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Abstract

Background

It is of interest to explore the variability in how the COVID-19 pandemic evolved geographi-

cally during the first twelve months. To this end, we apply inequality indices over regions to

incidences, infection related mortality, and infection fatality rates. If avoiding of inequality in

health is an important political goal, a metric must be implemented to track geographical

inequality over time.

Methods

The relative and absolute Gini index as well as the Theil index are used to quantify inequal-

ity. Data are taken from international data bases. Absolute counts are transformed to rates

adjusted for population size.

Results

Comparing continents, the absolute Gini index shows an unfavorable development in four

continents since February 2020. In contrast, the relative Gini as well as the Theil index sup-

port the interpretation of less inequality between European countries compared to other con-

tinents. Infection fatality rates within the EU as well as within the U.S. express comparable

improvement towards more equality (as measured by both Gini indices).

Conclusions

The use of inequality indices to monitor changes in geographic inequality over time for key

health indicators is a valuable tool to inform public health policies. The absolute and relative

Gini index behave complementary and should be reported simultaneously in order to gain a

meta-perspective on very complex dynamics.
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Introduction

It is of interest to evaluate the distributional inequality (between regions, over time) of key

indicators representing COVID-19 effects: Incidence (rates, IR), mortality (rates, MR), and the

infection fatality (rate, IFR). These measures inform global as well as regional health policies.

Many sources, such as private, institutional, national, or international dashboards provide

these information as maps or enumerated in long lists. The information presented reflect

global geographic scenarios or are focused on smaller scale areas. How different is the docu-

mented pandemic activity worldwide, in particular between continents, between nations or

between sub-regions of larger geographical entities? How does this heterogeneity change over

time and how does it depend on geographic scale? Furthermore, it is of interest to study

inequality across regions with a common health policy framework, such as the European

Union (EU) or the United States of America (U.S.).

In general, such maps or listings are not accompanied by general purpose measures to

quantify heterogeneity or inequality. Often, the analyst uses the “eyeball test” to scan over the

data quickly. Sometimes, caterpillar plots represent estimates of the same parameter, such as

incidence rate and illustrate their variability over a set of units. Following information pre-

sented in maps or long lists over time is a further challenge. However, a more formal approach

is needed to study heterogeneity or inequality of complex dynamics over space and time.

In this paper, heterogeneity is studied in terms of inequality. Inequality measures examine

the distribution of a single variable whose data are arranged in a monotonic order. A theoreti-

cal and methodological discussion of how to measure inequality is found in the economic liter-

ature [1].

Among the most common inequality metrics are the relative Gini index (GIrel) and the

Theil index (TI). The GIrel is the mean absolute distance between the observations divided by

their mean. It takes values between 0 and 1 (0 equality, 1 maximal inequality). The reason for

its popularity is that the GIrel is equal to the ratio of two areas in Lorenz curve diagrams, which

are widely used in economics [2].

The Theil index is entropy based and decreases with increasing entropy. As for any distribu-

tion and with reference to information theory, maximum entropy occurs once the observations

cannot be distinguished by their values, i.e. when there is perfect equality. The more “distin-

guishable” observations are, the lower is the “actual entropy” of a system consisting of regions

with a specific disease status. The TI has obvious, intuitive, plausible and natural justification,

rather than just being justified in terms of entropy. It’s maximum is given by the natural loga-

rithm of the population size.

This paper also studies the absolute Gini index (GIabs), which is the mean absolute differ-

ence between observations. The GIabs is scale dependent. For X, the variable of interest, it

holds that GIrel(c�X) = GIrel(X), but GIabs(c�X) = c�GIabs(X). If absolute differences do not

change but the mean of the variable will increase over time, the GIabs remains the same but the

GIrel will decrease over time (see Eqs (1) and (2)). It is recommended to use the GIabs as the

more reliable measure of inequality for time dependent analyses compared to GIrel [3].

It is not common to use inequality indices based on quadratic distances like variance or

standard deviation. Metrics based on such squared distances diminish small (<1) and exagger-

ate larger differences (>1).

