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Abstract

Dependencies on the relative frequency of a state in
the domain are common when modelling probabilistic
dependencies on relational data. For instance, the
likelihood of a school closure during an epidemic might
depend on the proportion of infected pupils exceeding
a threshold, say 1%. Continuous dependencies
are also common: for instance; the likelihood
of any one mosquito bite transmitting an illness
depends on the proportion of carrier mosquitoes.
Current approaches usually only consider probabilities
over possible worlds rather than over domain
elements themselves. We introduce two formalisms
that explicitly incorporate relative frequencies into
statistical relational artificial intelligence. The first
formalism, Lifted Bayesian Networks for Conditional
Probability Logic, expresses discrete dependencies on
probabilistic data. The second formalism, Functional
Lifted Bayesian Networks, expresses continuous
dependencies. Incorporating relative frequencies is
not only beneficial to modelling; it also provides a
more rigorous approach to learning problems where
training and test or application domains have different
sizes. To this end, we provide a representation of
the asymptotic probability distributions induced by
the two formalisms on domains of increasing sizes.
Since that representation has well-understood scaling
behaviour across domain sizes, it can be used to
estimate parameters for a large domain consistently
from randomly sampled subpopulations.

1 Introduction
Consider the different flavour of the following two
statements: “ 1% of the population are suffering
from the disease”, which is a statement about the
relative frequency of an illness in the population; and
“Considering his symptoms, the likelihood that this
patient is suffering from the disease is 20%”, which is
a statement about the degree of confirmation of the
assertion that a particular patient has this illness, given
the available evidence.

This distinction has first been methodically
investigated by Carnap (1950), who distinguished two
concepts of probability, the “degree of confirmation”,
which he calls “probability1”, and the “relative frequency
(in the long run)”, which he calls “probability2”. Carnap

goes on to formalise probability1 using a probability
measure defined over so-called state descriptions,
which we can identify as possible worlds in more
modern terminology. Probability2 on the other hand is
interpreted by the uniform measure on a given domain
set itself.

Forty years later, in his seminal paper on the analysis
of first-order logics of probability (1990), Halpern
divided approaches to formalising probability in a
relational setting along very similar lines. Halpern
refers to logics encoding relative frequencies as Type I
logics, while referring to logics encoding degrees of belief
as Type II logics 1. As a distinct category, Halpern
also considers logics that combine both by expressing
a degree of belief in a statement that mentions relative
frequencies. He refers to those as Type III logics. Type
III logics can express compound statements such as
“With a likelihood of at least 10%, more than 60% of
the population will have been ill by the end of the year.”

In our contribution, we outline the Halpern types
corresponding to the prevalent formalisms of statistical
relational artificial intelligence and investigate the
benefits of a Type III semantics to this context. They
include appropriateness to the intended meaning of
queries and a better grasp of extrapolation behaviour,
which enables transfer learning across domain sizes.
We then discuss two concrete Type III formalisms, the
Lifted Bayesian networks for Conditional probability
logic (LBN-CPL) introduced by Koponen (2020)
and Functional Lifted Bayesian Networks (FLBN),
proposed here. We explore the expressiveness of
those formalisms and give a formal account of their
extrapolation behaviour. After briefly summarising the
learning algorithms that are available or adaptable to
LBN-CPL and FLBN, we give a formal account of their
extrapolation behaviour with increasing domain size
and explain how this addresses the transfer learning
problem posed in the introduction.

The main original contributions of this article are:

1. We introduce and evaluate FLBN as a statistical
relational Halpern Type III formalism for continuous

1Slightly unfortunately, this terminology is reverse to
that of Carnap mentioned above



dependencies
2. We propose and evaluate the use of LBN-CPL as a

statistical relational Halpern Type III formalism for
continuous dependencies

3. We characterise the asymptotic behaviour of FLBN
on domains of increasing sizes.

4. We outline an asymptotically consistent approach
to transfer learning across domain sizes using the
asymptotic representations.

1.1 Current formalisms in statistical
relational AI

As Muggleton and Chen (2008) and Schulte (2012)
have noted, the vast majority of statistical relational
frameworks in use today are of Halpern Type II - they
allocate a probability to each possible world.

We briefly outline the situation for Markov Logic
Networks (MLN), Probabilistic Logic Programming
under the distribution semantics (PLP) and approaches
based on lifting Bayesian networks.

In their simplest form, MLNs (Richardson and
Domingos 2006) are given by a set of first-order
formulas ϕi in a signature σ annotated with real-valued
weights wi, as well as a domain D. Then a probability
measure over the set of all possible worlds X on D (i.
e. σ-structures with domain D) is defined by setting

P(X = X) :=
1

Z
exp

(∑
i

wini(X)

)
where ni(X) is the number of true groundings of ϕi in
X and Z is a normalisation constant ensuring that the
probabilities of all possible worlds sum to 1.

The distribution semantics for PLP (Riguzzi and
Swift 2018) is given by a stratified logic program over
independently distributed probabilistic ground facts on
a domain D. More precisely, let ρ ⊆ σ be signatures
and let αi ∈ [0, 1] for atoms Ri(x) from ρ. Let
Π be a stratified Datalog program with extensional
vocabulary ρ and intensional vocabulary σ \ ρ. Then
every ρ-structure Y on D induces a σ-structure X on D
obtained by evaluating Π with input Y. In this way, Π
lifts the probability distribution on ρ-structures given
by making independent choices Ri(x) of atoms from ρ
with probabilities αi,

P(X = Y) := ∏
a∈D,Ri∈ρ,Y|=Ri(a)

αi

 ∏
a∈D,Ri∈ρ,Y|=¬Ri(a)

(1− αi)


to a probability distribution on σ-structures with
domain D.

