect was included into 

Fig. 3  Cumulative incidence function visualizing disease-specific and disease-free survival depending on grading [carcinomas with non-specific 
molecular profile (a, b)]
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calculation with MLH1/PMS2 defective cases being highly 
immunogenic in contrast to MSH2/MSH6 defective and 
MSS EC. This may give a hint that either type of MMR 
defect or sporadic versus hereditary origin of MSI might 
imply a very distinct iTME [33].

Interestingly, the inflammatory infiltrate showed hetero-
geneity considering their intratumoral distribution: the high 
density T-cell infiltration showed significantly higher levels 
within the invasive front.

Data concerning prognostic impact of immunologic bio-
markers in EC in the context of TCGA-subgroups is up to 
date rare with previous studies including partially small 
cohorts with mixed EC subtypes and unclear genetic back-
ground [18, 19, 23, 30]. In the whole—molecularly highly 
heterogeneous—patient cohort, none of the analysed varia-
bles showed a prognostic impact. In contrast, when consider-
ing the molecular background, we found striking differences 
in the impact of certain T-cell populations on patient prog-
nosis: In p53-mutant cases, Tregs showed a major prognostic 
impact. A high density Treg infiltrate was independently cor-
related with a poor patient prognosis. In NSMP EC, immu-
nologic biomarkers revealed no prognostic impact—the only 
independent biomarker was histopathological WHO-based 
grading with high-grade EC carrying a significantly worse 
prognosis.

In accordance with our results, Yamagami et al. found 
Tregs to be a negative prognostic biomarker [19]. Previous 
results concerning further TIL populations were inconclu-
sive: Yamashita et al. found an impact of CD8 + TIL on DFS 
[23] but only used univariate analysis. Cermakova identified 
CD3 + T-cell infiltrate to be prognostic but did not further 
subtype the TIL subpopulation [18]. These differing results 
may at least in part be explained by the fact that none of the 
previous studies analysed the prognostic impact of immuno-
logic parameters in the context of TCGA subgroups.

The prognostic impact of Treg may be explained by the 
functional role of these lymphocyte populations in cancer 
immunity. Tregs suppress immune responses by suppression 
of activation, proliferation and effector functions of numer-
ous cell types including T-Killer cells and are, therefore, 
involved in metastasis and progression [17]. In line with that, 
a high density Treg infiltrate may indicate a poor survival 
due to suppression of anti-cancer immune responses.

Taking together the results of our study the presented 
comprehensive analysis of morphology and iTME in the 
context of the TCGA-defined subgroups delineates major 
immunogenic EC subgroups: MSI EC, especially those with 
MLH1/PMS2 defect, and high-grade (G3) POLE-wildtype/
MSS EC. We, furthermore, identify prognostic TIL subpop-
ulations (Treg), which vary depending on TCGA subgroups 
indicating specific roles for TIL populations depending on 
molecular background. In NSMP EC, WHO grading was 
the only independent prognostic biomarker demonstrating 

the potential future relevance of WHO-grading in an era of 
molecular subtyping.

Our study clearly has some limitations. Potentially due 
to the low absolute number of cases with POLE mutation 
(which is nevertheless in accordance with the literature [34, 
35]), we did not detect associations of POLE-mutant EC 
(which had been demonstrated in multiple previous studies) 
with T-cell infiltration. Furthermore, our study has a retro-
spective design necessitating prospective studies to confirm 
the findings.
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