Inequality indices have been introduced by economists. However, besides their use in eco-

nomic settings they also play a role in health-related topics, where they are mainly used to

study health equity. Equity goals, such as equal treatment for equal need or equality of access

to health care, are central to health policy [4]. Specific applications of the GIrel and GIabs

regarding equity in health and health care are geographical inequality in mortality and life
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expectancy, and access to and distribution of health care resources [5–11]. Inequality indices

are also used to study the spread of infectious diseases. How does the distribution of sexually

transmitted diseases depend on level of sexual activity [12]? How is the inequality between

malaria prevalence among populations [13]? Inequality studies also concern the distribution

of patient recruitment into clinical trials in different settings [14].

Williams and Doessel [15] review the economic literature on inequality measures from the

perspective of health scientists. They stress the relevance of measures, such as Gini indices,

Theil’s Index of Entropy or Atkinson’s Measure [1] and state: “It is often important in measur-
ing inequality to report several measures/indexes, within the constraints of the data available,
and to examine the strengths and weaknesses of each measure. In so doing, the nature of the
inequality is depicted more accurately, and one can weight equity judgements more wisely, than
is possible by emphasising any single measure of inequality”.

Health equity goals for COVID-19 are formulated by several agencies, see for example [16].

Inequities in social determinants of health that put groups at increased risk of getting sick and

dying from COVID-19 include: healthcare and utilization; occupation, educational, income,

or wealth gaps; and housing. Achieving health equity requires as a first step quantifying health

inequality before focusing efforts on preventable inequities and eliminating inequities in health

and health care. The population health impact of COVID-19 has exposed longstanding inequi-

ties that have systematically undermined the physical, social, economic, and emotional health

of racial and ethnic minority populations and other population groups that are bearing a dis-

proportionate burden of COVID-19 [17].

To the best of our knowledge, inequality in COVID-19 infections and related deaths has

not been quantitatively investigated by using indices of inequality. We also explore inequality

in infection fatality rates. A specific focus of our paper is the comparison of inequality between

the United States and the European Union.

Materials and methods

The data

Global infection and death data were retrieved from the Johns Hopkins University Center for

Systems Science and Engineering (JHU CSSE) COVID-19 Data Repository [18]. Data between

January 29, 2020 and February 2, 2021 were used. Population data for each country were

extracted from the COVID-19 database of the European Centre for Disease Control and Pre-

vention (ECDC) [19], which includes a population estimate for 2019. Data on the assignment

of countries to continents were also extracted from the ECDC data. A subset of the JHU CSSE

data was the basis for the analysis of the EU and the U.S. data. The list of the current member

states of the EU was obtained from the official website of the EU [20] and excludes the United

Kingdom. Of note, the continent Europe contains a broader selection of countries. Population

data of 2019 for each U.S. state were obtained from the United States Census Bureau [21]. We

did not include Puerto Rico in our analyses and also excluded all cruise ship data and data

regarding repatriated travellers. Due to large geographic distances, we also excluded data from

all overseas territories for the Netherlands, the United Kingdom, and France.

Note that because of the small number of countries and infections and deaths within coun-

tries in Oceania, measures of inequality were not calculated for this continent. The nine

affected countries are Australia, New Zealand, Papua New Guinea, Fiji, Solomon Islands, Mar-

shall Island, Samoa, Micronesia and Vanuatu. In the latter five countries, a total of 80 infec-

tions and no COVID-19 related deaths have been reported up to February 2, 2021.
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The data were analyzed with R (Version 3.6.3) [22]. Both Gini indices were calculated using

the DescTools package [23], the Theil index was evaluated using the dineq package [24] and

for the likelihood-ratio test the package lmtest was used [25].

The disease measures

The incidence and mortality parameters (IR(t) and MR(t)) at day t are the cumulative seven

days incidences per 100,000 persons before day t. The data was aggregated over the past seven

days and we are working with discrete time points of t = 7, 14, 21, etc. The IFR(t) at day t is the

ratio of MR(t)/IR(t-14). The chosen time shift follows an established practice [26, 27]. As

described above, we use population size data in combination with data on the corresponding

positive test results and fatalities associated with COVID-19. There will be no correction for

undetected SARS-CoV-2 infections and no adjustment for testing strategies. Formally we

work with the test-positive fatality ratio (TPFR), which is the ratio of documented COVID-19

related deaths to documented positively tested persons. Strictly speaking, TPFR should be dis-

tinguished from IFR, which includes all infected persons (with and without symptoms) in the

denominator. Because of untested infected persons without symptoms, it is plausible that

IFR� TPFR. Following common parlance, we use the term naive IFR (nIFR) instead of TPFR.