Approaches based on lifting Bayesian networks,
such as Relational Bayesian Networks (RBN) (Jaeger
2002), Bayesian Logic Programs (BLP) (Muggleton and
Chen 2008) and Relational Logistic Regression (RLR)
(Kazemi et al. 2014), provide a template for a Bayesian

network on any given domain D, with a node for every
possible ground atom R(a), a ∈ D. The probability
of every possible world is then defined in the manner
usual for Bayesian networks. We briefly sketch the
RLR formalism as an example: Here, the nodes of the
DAG are given by atoms of σ, and every node Q(~x)
is annotated with a list (ϕi, wi)i of formulas whose
relations are taken from the parents of Q(~a) and real-
values weights wi. The probability of Q(~a) given a
grounding of its parents is as follows:

P(Q (~a)) := sigmoid

(∑
i

wini

)
where ni is the number of true groundings of the
formula ϕi.

As a generalisation of stochastic grammars,
Stochastic Logic Programs (SLP) (Muggleton and
Chen 2008) are very different to the approaches above.
Rather than providing a probability distribution
over possible worlds, they define a distribution over
derivations of a goal in a logic programming setting.
Since deriving a goal equates to querying a Herbrand
base, this can be seen as defining a distribution within
that model. Therefore, SLPs can be classified as Type
I.

More explicitly of Type I is the class-based semantics
for parametrised Bayesian networks suggested by
Schulte et al. (2014). Syntactically, they are similar
to the template Bayesian networks mentioned above,
but probabilities are defined without grounding to any
specified domain. Instead, they are interpreted as
arising from a random choice of substitutions that
instantiate the template nodes.

To the best of our knowledge, no statistical relational
approach has yet been identified as Type III of the
classification. However, Jaeger (2002) has provided for
a ‘mean’ aggregation function for RBN andWeitkämper
(2021) has investigated scaled Domain-size Aware RLR
(DA-RLR) in which parameters are scaled with domain
size. Both formalisms induce a dependency on relative
frequency (Type I probability) of domain atoms, and we
will see in Subsection 3.2 below how those approaches
are subsumed by our Type III framework.

1.2 Queries relating to degrees of belief vs
relative frequency

Picking up the thread of disease modelling, we outline
how probabilistic models and queries fit into the context
of probability types.
Example 1. For a domain of people and a graph
of connections between them, consider a model that
represents how connected individuals infect each other.
A Type II query would ask “what is the likelihood that
a given individual is infected at time t (possibly given
evidence)”.

This is clearly an interesting problem on this domain.
However, a main focus of epidemiologic modelling
are adaptive interventions: A trigger is set (such as



“1% of the population are infected”) and then some
intervention is performed (such as “schools are closed”)
as soon as that trigger is reached.

Such trigger conditions that refer to relative
frequencies are very common (see Bisset et al. (2014,
Table II) for further examples). This naturally leads to
Type III queries, in which the likelihood of a certain
frequency event is addressed: “How likely is it that 1%
of the population will be infected within the next four
weeks?”

We introduce two different Type III formalisms, both
of which incorporate Type I expressions into a Type
II framework of lifted Bayesian networks. They are
distinguished by the type of dependencies that they are
designed to model. LBN-CPL is built around the Type
I language ‘Conditional Probability Logic’, in which
conditions such as “At least 5% of pupils in school
s are diagnosed” can be expressed. Probabilities of
relations or propositions at a child node would then
depend on which condition is satisfied: Often, however,
dependencies are not discrete - instead, they are of the
form “the higher (or lower) the proportion of R, the
more likely is Q”. An example would be a mosquito-
borne disease, in which the transmission risk of a single
bite is directly proportional to the relative frequency of
disease carriers in the mosquito population. Therefore
we also introduce FLBN, where the probability of a
child relation is a continuous function of the relative
frequencies of parent nodes.

1.3 Transfer learning and Extrapolation
We will see that systematically using Type I
probabilities within an outer framework of lifted
Bayesian networks also addresses a pertinent
problem in parameter learning for statistical relational
representations: discrepancies in domain size between
training and test or deployment sets. Such a
discrepancy could occur in different settings. On one
hand, it could be a deliberate choice since learning
can be considerably more expensive than inference
(which is known to be NP-hard in general (Dalvi and
Suciu 2012)). Therefore, sampling small subsets of a
complete dataset and then training the parameters
on the sampled subsets could be much more efficient
than learning the parameters on the entire set. This is
recommended by the authors of the MLN system Tuffy
(Doan et al. 2011), for instance. On the other hand,
the size of the test set might be variable or unknown
at training time.

It is well-known, however, that in general the
parameters that are optimal on a randomly sampled
subset are not optimal on the larger set itself.
Example 2. Consider the typical example of a
relational logistic regression with two unary relations
R and Q (cf. (Poole et al. 2014)), and an underlying
DAG R(x) −→ Q(y). For any b ∈ D, the probability of
Q(b) is given by sigmoid(w ∗ |a ∈ D|R(a)|), where w is
a parameter to be learned from data. Now consider a

training set of domain size 1000 in which 100 elements
each satisfy R and Q. Now assume that we sample a
subset of 100 elements in which 10 elements each satisfy
R and Q. The optimal parameter on that subset would
be a w for which sigmoid(w∗10) = 10/100, which turns
out to be around -0.21. On the original set, however,
the optimal parameter satisfies sigmoid(w ∗ 100) =
100/1000, which is around -0.021. Indeed, if we would
transfer the original parameter to the larger set, it
would predict a probability for Q(y) of less than 10−9!