The disease measures are adjusted for population size that makes counts more comparable

across countries. No adjustment for sex and age is feasible due to missing data. Time-course

data of inequality indices between parts of a unit is based on counts aggregated within a part

over non-overlapping short periods of seven days.

Indices of inequality

The empirical relative Gini index is defined as

GIrel ¼
Pn

i¼1

Pn
j¼1
jxi � xjj

2n2�x
; ð1Þ

where x is an observed value (such as a specific incidence rate), n is the number of values

observed and �x is the mean value. Alternative formulae can be found in [28]. The GIrel takes

values between 0 and 1, which follows from the inequality |x − y|� |x| + |y|. The GIrel is scale

invariant. In a setting of n parts of a unit where n − 1 parts have value 0 and one part has value

w, it follows that �x ¼ w
n and GIrel =

2�ðn� 1Þ�w�n
2�n2 �w � 1.

We combine this invariance with the nIFR: MR(t) = nIFR(t) � IR(t-14). Here MR(t) repre-

sents the incidence of death at day t given the nIFR(t) and IR(t-14), the naive IFR at day t and

the incidence of infected 14 days before. Assuming a constant nIFR(t) over the parts of a larger

unit, it holds GIrel,Infection = GIrel,Death.

There are no established cut-offs to qualify specific GIrel values. The presented figures for

the GIrel show quintile regions defined by 0.2, 0.4, 0.6, 0.8, and 1. This allows to have a neutral

category in the middle and two ratings for inequality (strong: 0.6 to 0.8; high: 0.8 to 1) as well

as equality (in terms of inequality low: 0.2 to 0.4; diminished; 0 to 0.2). The GIrel of exponential

distribution with rate 1 is about 0.5 and of uniform distribution about 0.33. A gamma distribu-

tion with mean 20 and variance 40 has a GIrel of 0.18. The GIrel of a Pareto distribution with α
= 0.7 and threshold equal to 100 is close to 1.

The empirical absolute Gini index can be calculated as

GIabs ¼
Pn

i¼1

Pn
j¼1
jxi � xjj

2n2
; ð2Þ
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where x is an observed value (such as a specific incidence rate) and n is the number of values

observed. In a setting of n parts of a unit where n − 1 parts have value 0 and one part has value

w, it follows that GIabs�
w
n.

The Theil index is defined as

TI ¼
1

n

Xn

i¼1

xi

�x
� log ð

xi

�x
Þ; ð3Þ

where x is an observed value (such as a specific incidence rate), n is the number of values

observed, �x is the mean value and log stands for the natural logarithm. In a setting of n parts of

a unit where n − 1 parts have value 0 and one part has value w, it follows that �x ¼ w
n and

TI = log(n). This motivates the fact that the TI has the maximum log(n), the largest inequality

value between n observations.

We use the bias-corrected bootstrap to calculate the confidence interval of the indices of

interest [29, 30].

Poisson regression for infection fatality rates

This section introduces classical testing theory to assess the null hypothesis nIFR is equal over
the parts of a unit. To reject the null hypothesis we apply Poisson regression and the likeli-

hood-ratio test. The dependent variable is the absolute cumulative death count per observa-

tional unit (i.e. federal state or country) and the independent variable is the state or country

itself. We used absolute cumulative infection counts over a specific region and time period as

offset. The likelihood ratio test is performed between the model containing the countries and

an offset-adjusted intercept (M1) with the model without the countries (M0).

Results

Overview of the global data

Up to February 2, 2021, globally around 104 million (103,869,117) SARS-CoV-2 infections

and 2.3 million (2,253,049) related deaths have been reported. The transmission of the virus

has been documented in total of 190 countries and the reported number of infections per

country varies between 1 (Micronesia, Vanuatu) and 26.3 million (U.S.). Deaths related to the

virus have been documented in 179 countries and the number of deaths per affected country

varies between 0 and 446,881. The three countries with the highest number of reported infec-

tions (deaths) are the U.S., India, and Brazil (the U.S., Brazil, and Mexico).

Table 1 shows an overview of the COVID-19 data for different continents, the EU and the

U.S. Shown are number of states per region, the corresponding population size, cumulative

Table 1. Descriptive overview of COVID-19 data for different geographic regions.