Jaeger and Schulte (2018) showed that for certain
projective families of distributions such a sampling
approach provides a statistically consistent estimate of
the optimal parameters on the larger set. However,
projectivity is a very limiting condition; in fact, the
projective fragments of common statistical relational
frameworks that are isolated by Jaeger and Schulte
(2018) are essentially propositional and cannot model
any interaction between an individual and the
population at large. For example, to make the
relational logistic regression above projective, the
probability of Q(a) must only depend on whether R(a)
is true, and not on any other elements of the domain.
We will show that despite their larger expressivity, Type
III frameworks can be meaningfully approximated by
projective distributions on large domains, allowing us to
leverage the statistical consistency results for projective
families of distributions.

2 Introducing Type III formalisms
We propose two Type III formalisms for statistical
relational AI. We establish the Type I language of
conditional probability logic (CPL) and then extend it
to a Type III framework using lifted Bayesian networks,
following Koponen (2020). We then propose a second
framework, able to express continuous rather than
discrete dependencies on Type I probabilities.

As CPL is an extension of classical first-order logic,
we will assume the syntax and semantics of first-order
logic to be known (see e. g. Ebbingaus et al.(1994)).

2.1 Conditional Probability Logic

CPL formulas over σ are defined inductively as follows
(Koponen 2020, Definition 3.1):

Definition 1. Let σ be a (possibly multi-sorted)
relational signature (with equality). Then the set of
conditional probability formulas over σ is defined as
follows:

1. For every relation symbol R in σ of arity n and
appropriate terms (i. e. variables or constants of the
correct sorts) t1, . . . , tn, R (t1, . . . , tn) is a conditional
probability formula.

2. If φ, ψ are conditional probability formulas, then
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ and ϕ → ψ are also conditional
probability formulas.



3. If ϕ is a conditional probability formula and x is
a variable, then ∀xϕ and ∃xϕ are also conditional
probability formulas.

4. For any r ∈ R+, conditional probability formulas
ϕ, ψ, θ and τ , and a tuple of distinct variables ~y,
the following are conditional probability formulas:

r + ‖ϕ|ψ‖~y ≥ ‖θ|τ‖~y
‖ϕ|ψ‖~y ≥ ‖θ|τ‖~y + r

In ordinary first-order logic, a variable is bound if it is
in the range of an existential or universal quantifier. In
conditional probability logic, a variable is also bound if
it is in the range of a construction of the form ‖ϕ|ψ‖~y ≥
‖θ|τ‖~y + r or ‖ϕ|ψ‖~y + r ≥ ‖θ|τ‖~y.

The semantics for CPL are an extension of the
ordinary semantics of first-order logic. Intuitively,
the new constructor ‖ϕ|ψ‖~y should be read “The
conditional (Type-I-)probability that ϕ(~y) holds given
that ψ(~y) is known to hold.”

Koponen (2020) only defines the semantics on finite
structures, where the Type I probability measure on
the domain is given by the counting measure. This is
also the setting most relevant to statistical relational
learning and reasoning.
Definition 2. Let σ be a relational signature and let
X be a finite σ-structure (in the sense of ordinary first-
order logic with equality) on domain D. We define
what it means for a conditional probability formula
ϕ to hold in X with respect to any sort-respecting
interpretation of variables ι, written as X |=ι ϕ. Note
that Clauses 1 through 3 of Definition 1 are taken from
ordinary first-order logic. Therefore, we can copy the
recursive definition of atomic formulas and connectives
directly from the corresponding clauses for first-order
logic. So assume that |=ι has been defined for ϕ, ψ, θ
and τ . Let ι~y:~b be the variable interpretation obtained
from ι by mapping ~y to ~b and otherwise following ι.
Furthermore, for any term t let Dt be the domain of
the sort of t. We then define |ϕ|~y,ι to be the cardinality

of

{
~b ∈

∏
y∈~y

Dy|X |=ι~b
ϕ

}
.

We set X |=ι r + ‖ϕ|ψ‖~y ≥ ‖θ|τ‖~y if and only if

|τ |~y,ι > 0, |ψ|~y,ι > 0 and r +
|ϕ∧ψ|~y,ι
|ψ|~y,ι

≥ |θ∧τ |~y,ι|τ |~y,ι
.

Analogously, X |=ι ‖ϕ|ψ‖~y ≥ ‖θ|τ‖~y + r if and only

if |τ |~y,ι > 0, |ψ|~y,ι > 0 and
|ϕ∧ψ|~y,ι
|ψ|~y,ι

≥ |θ∧τ |~y,ι|τ |~y,ι
+ r.

We introduce some intutitive shorthands:
Definition 3. We write ‖ϕ‖~y for ‖ϕ|y1 = y1‖~y,
expressing the unconditional probability of ϕ(~y),
and we write r ≥ ‖θ|τ‖~y and ‖ϕ|ψ‖~y ≥ r for
r + ‖¬(y1 = y1)|y1 = y1‖~y ≥ ‖θ|τ‖~y and ‖ϕ|ψ‖~y ≥
‖¬(y1 = y1)|y1 = y1‖~y + r respectively. We will refer
to the set of all conditional probability formulas over a
relational signature σ as CPL(σ).