Region No. of states Population Infections Deaths Naive IFR in % p value LRT

Africa 54 1,306,320,572 3,597,149 92,364 2.6 <0.001

America 35 1,009,950,130 46,304,392 1,069,161 2.3 <0.001

Asia 42 4,460,056,021 20,098,563 339,674 1.7 <0.001

Europe 50 847,883,310 33,836,929 750,905 2.2 <0.001

EU 27 446,824,564 19,873,376 479,020 2.4 <0.001

U.S. 51 328,239,523 26,330,710 444,881 1.7 <0.001

Overview of cumulative infections, deaths and naive infection fatality rate (IFR) calculated as the ratio of documented deaths to documented infections. The data are

cumulated from the begin of the pandemic up to February 2, 2021. EU = European Union, U.S. = United States, LRT = likelihood-ratio test.

https://doi.org/10.1371/journal.pone.0251366.t001
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number of infections and infection related deaths from the start of the pandemic until Febru-

ary 2, 2021. A naive IFR estimate is calculated as the ratio of the number of documented deaths

to number of documented infections. The table also provides a p-value to assess the null-

hypothesis of a homogeneous nIFR within the specific geographic region.

In the following, we report inequality indices over specific regions during the first year of

the pandemic. The main body of the paper contains the results for the relative and absolute

Gini index. The supplement contains the results for the Theil index (see S1 and S2 Figs).

Inequality in international COVID-19 data

GIrel and GIabs over time for the continents Africa (n = 54 countries), America (n = 35 coun-

tries), Asia (n = 42 countries) and Europe (n = 50 countries) are shown in Figs 1 and 2, respec-

tively. The left column of Fig 1 shows the GIrel values for the documented parameters IR and

MR of each continent. The GIrel values for Africa and Asia are above 0.6. The values for the

Americas are a bit lower. Only in Europe, the GIrel of IR and MR decrease below 0.6. The GIrel

for IR and MR look comparable for the A-continents (Africa, America and Asia). In Europe,

there is higher inequality regarding MR compared to IR. In the right column of Fig 1 the GIrel

for nIFR is shown. In Europe, nIFR GIrel values decrease over time while higher nIFR GIrel val-

ues are observed in the other continents. At the last time point GIrel,nIFR = 0.37 (95% confi-

dence interval CI: 0.30, 0.47) for Europe, GIrel,nIFR = 0.55 (CI: 0.46, 0.66) for Africa, GIrel,nIFR =

0.44 (CI: 0.35, 0.58) for America, and GIrel,nIFR = 0.61 (CI: 0.50, 0.73) for Asia, respectively.

Compared to Europe, a decrease of the nIFR GIrel values over time is less pronounced in the

three A-continents.

A different view on inequality is given by the GIabs values presented in Fig 2, where inequal-

ity in absolute terms in shown. The six panels for the three A-continents (Fig 2a to 2f) show

slight increases in GIabs values for IRs and MRs over time. The two panels for Europe (Fig 2g

and 2h) reflect the effects of the two pandemic waves and the relaxed situation during the sum-

mer 2020. While the pandemic expands, absolute differences increase. From Eq (2) it follows

that a comparison between the GIabs,IR and GIabs,MR gives a rough estimate of the correspond-

ing geographic nIFR. For winter 2020, the nIFR in Europe is about 2% while the nIFR of

Africa, the Americas and Asia are 2.5%, 2.5% and 1.5%, respectively. The GIabs,nIFR time course

follows the time course of the relevant parameters IR and MR: The mean of absolute differ-

ences between observations correlates with the mean of these observations.

The results of the continental Theil indices are shown in S1 Fig. The TI time course follows

qualitatively the GIrel time course. The maxima of TI values differ between continents, since

each continent consists of a different number of countries. At the beginning, there is large

inequality for both IR and MR. The time course of TI is similar for both IR and MR. Africa

and Asia have the highest values, Europe the lowest, the Americas are in the middle position.

Compared to the range of possible values, the indices are predominantly in the lower half or

lower third. The TI values for Europe are even close to zero. The TI values for the nIFRs are

less regular compared to those presented using the GIrel.

Inequality in U.S. and EU data

Fig 3 shows the time course of the incidence data for infections and mortality for the U.S. and

the EU. They are used to calculate the inequality indices after being accumulated over a period

of seven days.

Fig 3a and 3b show IR per 100,000 population for each of the 51 U.S. federal and of the 27

EU member states, respectively. Prominent peaks in the U.S. data (Fig 3a) can be seen for the

states of New York in the spring and Arizona and Florida during the summer. The highest IR
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of over 1,200 new infections per 100.000 population during one week is seen for North Dakota

in the fall of 2020.