CPL can express the trigger functions in epidemic
modelling that we had mentioned in the previous
section: for instance, “at least 1% of domain
individuals are infected” is simply ‖Infected(x)‖x ≥
0.01. Using conditional probabilities, more complex
relationships can also be expressed: “at least 5% of
pupils at school s are infected” can be expressed as
‖Infected(x)|Pupil(x, s)‖x ≥ 0.05. As an example
utilising the full syntax including nested probability
quantifiers, we can even extend this to “School s is
at least at the median among schools in area a by
proportion of infected pupils”:

0.5 ≥
∥∥∥‖Infected(x)|Pupil(x, s)‖x

≥ ‖Infected(x)|Pupil(x, y)‖x
∣∣∣Located(y, a)

∥∥∥
y

2.2 Lifted Bayesian Networks for
Conditional Probability Logic

To extend this Type I logic to a Type III representation
and to integrate it with the independence assumptions
from Bayesian Networks, we follow Koponen (2020) in
introducing Lifted Bayesian Networks.
Definition 4. A lifted Bayesian network for
conditional probability logic (LBN-CPL) over a
relational signature σ consists of the following:

1. An acyclic directed graph (DAG) G with node set σ.
2. For each R ∈ σ a set of formulas χR,i(~x) ∈

CPL(par(R)), where (par(R) is the signature of the
G-parents of R, |~x| is a sort-appropriate tuple of the
correct length for R, such that ∀~x

(∨νR
i=1 χR,i(~x)

)
is

valid (i.e. true in all par(R)-structures) and if i 6= j
then ∃~x

(
χR,i(~x) ∧ χR,j(~x)

)
is unsatisfiable. Such a

set of χR,i is called a partition.
3. For each R ∈ σ and each associated formula, a

number denoted µ(R | χR,i) (or µ(R(~x) | χR,i(~x)))
in the interval [0, 1].

The semantics of lifted Bayesian networks are defined
by grounding to a Bayesian network with respect to a
given domain. So letD be a finite domain. Then we can
view a σ-structure with domain D as a choice of truth
value for each R(~a), where R is a relation symbol in σ
and ~a is a tuple of elements of D of the right length and
the right sorts for R. Therefore, defining a probability
distribution over the space of possible σ-structures with
domain D is equivalent to defining a joint probability
distribution over the R(~a), viewed as binary random
variables.
Definition 5. Consider an LBN-CPL G and a finite
domain D. Then the probability distribution induced
by G on the set of σ-structures with domain D is given
by the following Bayesian network: The nodes are given
by R(~a), where R is a relation symbol in σ and ~a is a
tuple of elements of D of the right length and the right
sorts for R. There is an edge between two nodes R1(~a)

and R2(~b) if there is an edge between R1 and R2 in the



DAG G underlying G. It remains to define a probability
table for every node R(~a): Given a choice of values for
P (~b) for all P ∈ par(R) and appropriate tuples ~b from
D, the probability of R(~a) is set as µ(R | χR,i) for the
unique χR,i true for ~a. This is well-defined as the truth
of a CPL formula in a structure only depends on the
interpretation of the relation symbols occurring in the
formula, and since for every structure and every choice
of ~a there is a unique χR,i true for ~a by assumption.

Grounding to a Bayesian Network allows us to use all
the inference methods developed for Bayesian networks.
This includes conditioning on given data, and also lets
us prescribe the interpretation of root predicates if
desired. We will see examples of this in Subsection 3.1
below.

2.3 Functional lifted Bayesian networks
While LBN-CPL enable us to express more complex
models with Type III conditions, they are intrinsically
categorical: They do not allow the probability of
R(~a) to vary as a continuous function of the Type-
I-probabilities of first-order statements. Therefore we
introduce a second formalism here, which is designed
to do just that.
Definition 6. A functional lifted Bayesian network
(FLBN) over a relational signature σ consists of the
following:
1. A DAG G with node set σ.
2. For each R ∈ σ a finite tuple (χR,i(x̄, ȳ))i≤nR of first-

order par(R)-formulas, where |x̄| is a sort-appropriate
tuple of the correct length for R.

3. For each R ∈ σ a continuous function fR : [0, 1]nR →
[0, 1].
The intuition behind FLBN is that the probability of

R(~(a)) is given by the value of f applied to the tuple
(‖χR,i‖~y). Note that if χR,i has no free variables beyond
~x, then the Type I probability can only take the values
1 and 0, depending on whether χR,i is true or false.
Definition 7. Consider an FLBN G and a finite
domain D. Then the probability distribution induced
by G on the set of σ-structures with domain D is given
by the following Bayesian network: The nodes are given
by R(~a), where R is a relation symbol in σ and ~a is a
tuple of elements of D of the right length and the right
sorts for R. There is an edge between two nodes R1(~a)

and R2(~b) if there is an edge between R1 and R2 in the
DAG G underlying G. It remains to define a probability
table for every node R(~a): Given a choice of values for
P (~b) for all P ∈ par(R) and appropriate tuples ~b from
D, the probability of R(~a) is set as fR((‖χR,i‖~y)i≤nR).

3 Discussion and Applications
In this section we will discuss how the Type III
formalisms described here can be used to express
dependencies beyond the existing Type II formalisms,

which learning algorithms are supported and how they
enable transfer learning across domains of different
sizes.