In the EU (Fig 3b), Luxembourg had the highest 7-day IR during the first wave in spring

2020. During the fall and winter Belgium, Lithuania, and France and Denmark show the high-

est IRs.

In terms of MR (Fig 3c), similar to IR, New York and New Jersey reported the highest MRs

within the U.S. in the spring 2020. In the fall and winter, South Dakota and, more recently,

Alabama reported the highest MRs. In the EU in spring 2020, the highest MRs were reported

Fig 1. Relative Gini indices for different continents. Relative Gini indices (GI) for infection and death rates (left column) and

naive infection fatality rate nIFR (right column) for Africa (a and b), America (c and d), Asia (e and f) and Europe (g and h).

The coloured bands show the 95% confidence intervals. The horizontal axis shows the calendar time between February 2020

and February 2021.

https://doi.org/10.1371/journal.pone.0251366.g001
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for Belgium (Fig 3d). During the second wave in Europe, Czechia, Slovenia, and most recently

Portugal reported the highest MRs within the EU member states. Fig 3e and 3f show the state-

specific nIFRs, respectively.

The GIrel and GIabs values calculated from the incidence data of Fig 3 are shown in left col-

umn of Fig 4 for the U.S. and in the right column for the EU. A more detailed picture of the

inequality in nIFR for both regions is shown in Fig 5.

The GIrel values for infections are below the GIrel values for mortality (Fig 4a and 4b). The

time courses for the GIrel of both parameters decrease and represent more equality between

federal or member states during the pandemic. The incidence curves represented in Fig 3

Fig 2. Absolute Gini indices for different continents. Absolute Gini indices (GI) for infection rates (left column), and for

death rates and naive infection fatality rate nIFR (right column) for Africa (a and b), America (c and d), Asia (e and f) and

Europe (g and h). The coloured bands show the 95% confidence intervals. The horizontal axis shows the time between

February 2020 and February 2021.

https://doi.org/10.1371/journal.pone.0251366.g002
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demonstrate that for the U.S. (a and c) as well as for the EU (b and d) equality increases as the

second wave of the pandemic begins. The time course of GIrel,nIFR values demonstrate similar

index values during the winter 2020/2021. At the last observation time the GIrel,nIFR = 0.28 (CI:

0.21, 0.37) for the U.S. and GIrel,nIFR = 0.34 (CI: 0.27, 0.46) for the EU, respectively. The hump

in the European GIrel,nIFR values during the summer 2020 is a result of low IR and MR values.

Here two methodological aspects of the GIrel may be instrumental: Given a fixed mean abso-

lute difference between observations, the GIrel decreases if the mean of the observations

increases, the GIrel increases if the mean of the observations decreases.

Fig 3. Infection, death and infection fatality rates for the United States and the European Union. Infection rate, death rate

and naive infection fatality rate (nIFR) for the states of the United States (left column) and the member states of the European

Union (right column). Panels a and b show the infection rate per 100,000 population over 7 days, panels c and d the death rate

per 100 000 population over 7 days and panels e and f the time course of the nIFR. The horizontal axis shows the time between

February 2020 and February 2021. The black thick lines show the mean incidence and death rate across all states.

https://doi.org/10.1371/journal.pone.0251366.g003
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The GIabs values reflect the seasonality of the pandemic: high GIabs values during the both

waves, low value during the summer without excessive pandemic activity. While the EU shows

higher MR inequality compared to the U.S. during the first wave of the pandemic, the second

wave shows comparable values between the EU and the U.S. Based on the argument that the

comparison between GIabs,IR and GIabs,MR reflects the nIFR, the time course of both indices

allows a crude nIFR estimate over time. For winter 2020, the nIFR in the EU is about 2.5%

while the nIFR in the U.S. around 1.8% (see also Table 1). The values of the GIabs,nIFR get very

low with time (Fig 5c and 5d). In February 2021, the GIabs,nIFR = 0.004 (CI: 0.003, 0.006) for

Fig 4. Inequality measures for the United States and the European Union. Gini indices (GI) for the states of the United

states (left column) and the member states of the European Union (right column). Shown are the relative GIs of infections

and deaths (blue and black curves, a and b), absolute GIs of infections (c and d), and absolute GIs of deaths and naive

infection fatality rate nIFR (e and f) as well as relative GI for nIFR (g and h). The coloured bands show the 95% confidence

intervals. The horizontal axis shows the time between February 2020 and February 2021.

https://doi.org/10.1371/journal.pone.0251366.g004
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the U.S. and GIabs,nIFR = 0.009 (CI: 0.007, 0.012) for the EU. These values are comparable to

the nIFR values calculated based on cumulative data shown in S1 and S2 Tables.