3.1 Expressivity of lifted Bayesian
networks for conditional probability
logic

Continuing the running example of infectious disease
dynamics, CPL allows the expression of various trigger
conditions. CPL-LBN allow us to express the actions
taken when those conditions are met. Overall, we can
model each of the policy decisions summarised by Bisset
et al. (2014, Table II).
Example. As an example combining several general
features of statistical relational modelling with CPL,
consider a policy where schools and workplaces are shut
whenever there is either a diagnosed positive case in
that school or workplace or when 0.1% of the population
are diagnosed with the disease. Additionally, there is
a higher chance of contact between two people if they
attend the same open school or workplace. This can
all be expressed in an LBN-CPL over a two-sorted
signature as follows:

Is_infectious

��

!!

Attends

��

��

Is_diagnosed

''
Is_open

ww
Close_contact

��
Is_infected

Assume that “Attends” is given by supplied data.
Depending on whether this network is just one
component in an iteration, where “Is_infectious”
depends on the “Is_infected” of a previous time step,
or stands alone, “Is_infectious” might be given by data.
Alternatively, it might be stochastically modelled, with
a certain fixed probability. Then the conditional
probabilities of the other four relations can be expressed
as follows: Is_diagnosed(x) has a given probability p1
if Is_infectious(x) is true, and a (lower) probability p2
otherwise.

Is_open(w) is deterministic, with probability 1 if

∃x(Is_diagnosed(x) ∧Attends(x,w))

∨‖Is_diagnosed(x)‖x ≥ 0.01

is true, and with probability 0 otherwise.
Close_contact(x, y) models contact close enough to

transmit the disease. It could be set at a probability p3



if

∃w(Is_open(w) ∧Attends(x,w) ∧Attends(y, w))

and at a (lower) probability p4 otherwise. The values of
p3 and p4 will be varied depending on the transmissivity
of the disease and the social structure of the population.

Finally, Is_Infected(x) can now be seen as a
deterministic dependency, with probability 1 if

∃y(Close_contact(x, y) ∧ Is_Infected(y))

and probability 0 otherwise.
We conclude this subsection by showing that unlike

FLBN, every LBN-CPL can be expressed by one
containing only probabilistic facts and deterministic
rules expressed in CPL. More precisely:
Proposition 1. For every LBN-CPL G over a
signature σ there is another LBN-CPL G′ in a signature
σ′ ⊇ σ such that every relation R in σ′ is either a root
node or a child of only root nodes. In the latter case,
all probabilities µ(R | χR,i) associated with R are either
0 or 1.

Proof. The construction is similar to the expression of
Bayesian logic programs by the distribution semantics
(Riguzzi and Swift 2018, Section 4). For every relation
symbol R of σ and every χR,i, we add an additional
relation symbol PR,i to σ of the same arity and sorts
as R. This relation symbol is added as a root node
and annotated with probability µ(R | χR,i). We also
add an edge from this new node to R. Then we
replace the µ(R | χR,i) with probability 1 and add
an extra conjunction with l PR,i to every χR,i. We
then add an additional formula

∨
i

(¬PR,i) and give it

probability 0. As we iterate this construction through
all nodes, starting at the roots, we can successively
replace any mention of a non-root relation symbol with
its definition, which is given by

∨
i

(χQ,i ∧ PQ,i) and

redraw the edges accordingly. Eventually, every relation
symbol mentioned will be at the root of the DAG, as
required.

Note, however, that unlike in the case of PLP, the
new relation P (Ri) that we introduce has just the same
arity and sorts as R, and is not in the scope of any
quantifier.

3.2 Expressivity of Functional Lifted
Bayesian Networks

While LBN-CPL are very good at modelling discrete
trigger conditions, they are unsuitable for expressing
general continuous dependencies on proportion.
However, those dependencies are particularly important
because they form the basis of the regression models
from statistics. From this point of view, one could see
FLBN as a general framework for relational regression
models contingent on Type I probabilities as data.
In particular, consider linear regression and logistic

regression, two of the most commonly used regression
functions.

A linear regression model with Type-I-probabilities
as data corresponds to the following families of
functions:

f(x1, . . . xn) =
w1x1 + . . .+ wnxn

n
+ c (1)

where w1 to wn and c are coefficients that have to be
chosen in such a way that the image of [0, 1] under f
is contained in [0, 1]. These families of functions suffice
e. g. to express the “arithmetic mean” combination
function in RBN.

A logistic regression model can also be implemented;
it specialises to DA-RLR. Its functions are of the form

f(x1, . . . xn) = sigmoid(w1x1 + . . .+ wnxn + c) (2)

where “sigmoid” denotes the sigmoidal function

f(x) =
exp(x)

exp(x) + 1

By recovering these existing frameworks and
combination functions as special cases of FLBN,
they are in scope of the rigorous analysis of asymptotic
behaviour in Subsection 3.4.