The TI values are presented in S2 Fig. The left column shows TI values based on the U.S.

data, the right column TI values based on the EU data. For all three parameters of interest

(upper row: TIs for IR and MR; lower row: TIs for nIFR) the figures show a high level of

inequality at the begin of the pandemic and a pronounced drop after the first wave to low TI

values indicating equality. The dynamic of the TI values is comparable to that of the GIrel val-

ues. The visual impression (especially the sharp drop of values after the first wave) indicates

higher equality in terms of TI compared to the GIrel value.

(Member) State-specific nIFRs for both regions can be found in the (S1 and S2 Tables).

Discussion

During a pandemic, differences in incidence and number of deaths between countries and

regions are not surprising findings. What does it add to use specific metrics to monitor the

inequalities within larger political or geographic units over time? What are the political and/or

moral implications? What does it mean for policy making?

Fig 5. Gini indices for naive infection fatality rate nIFR for theUnited States and the European Union. Gini indices (GI) for the states of the United

States (left column) and member states of the European Union (right column). Shown are the relative GIs of nIFR (a and b) and absolute GIs of nIFR (c

and d). The coloured bands show the 95% confidence intervals. The horizontal axis shows the time between February 2020 and February 2021.

https://doi.org/10.1371/journal.pone.0251366.g005
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As citizens of the EU, the authors miss a concise communication on the state of the Euro-

pean Union regarding central pandemic indicators. We consider metrics for equality/inequal-

ity as more comprehensive than looking at maps, following them over shorter or longer

periods, performing an eye ball test by relating the gap between the best or worst performer, or

discussing a series of caterpillar plots for the respective parameters. Also an U.S. American citi-

zen wishes to be informed about how the pandemic load is distributed over his or her country.

As the result of our paper, the GIabs provides an easy to understand quantitative statement

which summarizes complex information.

The need for concise quantitative information on the pandemics time course over large

geographical regions also holds for other global political structures in different continents to

coordinate political interests (OAU—Organization of African Union; ASEAN—Association of

Southeast Asian Nations; UNASUR—Union of South American Nations). The spread of the

epidemic within these bodies is also of high political interest. As measures for the inequality of

national income guide many aspects of policy making, measures for the inequality in health

related issues are (especially over longer time periods of heavy dynamics) of similar impor-

tance. Policy making in a larger geographic area with high inequalities should build on local or

regional measures. Policy making in a larger geographic area with high equality can build on

more centralized components.

The causes of geographic inequality are complex. Inequality between nations reflects dis-

tinct health care systems, incompatible administrative structures, but also disparate documen-

tation and reporting processes. Differences in demography will cause inequality regarding the

disease measures of interest. Countries with young populations (like India with a mean age of

28 years) may show a different death rate compared to countries with higher average age. This

paper does not study the features of nations that contribute to inequality, but focuses on how

to transform inequality into accessible information.

The aim of this paper is to explore the relevance of well established indices to monitor

inequality in SARS-CoV-2 infection and COVID-19 death incidences over time, taking conti-

nental, or national views. Three inequality indices are considered: The relative Gini index

GIrel, the absolute Gini index GIabs, and the Theil index TI. They are widely used in the eco-

nomic as well as in the health-economic literature. There are several pros and cons for each of

these candidates.

The GIrel is the oldest and best known inequality index. Formally, the GIrel can be used to

compare inequalities between larger groups of countries (between continents or between the

U.S. and the EU). However, GIrel values have to be interpreted with care: Low GIrel (increasing

equality, decreasing inequality) can be observed in settings where the pandemic aggravates

and countries get more equal in a worse misery. Decreasing infection or mortality rates, on the

other hand, can result in higher GIrel values indicating more inequality. The GIrel is equal to 1

in a setting of a well-contained epidemic where one country bears the entire burden of infec-

tion, while the remaining countries show no epidemic activities.