3.3 Learning Type III formalisms
We will briefly consider the methods and algorithms
that are available for learning LBN-CPL and FLBN.
Let us consider LBN-CPL first. Here, parameter
learning from interpretations amounts to learning the
probabilities µ(R | χR,i) given one (or more) σ-
structures. This case is closely aligned to parameter
learning in other directed settings. In particular,
in the case of a completely specified training model,
the probabilities can be set to equal the frequencies
encountered in the data. This can actually be expressed
in terms of CPL itself: Set µ(R | χR,i) to be equal
to the relative frequency ‖R(~x)|χR,i(~x)‖~x. In the
case of missing data, we can adapt the expectation-
maximisation algorithm for learning parameters in
ordinary Bayesian networks to CPL. Since we can
view the LBN-CPL as a deterministic model over
probabilistic facts (Proposition 1), this can be done
by tying parameters known to be the same from the
relational structure of the model and the formulas
χR,i in just the same way as in probabilistic inductive
logic programming (outlined for instance by de Raedt
(2008, Section 8.5)). This native support for parameter
learning makes it particularly attractive for modelling
tasks such as the ones outlined above. In the context of
infectious disease dynamics for instance, the parameters
have epidemiological meanings and their estimation
from past data is an important part of informed decision
making. While structure learning could in principle
be accomplished along the lines of the SLIPCOVER
beam search algorithm (Bellodi and Riguzzi 2015), we
anticipate that the significantly larger theory space
resulting from the added probability quantifiers would



make that difficult. Indeed, as far as we are aware
even the problem of plain inductive logic programming
in CPL without a Type III extension is yet to be
addressed.

When posing the problem of parameter learning for
FLBN, we first have to clarify which parameters we
are learning in the first place. So rather than just
considering functions f : [0, 1]n → [0, 1] we consider a
parametrised family of such functions, f : K× [0, 1]n →
[0, 1], where K is the closure of a connected open subset
of Rm∞ from which the parameters are taken (Here R∞
stands for R ∪ {−∞,∞}). For instance, in the cases of
linear and logistic regression, Equations 1 and 2 define
functions taking m = n+ 1 parameters, w1, . . . , wn and
c. In the logistic case, K = Rm, while in the linear
case, the parameter space is constrained by the function
mapping to [0, 1]. Jaeger (2007) presents a general
approach for learning the parameters of aggregation
functions using gradient descent whenever the functions
are differentiable in the parameters. Clearly both
the linear and the logistic regression examples are
differentiable in the parameters. Functional gradient
boosting has been successfully applied to the structure
learning of relational logistic regression by Ramanan
et al. (2018), and it seems very promising to evaluate
this approach with other classes of regression functions
expressible by FLBN. We believe structure learning in
FLBN to be much more feasible than for lifted Bayesian
networks for CPL. Firstly, there is a large bank of work
on regression learning in the statistical literature on
which relational versions could be based, and secondly,
the scale of the task can be reduced systematically by
partly specifying families of functions (recovering e. g.
structure learning in relational logistic regression or
linear regression as special cases).

3.4 Asymptotic Analysis of the
Extrapolation Behaviour

Utilising Koponen’s results (2020), we can give a
full analysis of the asymptotic behaviour of the two
formalisms presented for Type III logic presented here.
The setting is as follows: On every finite domain D, a
lifted Bayesian network G over a signature σ induces
a probability distribution PG,D on the set ΩD of σ-
structures with domain D. The first thing to note is
that the names of the elements of D do not matter;
all relevant information lies in the cardinalities of the
sorts of D. Therefore we will assume from now on
that our domain sorts consist of initial segments of
the natural numbers, and we will write PG,~n for the
probability distribution on the sorts with ~n elements.
In an asymptotic analysis, we are interested in the limit
of these probability distributions as the domain size
of D tend to infinity (If σ is multi-sorted, we require
the size of every sort to tend to infinity). A technical
difficulty here is that strictly speaking, the probability
distributions are defined on different sets Ωn, so it is
unclear on which measure space a limit would even be
defined. To be precise, we consider the measure space

Ω∞ given by all σ-structures with domain sorts N. It
is endowed with the σ-algebra generated by generating
sets of the following form: “Those σ-structures X such
that the σ-substructure of X with domain a1, . . . am is
given by Y” for a tuple of domain elements a1, . . . am
and a σ-structure Y. We can identify this set with Y.
This suffices to give a probability to any query about
finite domains. On such a generating set, all but finitely
many PG,~n are defined; indeed, PG,~n gives a probability
to any structure with domain a1, . . . , am as long as
every ai is bounded by the entry of ~n corresponding to
its sort. Furthermore, the probability of the generating
sets completely determine the probability distribution
on the measure space itself. Thus, we can make the
following definitions:
Definition 8. Two formulas of CPL ϕ and ψ
are asymptotically equivalent over a lifted Bayesian
network if for any sequence Dk of domains which is
monotone and unbounded in the cardinality of every
sort lim

k→∞
PG,Dk(∀~xϕ(~x)↔ ψ(~x)) = 1

A probability distribution P∞ on Ω∞ is the
asymptotic limit of a lifted Bayesian network G if
for any sequence Dk of domains which is monotone
and unbounded in the cardinality of every sort and
any generating set A the limit of PG,~n(A) equals
P∞(A). Two lifted Bayesian networks G and G′

are asymptotically equivalent if they share the same
asymptotic limit P∞.

The discussion above does not imply, of course,
that a given lifted Bayesian network actually has an
asymptotic limit in that sense. However, there is a
class of lifted Bayesian networks where the asymptotic
limit is clear: those that define projective families of
distributions in the sense of Jaeger and Schulte (2018;
2020).
Definition 9. A family of probability distributions
(P~n) on Ω~n is projective if for every generating set A
of Ω∞ the sequence (P~n(A)) is constant whenever it is
defined.

Since clearly every constant sequence converges,
every lifted Bayesian network inducing a projective
family of distributions has an asymptotic limit.
Furthermore, if two families of distributions are
asymptotically equivalent and both projective, they
must be equal. This leads us to the following
observation:
Proposition 2. If every formula χR,i in an LBN-
CPL G is a quantifier-free first-order formula (a
quantifier-free lifted Bayesian network), then G induces
a projective family of distributions. In particular, G has
an asymptotic limit.

Proof. Since the construction in the proof of
Proposition 1 does not add any new quantifiers,
we can assume without loss of generality that G is
of the form described there. Then the probability
of any choice of truth values for relations applied to



a1, . . . , am depends only on the probabilities of their
definitions χR,i, which only mention relations at root
nodes. As the χR,i are Boolean combinations of atomic
formulas, which are independent since they are all
at root nodes in the DAG, their probabilities can be
obtained directly from the probabilities of the atomic
formulas, which in turn are specified at the root node
itself independently of D.

With these preparations out of the way, we can
formulate our main result on the asymptotic behaviour
of FLBN.
Theorem 1. Let G be an FLBN. Then G is
asymptotically equivalent to a quantifier-free lifted
Bayesian Network G′.

The proof builds substantially on Koponen’s analysis
of LBN-CPL (2020). Koponen introduces the notions
of a critical number and a critical formula. We will
not require their technical definitions here; it suffices
for us to know that the definitions depend (only) on
G, that every first-order formula is non-critical and
that for all conditional probability formulas ϕ,ψ, θ, τ
and tuples of variables ~y for all but finitely many
r the formulas r + ‖ϕ|ψ‖~y ≥ ‖θ|τ‖~y and ‖ϕ|ψ‖~y ≥
‖θ|τ‖~y + r are non-critical. Note that the asymptotic
characterisation of FLBN does not depend on any
assumption of non-criticality or similar in its statement.
Koponen’s (2020) main results are then (Theorems 3.14
and 3.16 respectively):
Theorem 2. Over any given LBN-CPL G, every
non-critical conditional probability formula ϕ is
asymptotically equivalent to a quantifier-free formula ψ.

On the level of networks, Koponen obtains a similar
asymptotic convergence result:
Theorem 3. Any LBN-CPL G all of whose partition
formulas χR,i are non-critical is asymptotically
equivalent to a quantifier-free lifted Bayesian network.

While Koponen (2020) gives a general proof, the
construction is straightforward for lifted Bayesian
networks in the form of Proposition 1:

Proof. Let G be a lifted Bayesian network in the form
of Proposition 1. Then every χR,i is asymptotically
equivalent to a quantifier-free first-order formula over
the distribution defined by the probabilistic facts, which
give the required quantifier-free representation.

Now we are ready to sketch a proof of Theorem 1.

Proof. Let R be a relation symbol from σ and let
σ′ be the signature of ancestors of R. Then the
analysis of Theorem 2 can be used to find a partition
of quantifier-free formulas {χ′R,i} ∈ CPL(σ′) such that
for any unbounded increasing sequence of σ′ structures
that satisfy χ′r,i, the tuple (‖χR,i‖~y)i≤nR converges to
a particular (cR,i)i≤nR . Since f is continuous, this
implies that the limit of f((‖χR,i‖~y)i≤nR) is f( ~cR,i).

Therefore the network with the partition {χ′R,i} and
the probabilities µ(R|χ′R,i) := f( ~cR,i) is asymptotically
equivalent.

We close by remarking how our asymptotic results
complement those of Jaeger (1998). There, Jaeger
shows that the probability distributions of relational
Bayesian networks with exponentially convergent
combination functions lead to asymptotically
convergent probability distributions. However, the
exponentially convergent combination are essentially
those that given a certain type of input sequence
increasing in length converge to a fixed value, regardless
of the precise sequence received. The classical
combination functions ‘noisy-or’ and ‘maximum’ are
paradigmal for this behaviour. The central idea of of
our work here is that the functions converge to a value
that depends explicitly on the means of the sequences
received, and therefore they are clearly distinguished
from Jaeger’s exponentially convergent combination
functions.

3.5 Examples
We illustrate the analysis of the last subsection with
a sequence of simple examples that serve to highlight
the main aspects. Consider the situation of Example 2:
The signature σ has two unary relation symbols Q and
R, and the underlying DAG G is Q −→ R. We model a
relationship between R(x) and those y ∈ D that satisfy
Q(y). In Example 2, we have seen an RLR approach to
this problem. Here, the asymptotic behaviour is well-
known: as domain size increases, the expected number
of a ∈ D that satisfy R(a) also does. By the law of
large numbers, this increase is almost surely linear with
domain size. Therefore the probability ofQ(y) will limit
to 0 if and only if w < 0, and limit to 1 if and only if
w > 0. A similar analysis holds if we consider a noisy-
or combination, or the model of a probabilistic logic
program.

So now consider modelling such a dependency with
an FLBN.
Example 3. Let G be an FLBN on G with a formula
Q(y) and a function f : [0, 1] → [0, 1]. Assume
further that µ(Q) ∈ [0, 1]. Then just as in Example
4, ‖Q(y)‖y converges to µ(Q) almost surely as domain
size increases. Since f is continuous, this implies that
f(‖Q(y)‖y) converges to f(µ(Q)) almost surely. So the
asymptotically equivalent quantifier-free network will
also have “true” as its formula for R and then f(µ(Q))
as µ(R|true).