The GIabs does not show such behavior. A GIabs,IR = 100 means that the the mean absolute

difference in infection rates is 100 between two randomly selected countries. The actual range

of the GIabs is not uniformly fixed as for the GIrel, but depends on the specific setting. In our

examples the ranges for GIabs,IR and GIabs,MR are quite different. The GIabs makes sense for

comparisons over time within the same group. A crude nIFR estimate results by comparing

the GIabs,MR with GIabs,IR.

The Theil index uses the concept of entropy and its maximum depends on the group size.

Therefore, it is also useful for comparisons over time. A high TI value can be understood as

quantifying the evidence that a high rate comes from a particular country. This is the same as

the share of a specific country in the distribution of the rates. A low TI value indicates a
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situation where it is difficult to decide if a specific country has low or high values. This is a

property also shared with the GIrel. The TI and GIrel are sensitive to the relative distribution of

low and high values within observations. Both show high values if only a few units are repre-

sented with large observations and both decrease as more units occupy larger values. The TI

seems to be more liberal towards equality by showing more distinct drops towards smaller val-

ues during the pandemic.

We observe in our data that the GIabs rises while the GIrel decreases. This holds for infection

as well as mortality rates. While the GIrel mirrors more equality, inequality in an absolute sense

increases. The GIrel makes inequality issues regarding central pandemic indicators into a more

salient political issue.

Of all continents Africa shows the highest relative and the lowest absolute inequality. This

might be related to underreporting due to limited testing capacities and/or access to health

care. Similar to Africa also Asia shows high relative and low absolute inequality. Asia contains

a heterogeneous mixture of countries, so that it was surprising to find that low absolute

inequalities: China which handled the epidemic apparently successful, India with a very young

population and Japan with very old population. Japan has also a successful epidemic manage-

ment with daily case counts far below the counts of Germany. The Americas as continent

show steadily increasing absolute inequality in both infection and mortality rates. The Euro-

pean continent shows a very different shape of absolute inequality in infection and mortality

rates over time, clearly reflecting both pandemic waves.

A specific interest of this study is to explore inequality between infection fatality rates across

geographic areas over time. As a reviewer pointed out: “Inequalities in IFR can be argued to be
of moral significance (fairness), and such inequalities may also have policy implications as coun-
tries/regions should aim the lowest possible IFR.” The results regarding the inequality in nIFR

are presented in several figures: Panels b, d, f, h of Fig 1 show the relative inequality for the

continents with Europe showing the lowest inequality. Panels b, d, f, h of Fig 2 show the abso-

lute inequality. Since the GIabs is the mean absolute difference in the variable of interest

between two randomly selected countries, the GIabs,nIFR has a direct interpretation as the mean

difference in nIFR between two randomly selected countries. Panels e, f, g, h of Fig 4 show the

relative and absolute inequality in nIFR for the U.S. and the EU. The relative inequality in the

U.S. seems lower than for the EU during the summer 2020. In the winter the relative inequality

evens out. The absolute inequality points towards mean nIFR difference of 0.4% (CI: 0.3%,

0.6%) between two random U.S. states and 0.9% (CI: 0.7%, 1.2%) between two random EU

member states, respectively.

A comparison between the U.S. and the EU based on inequality indices is of high interest.

There have been many rumours in the European media about how the U.S. performed during

the pandemic. Further, the media coverage of the EU situation offered many narratives with

permanently changing focus. Therefore, the paper takes a meta-look by using inequality indi-

ces for a broader comparison between both political bodies. Figs 4 and 5 show regional vari-

ability in the three pandemic key indicators. GIrel as well as GIabs drop down to low values

reflecting equality in absolute as well as relative terms.

We see the quantification of inequality in COVID-19 key data across different geographic

regions as a strength of our study. We considered three different inequality indices and dis-

cussed their strengths and weaknesses. Inequality was evaluated at different geographical scales

(continental, national) and by means of Poisson regression. We see the concept of inequality

as a complement to the dichotomous statistical thinking of difference yes/no. We also com-

pared the inequality between the EU and the U.S. providing insights into the matter of relative

and absolute inequality. We see it as important that mortality risk, infection risk, risk to be

hospitalized or the type of treatment does not depend on where one lives. How close a
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community is to achieving this goal is quantified by specific measures of inequality. This

stresses the relevance of the presented results.