If we assume the dependency to be discrete with a
known cut-off point r in the relative frequency of R, we
could consider using LBN-CPL to model it:
Example 4. Let G be an LBN-CPL on G with a
probability µ(Q) ∈ [0, 1] for Q and two conditional
probability formulas characterising R: χR,1 :=
‖Q(y)‖y ≥ r and χR,2 := ¬(‖Q(y)‖y ≥ r), where
r ∈ [0, 1]. We furthermore choose µ(R|χR,1) ∈ [0, 1]



and µ(R|χR,i) ∈ [0, 1]. It turns out that the formulas
χR,i are non-critical only if r 6= µ(Q). The asymptotic
analysis here proceeds as follows: By the law of large
numbers, ‖Q(y)‖y will be almost surely arbitrarily close
to µ(Q) as domain size increases, and therefore almost
surely χR,1 will be true if and only r < µ(Q). Thus
the asymptotically equivalent quantifier-free Bayesian
network will simply have the quantifier-free formula
“true” as χR and µ(R) will be µ(R|χR,1) if r < µ(Q)
and µ(R|χR,2) if r > µ(Q). Note that we cannot
make any statement about the critical case r = µ(Q).
Alternatively, consider the representation in the form
of Proposition 1, which is as follows: The signature
σ′ has two additional unary predicates P1 and P2,
with µ(Pi) := µ(R|χR,i). The definition of R(x) is
then given by R(x) := (χR,1(x) ∧ P1(x)) ∨ (χR,2(x) ∧
P2(x)). Asymptotically, χr,1(x) and χr,1(x) behave
just as in the original representation, so the asymptotic
representation will be R(x) := P1(x) if r < µ(Q) and
R(x) := P2(x) if r > µ(Q).

3.6 Transfer learning across domain sizes
As projective families of distributions, quantifier-free
lifted Bayesian networks have very desirable properties
for learning across domain sizes. More precisely, for
the family of distributions induced by any quantifier-
free Bayesian network and any structure X with m < n
elements, Pn(X) = Pm(X).

Consider a parametric family of distributions Gθ
which are asymptotically equivalent to a parametric
projective family of distributions G′θ. Consider the
problem of learning the parameters from interpretations
on a structure X of large domain size n. Then we could
proceed as follows: sample substructures of domain size
m < n, where m is larger than the highest arity in σ
and the arity of the queries we are typically interested
in. Find the parameters of G′θ that maximise the sum
of the log-likelihoods of the samples of size m. Now
consider Gθ. By the asymptotic convergence results,
if n is sufficiently large, these parameters maximise
the likelihood of obtaining the substructures of size m
sampled from X using Gθ, including realisations the
typical queries. This procedure is related to that of
Kuzelka et al. (2018). However, while they consider
samples of size m as training data, they still learn with
respect to a fixed sample size n, which is necessary
because their setting has no assumption of (asymptotic)
projectivity.

Estimating the parameters on the parametric families
G′θ only works if G′θ truly depends on the parameters,
and does so in a regular way; for the learning algorithms
suggested here that means that G′θ(X) should be
differentiable in the parameters.

Let us evaluate these criteria for the asymptotic
approximations in Examples 2 - 4 above:

In the case of Example 2, G′θ does not depend
on w beyond its sign. Therefore, this asymptotic
representation is unsuitable for learning the parameters.

In the lifted functional Bayesian network model of
Example 3, the parametric family is defined by fθ(µQ).
If f is linear or logistic, for instance, then fθ(µQ) will
depend appropriately on the parameters for any fixed
µQ ∈ (0, 1). Note, that while f(µQ) will vary with
every parameter individually, it will take its maximum-
likelihood value (which happens to coincide with the
true frequency of R(x) in the domain) on an infinite
subspace of tuples of parameters. This is not unique
to the projective approximation, however, but is a well-
known phenomenon when learning the parameters for a
relational logistic regression from a single interpretation
(see (Kazemi et al. 2014) and (Poole et al. 2014)
for an in-depth discussion). This can be overcome
by learning from several large domains, where Q has
different frequencies.

In the conditional probability modelling of Example
4, we could start by estimating µQ from data on the
values of Q. If µQ 6= r, we can then proceed to learn
one of the parameters using the asymptotic limit as
outlined above. In this parameter, the dependence is
clearly linear and therefore satisfies all of the conditions.
However, the other parameter does not occur in the
projective limit and therefore cannot be estimated in
this way. To estimate that parameter also, we would
also need more training domains, including those where
the relative frequency of Q is above the threshold

In this way, Type III formalisms allow us to
leverage the power of projective families of distributions
for transfer learning while retaining much more
expressive modelling capabilities. While adding either
functional or discrete dependencies on the Type I
probabilities present in a domain allow us to express
rich connections between different domain elements,
quantifier-free lifted Bayesian networks themselves do
not allow any dependence on the global structure of
the model. This is also quite typical of projective
families of distributions that can be expressed in
statistical relational AI, since any projective LBN-CPL
for instance is expressible by a quantifier-free one (as
two asymptotically equivalent projective families of
distributions are completely equivalent).

3.7 Conclusion
LBN-CPL and FLBN introduce relative frequencies
into statistical relational artificial intelligence, making
Halpern Type III probabilities available to this field.
By supporting discrete and continuous dependencies
on relative frequencies, they can express the complex
relationships that are required to model application
domains such as infectious disease dynamics. LBN-CPL
and FLBN also advance statistical relational learning
from large interpretations by supporting learning from
randomly sampled subdomains. This is underpinned
by a rigorous analysis of their asymptotic behaviour.
Furthermore, the transparent relationship to Bayesian
networks via their grounded semantics allows the
application of well-developed learning and inference
approaches.
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