Our study also comes with some limitations, which are mainly related to the quality of the

data we work with. Different countries might report differently. While some countries do not

have a systematic reporting system, others might only report suspected COVID-19 or PCR-

confirmed cases. Same thoughts can be applied to reporting of deaths, too. In addition to this,

sudden sharp increases in infection and/or death counts might be attributed to late or irregular

reporting and not point towards emerging situation of concern.

Due to the nature of reporting data we are unable to adjust the incidence and death rates

for demographic features such as age or sex. It is well known that women and young persons

have lower risk to die compared to men and people above 70 years [31]. Our analyses also do

not account for seasonality or weather or the geographical location of the different areas. We

also do not consider weighted inequality indices. We use the equal weighting approach per

country because of our interest to assess the quality of the environment a person lives in and to

compare environments. Introducing population weights would result in diminishing the influ-

ence of countries like the small European states in comparison to France or Germany, or in

case of the U.S., or weighting the situation in states with large metropolitan areas in compari-

son to states with a more rural structure. Policy making is in general focused on countries and

administrative/political units. Therefore, all countries/regions contribute equally to the calcu-

lation of inequality indices. We only adjust for the population size to report rates per 100,000

inhabitants in 7 day periods.

For the interpretation of our results, we have to additionally take into account that the num-

ber of infected persons is different from the number of positively tested persons. This is

addressed by introducing the term naive IFR (nIFR). Furthermore, the number of positively

tested persons depends on the number of tests performed within a population. Therefore, the

numbers used are biased estimates of the true incidences. Unfortunately, we do not have data

on testing strategies that would allow us to adjust the numbers used in our article toward better

estimates. Therefore, the true COVID-19 prevalence, incidence, and mortality remain uncer-

tain. Rahmandad et al. discuss the impact of under-reporting across 92 nations on estimation

of COVID-19 disease measures [32]. Their estimated cumulative cases and deaths through 7.0

and 1.4 times official reports, with substantially varying underreporting across the countries.

An important future application of inequality indices could be monitoring inequality in

COVID-19 immunization rates between countries with early immunization activities (United

Kingdom, Israel) and countries of the EU (as data become available).

Conclusion

This paper applies three indices to measure inequality in international SARS-CoV-2 related

infection and mortality data: the relative and absolute Gini index (GIrel, GIabs) as well as the

Theil index (TI). These indices are applied to central pandemic indicators: infection (IR), mor-

tality (MR), and (naive) infection fatality rate (nIFR). TI and GIrel show a comparable behav-

ior. The GIrel and GIabs behave complementary: Often, the GIrel mirrors more equality, while

absolute inequality as measured by GIabs increases. For this reason both indices should be

reported simultaneously. Following the inequality indices over time allows a meta-look on

very complex dynamics. Our analyses allow the conclusion that there is no convincing evi-

dence that the U.S. and the EU show clear differences in specific health equity issues with

respect to COVID-19 related mortality risks. Generally, the public discussion is directed

towards the disease activity at a national or regional level. As it seems, only specialists are

aware of the different aspects of the disease at a larger scale. For this reason we believe that
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tools are needed to represent the pandemic state of a nation/region within a broader and easy

to understand framework.

Supporting information

S1 Fig. Theil index for different continents. Time course of Theil index for infection and

death rates (left column) as well as for naive infection fatality rate (nIFR, right column) is

shown for Africa (a and b), America (c and d), Asia (e and f) and Europe (g and h). The col-

oured bands show the 95% confidence intervals. The horizontal axis shows the time between

February 2020 and February 2021. The black dashed horizontal line shows the maximum pos-

sible value of the Theil index.

(TIF)

S2 Fig. Theil index for United States and European Union. Time course of Theil index for

infection and death rates (upper row) as well as for naive infection fatality rate (nIFR, lower

row) is shown for the states of the United States (left column), and the member states of the

European Union (right column). The coloured bands show the 95% confidence intervals. The

horizontal axis shows the time between February 2020 and February 2021. The black dashed

horizontal line shows the maximum possible value of the Theil index.

(TIF)

S1 Table. Infection and death data for the European Union. Cumulative infection and death

rates per 100000 inhabitants, cumulative number of infections and deaths, and the naive infec-

tion fatality rate in % are shown for the 27 current member states of the European Union as of

February 2, 2021.

(PDF)

S2 Table. Infection and death data for the United States. Cumulative infection and death

rates per 100000 inhabitants, cumulative number of infections and deaths, and the naive infec-

tion fatality rate in % are shown for the U.S. states as of February 2, 2021.

(PDF)
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